
A Secure Remote Monitoring Framework
Supporting Efficient Fine-grained Access

Control and Data Processing in IoT

Yaxing Chen1,2, Wenhai Sun2, Ning Zhang2, Qinghua Zheng1, Wenjing Lou2,
and Y. Thomas Hou2

1 School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an
Shaanxi 710049, China

cyx.xjtu@gmail.com, qhzheng@mail.xjtu.edu.cn
2 Department of Computer Science, Virginia Polytechnic Institute and State

University, Blacksburg VA 24060, USA
{whsun, ningzh, wjlou, thou}@vt.edu

Abstract. As an important application of the Internet-of-Things, many
remote monitoring systems adopt a device-to-cloud network paradigm. In
a remote patient monitoring (RPM) case, various resource-constrained
devices are used to measure the health conditions of a target patient
in a distant non-clinical environment and the collected data are sent
to the cloud backend of an authorized health care provider (HCP) for
processing and decision making. As the measurements involve private
patient information, access control, confidentiality, and trustworthy pro-
cessing of the data become very important. Software-based solutions that
adopt advanced cryptographic tools, such as attribute-based encryption
and fully homomorphic encryption, can address the problem, but they
also impose substantial computation overhead on both patient and HCP
sides. In this work, we deviate from the conventional software-based so-
lutions and propose a secure and efficient remote monitoring framework
using latest hardware-based trustworthy computing technology, such as
Intel SGX. In addition, we present a robust and lightweight ”heartbeat”
protocol to handle notoriously difficulty user revocation problem. We
implement a prototype of the framework for PRM and show that the
proposed framework can protect user data privacy against unauthorized
parties, with minimum performance cost compared to existing software-
based solutions with such strong privacy protection.

Keywords: Remote patient monitoring · Internet-of-Things (IoT) · Fine-
grained access control · Secure hardware · Trusted computing.

1 Introduction

Remote patient monitoring is one of the silver applications of the Internet of
Things (IoT) system. It allows health care providers to monitor the health con-
ditions of a patient outside the conventional clinical environment, e.g. at the

2 Y. Chen, W. Sun, et al.

patient’s home. The measurements are collected in real time from various IoT
devices, for example, user activities from audio and video streaming, biometrics
such as weight, blood pressure, heart rate via wearable devices on patients’ bodies
or sensors installed in the room and then sent to the HCP for further functional
processing. Instead of maintaining their proprietary infrastructures, nowadays
HCPs adopt the public cloud to provide such remote health care services [1].

Due to the private and sensitive nature of the measured information, there is
a crucial need for effective and flexible access control and secure data processing
to protect user data against unauthorized access while keeping the usability and
functionalities of the PRM system. The patient can permit an authorized HCP
to access data types based on the offered service. For instance, a cardiovascular
HCP may need to access the information of electrocardiogram and heart rate.
At the same time, the data processing should be secure against unauthorized
parties and adhere to the intended service functions.

Much work has been done in the literature to address this problem. For ex-
ample, attribute-based encryption (ABE) [2–5] is a well-known technique used
in a variety of applications to achieve scalable, secure, fine-grained access con-
trol. On the other hand, privacy-preserving date processing can be realized by
secure multi-party computation [6], fully homomorphic encryption (FHE) [7].
However, such pure crypto-based solutions typically involve complex crypto op-
erations. RPM at the client side consists of a number of battery-powered and
extremely resource-constrained devices, which are likely unable to afford com-
plex computationally-intensive cryptographic operations. Another challenge is
the realization of on-demand user revocation and privacy-preserving data pro-
tection. The former typically requires a cumbersome large-scale key update as
well as storage re-encryption; the latter is usually considered to be prohibitively
expensive if we target generic computations, rather than a special class of com-
putation.

In this work, we take the RPM as a case study and propose a secure and
efficient remote monitoring framework. In contrast to the software-based solu-
tions that exploit cryptographic primitives as building blocks, we present a novel
framework by leveraging the hardware-based trusted computing technology, such
as Intel SGX to protect user data privacy and enable secure computations over
sensitive data. Specifically, assuming a current smart home IoT platform, e.g.
Samsung SmartHome [8], we set up a trusted broker in the home gateway to
provide data encryption, remote attestation and key management on behalf of
the user (i.e., patient). On the cloud server, access control enforcement and data
processing are performed in a trusted execution environment (TEE) protected
by secure hardware. Our proposed approach represents a major departure from
existing software-based solutions. Due to the use of secure hardware, our scheme
is very efficient as we only adopt symmetric encryption, such as AES and carry
out the monitoring service (i.e., HCP) functions which could be arbitrary con-
stitution over plaintext data, rather than encrypted ciphertext data.

A Secure Remote Monitoring Framework in IoT 3

On the other hand, there is a significant challenge that we need to address
before delivering the claimed secure and efficient framework. By our design, the
secret keys on the untrusted cloud server never leave the enclave (SGX term
for TEE) and the trustworthy executions of the access control enforcement and
HCP application are guaranteed by SGX functions. However, strong attackers,
such as OS and VM hypervisor, can still launch denial-of-service (DoS) attack
[9] to compromise the system. For example, it is expected that the trusted bro-
ker can explicitly inform the HCP enclaves to erase the corresponding secret
keys to revoke the access permission of the HCP. However, a malicious OS may
ignore such request and help the revoked HCP to continue reading the patient’s
data. Worse still, an HCP may be compromised and fail to invoke corresponding
enclave functions in response to the revocation request. In order to solve this
problem, we propose a ”heartbeat” protocol. In a nutshell, we force the enclave
of the revoked HCP to be unavailable if it does not receive a valid heartbeat
signal from the trusted broker after the defined time window.

Our contribution can be summarized as follows.

