
1

A Survey of Distributed Consensus Protocols for Blockchain
Networks

Yang Xiao∗, Ning Zhang†, Wenjing Lou∗, Y. Thomas Hou∗
∗Virginia Polytechnic Institute and State University, VA, USA

†Washington University in St. Louis, MO, USA

Abstract—Since the inception of Bitcoin, cryptocurrencies
and the underlying blockchain technology have attracted an
increasing interest from both academia and industry. Among
various core components, consensus protocol is the defining
technology behind the security and performance of blockchain.
From incremental modifications of Nakamoto consensus protocol
to innovative alternative consensus mechanisms, many consensus
protocols have been proposed to improve the performance of
the blockchain network itself or to accommodate other specific
application needs.

In this survey, we present a comprehensive review and anal-
ysis on the state-of-the-art blockchain consensus protocols. To
facilitate the discussion of our analysis, we first introduce the
key definitions and relevant results in the classic theory of fault
tolerance which help to lay the foundation for further discussion.
We identify five core components of a blockchain consensus
protocol, namely, block proposal, block validation, information
propagation, block finalization, and incentive mechanism. A wide
spectrum of blockchain consensus protocols are then carefully
reviewed accompanied by algorithmic abstractions and vulner-
ability analyses. The surveyed consensus protocols are analyzed
using the five-component framework and compared with respect
to different performance metrics. These analyses and compar-
isons provide us new insights in the fundamental differences of
various proposals in terms of their suitable application scenarios,
key assumptions, expected fault tolerance, scalability, drawbacks
and trade-offs. We believe this survey will provide blockchain
developers and researchers a comprehensive view on the state-of-
the-art consensus protocols and facilitate the process of designing
future protocols.

Index Terms—Blockchain, distributed consensus, fault toler-
ance, protocol design.

I. INTRODUCTION

S INCE Bitcoin’s inception in late 2008, cryptocurrencies
and the underlying blockchain technology have piqued

great interest from the financial industry and society as a
whole. Blockchain is widely cited as a fully decentralized
system and a secure-by-design technology. The blockchain
itself is a database that keeps track of all transactions occurred
in the network and is replicated at every participating node.
It essentially realizes a distributed ledger without relying on
a central authority to bootstrap the trust among participants
or to clear the transactions. It also does not assume trust
among the participating nodes. Blockchain is meant to enable
trusted computation among a group of mutually distrustful

c©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, including reprinting/republishing
this material for advertising or promotional purposes, collecting new collected
works for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works

participants. On the other hand, blockchain is also known for
providing trustworthy immutable record keeping service. The
block data structure adopted in a blockchain embeds the hash
of the previous block in the next block generated. The use of
hash chain ensures that data written on the blockchain can not
be modified. In addition, a public blockchain system supports
third-party auditing and some blockchain systems support a
high level of anonymity, that is, a user can transact online
using a pseudonym without revealing his/her true identity.

The security properties promised by blockchain is unprece-
dented and truly inspiring. Pioneering blockchain systems such
as Bitcoin have greatly impacted the digital payment world. It
is envisioned that blockchain technology and applications built
on top of it will revolutionize a broad array of financial service
industries as well as non-financial sectors. Among the many
technical components that a blockchain system is composed
of, the distributed consensus protocol is the key technology
that enables blockchain’s decentralization, or more specifically,
that ensures all participants agree on a unified transaction
ledger without the help of a central authority. The distributed
consensus protocol specifies message passing and local de-
cision making at each node. Various design choices in the
consensus protocol can greatly impact a blockchain system’s
performance, including its transaction capacity, scalablity, and
fault tolerance.

The Nakamoto consensus protocol [1] is the protocol imple-
mented in the Bitcoin network. With the help of this consensus
protocol, Bitcoin became the first digital currency system to
resist double-spending attacks in a decentralized peer-to-peer
network of little trust. As the Bitcoin network continues to
grow, Nakamoto consensus has encountered several perfor-
mance bottlenecks and sustainability problems. Researchers in
blockchain communities have raised the following concerns on
Nakamoto consensus and particularly its proof-of-work (PoW)
mining mechanism: 1) unsustainable energy consumption, 2)
low transaction capacity and poor scalability, 3) long-term
security concerns as mining rewards diminish. For instance,
the Bitcoin network currently consists of roughly ten thousand
nodes [2], while the maximum transaction capacity of Bitcoin
is 7 transactions per second (TPS) and can be increased
to at most 25 TPS by tuning protocol parameters without
jeopardizing consensus safety [3]. In contrast, the VISA net-
work consists of 50 million participants and can handle up to
65,000 TPS [4]. A single Bitcoin transaction (November 2019)
consumes the equivalent amount of electricity that would
power 21 average U.S. households for one day [5].

