
Turbo-HB: A Novel Design and Implementation to
Achieve Ultra-Fast Hybrid Beamforming

Yongce Chen, Yan Huang, Chengzhang Li, Y. Thomas Hou and Wenjing Lou
Virginia Tech, Blacksburg, VA, USA

Abstract—Hybrid beamforming (HB) architecture has been
widely recognized as the most promising solution to mmWave
MIMO systems. A major practical challenge for HB is to
obtain a solution in ∼1 ms, which is an extremely stringent
but necessary time requirement for its deployment in the field.
In this paper, we present the design and implementation of
Turbo-HB, codename for a novel beamforming design under the
HB architecture that can obtain the beamforming matrices in
about 1 ms. The key ideas in Turbo-HB include (i) reducing the
complexity of SVD techniques by exploiting the limited number
of channel paths at mmWave frequencies, and (ii) designing and
implementing a parallelizable algorithm for a large number of
matrix transformations. We validate Turbo-HB by implementing
it on an off-the-shelf Nvidia GPU. Through extensive experiments,
we show that Turbo-HB can meet ∼1 ms timing requirement
while delivering competitive throughput performance compared
to state-of-the-art algorithms.

I. INTRODUCTION

To further increase the data rate for the next-generation cel-
lular systems, mmWave MIMO systems have been considered
as one of the most promising technologies [1, 2]. At such high
frequencies, a base station (BS) typically employs hundreds or
more antennas to overcome path-loss fading. Due to hardware
complexity and energy consumption issues [2, 3], it is difficult
to equip a dedicated RF chain for each antenna. To address
this problem, the so-called “hybrid architecture,” which uses
fewer shared RF chains to support a much larger number of
antennas (see Fig. 1), has been considered [4–13].

Under an HB architecture, how to perform beamforming
remains a critical problem. In practice, a beamforming design
must be able to meet a real-time requirement to be useful. By
real-time requirement, we mean that one must find a beam-
forming solution within half of the channel coherence time.1

For mmWave based cellular systems, this timing requirement
can be as short as 1 ms for a mobile user moving at a
speed of 10 km/h. Further, such beamforming design must
consider a large number of resource blocks (RBs), with each
RB supporting multiple active users.

In the literature, there has been active research on beam-
forming design under the HB architecture [4–13]. Physical
(PHY) layer research in this area attempted to jointly optimize
analog and digital beamforming [4–7]. However, the iterative
nature of these algorithms makes them difficult to meet the

1For efficiency, we break up the channel coherence time into two halves.
Within each half, we compute beamforming matrices for the next half and
transmit data based on beamforming matrices computed in the previous half.

Analog Beamformer

Baseband/
Digital

Beamformer

RF Chain

RF Chain

...

...

1

2

...

+

...

+

+

...

ABS

ABS

ABS

|Kb|Ns

|Kb|Ns ≤ MBS < ABS

Fig. 1: An HB architecture (BS side).

real-time requirement. Further, a joint design requires to
estimate and feedback explicit antenna-to-antenna channels,
which involves prohibitively large amount of CSI that is
difficult to obtain in practice.

To avoid the issues associated with a joint design, a new
and practical direction for HB is to follow a sequential design
[9–13]. Here, analog beamforming is optimized first and then
used as input to optimize the digital beamforming. For analog
beamforming, there have been successful designs and system
demonstrations in the literature, which are based on beam
sweeping/discovering techniques without explicit channel CSI
[11–13]. After analog beamforming is applied to both the BS
and a user’s side, the effective channels seen at the baseband
can be obtained through conventional channel estimation.

However, few existing works on sequential design have
successfully addressed the digital beamforming problem. Most
existing works simply applied traditional beamforming meth-
ods such as ZF, MMSE and Block Diagonalization (BD)
[14] in the digital domain [9–12]. Although simple, ZF and
MMSE typically experience inferior throughput performance
for MU-MIMO and mmWave systems, particularly under ill-
conditioned channels [11, 15, 16]. Although BD beamforming
(and its variants) is shown to improve ZF/MMSE with much
better throughput performance [14, 17], it requires many
high-dimensional matrix SVD operations, which are of high
complexity and require significant computation time.

The goal of developing a beamforming scheme that can
meet both real-time requirement and high throughput perfor-
mance is not trivial. But recent advances in parallel architec-
tures (based on the many-core technology) have shed some
new light in this area. In particular, a GPU-based platform

(e.g., those from Nvidia) is particularly promising as it comes
with dedicated single-instruction-multiple-data (SIMD) archi-
tecture and highly programmable tools such as CUDA. The
GPU-based platform offers a new possibility to address many
hard problems whose real-time solutions remain open.

In this paper, we present Turbo-HB, a GPU-based novel
design and implementation to achieve ultra-fast digital beam-
forming.2 First, we identify the bottleneck of computation time
for BD-type beamforming, which is attributed to the high-
dimensional SVD operations. Turbo-HB cuts down the com-
putational complexity by utilizing randomized SVD technique.
Second, Turbo-HB accelerates the overall computation time
through large-scale parallel computation on a commercial off-
the-shelf (COTS) GPU platform. It incorporates a large num-
ber of matrix transformations and special engineering efforts
such as minimized memory access. The main contributions of
this paper are summarized as follows:
• This paper presents Turbo-HB, the first successful HB

design that can meet ∼1 ms real-time requirement. This
design can be applied to the next-generation cellular
systems where a large number of RBs (with MU-MIMO
capability) are involved. Our design only relies on a
COTS GPU platform and does not require any customized
hardware.

• Turbo-HB reduces the computational burden of SVD by
exploiting sparsity at mmWave channels. Specifically,
it uses only a small number of the most significant
singular vectors of a matrix, derived from randomized
SVD technique. By limiting operations only to the key
information of our interest and judiciously choosing a
proper target rank for lower rank approximation, our
design drastically reduces the complexity that is involved
in the traditional BD-type beamforming.

• Turbo-HB achieves large-scale parallel computation.
First, the MU-MIMO beamforming is transformed into a
set of parallel single-user MIMO (SU-MIMO) beamform-
ing. Then Turbo-HB is optimized by employing batched
matrix operations and minimizing memory access time.
Finally, Turbo-HB fully utilizes GPU’s processing cores
with minimum overhead and takes maximum benefit of
large-scale parallel computation.

• We implement Turbo-HB on Nvidia Quadro P6000 GPU
using the CUDA programming platform. Extensive exper-
iments are performed to examine both the timing perfor-
mance and throughput performance. Experimental results
show that Turbo-HB is able to obtain the beamforming
matrices in ∼1 ms for an MU-MIMO cellular system
while achieving similar or better throughput performance
by those state-of-the-art algorithms.

II. SYSTEM MODEL

Consider a cellular communication scenario in Fig. 2 where
a BS serves a set of users K. The BS is equipped with ABS
antennas and MBS RF chains. Under HB architecture, MBS <

2By “Turbo,” we mean fast and efficient.