– Building upon recent development of secure processor, we propose a practical
secure remote monitoring framework that offers fine-grained access control
and privacy-preserving data processing on user information. Compared to
existing software-based solutions that rely on cryptographic primitives, the
proposed system offers rich functionality while incurring less performance
overhead.

– We propose a novel ”heartbeat” protocol to address the drawback of Intel
SGX architecture, where it is possible for the untrusted cloud server or a
monitoring application to selectively drop network traffic to prevent the user
from further controlling the enclave upon initial remote attestation. The
”heartbeat” protocol allows revocation of previous entrusted key materials
in the enclave.

– We implemented a prototype of the framework for remote patient monitor-
ing. Experiments show that the proposed system offers unique protection
with little performance overhead. The software has been open-sourced for
the community to build upon the existing work.

The rest of this paper is organized as follows. Section 2 introduces the tech-
nique of Intel SGX. Section 3 gives a description of the system model, threat
model, and design goals. We present the details of our framework and ”heart-
beat” protocol in Section 4, and analyze its security properties in Section 5. We
describe the implementation of our prototype in Section 6 and evaluate it in
terms of performance and framework scalability. Section 7 reviews the literature
related to our work. Finally, we conclude in Section 8.

2 Background

In this section, we provide background knowledge about the used trusted hard-
ware primitive – Intel software guard extensions (SGX).

4 Y. Chen, W. Sun, et al.

SGX [10, 11] is the latest Intel instruction extensions and allows the host
application to reserve a protected memory region as trusted execution environ-
ment (TEE), called enclave, so that sensitive application operations can run
inside securely against privileged system software3, e.g. OS kernel, VM hyper-
visor. In addition, SGX provides two other important functions, storage sealing
and remote attestation. Storage sealing allows the enclave to protect its data on
the untrusted persistent storage; remote attestation enables a distant entity to
check the integrity of the newly generated enclave, including the internal state,
code, etc. Should the verification be successful, the entity is able to establish an
authenticated secure channel and deliver its secrets into the enclave. Next, we
will provide some technical details of these two functions, which are essential
building blocks of our framework.

Storage Sealing Intel SGX platform maintains a seal key to enable cryp-
tographic sealing function, which is derived from a base key called Root Seal
Key that is hardcoded when the Intel SGX enabled processor is manufactured.
The derivation algorithm supports two policies for data accessibility control. One
policy named sealing to the enclave’s identity bases the seal key on the value of
the enclave’s MRENCLAVE, which is a SHA-256 digest of an internal log that
records all activities done while the enclave is built. It enforces that only the
certain enclave can recover sealed data. The other policy is called sealing to the
sealing identity, which utilizes the value of the enclave’s MRSIGNER to generate
the seal key. The MRSIGNER is a hash of the public key of the party who signs
the enclave prior to distribution. Such a policy facilitates the scenario where an
enclave needs to share its sealed data with other enclaves signed by the same
party.

Remote Attestation To enable this functionality, Intel SGX platform pro-
visions a special enclave called quoting enclave. When a challenged enclave re-
motely attests to an entity, it needs first to locally attest to the quoting enclave
as follows. First, the challenged enclave sends a unique signed structure known
as REPORT to the quoting enclave, which contains the two enclave’s identities,
i.e., MRENCLAVE and MRSIGNER, some meta-data and a MAC. The MAC
is calculated using a report key derived from the Root Seal Key. After the RE-
PORT is received, the quoting enclave then verifies it by re-computing the MAC
over the underlying data of the REPORT with the same report key. If the two
MAC values are equal, it shows that the challenged enclave is indeed an enclave
running on the same hardware platform with the quoting enclave. In other words,
the firmware and hardware of the challenged enclave are trustworthy. Next, the
quoting enclave generates a new signed structure called QUOTE by re-signing
the underlying data of the report with the Intel Enhanced Privacy ID (EPID),
which is an anonymous group signature scheme implemented by Intel. Finally,
the QUOTE is delivered to the entity who in turn transfers it to the Intel At-
testation Service (IAS) for validation. In principle, any verifiers that possess the
group public key can verify the QUOTE.

3 The trusted computing base (TCB) of SGX only comprises the CPU and several
privileged enclaves.

A Secure Remote Monitoring Framework in IoT 5

Intel SGX, however, is known to be vulnerable to various physical and soft-
ware attacks, for example, side-channel attacks [12, 13] including cache-timing
attack, power analysis attack, branch shadowing attack, etc. Further, the com-
promised OS can launch DoS attack to disrupt the enclave function as it is still
in charge of the underlying resource allocation. Thus, this attack on an intuitive
SGX-based RPM system allows the HCP to continue accessing the patient data
by dropping off the HCP revocation command from the patient.

3 Problem Formulation

3.1 System Model

A remote patient monitoring system in our design consists of a patient and var-
ious health care providers as shown in Fig. 1. At the patient’s end, multiple
devices, either wearable or physically fixed in the room, are deployed to mea-
sure the health conditions of the patient. The health care information collected
from the monitoring devices are sent to a patient-controlled gateway, where a
trusted broker program executes to manage the access policy for each subscribed
HCP, secret keys and data encryption. Then it uploads encrypted data as per
device to the cloud storage. HCPs, including hospitals, skilled nursing facilities,
disease research centers, etc., have respective specialties in health-related data
analysis, assessment and recommendations to the patients. HCPs in our system
also outsource their services to the cloud and set up SGX enclaves to perform
the computation involving sensitive patient information. To this end, the cloud
HCP application first needs to request the corresponding secret keys from the pa-
tient gateway after a successful remote attestation. Then the HCP enclave loads
the intended ciphertext of patient data from cloud storage and securely process
them after decryption. In order to revoke an existing HCP of the patient, a ro-
bust ”heartbeat” protocol is running between the trusted broker and the HCP
enclave. Normally, the enclave will securely erase all the acquired keys when it
receives a revocation command along with a heartbeat signal. Any exceptional
situations will cause the enclave out of service.