In response to the above performance limitations of PoW

ar
X

iv
:1

90
4.

04
09

8v
4

 [
cs

.C
R

]
 2

9
Ja

n
20

20

2

mining, blockchain researchers have been investigating new
block proposing mechanisms such as proof of stake (PoS),
proof of authority (PoA), and proof of elapsed time (PoET)
which do not require computation-intensive mining, thus ef-
fectively reducing energy consumption. In some cases, cryp-
tographic methods can be used to establish trust among nodes,
enabling the use of more coordinated block proposing schemes
such as round-robin and committee-based block generation.
Appropriate incentives that will continue to encourage hon-
est participation in the blockchain network is another key
component of consensus protocol. Therefore, alternative block
proposing schemes are often accompanied by a new incentive
mechanism that promotes participation fairness and increases
overall system sustainability. Popular blockchain consensus
protocols encompassing these ideas include Peercoin [6],
Bitcoin-NG [7], Ourosboros (Cardano) [8], Snow White [9],
and EOSIO [10], POA Network [11], etc.

Besides block proposing and incentive mechanisms, re-
searchers have been seeking solutions from the prior
wisdom—primarily classical Byzantine fault tolerant (BFT)
consensus and secure multi-party computation (MPC)—for
efficient block finalization methods. For example, the state ma-
chine replication (SMR) based BFT consensus algorithms have
great potential in permissioned blockchain networks operated
with static and revealed identities, of which Tendermint [12],
Algorand [13], Casper FFG [14], and Hyperledger Fabric [15]
are well-known use cases. Moreover, asynchronous consensus
protocols such as HoneyBadgerBFT [16] and BEAT [17] were
proposed to provide robust block finalization under severe
network conditions with uncertain message delays.

Our contribution With more blockchain consensus mech-
anisms being proposed, there is a pressing need to analyze
and compare them in a formal and cohesive manner. In this
survey we present a comprehensive review and analysis of the
state-of-the-art blockchain consensus protocols and their de-
velopment history, with a special focus on their performance,
fault tolerance, and security implications. Our information
sources include academic papers, consensus protocol white
papers, official documentation and statistics websites of cryp-
tocurrencies. Specifically, our survey features the following
contributions:

1) providing a background of classical distributed consen-
sus research, including partially synchronous and asyn-
chronous BFT protocols that are applicable to blockchain
consensus;

2) reviewing a broad array of blockchain consensus pro-
tocols with a proposed five-component framework and
analyzing their design philosophy and security issues;

3) identifying four classes of proof of stake (PoS) based
consensus protocols and providing algorithmic abstrac-
tions for them;

4) comparing all mentioned consensus protocols with re-
spect to the five-component framework, fault tolerance,
and transaction processing capability.

5) providing a succinct tutorial on blockchain consen-
sus protocol design with respect to the security-
decentralization-scalability trilemma.

The remaining part of this survey is organized as follows.
Section II reviews related surveys and tutorials on blockchain
consensus protocols. Section III provides a background of clas-
sical fault tolerant consensus in distributed systems. Several
legacy BFT consensus protocols designed for both partially
synchronous and asynchronous networks are introduced. Sec-
tion IV presents the basic framework of blockchain and the
consensus goals, and introduces the five essential components
of a blockchain consensus protocol. Section V focuses on
the well-known Nakamoto consensus protocol, the defining
technology of Bitcoin, and its vulnerabilities and improve-
ment ideas. Section VI provides a systematic view of the
PoS protocols, the most promising competitors to the PoW-
based Nakamoto consensus for public blockchain. Section VII
discusses alternative consensus protocols usable under specific
application scenarios. Section VIII compares all blockchain
consensus protocols studied and summarizes their design phi-
losophy. Section IX discusses the paradigm shift in consensus
protocol design and provides a succinct tutorial. Section X
concludes the paper.

II. PREVIOUS SURVEYS AND TUTORIALS

The comparison study by Vukolic [18] treats two genres
of blockchain consensus protocols, namely PoW-based and
BFT-based, with respect to transaction throughput, scalability
limits, consensus finality, and security implications. PoW-
based protocols scale well with network size and are suited for
permissionless blockchains, but yield very limited throughput
and long confirmation latency. This is due to the security impli-
cation of their lack of consensus finality and limited capacity
of raising block frequency and block size. In comparison,
BFT protocols have built-in consensus finality and achieve
much higher transaction capacity, but incur high messaging
complexity per block (O(N2) versus PoW’s O(N), N is
network size) and need a permissioned network for identity
management. As a result they do not scale well with network
size. Besides remarking their differences, this paper also
explores how the hybrid use of BFT and PoW can enhance the
performance of established blockchain systems and provides
tentative solutions to improve blockchain scalability.