RB1 RB2 RB99 RB100……

A time slot

f

UE1 UE2 UE4 UE5UE3

Fig. 2: A cellular system consisting a large number of RBs
(with MU-MIMO capability).

ABS. Each user is equipped with AU antennas and MU RF
chains, and MU < AU. Since the mathematical structure for
uplink (UL) and downlink (DL) is symmetric, it is sufficient
to study one of them. Therefore, we study DL in this paper.

Same as a cellular system (e.g., 4G LTE and 5G NR),
we consider time-slotted scheduling over a wide bandwidth.
Within each time slot, there is a set B of RBs over the DL
bandwidth. For each RB b ∈ B, a subset of users Kb ⊆ K
is selected for MU-MIMO transmission, based on some RB
allocation strategy (see, e.g., [19, 20]). For the ease of notation,
suppose the BS sends Ns data streams to each user.3 At the
user side, since the number of received data streams cannot
exceed the number of its RF chains, we have Ns ≤ MU.
Likewise, at the BS we have |Kb|Ns ≤MBS.

Under the HB architecture, beamforming is performed in
both digital and analog domains, as shown in Fig. 1. In
the digital domain at the BS side, the transmitted signal
is processed by an MBS × |Kb|Ns baseband precoder FBB.
Subsequently, an ABS×MBS analog precoder FRF (also known
as RF precoder) based on analog circuitry (phase shifters) is
applied in the analog domain. Since complex matrix FRF is
implemented with analog phase shifters, each element in the
matrix has the same amplitude and differs in its phase, i.e,
|(FRF)i,j | = 1√

ABS
, where (·)i,j denotes the (i, j)-th element

of matrix (·). In addition, to meet the total power constraint at
the BS, FBB and FRF must satisfy ||FRFFBB||2F ≤ PT, where
PT is the total power at the BS and ||·||F denotes the Frobenius
norm.

For wireless channels, let Hb
k ∈ CAU×ABS denote the

channel matrix for user k ∈ K on RB b ∈ B, and nbk is the
AU × 1 vector of i.i.d CN (0, σ2) additive complex Gaussian
noise. Let FbBB and FbRF denote the baseband precoder and
analog precoder for RB b, respectively. Then the received
signal of user k on RB b is given by

ybk = Hb
kF

b
RFF

b
BBs

b + nbk, (k ∈ Kb, b ∈ B) (1)

where sb is the signal vector.
At the user side, a symmetric HB structure is employed

except with a fewer number of antennas AU and a fewer

3With additional notation, our results can be easily extended to the case
where the BS sends a different number of data streams to different users.

number of RF chains MU. In analog domain, an AU ×MU
analog combiner WRF,k (subject to |(WRF,k)i,j | = 1√

AU
) is

applied. In digital domain, an MU × Ns baseband combiner
WBB,k is applied.

After the analog beamformers are applied, the effective
channel seen at the baseband is Ĥb

k = Wb†
RF,kH

b
kF

b
RF. Denote

FbBB,k as a sub-matrix of FbBB = [FbBB,1 · · ·FbBB,k · · ·FbBB,|Kb|],
where FbBB,k consists of Ns columns and corresponds to the
baseband signal sbk of user k. Then at user k and on RB b,
we have the following signal:

ỹbk = Wb†
BB,kĤ

b
kF

b
BB,ks

b
k +

i 6=k∑

i∈Kb

Wb†
BB,kĤ

b
kF

b
BB,is

b
i

+ Wb†
BB,kW

b†
RF,kn

b
k, (k ∈ Kb, b ∈ B)

(2)

where (·)† denotes the conjugate transpose of a matrix.
Therefore, the network throughput in bits/sec/Hz is

C =
∑

b∈B

∑

k∈Kb

log
(∣∣∣INs

+

(Qb
k)−1Wb†

BB,kĤ
b
kF

b
BB,k Fb†BB,kĤ

b†
k Wb

BB,k

∣∣∣
)
,

(3)

where (Qb
k)−1 is the covariance matrix of both interference

and noise, which is given by

(Qb
k)−1 =

i 6=k∑

i∈Kb

Wb†
BB,kĤ

b
kF

b
BB,iF

b†
BB,iĤ

b†
k Wb

BB,k

+ σ2Wb†
BB,kW

b†
RF,kW

b
RF,kW

b
BB,k.

(4)

Then the throughput optimization problem under the HB
architecture can be stated as follows.

OPT-HB
max C

(
FbRF,F

b
BB,W

b
RF,k,W

b
BB,k

)

s.t. Power constraint: ||FbRFF
b
BB||2F ≤ PT;

Constant modulus constraints:

|(FbRF)i,j | =
1√
ABS

, |(Wb
RF,k)m,n| =

1√
AU

;

Index range: b ∈ B, k ∈ K,
i ∈ {1, 2, · · · , ABS}, j ∈ {1, 2, · · · ,MBS},
m ∈ {1, 2, · · · , AU}, n ∈ {1, 2, · · · ,MU}.

In problem OPT-HB, the variables are digital and
analog beamformers FbRF,F

b
BB,W

b
RF,k and Wb

BB,k, while
PT, ABS, AU, MBS,MU are constants and B and Kb are given
sets.

Ideally, a joint optimization of all digital and analog beam-
formers is required to find a global optimal solution. However,
several practical issues make such a joint design impractical.
For example, the amount of CSI required is prohibitively large;
it is unclear how to estimate the antenna-to-antenna channel
Hb
k through the lens of the RF precoding and combining [8].

A new and practical direction to address HB optimization is
to follow a sequential design. Under this approach, analog
domain is optimized first and then used as input to optimize

the digital domain [9–13]. It has been shown that such a
sequential approach can offer competitive performance (com-
pared to those heuristics attempting to solve joint optimization
[5, 7, 9, 22]).

Even with a sequential method, for MU-MIMO systems,
it would still require enormous computational efforts to find
a local optimum [23], due to the high complexity of high-
dimensional matrix operations (in addition to non-convex pro-
gramming). We discuss this problem in detail in the following
section.

III. REAL-TIME REQUIREMENT

We now examine the real-time requirement for a practical
beamforming design. By real-time we mean a beamforming
solution (for all users on all RBs) must be obtained within
half of the channel coherence time to be useful.