3.2 Threat Model

We assume that the monitoring environment containing IoT devices, the gateway
and communication channels between them is trustworthy. In addition, we do
not trust the cloud including applications, OS kernels, VM hypervisor, etc.,
except for CPU and enclave internals, which is consistent with the security of
SGX. Thus, we, in general, exclude the relevant physical and software attacks
on SGX in this paper. However, we do consider the challenging issue of HCP
revocation under the DoS attack by the compromised OS or the malicious host
HCP application.

6 Y. Chen, W. Sun, et al.

Application Enclave

Secrets Erase
(unexpected response)

Decryption
(device key)

Health Care Provider C

Application Enclave

Secrets Erase
(unexpected response)

Decryption
(device key)

Health Care Provider B

Enclave

Key Erase
(revocation)

Decryption
(device key)

Health Care Provider A

Define

Policy

Device 1

...

Key

Management
(one key per device)

Encryption
(with device keys)

Device n

Remote

Attestation

Keys Delivery

(sk1, sk2, ...)

Heart Beat

Synchronization

Encrypted

Data Access

Encrypted Data

Upload

Policy

Management

Trusted Broker

Patient

CloudGateway

Service Delivery

Storage

Computation
(plaintext data)

Fig. 1. The proposed framework for remote heath monitoring and protocol flows

3.3 Design Goals

Our proposed framework aims to achieve the following design goals. With respect
to system performance and functionalities,

– Scalability : Our scheme should be scalable and allow the patient to sub-
scribe as many HCPs as he/she needs in practice.

– Efficiency : The overhead of proposed security mechanisms should be min-
imal.

Pertaining to security, our framework mainly realizes the following goals,

– Confidentiality of personal health data and keys: It is expected that
the measured patient data are well protected when stored and processed in
the cloud and the corresponding secret keys will not be disclosed to unin-
tended parties.

– Trusted HCP data processing : The data processing operations of HCP
in the cloud should be verifiable and comply with the prescribed service
agreement.

– Fine-grained data access control : An authorized HCP can only access
the data types defined by the patient.

– Robust revocation: The patient should be able to revoke existing HCPs
in the case of service unsubscription.

4 Our Proposed Framework

4.1 Main Idea

In our proposed framework, it is expected that the private patient data should
be securely processed and also compliant with the subscribed HCP service. In

A Secure Remote Monitoring Framework in IoT 7

order to achieve this, we leverage Intel SGX to create an enclave for the patient
and put all the sensitive information and computation into the enclave. By re-
mote attestation and computation environment isolation by the enclave, we can
ensure that the enclave is faithfully and securely performing the expected HCP
functions.

In addition, the patient should be able to enforce access control policy for the
subscribed HCPs over his/her outsourced data and revoke the access permission
of the unsubscribed HCP. To achieve this, a unique random secret key is assigned
to each monitoring device that outputs a specific health-related data type. Data
confidentiality can be realized by using the key to encrypt the relevant type of
data. Further, the patient can also control which HCP can access what types
of patient data by providing the corresponding secret keys. Intuitively, in order
to revoke an existing HCP and prevent it from further accessing the patient
data, we may re-encrypt the data type that was allowed for the target HCP
with updated device keys and redistribute these keys to the remaining affected
HCPs. Obviously, this method incurs considerable computation and communica-
tion overhead, and cannot revoke the access permission promptly, which is very
important for a real-time RPM system. The patient can also choose to explicitly
send a revocation command to the enclave to destroy all assigned device keys,
but it will fail if the compromised OS or HCP host application intercepts this
request. To solve this challenging issue, we present a ”heartbeat” protocol in
our framework. The core idea is to send a periodical heartbeat signal from the
patient side to retain the HCP enclave’s vitality and force the enclave to erase
all the assigned device keys if it receives an explicit revocation command along
with the signal. If the enclave does not receive a valid signal during a predefined
time window, it will be no longer available.

Last, we automate the scheme for the patient by executing a trusted broker
program in the patient-side gateway device to enable various critical security
functions, such as encryption, key management, attestation, etc.

4.2 Framework Description

The proposed scheme comprises five steps: System Setup, Data Upload, Service
Subscription, Secure Data Processing, Service Unsubscription. Next, we describe
them in details. The main notations are summarized in Table 1.

System Setup In this phase, the patient first bootstraps and configures
the trusted broker in the gateway. In particular, an access control list ACL, a
device key list DKL and a secret shared key list SSKL are initialized. Then
the patient registers all monitoring devices to the trusted broker, who invokes
the key management function FKM to generate a unique secret key ski for each
registered device i. The key along with the corresponding device ID i is recorded
in DKL. On the other side, an HCP sets up its service application in the cloud.

Data Upload The monitoring devices constantly collect data from the pa-
tient and ambient environment, and send them as files to the trusted broker.

8 Y. Chen, W. Sun, et al.

Table 1. Main Notations

Notation Description

EApp The enclave launched by the health
care provider.

F∗ The function implemented by the
trusted broker. ∗ can be KM for key
management, Enc for encryption.

sskp the shared key generated by the
trusted broker for secure communica-
tion with the health care provider p.

ski The secret key for device i.

ctji The ciphertext of the data file j
bound to device i encrypted with ski

CTi The ciphertexts bound to device i.

ζp The access rule defined for the health
care provider p.

ACL The access control list maintained by
the trusted broker.

DKL The device key list maintained by the
trusted broker.

SSKL The secret shared key list maintained
by the trusted broker.

Each data file j from a particular device is further encrypted into the cipher-
text ctji by the encryption function FEnc using the corresponding device key ski.
Finally, the ciphertexts are uploaded to the cloud storage and organized as per
device, i.e., CTi = {ctji |j ∈ Fi}, where Fi represents the whole file set of device
i.