Cachin et al. [19] gives an overview of thirteen prominent
consensus protocols designed for permissioned blockchain
platforms along with their fault tolerance and security prop-
erties. The authors also make a powerful statement that the
design of blockchain consensus protocols should follow the
rigor established in prevailing wisdom of cryptography, secu-
rity, and distributed systems, rather than in an ad hoc manner.
This is particularly true when the consensus protocol regulates
significant financial values and societal trust. However, it does
not provide a methodology to combine the prevailing wisdom
in order to design a consensus protocol for specific needs.

The work by Bano et al. [20] is the first well-structured
survey of blockchain consensus protocols. It identifies three
classes of consensus protocols based on committee formation
and block proposing rules: 1) PoW, 2) proof of X (PoX)
alternatives to PoW, and 3) hybrid consensus protocols that
take advantage of classical distributed consensus techniques.

3

This paper emphasizes the role of committee in hybrid con-
sensus protocols. General discussions on the formation and
configuration of committee and possible solutions to multi-
committee (i.e. sharding-based) consensus are provided. This
paper also presents an evaluation framework that takes into
account the protocol safety (censorship resistance, DoS resis-
tance and fault tolerance) and performance (throughput and
latency). Notably, this paper is the closest work to our survey
in terms of classification of block proposing mechanisms.
However, analysis of new protocols in the area of PoS requires
new methods of analysis.

Wang et al. [21] provides a comprehensive survey of
blockchain consensus protocols and an in-depth review of
incentive mechanism designs. The paper starts with a layered
view of the blockchain network including the consensus part
followed by a general discussion on the compatibility be-
tween consensus protocol and incentive mechanism. Then de-
tailed consensus schemes are introduced, including Nakamoto
consensus, proof-of-concept consensus schemes, and virtual
mining techniques such as proof of stake (PoS) along with
the usability of trusted hardware. Hybridization between PoX
and classical BFT protocols is also discussed. This survey
also features a game-theoretical characterization of Nakamoto
consensus’ incentive mechanism and its influence on system
fairness and decentralization. The efficiency-scalability trade-
off is also explored. Despite of having rich details on consen-
sus techniques and insights into blockchain protocol design,
this survey does not provide a concise abstraction that captures
different functional components of a consensus protocol or a
cohesive characterization on fault-tolerant distributed consen-
sus primitives that can be used for blockchain consensus.

Xiao et al. [22] provides a succinct tutorial on distributed
consensus protocols, from classical BFT protocols to the
Nakamoto consensus protocol as well as recent breakthroughs
in blockchain consensus. Specially this tutorial provides an
abstraction of consensus goals for permissionless blockchains
following the paradigm of classical BFT consensus. The
authors also remark that the network model and trust model
should be jointly considered when designing blockchain con-
sensus protocols for practical applications. However, this tu-
torial skips details on each consensus protocols and does not
clarify how different components of a blockchain consensus
protocol contribute to system performance and security.

Belotti et al. [23] provides a vademecum on blockchain
technology including development history, transaction and
ledger structure, blockchain system abstraction, consensus
mechanisms, and a detailed guide on when and how to
use which blockchain technology. The consensus mechanisms
covered include PoW, PoS, BFT algorithms, and hybrid BFT-
based algorithms. Notably, this paper also gives a quanti-
tative comparison of consensus mechanisms with respect to
fault tolerance, node scalability, throughput, and transaction
latency. Though with great details on building and managing
a blockchain system, this vademecum can be perfected with
an abstraction for each type of consensus mechanisms and
a high-level tutorial on how to reach a compromise between
different desired features.

III. FAULT-TOLERANT DISTRIBUTED CONSENSUS

The fault-tolerant (FT) distributed consensus problem has
been extensively studied in distributed systems since the late
1970s and recently gained popularity in the blockchain com-
munity, especially for permissioned blockchains where every
consensus participant reveals its identity. Generally, consensus
in a distributed system represents a state that all participants
agree on the same data values. Depending on the medium
for message exchange, distributed systems are classified into
two types: message passing and shared memory [24]. In this
section we are interested in message passing systems because
of their resemblance to contemporary blockchain systems,
wherein distributed consensus on a single network history is
reached through peer-to-peer communication. We will use the
terms process/node/server interchangeably, as they all refer to
an individual participant of distributed consensus.