Consider a typical mmWave MIMO with its center carrier
frequency fc = 30 GHz, and a mobile user traveling at
a speed of v = 10 km/h, which is no slower than most
implementations, as demonstrated in [13, 24–26].4 At this
speed, the maximum Doppler shift fm = v

c · fc ≈ 277.8 Hz.
The channel coherence time can be empirically given by
[28]: Tc ≈ 1

fm
= 3.6 ms. The timing requirement for the

execution time of a beamforming algorithm should be even
more stringent than this channel coherence time. Within this
time interval (i.e., 3.6 ms), only at most the first half of it (i.e.,
1.8 ms) can be used for beamforming design so that the second
half of 3.6 ms can be used for actual data transmission and
computing the beamforming matrices for the subsequent half
coherence period. In addition, the 1.8 ms should also consist of
channel estimation time and setting the beamforming decision
in hardware. These procedures usually take less than 1 ms.
Therefore, a solution of digital beamformers to OPT-HB must
be obtained within

Treq = 1 ms, (5)

to be useful. Note that under HB architecture, analog beam-
forming is meant to overcome path-loss fading by leveraging
the large number of antennas [9, 13]. This part is done on
a much larger time scale. In contrast, digital beamforming is
to optimize capacity by managing interference among data
streams, which heavily depends on fast fading. This part has
a much stringent timing requirement Treq.
Technical Challenge Digital beamforming for MU-MIMO
involves complex operations of matrices with a large num-
ber of elements. Traditional techniques such as ZF and
MMSE typically experience inferior throughput performance
for MU-MIMO and mmWave systems, particularly under ill-
conditioned channels [11, 15, 16]. On the other hand, BD-type
beamforming is shown to achieve much better throughput per-
formance compared to ZF/MMSE [14]. However, BD involves
high-dimensional matrix SVD operations. The computational
burden of SVD makes BD not ready for practical use.

4Although there are some proposals envisioning to have mmWave support
high mobility, unfortunately it is impractical to implement them in practice,
due to issues such as huge channel training overhead, multi-user tracking, and
so forth [26, 27].

Objective The objective of this paper is to determine digital
beamforming (FbBB,k and Wb

BB,k) in real-time. Specifically,
we want to develop a design that can meet the stringent
∼1 ms timing requirement while offering comparable (or bet-
ter) throughput performance than state-of-the-art approaches.

IV. A NOVEL DESIGN FOR REAL-TIME BEAMFORMING

A. Main Ideas

Our main ideas span across two areas.
Low-complexity SVD with high throughput First, we
show the bottleneck of computation time for BD-type beam-
forming is attributed to the high-dimensional SVD opera-
tions. We propose to reduce this complexity by using only
a small number for the most significant dimensions, lever-
aging the sparsity of mmWave channels. Specifically, for
a (|Kb| − 1)MU × MBS matrix (for BD beamforming), a
standard SVD algorithm takes O

([
(|Kb| − 1)MU

]2
MBS

)

floating-point operations (flops) [29]. Thus, applying BD
beamforming for |B| RBs and |Kb| users at each RB yields
at least O

(
|B||Kb| ·

[
(|Kb| − 1)MU

]2 ·MBS

)
flops. To re-

duce this high complexity, we propose to utilize random-
ized SVD [29], which can cut down the complexity to
O
(
|B||Kb| · r2 ·

[
(|Kb| − 1)MU +MBS

])
, where r is much

smaller than (|Kb| − 1)MU. In essence, randomized SVD is a
lower rank SVD approximation method. It works extremely
well here, thanks to the limited number of scatterers at
mmWave frequencies and thus highly correlated channels.

Interestingly, although Turbo-HB employs a lower rank
SVD approximation, it does not mean that the throughput
performance would have to deteriorate. Rather, Turbo-HB
appears to offer higher throughput performance in most cases.
The science behind this behavior is attributed to the following.
First, since mmWave channels exhibit a high correlation
property, a small set of singular vectors in the lower rank
SVD approximation is sufficient to capture the directions of
the most significant signal or interference strength. Second,
an exact (|Kb| − 1)MU ×MBS matrix SVD (as in BD) aims
to cancel all inter-user interference exactly (regardless of how
small it is). But canceling all inter-user interference requires to
project users’ signals onto mutually orthogonal subspaces. To
achieve such orthogonality, the perceived strength of desired
signals at a user is reduced in the process. Since throughput is
a function of SINR, it does not help if the perceived strength of
desired signals at a user is reduced (for perfect orthogonality).
On the other hand, a lower rank SVD approximation allows
a certain level of overlapping subspace of different users
(as only a small number of major signals preserve mutual
orthogonality), which offers us an opportunity to explore the
promising beamforming space that has been missed by the BD
technique.
Fully functioning parallelism We argue that the O(·)-
type complexity characterization does not reflect computation
time as measured by a wall clock, which is what matters in
practice. The latter heavily depends on the underlying problem
structure, convergence speed, the number of memory accesses,

among others. This motivates us to our second idea, which is
to accelerate the computing process in real-time, rather than
being confined in O(·) analysis. We propose to design and
implement the beamforming algorithm with fully functioning
parallelism and minimized memory accesses. We implement
our parallel design on a COTS GPU platform, which is a
general-purpose computing platform for large-scale parallel
computation [18].

Specifically, the MU-MIMO beamforming is first trans-
formed into a set of parallel SU-MIMO beamforming. Then a
large number of matrix operations are executed through batch
computing. By batched matrix operations (for a large number
of RBs and users), Turbo-HB generates a large number of
threads that fully occupy a GPU’s processing cores and thus
reaps the full benefit of GPU’s parallel processing capability.
Also, along each step of our implementation, we minimize
memory accesses to reduce time. For example, batched matrix
operations such as matrix multiplications are optimized with
the use of fast on-chip shared memory. With proper indexing
method for a large number of matrices, we allow consecutive
GPU threads to read consecutive (and aligned) memory. As
a result, multiple memory accesses can be combined into a
single transaction. Further, Turbo-HB limits operations to the
key information of our interests (e.g., certain singular vectors)
and thus eliminates any unnecessary calculations, parameter
passing and memory accesses.

B. Design Details

The task of computing beamforming matrices can be split
naturally into three computational stages.
• Stage A: Given the partial CSI Vb

k and Σb
k (from

Ĥb
k = Ub

kΣ
b
kV

b†
k) computed and fed back by each user,

we construct matrices H
b

k and H̃b
k such that H

b

k and H̃b
k

contain all the information that is needed to compute
beamforming matrices FBB,k corresponding to user k.
After this stage, the MU-MIMO channel is transformed
into a set of parallel SU-MIMO channels.

• Stage B: Given matrix H̃b
k, we apply randomized SVD

technique for lower rank matrix approximation (with
lower computational complexity). Then we obtain Ṽ

b(−)
k ,

which contains the necessary singular vectors to cancel
inter-user interference and construct final beamforming
matrices.

• Stage C: Given matrices H
b

k and Ṽ
b(−)
k , we construct

the final digital beamforming matrices FBB,k.
In the rest of this section, we offer details of each stage.

Stage A. Each user k estimates the effective channel Ĥb
k

and computes its SVD as Ĥb
k = Ub

kΣ
b
kV

b†
k . User k uses the

first Ns columns of Ub
k as its digital combiner, i.e., Wb

BB,k is
set to the first Ns columns of Ub

k. Then to help form digital
precoder at BS side, only partial CSI, i.e., Vb

k and Σb
k, is

required to feed back to the BS (note that Σbk is diagonal and
Vb
k is unitary and thus can be efficiently compressed [30]).

Let
H
b

k = ΣbkV
b
k. (6)

Then for our beamforming purpose, H
b

k (an MU×MBS matrix)
captures sufficient information of the intended channel from
the BS to user k.