Service Subscription When the patient subscribes to an HCP p, he/she
first defines the access permission rule ζp in accordance with the service agree-
ment. ζp explicitly indicates which monitoring devices can be accessed by the
HCP. Then, the HCP ID p along with the access rule ζp is recorded in the ACL.
Meanwhile, the cloud HCP application initializes a dedicated enclave EApp for
the target patient. Next, the trusted broker on behalf of the patient begins the
remote attestation interaction with the HCP enclave EApp to ensure that all the
enclave functions comply with the service agreement. At the end of a success-
ful attestation, a secret key sskp is negotiated and shared between the trusted
broker and the HCP enclave to generate an authenticated secure channel for
subsequent communications. The trusted broker adds (sskp, p) to the SSKL
and the HCP saves the sskp with an internal variable shared key.

Secure Data Processing Initially, the application enclave EApp of HCP p
needs first to request corresponding device secret keys from the trusted broker.

A Secure Remote Monitoring Framework in IoT 9

After receiving the key request, the trusted broker sends back the device keys
according to the defined access rule in ACL. The communication channel is
protected using the shared secret key sskp. Next, so long as the EApp is not
closed by the host application, it can constantly load the intended ciphertexts
of patient data from the cloud storage, decrypt them with the obtained device
keys and process the plaintext information inside the enclave. In case the enclave
is torn down either due to power event or by the application itself, the secret
materials can be sealed to the untrusted storage for long-term service delivery.
Notably, we limit the enclave to use sealing to the enclave’s identity policy for
storage sealing, so that the obtained secret keys won’t be shared with other
enclaves not verified by the patient.

Service Unsubscription The patient is able to unsubscribe a particular
HCP service by revoking all the assigned device keys. We propose a lightweight
”heartbeat” protocol to enable efficient and robust HCP revocation. In general,
the trusted broker adopts an auxiliary function, which will periodically send
a heartbeat signal to the HCP enclave EApp after giving out the device keys.
The signal carries a state indicating whether or not the HCP has been revoked.
Upon receiving a heartbeat signal with revocation state, the EApp will erase all
secret keys. Otherwise, it updates an internal variable named hb state, which
is critical to sustaining the functionality of enclave. If hb state is not updated
after a defined time window, all the functions of the enclave towards secure data
processing cannot be executed properly. Thus, it can prevent further data access
by the HCP. In what follows, we describe the ”heartbeat” protocol in details.

4.3 Heartbeat Protocol

Fig. 2 shows the proposed ”heartbeat” protocol, which runs between the trusted
broker and the HCP.

Trusted Broker HCP Host Application

Enclave:

r , is_revoked dec(hb , ssk)

h�

while (! loop_end):

send(hb)

hb_state cur_secure_time()

r counter()

hb enc((r , is_revoked) , ssk)

r' r

if (r' < r):

wait(hb_freq)

policy_check(hcp_id)is_revoked

if (is_revoked):

break if (is_revoked):

erase()

return REVOKED

heartbeat_event_loop():

ecall_heartbeat_process(hb):

if (event_timeout)

abnormality_detect()

return SUCCESS

return REPLAY

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

13

14

sp_heartbeat_loop():

status_process(ENCLAVE_STATUS) 12

Fig. 2. The ”heartbeat” protocol between the trusted broker and HCP enclave

10 Y. Chen, W. Sun, et al.

On the trusted broker side. A loop function is implemented to enable peri-
odical heartbeat signal emission and each iteration represents a heartbeat cycle.
It also uses a variable loop end, initialized as false, to control the on-off switch
of emitting heartbeat signal (line 2). During each heartbeat cycle, the trusted
broker first calls the counter() function to obtain a monotonically increased pos-
itive number r (line 3). Then it calls the policy access() function to get the
current revocation status of the target HCP, which is stored in a boolean vari-
able is revoked (line 4). It generates a heartbeat signal hb by using authenticated
encryption, such as GCM[AES] to encrypt r and is revoked with the shared key
ssk of the target HCP and sends it to the HCP host application in the cloud
(line 5 and 6). If the HCP has not been revoked, the current process will be
suspended for a defined period hb freq before entering the next cycle. Otherwise,
it will exit the loop and stops sending the heartbeat signal (line 7-9).

On the HCP host application side. The HCP implements an event response
function named heartbeat event loop() to monitor heartbeat signals (line 1), in
which it transfers the received heartbeat message to its enclave by calling the
enclave function ecall heartbeat process() (line 2). Within the enclave, it decrypts
the message with the shared key ssk to recover the number r and the revocation
status is revoked (line 3). Next, it checks whether r is larger than the number
r’, which is maintained by the enclave to record the maximum of r that has been
received before (line 4). Note that r’ is initialized to be −1. If r ≤ r′, the enclave
returns the state of REPLAY (line 11). Otherwise, the enclave stores r as new
r’ (line 5). Then it checks the revocation status (line 6). Provided that the HCP
needs to be revoked, the erase() function will be called to free the memory for
storing the obtained secret keys from the trusted broker, and return the state of
REVOKED to host application (line 7 and 8). Otherwise, the enclave updates
a global variable hb state by invoking the cur secure time(), which returns a
trusted machine time. The enclave also returns the state of SUCCESS to the
host application (line 9 and 10).

The host application bases the returned status to do some post processing
(line 12), i.e., REPLAY, REVOKED and SUCCESS. Specifically, REPLAY in-
dicates that the enclave suffers from the replay attack. REVOKED represents
that the HCP has been revoked. SUCCESS means that the current event is suc-
cessfully processed. In addition, if the HCP doesn’t receive a heartbeat message
from the trusted broker for a defined time period event timeout and the RE-
VOKED status has not yet been set, it may suffer from abnormalities, either
network failure or DoS attack, and thus triggers the detection function (line 12,
13), which is out of the scope of this paper.