A. System Model

1) Distributed system and task: We consider a distributed
system that consists of N independent processes. Each process
pi begins with an individual initial value xi and communicates
with others to update this value. Each local value can be used
for a certain task, such as computation or just storage. If the
processes are required to perform the same task, consensus on
a single value is required before they proceed to the task.

2) Process failure: A process suffers a crash failure if
it abruptly stops working without resuming. The common
causes of a crash failure include power shutdown, software
errors, and DoS attacks. A Byzantine failure, however, is
much severer in that the process can act arbitrarily while
appearing normal. It can send contradicting messages to other
processes in hope of sabotaging the consensus. “Byzantine”
was coined by Lamport et al. [25] in 1982 when describing
the Byzantine Generals Problem, an allegorical case for single-
value consensus among distributed processes. The common
cause of a Byzantine failure is adversarial influence, such
as malware injection and physical device capture. Multiple
Byzantine processes may collude to deal more damage.

3) Network synchrony: Network synchrony defines the
level of coordination among all processes. Three levels of
synchrony, namely synchronous, partially synchronous, and
asynchronous, are often assumed in the literature [22], [26].
• In a synchronous network, operations of processes are

coordinated in rounds with clear time constraints. In each
round, all processes perform the same type of operations.
This can be achieved by a centralized clock synchroniza-
tion service and good network connectivity. Practically, a
network is considered synchronous if message delivery is
guaranteed within a fixed delay ∆, for which the network
is also called ∆-synchronous.

• In a partially synchronous network, operations of pro-
cesses are loosely coordinated in a way that message de-
livery is guaranteed but with uncertain amount of delays.
Within the scope of partial synchrony, weak synchrony
requires message delay not grow faster than the elapsing
time indefinitely [27], while eventual synchrony ensures
∆-synchrony only after some unknown instant [28]. In

4

either case, operations of the networked processes can
still follow that of a synchronous network if the time
horizon is long enough.

• In an asynchronous network, operations of processes
are hardly coordinated. There is no delay guarantee on
a message except for its eventual delivery. And the
coordination of processes (if there is any) is solely driven
by the message delivery events. This is often caused by
the absence of clock synchronization (thus no notion of
shared time) or the dominance of a mighty adversary over
all communication channels.

It has been shown by Fischer, Lynch, and Paterson [29] that
under the asynchronous case, consensus cannot be guaranteed
with even a single crash failure. This is commonly known as
the FLP impossibility, for the authors’ namesake. However,
this impossibility can be practically circumvented using ran-
domized decision making and a relaxed termination property,
as we will show in III-E.

B. Byzantine Fault Tolerant Consensus

We call a consensus protocol crash fault tolerant (CFT)
or Byzantine fault tolerant (BFT) if it can tolerate a certain
amount of crash or Byzantine process failures while keeping
normal functioning. Because of the inclusive relationship be-
tween a crash failure and Byzantine failure, a BFT consensus
protocol is naturally CFT. BFT consensus is defined by the
following four requirements [22], [26], [28]:
• Termination: Every non-faulty process decides an output.
• Agreement: Every non-faulty process eventually decides

the same output ŷ.
• Validity: If every process begins with the same input x̂,

then ŷ = x̂.
• Integrity: Every non-faulty process’ decision and the

consensus value ŷ must have been proposed by some non-
faulty process.

The four requirements provide a general target for distributed
consensus protocols. For any consensus protocol to attain these
BFT requirements, the underlying distributed network should
satisfy the following condition: N ≥ 3 f + 1 where f is the
number of Byzantine processes. This fundamental result was
first proved by Pease et al. [30] in 1980 and later adapted to
the BFT consensus framework. The proof involves induction
from N = 3 and partitioning all processes into three equal-
sized groups, with one containing the faulty ones. Interested
readers are referred to [30], [26] for detailed proofs.

C. Consensus in Distributed Computing

Consensus in distributed computing is a more sophisticated
realization of the aforementioned distributed system. In a
typical distributed computing system, one or more clients
issue operation requests to the server consortium, which
provides timely and correct computing service in response
to the requests despite some of servers may fail. Here the
correctness requirement is two-fold: correct execution results
for all requests and correct ordering of them. According to
Alpern and Schneider’s work on liveness definition [31] in

Fig. 1. A high-level illustration of SMR-based distributed computing that
serves four operation requests from two clients.

1985, the correctness of consensus can be formulated into
two requirements: safety—every server correctly executes the
same sequence of requests, and liveness—all requests should
be served.