Denote H̃b
k as the concatenation of H

b

k’s of all users in Kb
except intended user k, i.e., if Kb = {k}⋃{1, · · · , k− 1, k+
1, · · · , |Kb|}, then

H̃b
k =

[
H
b†
1 · · ·H

b†
k−1 H

†
k+1 · · ·H

b†
|Kb|
]†

(7)

is a (|Kb| − 1)MU ×MBS matrix which captures information
of interference channels corresponding to user k.

As H
b

k and H̃b
k are sufficient to construct the beamforming

matrices FBB,k corresponding to user k, the MU-MIMO
channel is transformed into a set of |Kb| parallel SU-MIMO
channels on each RB. Consequently, the remaining Stage B
and Stage C can be processed in |B|∑b∈B |Kb| parallel flows,
each of which contributes to one beamforming matrix for one
user per RB.

Stage B. To construct beamforming matrix FBB,k cor-
responding to user k’s signal, we need to make sure that by
applying FBB,k most (if not all) of the interference to user k
can be canceled. This can be realized with the help of SVD
of interference channel H̃b

k. That is, let

H̃b
k = Ũb

k

[
Σ̃b
k 0

0 0

]
[Ṽ

b(+)
k Ṽ

b(−)
k]†, (8)

where Ṽ
b(−)
k is the last (MBS−r) columns of the right singular

matrix corresponding to the smallest (MBS−r) singular values
of H̃b

k, Ṽ
b(+)
k is the remaining r columns of the right singular

matrix, and r is a constant.
Then, if the eigenvalues corresponding to Ṽ

b(−)
k are close

to zero, we have

H̃b
kṼ

b(−)
k ≈ 0, (b ∈ B, k ∈ Kb). (9)

It follows that

Ĥb
jṼ

b(−)
k V

b(+)

k ≈ 0, for j 6= k, (10)

with any choice of V
b(+)

k (which is used to differentiate data
streams within a user and will be determined later). Therefore,
by constructing FBB,k as

FBB,k = Ṽ
b(−)
k V

b(+)

k , (11)

most of the inter-user interference can be suppressed.
Now we have a real-time challenge. Stage B is computation-

intensive as a high-dimensional SVD (i.e., Eq. (8)) is required.
H̃b
k is a (|Kb| − 1)MU × MBS matrix with standard SVD

complexity of O
(
|B||Kb| ·

[
(|Kb| − 1)MU

]2
MBS

)
for |B|

RBs. Its computation time can take more than 70% of the
total time when not optimized based on our experiment.

In fact, the computation time of matrix SVD (power
method) is tightly related to the decaying speed of singular
values [31]. For instance, suppose we have a matrix with
4 decreasing singular values σ1, σ2, σ3 and σ4. If σ1 �
σ2 � σ3 ≈ σ4 ≈ 0, then it is computationally fast to

1 5 10 16
(a) Lcl = Lray = 3

0

0.2

0.4

0.6

0.8

1

Si
ng

ul
ar

 V
al

ue
s

(N
or

m
al

iz
ed

)

1 5 10 16
(b) Lcl = Lray = 6

0

0.2

0.4

0.6

0.8

1

Si
ng

ul
ar

 V
al

ue
s

(N
or

m
al

iz
ed

)

Fig. 3: Singular values of H̃b
k (averaged over 100 instances)

under different number of scatterers based on mmWave chan-
nel modelling.

obtain the first two singular values (and associated singular
vectors), while it takes much longer time to obtain the last
two singular values. This observation is especially important
for us, since at mmWave frequencies, most signal strength
will be concentrated at a few directions due to the limited
number of scatterers. As a consequence, it is likely that we
encounter several non-zero but close-to-zero singular values.
Obtaining these small singular values would consume a lot of
time even though such calculations are not necessary in terms
of throughput performance (as we shall see in Sec. IV-C).

To verify the singular values of H̃b
k, we conduct the fol-

lowing experiment. We generate 100 instances of H̃b
k based

on mmWave channel model to have Hb
k’s (using the widely

adopted mmWave channel model as described in [5]). For
analog beamforming, we adopt the well-known DFT-codebook
based method [9, 32]. We set ABS = 128, AU = 8, MBS = 20,
MU = 4 and |Kb| = 5, thus H̃b

k is a 16 × 20 matrix. We
investigate two different scattering scenarios: (a) The number
of clusters Lcl and the number of rays within each cluster Lray
are both set to 3; (b) Lcl and Lray are both 6 (as typical number
of paths for practical mmWave channels [3, 11, 13, 33]).
Averaged by 100 instances, the singular values of H̃b

kH̃
b†
k

are plotted in Fig. 3. As we expected, the singular values
are decaying fast in the beginning but then flatten out. The
decaying speed is faster when the number of paths is smaller.
More importantly, the last several singular values are pretty
small but very close. This means the corresponding directions
in the eigenspace have very weak signals but consume much
computational effort to differentiate them, which is wasteful.

Following the above analysis, our next objective is to
implement a lower rank SVD approximation with lower
computational complexity. To do this, we apply randomized
SVD technique [29]. The key idea is that by using a random
Gaussian matrix Ω, we can form a rank-r basis Y, where
r < (|Kb| − 1)MU < MBS that captures those dominant
directions (corresponding to the largest signal strengths). Then
the original matrix is projected onto a lower-dimensional
subspace (based on basis Y) to compute a standard rank-r
SVD.

Based on randomized SVD technique, we develop Algo-
rithm 1 to obtain Ṽ

b(−)
k . Algorithm 1 is customized for

Algorithm 1: Lightweight SVD

Given an m× n matrix A, a target approximation
rank r, and an exponent q, this procedure computes
an approximate last (n− r) right singular vectors of
A, denoted as V:

1 Generate an n× r Gaussian matrix Ω.
2 Form an m× r matrix Y = (AA†)qAΩ by

multiplying alternately with A and A†.
3 Form an r × n matrix B = Y†A.
4 Form a rank-r n× n Hermitian matrix C = B†B.
5 Compute ED of the rank-r Hermitian matrix:

C = V̌ΛV̌†.
6 Set V as the last (n− r) columns of V̌.

our problem to achieve further acceleration. Details of the
algorithm’s development and their rationales can be found
in [34]. H̃b

k will be used as input for Algorithm 1. As we
see in Step 5, due to the lower rank r, only a small-scale
eigenvalue decomposition (ED) is required. The complexity
of Step 5 is O

(
r2 ·

[
(|Kb| − 1)MU +MBS

])
, reduced from

O
([

(|Kb| − 1)MU
]2 ·MBS

)
. Note that ED is used instead of

SVD as only the right singular matrix V is of our interests.
Computing ED can provide V as well, and it further saves a
lot of overhead for memory write/read and parameters passing
through the nested build-in functions inside the library, which
can lead to significant acceleration. How to choose a proper
value of r will be discussed in the next section.