To further enable the revocation mechanism, we need to enhance other en-
clave functions by inserting an assert before normal function codes are exe-
cuted, which checks the freshness of the hb state. Fig. 3 shows the checking
algorithm. First, it gets the current trusted machine time cur time by invoking
cur secure time() and computes the difference diff time between cur time and
hb state (line 2,3). If diff time is less equal than a defined time window named
threshold, then it returns true, meaning that the hb state is fresh and that the

A Secure Remote Monitoring Framework in IoT 11

subsequent codes can be properly executed (line 4,5). Otherwise, it returns false
(line 6,7). One non-trivial issue is how to set the value of threshold, which is
a trade-off between the timeliness of revocation and the robustness of mecha-
nism. Supposed that the threshold were very large compared to the heartbeat
frequency hb freq, the mechanism can be robust to temporary network failure
or compromised OS. However, it will postpone the revocation time of taking
effect. For example, when the revocation heartbeat signal is not received by the
HCP enclave because of network failure, the HCP can continue processing the
patient’s data until the time window defined by threshold runs out. On the con-
trary, if the threshold is close to the hb freq, it can response revocation event in
time but may be vulnerable to the network failure and compromised OS.

Enclave:

return true

if (diff_time <= threshold):

cur_time cur_secure_time()

diff_time cur_time - hb_state

else:

return false

assert():1

2

3

4

5

6

7

Fig. 3. The freshness check assert

Remark The proposed ”heartbeat” protocol can achieve the desired HCP revo-
cation function. Its correctness can be guaranteed by the follows. In the case of
receiving the valid heartbeat signal in the defined time window, if is revoked is
false, the HCP can continue to access the patient data. Otherwise, the access
permission of the HCP will be revoked by erasing all the assigned secret keys in
the enclave. Should the heartbeat signal is not received by the enclave during
the defined time window, the abnormality, due to either network delay or the
intentional drop off of the revocation signal by the compromised OS or HCP host
application, will be detected, which disables the remaining critical HCP enclave
functions towards data processing.

5 Security Analysis

In this section, we show that our proposed scheme can achieve the defined secu-
rity goals.

5.1 Confidentiality of Personal Health Data and Provisioned Key

This property is satisfied by both software-based encryption algorithms, such
as AES, and the used secure hardware TEE function, i.e. Intel SGX enclave.

12 Y. Chen, W. Sun, et al.

When outside the enclave, the patient information collected from various moni-
toring devices are encrypted using respective device keys and stored in the cloud.
After remote attestation, the relevant device keys are provisioned into enclave
through an authenticated secure channel. The encrypted patient data can only
be decrypted and processed inside the enclave. On the other hand, the shared
secret key and assigned device keys by our design never leave the enclave. Thus,
the confidentiality of the data and relevant keys are realized in this work.

5.2 Trusted HCP Data Processing

This property is guaranteed by the remote attestation function of Intel SGX.
During this process, the patient will verify the integrity and correctness of critical
HCP functions that take his/her private data as input. Thus, the patient can be
assured of the trustworthy execution of the subsequent data processing and its
compliance with the subscribed service agreement.

5.3 Fine-grained Data Access Control

We use different device-wise keys to encrypt each data type associated with this
device. Thus, the patient is able to generate and maintain a straightforward but
fine-grained access control policy by explicitly regulating what types of data of
the devices can be accessed by the HCP. This is enforced by only giving the
HCP the relevant secret device keys.

5.4 Robust HCP Revocation

We leverage the ”heartbeat” protocol to efficiently and effectively revoke an
existing HCP from the system. The correctness has been stated in section 4.3.
Here we focus on the other two security-related aspects.

– Non-forgeability : No other parties except for the trusted broker and HCP
enclave can access the shared secret key, which is used to encrypt and au-
thenticate the heartbeat messages.

– Replay attack resistance: A compromised party, e.g. OS, HCP host ap-
plication, may replay previously received heartbeat message to the enclave
to keep the freshness of hb state. However, we use a monotonically increased
number r to maintain the message order. It is expected that r in newly re-
ceived heartbeat message should be greater than the stored r′ in the enclave.
Otherwise, the replay attack can be detected.

6 Implementation and Evaluation

We implemented a prototype4 in C using the Intel SGX SDK 2.1 for Linux,
and enclaves are built as Linux Shared Objects (.so). Our prototype is tested

4 The project is available to access through the GitHub via the following link:
https://github.com/yxChen1990/SGXLAB.git

A Secure Remote Monitoring Framework in IoT 13

on an Intel NUC7i5BNH, an SGX enabled platform running an Intel Kaby Lake
i5-7260U processor at 2.20GHz (Turbo frequency can reach to 3.40GHz) with 8
GiB of RAM and Ubuntu 16.01 operating system. Currently, an Intel license is
required to build enclaves in release mode, so we compiled the code using g++
in a debug mode.

6.1 Implementation

In our prototype, we implemented the network communication interfaces invoked
by the HCP host application with directly stub function calls from the trusted
broker. We also implemented a data sample module to imitate the activities
of monitoring devices. In particular, it provides a stub function data send() for
directly invocation by the trusted broker. Besides, we omitted the cloud storage
using a stub function sp upload data() implemented in the trusted broker, which
encrypts data sent by the sample module and is further invoked by the HCP host
application for loading the ciphertext data. Lastly, the HCP enclave provided
abundant ECALL functions for the HCP host application to accomplish designed
protocols. Below, we will give the description of each interface in accordance with
its functionality.