To fulfill these requirements even in the presence of faulty
servers, server replication schemes especially state machine
replication (SMR) are often heralded as the de facto solution.
SMR, originated from Lamport’s early works on clock syn-
chronization in distributed systems [32], [33], was formally
presented by Schneider [34] in 1990. Setting in the client-
server framework, SMR sets the following requirements:

1) All servers start with the same initial state;
2) Total-order broadcast: All servers receive the same se-

quence of requests as how they were generated from
clients;

3) All servers receiving the same request shall output the
same execution result and end up in the same state.

Total-order broadcast is also known as atomic broadcast
(ABC) [35], which is in contrast to the reliable broadcast
(RBC) [36] primitive. The latter only requires all servers
receive the same requests without enforcing the order. It is
shown in [37], [38] that atomic broadcast and distributed
consensus are equivalent problems.

A high-level diagram of SMR-based distributed computing
is illustrated in Fig. 1. The N-server consortium accepts client
requests and servers confirm each other’s state before reaching
consensus and executing requests. In many cases, especially
randomized consensus protocols, there can be an alternating
procedure of total-order broadcast and local state update until a
certain consensus target is met, before moving on to execution.
In practice, SMR is often implemented in a leader-based
fashion. A primary server (say S1 in Fig. 1) receives client
requests and starts the broadcast procedure so that the other
N − 1 replica servers receive the same requests and update
their local states to that of the primary.

In the rest of this section we summarize several well-known
consensus protocols (some are based on SMR) designed under
different network synchrony assumptions.

D. Consensus Protocols for Partially Synchronous Network

The ground-breaking work by Dwork, Lynch, and Stock-
meyer [28] in 1988 laid the theoretical foundation of partially
synchronous consensus. By dissecting the consensus objective
into termination and safey, the authors were able to formally

5

(a) VR (b) Paxos (c) PBFT

Fig. 2. Messaging diagram during the normal operation of three SMR protocols. C is the client. S0 is the primary server (leader) who receives requests from
the client and starts the consensus. S1+ are replica servers. Every server updates local state after receiving a message. Circled gear icon represents request
execution. VR and Paxos can tolerate one crash failure when N = 3. PBFT can tolerate one Byzantine failure when N = 4.

prove the feasibility of four consensus goals, including CFT,
omission-tolerance, BFT, unauthenticated BFT, under the ∆-
synchrony/eventual synchrony condition. Notably, this work
has inspired numerous proposals for partially synchronous
consensus schemes, including the later known PBFT.

1) DLS protocol: The same paper [28] also proposes a
prototype consensus protocol (called DLS for authors’ name-
sake) featuring a broadcast primitive for each consensus cycle.
Specifically, the broadcast primitive is started by an arbitrary
process p and consists of two initial rounds and subsequent
iterative rounds. Through message exchanges in each round,
the iterative procedure eventually drives the processes to reach
agreement on a common value (either the one proposed by
p or a default value). At message complexity O(N2) (N is
the number of processes), the broadcast primitive essentially
enables the DLS protocol to tolerate f Byzantine processes if
N ≥ 3 f + 1. The cryptocurrency Tendermint uses an adapted
version of DLS for block finalization.

2) Viewstamped Replication (VR): Proposed by Oki and
Liskov [39] in 1988, viewstamped replication is a server
replication scheme for handling server crashes. It was later
extended into a consensus protocol by Liskov and Cowling
[40] in 2012, which we will refer to as VR. VR is a SMR
scheme designed in the client-server framework and consists
of three sub-protocols: 1) Normal-operation, 2) View-change,
3) Recovery. The primary server receives a client request
and starts the normal operation, as is shown in Fig. 2(a). In
the case of a crash failure of the primary, the View-change
protocol is triggered at every replica per the timeout of the
Prepare message. They broadcast View-change messages to
each other and count the receptions. After receiving View-
change messages from more than half of the replicas, the
next-in-line replica becomes the new primary and informs the
others to resume the normal operation. The Recovery protocol
is used by any server to recover from a crash. VR can tolerate
f crashed replicas if the network population N ≥ 2 f + 1.
However it does not tolerate any Byzantine failure, because
the replicas simply follow the instructions from the primary
without mutual state confirmation nor communication with the
client. On the up side, this makes VR efficient, with O(N)

message complexity.
3) Paxos: Paxos is a SMR scheme proposed by Lamport

[41] in 1989 that imitates the ancient Paxos part-time par-
liament and later elaborated in 2001 [42]. It was designed
specifically for fault tolerant consensus while bearing many
similarities to VR. Paxos classifies nodes into three roles:
proposers, acceptors, and learners. A proposer suggests a value
in the beginning and the system goal is to make acceptors
agree on a single value, and learners learn this value from
acceptors. In the client-server scenario depicted in Fig. 2(b),
the client is the learner, the primary is the proposer, and the
replicas are acceptors. After updating to the same state, all
servers execute the request and send it to the client who then
chooses the majority result. When the proposer suffers a crash
failure, the acceptors elects a new leader through a similar
propose-accept procedure. Akin to VR, Paxos can tolerate f
crashed acceptors when N ≥ 2 f +1, but no Byzantine failures.
Because of the mutual messaging during the accept phase, the
message complexity of Paxos is O(N2).