Algorithm 1 in Stage B significantly reduces the computa-
tion time of standard SVD operations — the main bottleneck
in BD beamforming. The only additional cost is a few more
matrix multiplications, which, fortunately, can be parallelized
and computed efficiently (more details in Sec. V). Although
randomized SVD is an approximation method, we will not
analyze its performance here, since it is only an intermediate
step for beamforming. Instead, we will discuss and show
both the timing and throughput performance by applying
randomized SVD in Sec. V.
Stage C. In this stage, we construct the digital beamforming
matrices FbBB,k. For given matrices H

b

k and Ṽ
b(−)
k , the product

of H
b

k and Ṽ
b(−)
k effectively forms user k’s channel with no

(or minor) inter-user interference (recall Eq. (10)). Therefore,
the optimal beamforming strategy regarding the effective MU×
(MBS−r) channel H

b

kṼ
b(−)
k can be realized based on its SVD,

which is given by:

H
b

kṼ
b(−)
k = U

b

kΣ
b

k

[
V
b(+)

k V
b(−)
k

]†
, (12)

where V
b(+)

k is the first Ns columns of right singular matrix
and V

b(−)
k is the remaining columns. Finally, the digital

beamforming matrix FbBB,k is given by

FBB,k = Ṽ
b(−)
k V

b(+)

k , (13)

with an additional normalization to satisfy power constraints.

f1

f2

s

s′

x

y

z

f1

f2

s

s′

x

y

z

s′′

(a) (b)

O O

Fig. 4: Signal is projected onto a lower dimensional subspace
to avoid interference.

Here we encounter another SVD computation, i.e., Eq. (12).
Luckily, the dimension of this to-be-factorized matrix is tied
to the number of RF chains at one user, namely MU, which is
typically small (e.g., 1 to 4). V

b(+)

k can be derived with the
help of Hermitian symmetric matrix ED and matrix multipli-
cation, through the following steps:

• Form an MU × (MBS − r) matrix Ab
k = H

b

kṼ
b(−)
k ;

• Form an MU ×MU matrix Bb
k = Ab

kA
b†
k ;

• Compute ED of the Hermitian matrix: Bb
k = Ub

kΛ
b
kU

b†
k ;

• Set V
b(+)

k to the first Ns columns of Ab†
k Ub

k.
Note that when MU = 1 or 2, simple and exact closed-

form solution for SVD exists [35] and hence this stage can be
completed very fast.

C. Approximation with Lower Rank

As we discussed in Sec. IV-B, Turbo-HB applies lower rank
approximation to reduce computational complexity. Interest-
ingly, for most cases, our approximation does not sacrifice
throughput performance. In this section, we offer some in-
tuition behind it. Then we address the last problem before
implementation, which is how to choose a proper value for r.

Let’s revisit the SVD of interference channel H̃b
k as in

Eq. (8). In the MBS-dimensional signal space [Ṽ
b(+)
k Ṽ

b(−)
k],

Ṽ
b(−)
k is an (MBS − r)-dimensional subspace corresponding

to the (MBS− r) smallest interference strengths, while Ṽ
b(+)
k

is a r-dimensional subspace corresponding to the r largest
interference strengths. When standard SVD is performed, we
have r = (|Kb| − 1)MU (as in conventional BD approach).
Then Ṽ

b(−)
k lies exactly in the nullspace of H̃b

k, and therefore
all inter-user interference will be cancelled when FBB,k is
constructed based on Ṽ

b(−)
k (i.e., Eq. (13)). In addition to

the high complexity, there is another drawback of such a
“perfect” interference cancellation. That is, to achieve mutual
orthogonality, one has to project the desired signal onto a
subspace with a small number of dimensions. As a result, the
perceived desired signal strength at a user is reduced.

In Fig. 4, we use a simple example to illustrate this point. In
a 3-dimensional signal space, we have a strong interference f1

along the z axis and a weak interference f2 along the y axis.

051015
r

(a) SNR = 5dB

0

20

40

60
Th

ro
ug

hp
ut

 (b
it/

s/
H

z)

051015
r

(b) SNR = 20dB

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (b

it/
s/

H
z)

Fig. 5: Achieved network throughput (averaged over 1,000 in-
stances) as a function of approximation rank r under different
SNR.

Now we are going to project a desired signal s (originally in
the xyz space) onto some subspace to avoid interference (via
beamforming). If perfect interference cancellation is required,
then s has to be projected along the x axis to achieve
orthogonality to both f1 and f2, leading to a smaller-strength
signal s′, as shown in Fig. 4(a). However, if only the strong
interference f1 is required to be cancelled, then one can project
s into a larger dimensional subspace, i.e., xOy plane, resulting
in s′′ as shown in Fig. 4(b). Although s′′ is interfered with by
a weak interference f2, s′′ can preserve higher signal strength
than s′, which will lead to a higher SINR (and throughput).

Turbo-HB is purposely designed to explore such a design
space by tolerating some level of weak interference. When
lower rank SVD approximation is performed, it is meant to
only identify r directions corresponding to r strongest inter-
ference. Without knowledge of how remaining interference
presents, the desired signal will be projected onto a larger
dimensional subspace only to avoid the identified interference,
preserving greater desired signal strength. This approach is es-
pecially effective for scenarios where there is high correlation
among the channels or SNR is low. Since in these scenarios,
the last few singular values (i.e., corresponding weak inter-
ference strengths) are small compared to the power of white
noise. Then the dominant term in the denominator of SINR
becomes the power of noise, which cannot be suppressed by
beamforming. Thus, by tolerating weak interference, desired
signal strength is preserved to overcome a bigger issue (the
noise), leading to a higher SINR.

Now we address the question of how to choose a proper
value for r. Since 0 < r ≤ rank(H̃b

k) = MBS −MU and r is
an integer, we have (MBS −MU) possible values for r. If we
choose r to be too large (i.e., close to (MBS−MU)), then we
will have to get into high-dimensional SVD operations, which
are what we try to avoid. On the other hand, if we choose r
to be too small, then we may experience serious sacrifice in
throughput performance. So the goal is to find an optimal r
that offers the best trade-off. Unfortunately, finding the optimal
value of r (in terms of maximizing network throughput) is not
trivial, as the problem is intractable, due to the large search
space and non-convex objective function.

To gain some insight on what value of r should be, we
conduct the following experiment. We generate 1,000 channel
instances. For each instance, we enumerate all possible r’s and
calculate its corresponding throughput C. For the time being,
we focus only on the objective function (throughput) and defer
consideration of computation time till later. In the experiment,
we use the same settings as those used in Sec. IV-B. The
number of clusters Lcl and rays Lray are both set to 3. In
Fig. 5, the bars show the achieved network throughput as a
function of approximation rank r under different SNR. Note
that when r = 16, the achieved throughput value (the first blue
bar in each figure) is what is achieved by standard SVD (as
in traditional BD method). As the value of r decreases, we
observe the throughput goes up at first and then goes down.
This suggests the lower rank r indeed offers the opportunity
for higher throughput, especially at low or moderate SNR
scenarios. Under this setting, setting r = MBS

2 = 10 would
offer better (or comparable) performance than that with r = 16
in most instances.