Remote Attestation The functions in this module enable the trusted bro-
ker to validate the hardware and software TCB of the HCP enclave and agree
on the secret shared key between the two entities. Referring to the sample code
provided by Intel SDK, we implemented this mechanism by negotiating five
core messages between the trusted broker and HCP host application, which
are denoted by msg0, msg1, msg2, msg3, msgret, respectively. Specifically, the
msg0 carries an Extended GID generated by the HCP host application. It is
processed by sp ra proc msg0 req() in the trusted broker to validate the HCP
host application before launching remote attestation. Provided that the valida-
tion was passed, the HCP host application will initialize remote attestation by
invoking ecall init ra(), which returns an attestation context. Based on the at-
testation context, the msg1 including the DHKE public key of the HCP enclave
is constructed and sent to the trusted broker. In response, the trusted broker
calls sp ra proc msg1 req() to process msg1 and returns back msg2, involving
the DHKE public key of the trusted broker. At the moment, a 128-bit asym-
metric secret shared key between the trusted broker and HCP enclave can be
constructed. Notably, if the final attestation is successful, the shared key will be
recorded at both side, i.e., the trusted broker inserts it along with the HCP’s ID,
denoted by (hcp id, ssk) to the SSKL and the HCP enclave writes it to the global
variable shared key. In the last round communication, the msg3, representing the
QUOTE generated for the specific HCP enclave, is sent to the trusted broker for
verification. Instead of communicating with the IAS, the sp ra proc msg3 req()
locally verifies the MRENCLAVE and MRSIGNER and returns back the final at-
testation resultmsgret. On the HCP’s end, it invokes ecall verify att result mac()
to verify msgret and further does some post-processing.

14 Y. Chen, W. Sun, et al.

Heartbeat This module includes functions used to synchronize heartbeat
messages between the trusted broker and HCP enclave. Following the protocol
design in Section 4.3, we implemented a sp heartbeat loop() at the trusted bro-
ker’s side to constantly emit heartbeat signal msghb to the HCP enclave and
an ecall heartbeat process() at the HCP enclave’s side to handle the captured
heartbeat event. In particular, we created a dedicated thread to simulate the
protocol execution.

Key Management This function module facilitates the trusted broker to
generate device keys and distribute them to HCP enclaves. The trusted broker
maintains two lists, i.e., device key list (DKL) and secret shared key list (SSKL)
to support such a functionality. We use two struct arrays to implement them: the
first one is defined as (dev id, sk); the second one is defined as (hcp id, ssk). It
also implements three functions. Specifically, the key generate() function is used
to generate keys for registered monitoring devices. The key access() interface
enables the access of the two lists by other functions in the trusted broker.
To facilitate key distribution, it implements a sp km proc key req() function to
deal with key requests from HCP enclaves, which takes the key request message
msgreq as input and returns back msgsk. More specifically, the msgreq includes
the HCP ID hcp id and its corresponding ciphertext generated by the HCP
enclave using the shared key shared key. The msgsk is a struct encrypted with
the same shared key retrieved from SSKL. The underlying struct consists of the
key number and target device keys, and can only be recovered to a global variable
device keys within the HCP enclave through the invocation of ecall put keys()
by the HCP host application.

Seal Secrets With regard to the HCP, we offer two ECALL functions in this
module to enable that keys received by the HCP enclave can be flushed out to the
secondary storage for long-term service provision. The ecall create sealed policy()
encrypts keys with the platform seal key and returns the ciphertext data to the
HCP host application, which in turn can be stored in the untrusted storage
medium. On the contrary, the ecall perform sealed policy() recovers the sealed
keys into the HCP enclave. By our design, the exploited policy for deriving the
seal key is limited to only use sealing to the enclave’s identity, such that an
upgraded enclave need to once again attest to the trusted broker and request
keys from it.

Policy Management For the trusted broker, we also implemented related
interfaces to accomplish policy management. The sp define policy() is provi-
sioned to facilitate a patient to define his/her access policy towards HCPs by
inserting access rules to the access control list (ACL). The ACL is implemented
by a struct array and the struct is defined as (hcp id, dev id, dev id, ...). Cor-
respondingly, we implemented a policy access() function to allow the access of
ACL by other functions.

Data Processing Provided that all above modules were properly func-
tioned, the HCP enclave then could compute over patient’s encrypted data. We
implemented an ecall perform statistics() function as an example, which takes

A Secure Remote Monitoring Framework in IoT 15

two encrypted data as inputs and outputs some statistic measurements like mean
and variance of the underlying data.

Last but not the least, to support user revocation, we augment all above
defined ECALL functions except those in Heartbeat and Remote Attestation
modules by enforcing the freshness assert checking at the point where the func-
tion starts. In particular, the freshness time window threshold within the assert
algorithm is set up as 5 times of the heartbeat frequency hb freq.

6.2 Evaluation

As shown in Implementation, our framework involves many function modules.
The evaluation of the system aims to answer the following questions:

– How is computation performance when using Intel SGX?
– What is the cost by introducing the heartbeat mechanism?
– How is the scalability of the proposed framework in terms of fine-grained

access control?

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

E
n
c

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

1 B
1 B (baseline)
1 KB
1 KB (baseline)
10 KB
10 KB (baseline)

0 20 40 60 80 100
File Numbers

0.00

0.05

0.10

0.15

0.20

0.25

D
e
c

E
x
e
cu

ti
o
n
 T

im
e
 (

s) 1 B
1 B (baseline)
1 KB
1 KB (baseline)
10 KB
10 KB (baseline)

Fig. 4. The computation performance w and w/o Intel SGX

Constant time functions. Majority of the aforementioned functions are in-
voked few times during protocol execution and have constant overhead for each

16 Y. Chen, W. Sun, et al.

revocation. For example, the functions in key management at both sides ei-
ther perform an O(1) symmetric key generation algorithm or conduct an O(1)
read/write operation on defined data structure. Similarly, functions in seal se-
crets module perform a symmetric encrypt/decrypt operation and functions in
policy management perform a list read/write operation. In addition, though the
remote attestation between the trusted broker and HCP enclave needs multiple
network communications and complex verification computations, it is a one-time
protocol finished at the service subscription phase for a given HCP. Therefore,
it incurs no performance degradation to the subsequent data processing.