Embarking from its original design, Paxos has grown into a
family of consensus protocols, including multi-Paxos, cheap-
Paxos, and fast-Paxos, each features a specific goal. Raft, a
SMR consensus protocol developed by Ongaro and Ousterhout
[43] in 2014 and popular in the blockchain community, is
based off Paxos but with a more understandable design.

4) Practical Byzantine Fault Tolerance (PBFT): Developed
by Castro and Liskov [27] in 1999, PBFT is the first SMR-
based BFT consensus protocol that has gained wide recog-
nition for practicality. It has become almost synonymous to
BFT consensus in the blockchain community. PBFT originated
from the VR framework and took inspiration from Paxos.
PBFT consists of three sub-protocols: 1) Normal-operation,
2) Checkpoint, 3) View-change.

The Normal-operation protocol is shown in Algorithm 1
and Fig. 2(c). Ideally, all results replied to the client should
be the same; otherwise the client chooses the majority result.
The Checkpoint protocol serves as a logging tool that keeps
a sliding window (of which the lower bound is the stable
checkpoint) to track active operation requests. The latest stable
checkpoint is used for safely discarding older requests in the

6

Algorithm 1: PBFT (Normal-operation protocol)

/* Request */
1 Client sends an operation request to the primary;
/* Phase 1: Pre-prepare */

2 The primary relays this request to replicas via
Pre-prepare messages;

3 Replicas record the request and update local states;
/* Phase 2: Prepare */

4 Replicas send Prepare messages to all servers (replicas
and the primary);

5 Once receiving ≥ 2 f +1 Prepare messages, a server
updates local state and is ready to commit;
/* Phase 3: Commit */

6 Servers send Commit messages to each other;
7 Once receiving ≥ 2 f +1 Commit messages, a server

starts to execute the client request and then updates
local state;
/* Reply */

8 Every server replies its result to the client.

operation log and facilitating the view change protocol. In the
case of a primary failure, the View-change protocol is triggered
at every replica that detects the timeout of the primary’s
message. They oust the incumbent primary and broadcast
view-change messages to each other and count receptions.
After receiving View-change messages from 2 f peers, the next-
in-line replica becomes the new primary and informs the rest
to resume the normal operation.

The message complexity of PBFT normal operation is
O(N2) because of the mutual messaging in Prepare and
Commit phase. As for the fault tolerance, since a server needs
to receive more than 2 f + 1 Prepare (Commit) messages in
Prepare (Commit) phase before proceeding to the next action,
there will be at least 2 f +1 (as N ≥ 3 f +1) honest servers in
the same state after Commit phase and producing the same
result; the f Byzantine servers are not able to sway the
majority consensus. Therefore PBFT can tolerate f Byzantine
replicas when the server population N ≥ 3 f + 1, which is in
accordance to the fundamental 1/3 BFT threshold. Interested
readers are referred to [27], [22] for detailed proofs.

PBFT has inspired numerous BFT consensus protocols with
enhanced security and performance. Well-known proposals
include Quorum/Update (QU) [44], Hybrid Quorum (HQ)
[45], Zyzzyva (using speculative execution) [46], FaB [47],
Spinning [48], Robust BFT SMR [49], and Aliph [50]. In-
terested readers are referred to Bessoni’s tutorial [51] for an
overview of these protocols.

E. Consensus Protocols for Asynchronous Network

For distributed systems that are predominantly built upon
wired communication and reliable transport-layer protocols,
partial synchrony is a practical assumption. However in sce-
narios such as mobile ad hoc network (MANET) and delay
tolerant networks (DTN), the network is considered of near-
to-none synchrony. As is proved by the FLP impossibility
[29], consensus can not be guaranteed in a fully asynchronous

network with even one crash failure. Moreover, unreliable
communication links have an equivalent effect of a Byzan-
tine scheduler. Nonetheless, this impossibility result can be
practically circumvented by two primitives: probabilistic ter-
mination and randomization.

First of all, according to [52] the termination property
presented in Section III can be subdivided into two classes:
• Deterministic termination: Every non-faulty process de-

cides an output by round r, a predetermined parameter.
• Probabilistic termination: The probability that a non-

faulty process is undecided after r rounds approaches zero
as r grows to infinity.