The results in Fig. 5 are averaged over 1,000 channel
instances. However, our interest is on a particular channel
instance, and the optimal choice of r based on averaging over
1,000 channel instances may not perform well on this particu-
lar instance. Therefore, we propose to employ multiple choices
of promising r’s in parallel and derive multiple beamforming
candidates corresponding to these r’s. That is, we execute
several different lower rank approximations simultaneously,
where the set of target rank is given by

R = {r − δ, · · · , r − 1 , r , r + 1 , · · · , r + δ}, (14)

where r is around MBS
2 (which may be adjusted according to

empirical statistics), and δ is a parameter to control the number
of elements in R. As |R| different lower rank approximations
are implemented, we will have |R| different solutions of FBB,k
for each user on each RB after Stage C. Among these |R|
solutions, we evaluate their throughput performance (i.e., C
in Eq. (3)) and choose the one that offers the largest objective
value as final beamforming matrix.

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

In this section, we first present our implementation of
the design in Sec. IV. Then we present our experimental
evaluation of Turbo-HB.

A. Implementation

Our implementation is done on a Dell desktop computer
with an Intel Xeon E5-2687W v4 CPU (3.0 GHz) and an
Nvidia Quadro P6000 GPU. The programming tool CUDA
(version 10.0.130) [36] is used to realize our algorithm and
schedule the processing cores. Data communications between
CPU and GPU are through a PCIe 3.0 X16 slot with the default
configuration.

For a successful implementation of Turbo-HB, we must
have a thorough knowledge of the capability and limitation of
the GPU and find a way to fit our problem optimally into the
platform. In general, the more parallelism and less overhead

Step 1: Data transfer (H2G)

Step 2: Stage A

Step 3: Stage B

Step 4: Stage C

Step 6: Data transfer (G2H)

Step 5: Choose solution

Initialization

|B|
∑

b∈B
|Kb| flows

flows

flows

flows

|B|
∑

b∈B
|Kb| · |R|

|B|
∑

b∈B
|Kb| · |R|

|B|
∑

b∈B
|Kb| · |R|

≈ 40µs

≈ 600µs

≈ 20µs

≈ 150µs

≈ 50µs

≈ 100µs

Fig. 6: Workflow of Turbo-HB on GPU.

in the implementation, the better the performance we may
achieve. As such, we focus on the following two fronts in
our implementation:

1) fully utilize GPU processing cores,
2) minimize memory access time.
The key to fully utilize GPU processing cores is to generate

a sufficient amount of parallel workloads to feed the GPU.
By our design in Sec. IV, the computations for beamforming
matrice are independent among different RBs, different users,
and different target ranks. Thus, we can spread out the
computation over all available processing cores in parallel.
Among all computation steps, the largest number of threads
we used is |B|∑b∈B |Kb| · |R| ·M2

BS for the ED operation,
which is large enough to occupy all available GPU resources
(3840 processing cores in our GPU). The workflow of Turbo-
HB on GPU is illustrated in Fig. 6. A detailed description of
the workflow can be found in [34].

Now we discuss two specific techniques that we have
employed in Turbo-HB to enhance parallelism and reduce
memory access time.
Batching Batched matrix operations are critical to our
problem, as we have to execute a large number of independent
matrix operations following the same procedure. As an exam-
ple, suppose we need to execute hundreds or even thousands of
matrix multiplications simultaneously. The programmer needs
to generate a kernel with a sufficient number of threads and
divide these threads into a number of groups. Then each group
computes one or a few matrix multiplications, such that this
kernel is able to perform batched matrix multiplications. Sim-
ilarly, other matrix operations (following the same procedure),
such as a large number of independent matrix ED operations,
should be programmed in a batched manner to fully occupy
the processing cores.
Minimizing global memory access Compared to other types
of memory access, accessing global memory is much more
time-consuming. We identify two techniques that can help
minimize global memory access in our problem.

First, the programmer should carefully coalesce memory
access, i.e., consolidating multiple memory accesses into a

single transaction. This is particularly important when we
handle a large number of matrix operations. The key to
memory coalescing is to store the matrices consecutively in
the memory with proper indexing. Then the programmer can
allow consecutive threads to read consecutive (and aligned)
memory and minimize the number of transactions.

Second, instead of global memory accesses, which is
more time-consuming, we can use on-chip shared memory
accesses, which is much faster (but with limited storage
space). Suppose we want to compute a matrix multiplication
Cm×n = Am×lBl×n. A straightforward way for parallelism
is to program each thread to take care of one element of C.
Then we need to read A n times from the global memory and
B m times. In contrast, if matrix multiplication is based on
shared memory [36], we only need to read A for (n / block
size) times from the global memory and B for (m / block size)
times. The remaining computations are done by accessing the
shared memory.

B. Experimental Results

In this section, we present our experimental results, with a
focus on timing and throughput performance. We also compare
with other sequential HB schemes. The widely adopted DFT-
codebook based method for analog beamforming [9, 32] is
used for all schemes. For digital beamforming schemes, we
choose HB-BD [9], HB-MMSE and HB-ZF for comparison.
We also include one joint analog and digital HB method
(JHB) [6] to show its timing performance.
Experimental Setup. We consider a cellular communication
scenario with one BS and a number of users. The number
of available RBs is |B| = 100. The BS is equipped with
128 antennas and each user is equipped with 16 antennas (a
typical number for hybrid architecture at mmWave frequencies
[3, 5, 9]). The number of RF chains at the BS varies while
the number of RF chains at a user is 2. Each active link is
assumed to transmit Ns = 2 data streams. To fully exploit
concurrent data transmission, the number of users for MU-
MIMO on each RB is set to |Kb| = MBS

Ns
. For the channels, we

use the widely adopted mmWave channel model as described
in [5]. The number of clusters Lcl, the number of propagation
paths Lray caused by each cluster and SNR (i.e., PT

σ2) will be
given under different settings. The angle spread σAS is set to
5 degrees. We set parameter δ (as defined in Sec. IV-C) to 2.
Timing Performance. We first verify that Turbo-HB can
indeed meet ∼1 ms timing requirement. This timing result
includes time used for all numerical computations as well as
time consumed for data transfer between CPU and GPU. We
run the experiment with the following settings: (a) MBS = 8,
(b) MBS = 12, (c) MBS = 16, and (d) MBS = 20. For
the sequential algorithms (HB-BD, HB-MMSE and HB-ZF),
we only count the computation time of digital beamforming
part. But for the joint algorithm (JHB), we have to count
time consumed both for its digital beamforming and analog
beamforming part since they are inseparable. Our GPU-based
algorithm is run on CUDA platform while others are run
on Matlab platform. Fig. 7 shows the computation time for

0 10 20 30 40 50 60 70 80 90100
TTI

(a) MBS = 8, |Kb| = 4

10-1

100

101

102

103

104
C

om
pu

ta
tio

n
Ti

m
e

(m
s) JHB

HB-BD
HB-MMSE
HB-ZF
Turbo-HB

0 10 20 30 40 50 60 70 80 90100
TTI

(b) MBS = 12, |Kb| = 6

10-1

100

101

102

103

104

C
om

pu
ta

tio
n

Ti
m

e
(m

s) JHB
HB-BD
HB-MMSE
HB-ZF
Turbo-HB

0 10 20 30 40 50 60 70 80 90100
TTI

(c) MBS = 16, |Kb| = 8

10-1

100

101

102

103

104

C
om

pu
ta

tio
n

Ti
m

e
(m

s) JHB
HB-BD
HB-MMSE
HB-ZF
Turbo-HB

0 10 20 30 40 50 60 70 80 90100
TTI

(d) MBS = 20, |Kb| = 10

10-1

100

101

102

103

104

C
om

pu
ta

tio
n

Ti
m

e
(m

s) JHB
HB-BD
HB-MMSE
HB-ZF
Turbo-HB

Fig. 7: Comparison of computation time of different schemes under different MU-MIMO scenarios.