Performance by SGX enclave. In this experiment, we aim to measure the
performance penalty when using Intel SGX. Specifically, we implement a 128bit
AES-GCM scheme and demonstrate the additional cost by SGX through evalu-
ating its performance. In the real world, data collected by different monitoring
devices varies greatly. For example, a heart-rate sensor may send a 1-byte data
while a footage of an activity monitor with a code rate of 4933kbps will need
about 616KB frame data per second. To see how the proposed system works
under such various conditions, we enable the trusted broker to encrypt files in
different sizes. In particular, we chose three file sizes, i.e., 1B, 1KB, and 10KB.
In each defined file size, we are also interested in the performance with various
number of files since some applications, such as machine learning algorithms,
may need to deal with a large number of files. Fig. 4 illustrates the performance
of the implemented AES-GCM scheme. We use the baseline to represent the
same implementation without Intel SGX. It can be observed that Intel SGX is
more suitable to process (encryption and decryption) small-sized files, i.e., 1 B
and 1 KB, where it only imposes a negligible performance overhead. On the other
hand, large-sized files, e.g. 10KB, will introduce more performance penalty as the
file number increases. Note that Intel SGX SDK provides a closed-source trusted
cryptographic library named sgx tcrypto, which includes some well-known cryp-
tographic primitives. In particular, it also provides two AES implementations,
i.e., Rijndael 128bit-GCM and Rijndael 128bit-CTR. We can choose to use this
native 128bit AES-GCM function to provide the message confidentiality and
integrity. It is expected that this optimized AES function will give us a much
better performance compared to our own implementation. We will apply this
function and evaluate its practical performance in the future.

Heartbeat cost. The heartbeat mechanism in our framework consists of three
critical functions, i.e., the sp heartbeat loop() at the trusted broker’s side, the
ecall heartbeat process() and freshness assert() at the HCP enclave’s side. By
following numerical analysis, we show that the performance costs of these func-
tions are relatively very small. The main cost of sp heartbeat loop() is to encrypt
the heartbeat message with the shared symmetric key, the complexity of which
depends on the underlying message size. By our design, the size of heartbeat
message is fixed, including a 4 bytes counter and a 1-byte is revoked, so the
performance cost can be ignored. Accordingly, in the ecall heartbeat process(), it
mainly performs a reverted decryption operation. Lastly, the freshness assert()
obviously comprises no time-consuming operations.

A Secure Remote Monitoring Framework in IoT 17

The only potential resource cost introduced by the heartbeat mechanism
is that both the trusted broker and HCP host application must maintain a
dedicated thread to constantly emit or handle heartbeat messages during the
lifetime of the service.

Scalability of the framework in terms of fine-grained access control. On
behalf of the patient, a trusted broker is established in the gateway to control the
access of his/her monitoring devices by multiple health care providers. In theory,
our framework can support the end user to subscribe as many HCPs as he/she
needs in practice. On one hand, to accomplish access control, the trusted broker
only maintains numbered shared device keys in the DKL for data encryption as
per device and two unique tuples for each subscribed HCP, i.e., (hcp id, dev id[])
in the ACL to indicate which device keys can be accessed by the HCP enclave
and (hcp id, ssk) in the SSKL to secure the subsequent communication between
the two entities, which incurs minimum computation and storage cost. On the
other hand, by implementing the heartbeat mechanism, an HCP can be revoked
without triggering other time-consuming computations, such as device key re-
issuing and data storage re-encryption.

7 Related Work

Attribute-Based Encryption (ABE), first proposed by Sahai and Waters [14], is
a promising privacy-preserving data access control technology that achieves fine-
grained access control, scalable key management and flexible data distribution.
It has been well studied and adopted in many cloud computing applications in
the past decade [2–5, 15, 16]. Recently, Wang et al. [17] give a comprehensive
performance evaluation of ABE, focusing on execution time, data and network
overhead, energy consumption, and CPU and memory usage, to understand at
what cost ABE offers its benefits and under what situations ABE is best suited
for use in the IoT. They concluded that the computation cost in encryption
and decryption phase may be a heavy burden for those resource-limited de-
vices. Many researchers try to leverage other powerful entities to offload the
cumbersome computation. For example, Yang et al. [18] exploit the cloud as an
outsourcing entity to encrypt data for publishers and decrypt data for receivers.
Huang et al. [19] and Zhang et al. [20] delegate the computation of encryption
and decryption to fog nodes, which is a micro data-center adjacent to the end
user in fog computing paradigm. Our work, however, avoids such cumbersome
cryptography-based methods by utilizing the light-weight hardware, i.e., Intel
SGX, to achieve fine-grained access control over user’s data while achieving the
same security requirements in the challenging IoT scenario.

Intel SGX is a hardware-based trusted computing technology, which has been
studied a lot in the literature. Baumann et al. [21] implemented a prototype
named Haven to protect unmodified legacy applications against malicious OS
by running them in SGX enclaves. Arnautov et al. [22] and Shinde et al. [23]
built a secure Linux container with Intel SGX to defend against outside attacks.

18 Y. Chen, W. Sun, et al.

Fisch et al. [24] propose a system called IRON with Intel SGX to make functional
encryption (FE) and multi-input functional encryption (MIFE) practical. Sun et
al. [25] exploit Intel SGX to address the challenging searchable encryption (SE)
problem. In comparison to existing works, we solve the non-trivial key revocation
issue faced by Intel SGX by introducing a ”heartbeat” protocol.