For synchronous or partially synchronous networks where
message delay and round period are bounded, protocols like
PBFT can exploit a timeout mechanism to detect anomaly
of the primary, which makes deterministic termination an
achievable goal. For asynchronous networks where messages
delivery has no timing guarantee, the consensus process can
only be driven by the message delivery events themselves. This
limitation demands probabilistic termination. To realize prob-
abilistic termination, randomization (simultaneously proposed
by Ben-Or [53] and Rabin [54] in 1983) can be instantiated in
the consensus protocol. The basic idea is that a process makes
a random choice when there are not enough trusted messages
received for making a final decision.

Next we introduce four primitives/protocols that aim to
solve asynchronous BFT consensus. Though in different con-
texts, they all feature probabilistic termination and make use
of randomization.

1) Bracha’s RBC and asynchronous consensus protocol:
Bracha et al. [55] proposed the pioneering reliable broadcast
(RBC) primitive and an asynchronous consensus protocol
in 1984 to solve the Byzantine Generals Problem [25], in
which all non-faulty processes should eventually make the
same binary decision. Bracha’s RBC guarantees that non-
faulty processes will never accept contradicting messages
from any process and forces the faulty ones to output either
nothing (mimicking the crash failure) or the correct value.
Bracha’s asynchronous consensus protocol, adapted from Ben-
Or’s 1983 work [53], runs by phases and each phase contains
three RBC rounds for inter-process value exchange. We show
the round-3 of each phase, which contains the randomization
step. After receiving at least N− f value messages (f is the
presumed Byzantine population), a process Pi does:

1. If receiving a value v from more than 2 f peers, decide v;
2. Else if receiving a value v from more than f peers, hold

v as proposal value and go to the next phase;
3. Else, toss a coin (1/2 chance for 0 or 1) for the proposal

value and go to the next phase.
When enough phases pass, the executions of step 2 and step 3
of RBC round-3 at all non-faulty processes will gradually filter
out the influence of contradicting messages and eventually
make the correct decision via step 1. Note this convergence
only happens if N ≥ 3 f +1, which is the fundamental bound
of BFT consensus.

In terms of performance, the message complexity of RBC
is O(N2) in each round and the expected number of rounds

7

to reach consensus is O(2N) if f = O(N), which gives a total
message complexity of O(N22N). If f = O(

√
N) (the benign

case), it is shown in [53], [55] that the expected number of
rounds to reach consensus for the randomized protocol is a
constant, yielding a total message complexity of O(N2).

2) Ben-Or’s ACS protocol for MPC: Agreement on a
common subset (ACS) was used by Ben-Or et al. [56] in
1994 as a consensus primitive for secure and efficient multi-
party computation (MPC) under asynchronous setting. In a
network of N players, each player holds a private input xi that
was acquired secretly. The goal of MPC is to let the players
collectively compute a function F (x1, ...,xN) and obtain the
same result. Assuming f players can be faulty, the ACS
primitive requires the players to agree on a common subset
ComSubset of at least N − f honest inputs, which are then
used for computing F (·).

Ben-Or’s ACS protocol builds on two primitives: RBC
and binary asynchronous Byzantine agreement (ABA) which
allows players to agree on the value of a single bit. Bracha’s
RBC [55] and Canetti et al.’s Fast ABA [57] are suggested
respectively in [56] and used as black-boxes. Algorithm 2
shows the ACS protocol at each player. In the end, there will
be at least N − f completed ABA instances with output 1,
yielding a F -computable ComSubset.

Algorithm 2: Ben-Or’s ACS protocol (at player Pi)

/* Phase 1: Reliable Broadcast */
1 Start RBCi to propose my input xi to the network;
2 Participate in other RBC instances;
/* Phase 2: Asynchronous BA */

3 while round ≤MaxRound do
4 if receiving x j from RBC j then
5 Join ABA j with input 1;
6 end
7 if completion of N− f ABA instances then
8 Join other BA instances with input 0;
9 end

10 if completion of all N ABA instances then
11 ComSubset = {xk|ABAk outputs 1};
12 return ComSubset;
13 end
14 end

Because both Bracha’s RBC and Canetti’s ABA can tolerate
f Byzantine players when N ≥ 3 f +1, the same fault tolerance
result is inherited by Ben-Or’s ACS protocol. For complexity
analysis, Bracha’s RBC (in the benign case) and Canetti’s
ABA have message complexity of O(N2) and O(N3) [57]
respectively, and all ABA instances end in constant rounds.
As a result, Ben-Or’s ACS protocol has a bit-denominated
communication complexity of O(mN2 +N3) at each player,
where m is the maximum bit-size of any input.