0 10 20 30
SNR (dB)

(a) Lcl = Lray = 3, MBS = 8

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (b

its
/H

z/
s) HB-MMSE

HB-ZF
HB-BD
Turbo-HB

0 10 20 30
SNR (dB)

(b) Lcl = Lray = 6, MBS = 8

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (b

its
/H

z/
s) HB-MMSE

HB-ZF
HB-BD
Turbo-HB

0 10 20 30
SNR (dB)

(c) Lcl = Lray = 3, MBS = 16

0

50

100

150

200

Th
ro

ug
hp

ut
 (b

its
/H

z/
s) HB-MMSE

HB-ZF
HB-BD
Turbo-HB

0 10 20 30
SNR (dB)

(d) Lcl = Lray = 6, MBS = 16

0

50

100

150

Th
ro

ug
hp

ut
 (b

its
/H

z/
s) HB-MMSE

HB-ZF
HB-BD
Turbo-HB

Fig. 8: Comparison of throughput achieved by different schemes under different MU-MIMO scenarios.

100 consecutive TTIs. JHB, HB-BD, HB-MMSE and HB-ZF
require a computation time on the order of 103 ms, 102 ms, 101

ms and 101 ms, respectively. Our experiments show Turbo-HB
finds beamforming solution in 0.412 ms, 0.599 ms, 0.647 ms
and 1.277 ms under each setting, averaged by 100 TTIs, which
is able to meet the timing requirement (∼1 ms) for up to 10
MU-MIMO users for each RB. Note that even though HB-BD
may be parallelized for |B| = 100 RBs, it is not possible to
cut down the computation time by 100× to meet the timing
requirement (from 102s of ms to 100 ms), as we did with
Turbo-HB.

Throughput Performance. Fig. 8 presents the results for
network throughput under 4 different settings: (a) Ncl =
Nray = 3, MBS = 32, (b) Ncl = Nray = 6, MBS = 32,
(c) Ncl = Nray = 3, MBS = 16, and (d) Ncl = Nray = 3,
MBS = 16. In all four cases, throughput under conventional
HB-MMSE and HB-ZF methods appears to be inferior to
others, as MMSE and ZF are not designed for mmWave
systems and the poorly conditioned channel greatly degrades
MMSE/ZF’s performance [11, 15, 16]. In Fig. 8, both Turbo-
HB and classical HB-BD offer comparable performance and
are better than the others. Specifically, on average over all four
settings, Turbo-HB achieved 107.3% throughput performance
when normalized with respect to that by HB-BD. Moreover,
when the number of channel paths is small and SNR is low,
Turbo-HB is able to obtain even better performance. The
reason behind this was given in our discussions in Sec. IV-C.

VI. CONCLUSIONS

This paper addresses the real-time challenge involved in
matrix computation for HB. We presented Turbo-HB, the
world-first ultra-fast beamforming design and implementation
under the HB architecture. To reduce computation time, we de-
veloped low-complexity SVD by exploiting channel sparsity at
mmWave frequencies. Further, we developed fully functioning
parallelism for Turbo-HB, with optimized matrix operations
and minimized memory accesses. We implemented Turbo-
HB on a COTS Nvidia GPU and conducted experiments to
validate its performance. Our experimental results showed that
Turbo-HB is able to find beamforming matrices successfully
in ∼1 ms. It is also able to offer competitive throughput
performance compared with the state-of-the-art algorithms.
Turbo-HB offers a practical solution to deploy HB in the field.

ACKNOWLEDGEMENTS

The first author wishes to thank Prof. Mark Embree from the
Department of Mathematics, Virginia Tech, for his insightful
discussion on SVD computations. The authors thank the
anonymous reviewers for their feedback. This research was
supported in part by NSF under grants 1800650 and 1617634.
We thank Nvidia AI Lab (NVAIL) in Santa Clara, CA for its
unrestricted gift and equipment donation to our research. All
opinions expressed in this paper are the authors’ and do not
necessarily reflect the views and opinions of NSF or Nvidia.

REFERENCES

[1] W. Hong, K. Baek, Y. Lee, Y. Kim and S. Ko, “Study
and prototyping of practically large-scale mmWave antenna
systems for 5G cellular devices,” IEEE Comm. Magazine,
vol. 52, no. 9, pp. 63–69, Sept. 2014.

[2] S. Han, C. I, Z. Xu and C. Rowell, “Large-scale antenna
systems with hybrid analog and digital beamforming for
millimeter wave 5G,” IEEE Comm. Magazine, vol. 53, no. 1,
pp. 186–194, Jan. 2015.

[3] A.F. Molisch, V.V. Ratnam, S. Han, Z. Li, S.L.H. Nguyen, L.
Li and K. Haneda, “Hybrid beamforming for massive MIMO:
A survey,” IEEE Comm. Magazine, vol. 55, no. 9, pp. 134–141,
Dec. 2017.

[4] W. Ni, X. Dong and W.S. Lu, “Near-optimal hybrid processing
for massive MIMO systems via matrix decomposition,” IEEE
Trans. on Signal Proc., vol. 65, no. 15, pp. 3922–3933, Aug.
2017.

[5] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R.W. Heath
Jr., “Spatially sparse precoding in millimeter wave MIMO
systems,” IEEE Journal on Selected Areas in Comm., vol. 13,
no. 3, pp. 1499–1513, Mar. 2014.

[6] T.E. Bogale and L.B. Le, “Beamforming for multiuser massive
MIMO systems: Digital versus hybrid analog-digital,” in Proc.
of IEEE GLOBECOM, pp. 4066–4071, Austin, TX, Dec. 2014.

[7] C. Rusu, R. Mendez-Rial, N. Gonzalez-Prelcic and R.W.
Heath, “Low complexity hybrid precoding strategies for mil-
limeter wave communication systems,” IEEE Trans. on Wire-
less Comm., vol. 15, no. 12, pp. 8380–8393, Dec. 2016.

[8] A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic and R.W. Heath,
“MIMO precoding and combining solutions for millimeter-
wave systems,” IEEE Comm. Magazine, vol. 52, no. 12,
pp. 122–131, Dec. 2014.

[9] W. Ni and X. Dong, “Hybrid block diagonalization for massive
multiuser MIMO systems,” IEEE Trans. on Comm., vol. 64,
no. 1, pp. 201–211, Jan. 2016.