8 Conclusion

In this paper, we propose a secure and efficient framework for remote patient
monitoring in the context of IoT, which enables two fundamental security func-
tionalities for users (patients), i.e, a user can control which deployed devices can
be accessed by which monitoring services (HCPs), and he/she can be further
assured that functions over his/her data are securely executed without leak-
ing the privacy information to unauthorized entities. To this end, we leverage
the off-the-shelf secure hardware, i.e., Intel SGX to circumvent those cumber-
some crypto-based solutions in previous works. Furthermore, we also introduce
a ”heartbeat” mechanism to efficiently support service unsubscription for users.
Lastly, by implementing a prototype, we demonstrate that our framework is
feasible in practice and almost raises no performance degradation.

Acknowledgement

This work was sponsored by National Key Research and Development Program
of China under Grant No. 2016YFB1000303, Innovative Research Group of the
National Natural Science Foundation of China (61721002), Innovation Research
Team of Ministry of Education (IRT 17R86), the National Science Foundation
of China under Grant Nos. 61502379, 61532015 and 61672420, Project of China
Knowledge Center for Engineering Science and Technology, and China Scholar-
ship Council under Grant No. 201606280105. This work was also supported in
part by US National Science Foundation under grants CNS-1446478 and CNS-
1443889.

References

1. Hassanalieragh M., Page A., Soyata T.: Health monitoring and management using
Internet-of-Things (IoT) sensing with cloud-based processing: Opportunities and
challenges. In: IEEE SCC 2015, (2015)

2. Li M., Yu S., Zheng Y., Ren K., Lou W.: Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption. IEEE TPDS,
24(1), 131-143 (2013).

3. Yu S., Wang C., Ren K., Lou W.: Achieving Secure, Scalable, and Fine-grained Data
Access Control in Cloud Computing. In: IEEE INFOCOM 2010, pp. 1-9 (2010)

4. Sun W., Yu S., Lou W., Hou Y. T., Li H.: Protecting your right: Attribute-based
keyword search with fine-grained owner-enforced search authorization in the cloud.
In: IEEE INFOCOM 2-14, pp. 226-234 (2014)

A Secure Remote Monitoring Framework in IoT 19

5. Wan A., Liu J., Deng R. H.: Hasbe: A hierarchical attribute-based solution for
flexible and scalable access control in cloud computing. IEEE TIFS, 7(2), pp. 743-
754 (2012)

6. Yao A.C.: Protocols for secure computations. In: IEEE SFCS 1982, pp. 160-
164(1982)

7. Gentry C.: Fully homomorphic encryption using ideal lattices. In: ACM STOC 2009,
pp. 97-105 (2009)

8. Fernandes E., Jung J., Prakash A.: Security analysis of emerging smart home ap-
plications. In: IEEE S&P 2016, pp. 636-654 (2016)

9. Costan V., Devadas S.: Intel SGX Explained. In: IACR Cryptology ePrint Archive,
86, (2016)

10. McKeen F., Alexandrovich L., Berenzon A., Rozas C., ShafiH.: Innovative instruc-
tions and software model for isolated execution. In: Hardware and Architectural
Support for Security and Privacy 2013, (2013)

11. Anati I., Gueron S., Johnson S. P., Scarlata V. R.: Innovative technology for CPU
based attestation and sealing. In: Hardware and Architectural Support for Security
and Privacy 2013, (2013)

12. Lee S., Shih M., Gera P., Kim T., Kim H., Peinado M.: Inferring fine-grained control
flow inside SGX enclaves with branch shadowing. In: USENIX Security Symposium
2017, pp. 557-574 (2017)

13. Wang W., Chen G., Pan X., Zhang Y., Wang X., Bindschaedler V., Tang H.,
Gunter C. A.: Leaky cauldron on the dark land: Understanding memory side-channel
hazards in SGX. In: ACM CCS 2017, pp. 2421-2434 (2017)

14. Sahai A. Waters B.: Fuzzy dentity-based encryption. In: EUROCRYPT 2005, pp.
457-473 (2005)

15. Goyal V., Pandey O., Sahai A., Waters B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, p. 89 (2006)

16. Bethencourt J., Sahai A., Waters B.: Ciphertext-Policy Attribute-Based Encryp-
tion: In: IEEE S&P 2007, pp. 321-334 (2007)

17. X. Wang, J. Zhang, E. M. Schooler, and M. Ion: Performance evaluation of
attribute-based encryption: Toward data privacy in the IoT. In: IEEE ICC 2014,
pp. 725-730 (2014)

18. Yang L., Humayed A., Li F.: A multi-cloud based privacy-preserving data pub-
lishing scheme for the Internet of Things. In: ACM ACSAC 2016, pp. 30-39 (2016)

19. Huang Q., Yang Y., Wang L.: Secure data access control with ciphertext update
and computation outsourcing in fog computing for Internet of Things. IEEE Access,
5, pp. 12941-12950 (2017)

20. Zhang P., Chen Z., Liu J. K., Liang K., Liu H.: An efficient access control scheme
with outsourcing capability and attribute update for fog computing. Future Gener-
ation Computer System, 78(2) , pp. 753-762 (2018)

21. Baumann A., Peinado M., Hunt G.: Shielding applications from an untrusted cloud
with Haven. ACM TCS, 33(3), pp. 1-26 (2015)

22. Abadi M. Barham P., Chen J., et al: TensorFlow: A system for large-scale machine
learning. In: Usenix OSDI 2016, pp. 265-284 (2016)

23. Shinde S., Tien D. L., Tople S., Saxena P.: PANOPLY: Low-TCB Linux applica-
tions with SGX enclaves. In: NDSS 2017, (2017)

20 Y. Chen, W. Sun, et al.

24. Fisch B. A., Vinayagamurthy D., Boneh D., Gorbunov S.: Iron: Functional En-
cryption using Intel SGX. In: ACM CCS 2017, pp. 765-782 (2017)

25. Sun W., Zhang R., Lou W., Hou Y. T.: REARGUARD: Secure keyword search
using trusted hardware. In: IEEE INFORM 2018 (2018)