[10] L. Liang, W. Xu and X. Dong, “Low-complexity hybrid pre-
coding in massive multiuser MIMO systems,” IEEE Wireless
Comm. Letters, vol. 3, no. 6, pp. 653–656, Dec. 2014.

[11] Y. Ghasempour, M.K. Haider, C. Cordeiro, D. Koutsonikolas
and E. Knightly, “Multi-stream beam-training for mmWave
MIMO networks,” in Proc. of ACM MobiCom, pp. 225-–239,
New Delhi, India, Jan. 2018.

[12] Y. Ghasempour and E.W. Knightly, “Decoupling beam steering
and user selection for scaling multi-user 60 GHz WLANs,” in
Proc. of ACM MobiHoc, pp. 1–10, Chennai, India, July 2017.

[13] S. Sur, I. Pefkianakis, X. Zhang, and K.H. Kim, “Towards
scalable and ubiquitous millimeter-wave wireless networks,”
in Proc. of ACM MobiCom 2018, pp. 257–271, New Delhi,
India, Oct. 2018.

[14] Q.H. Spencer, A.L. Swindlehurst and M. Haardt, “Zero-forcing
methods for downlink spatial multiplexing in multiuser MIMO
channels,” IEEE Trans. on Signal Proc., vol. 52, no. 2,
pp. 461–471, Feb. 2004.

[15] S. K. Mohammed and E. G. Larsson, “Improving the perfor-
mance of the zero-forcing multiuser MISO downlink precoder
through user grouping,” IEEE Trans. on Wireless Comm.,
vol. 15, no. 2, pp. 811–826, Feb. 2016.

[16] V. Stankovic and M. Haardt, “Multi-user MIMO downlink
precoding for users with multiple antennas,” Wireless World
Research Forum, pp. 12–14, Toronto, ON, Canada, Nov. 2004.

[17] D. Patil, “Block diagonalization based beamforming,” Master
Thesis, KTH Royal Institute of Technology, Stockholm, Swe-
den, 2017.

[18] Y. Huang, S. Li, Y.T. Hou and W. Lou, “GPF: a GPU-based
design to achieve ∼100 µs scheduling for 5G NR,” in Proc.
of ACM MobiCom, pp. 207–222, New Delhi, India, Oct. 2018.

[19] Z. Shen, R. Chen, J.G. Andrews, R.W. Heath and B.L. Evans,
“Low complexity user selection algorithms for multiuser
MIMO systems with block diagonalization,” IEEE Trans. on
Signal Proc., vol. 54, no. 9, pp. 3658–3663, Sept. 2006.

[20] X. Zhang and J. Lee, “Low complexity MIMO scheduling
with channel decomposition using capacity upperbound,” IEEE
Trans. on Comm., vol. 56, no. 6, pp. 871–876, June 2008.

[21] W. Yang, G. Durisi and E. Riegler, “On the capacity of large-
MIMO block-fading channels,” IEEE Journal on Selected
Areas in Comm., vol. 31, no. 2, pp. 117–132, Feb. 2013.

[22] A. Alkhateeb, G. Leus and R.W. Heath, “Limited feedback
hybrid precoding for multi-user millimeter wave systems,”
IEEE Trans. on Wireless Comm., vol. 14, no. 11, pp. 6481–
6494, July 2015.

[23] S.S. Christensen, R. Agarwal, E. Carvalho and J.M. Cioffi,
“Weighted sum-rate maximization using weighted MMSE for
MIMO-BC beamforming design,” IEEE Trans. on Wireless
Comm., vol. 7, no. 12, pp. 4792-–4799, Dec. 2008.

[24] A. Zhou, X. Zhang and H. Ma, “Beam-forecast: facilitating
mobile 60 GHz networks via model-driven beam steering,” in
Proc. of IEEE INFOCOM, pp. 1–9, Atlanta, GA, May 2017.

[25] M.K. Haider, Y. Ghasempour, D. Koutsonikolas, and E.W.
Knightly, “LiSteer: mmWave beam acquisition and steering by
tracking indicator LEDs on wireless APs,” in Proc. of ACM
MobiCom, pp. 273–288, New Delhi, India, Oct. 2018.

[26] E. Bjornson, L. Van der Perre, S. Buzzi and E.G. Larsson,
“Massive MIMO in sub-6 GHz and mmWave: physical, prac-
tical, and use-case differences,” IEEE Wireless Comm., vol. 26,
no. 2, pp. 100–108, Apr. 2019.

[27] V. Raghavan, A. Partyka, A. Sampath, S. Subramanian, O.H.
Koymen, K. Ravid, J. Cezanne, K. Mukkavilli and J. Li,
“Millimeter-wave MIMO prototype: measurements and ex-
perimental results,” IEEE Comm. Magazine, vol. 56, no. 1,
pp. 202–209, Jan. 2018.

[28] T.S. Rappaport, Wireless Communications: Principles and
Practice, Chapter 4, New Jersey: Prentice Hall PTR, 1996.
ISBN: 9780133755367.

[29] N. Halko, P.G. Martinsson and J.A. Tropp, “Finding structure
with randomness: probabilistic algorithms for constructing
approximate matrix decompositions,” SIAM Review, vol. 53,
no. 2, pp. 217–288, May 2011.

[30] IEEE Standards Association, “IEEE standards 802.11ac-
2013: enhancements for very high throughput for oper-
ation in bands below 6 GHz,” Dec. 2013. Available:
https://ieeexplore.ieee.org/document/6687187

[31] G.H. Golub and C.F. Van Loan, Matrix Computations (4th
Edition), Chapter 8, Johns Hopkins University Press, 2013.
ISBN-13: 978-1421407944.

[32] N. Song, H. Sun and T. Yang, “Coordinated hybrid beamform-
ing for millimeter wave multi-user massive MIMO systems,”
in Proc. of IEEE GLOBECOM, pp. 1–6, Washington, DC, Dec.
2016.

[33] T.S. Rappaport, E. Ben-Dor, J.N. Murdock and Y. Qiao, “38
GHz and 60 GHz angle-dependent propagation for cellular &
peer-to-peer wireless communications,” in Proc. of IEEE ICC,
pp. 4568–4573, Ottawa, ON, June 2012.

[34] Y. Chen, Y. Huang, C. Li, Y.T. Hou and W. Lou,
“Turbo-HB: A Novel Design and Implementation to
Achieve Ultra-Fast Hybrid Beamforming,” Technical Re-
port, Dept. of ECE, Virginia Tech, Jan. 2020. Available:
https://sites.google.com/vt.edu/ychen-infocom2020-tr-pdf

[35] J. Blinn, “Consider the lowly 2 x 2 matrix,” IEEE Computer
Graphics and Applications, vol. 16, no. 2, pp. 82–88, Mar.
1996.

[36] Nvidia, “CUDA C programming guide v10.0.130.”
Available: http://docs. nvidia.com/cuda/cuda-c-programming-
guide/index.html