As we will see next, ACS can be conveniently adapted
to asynchronous BFT consensus for blockchain systems, by
substituting inputs with transaction sets.

3) HoneyBadgerBFT: Proposed by Miller et al. [16] in
2016, HoneyBadgerBFT is the first asynchronous BFT con-

Fig. 3. HoneyBadgerBFT workflow. T XSi is the set of transactions proposed
by player Pi. CS is the common subset output of ACS, comprising of at
least N − f encrypted transactions. The decryption process outputs sorted
transactions that will be finalized in the block.

sensus protocol specifically designed for blockchain. It es-
sentially realizes atomic broadcast: N players with different
sets of transactions work to agree on a common set of sorted
transactions that will be included in a block.

Though using the multi-value Byzantine agreement prim-
itive (MVBA) from Cachin et al. [58] as the benchmark,
HoneyBadgerBFT actually follows Ben-Or’s ACS construction
[56] for better communication efficiency. HoneyBadgerBFT’s
ACS cherry-picks the design of its sub-components: Cachin
and Tessaro’s erasure-coded RBC [59] and Mostéfaouil et
al.’s common-coin based ABA [60]. They together incur
O(mN +N2 logN) communication complexity at each player.
To prevent an adversary from censoring particular transactions,
threshold public key encryption (TPKE) [61] is used before
ACS so that consensus is performed on ciphertexts. In the
decryption phase when a player receives enough shares from
peers (generated by TPKE.DecShare) that exceed a threshold,
it proceeds to the actual decryption task (TPKE.Dec) and
sorts the transactions. The communication complexity of the
decryption process is O(N2). Fig. 3 illustrates the workflow
of these components for one block cycle.

HoneyBadgerBFT processes transactions in batches. Let B
be the predefined batch size, denoting the maximum number of
transactions that a block may enclose. For every block cycle,
each player proposes a set of B/N transactions, which are
randomly chosen from recorded transactions. This is to ensure
transaction sets proposed by different players are mostly
disjoint so as to maximize blockchain throughput. Assuming
the average bit-size of a transaction set m := |t|B

N � N where
|t| is the average transaction bit-size. Then the protocol’s
communication overhead will be dominated by the RBC,
yielding overall communication complexity of O(|t|B) at one
player, or O(|t|N) for one transaction.

Compared to popular partially synchronous consensus pro-
tocols such as PBFT, HoneyBadgerBFT has a higher cryp-
tography overhead but features two advantages. First, as an
asynchronous protocol HoneyBadgerBFT does not rely on
a timeout mechanism for detecting malfunctioning players.
This makes HoneyBadgerBFT less sensitive to unpredictable
network delays that might stall consensus. Second, HoneyBad-
gerBFT does not need a leader rotation scheme. In PBFT every
round of consensus is started by a leader (the primary), while
in HoneyBadgerBFT every node starts its own broadcast and

8

Byzantine agreement instance for proposed transactions; the
concurrent execution of these instances effectively saves the
need of a leader. As a result, the bandwidth of any individual
leader will not become the bottleneck of overall network’s
capacity. Currently the blockchain initiative POA Network
[11] is considering to adopt HoneyBadgerBFT.

On the other hand, due to HoneyBadgerBFT’s asynchronous
design philosophy that consensus progress is driven by mes-
sage deliveries, transaction confirmation latency is externally
influenced and uncontrollable. This leads HoneyBadgerBFT
to overly emphasize high transaction throughput and decen-
tralization. In various applications such as industrial control
and supply chain management, low transaction latency is often
times a more important metric than throughput.

In response to the said inflexibility of HoneyBadgerBFT,
Duan et al. [17] proposed BEAT in 2018, which is a col-
lection of five asynchronous BFT protocols based off Hon-
eyBadgerBFT but with carefully picked components that are
optimized for different objectives. Among the five constituent
protocols, the baseline BEAT0 uses a more efficient threshold
encryption scheme [62] and outperforms HoneyBadgerBFT
in throughput, latency and access overhead. BEAT1 and
BEAT2 adopt a more efficient broadcast scheme, Bracha’s
RBC [52], and are optimized for transaction latency. BEAT3
is optimized for throughput and storage and bandwidth saving
while BEAT4 further reduces the bandwidth usage for clients
that read particular stored transactions. Interested readers are
referred to the BEAT paper [17] for detailed discussion on the
authors’ design choices.

F. Blockchain Compatibility of Classical BFT-SMR Protocols
In a blockchain network, every consensus participant can

validate transactions and propose new blocks. For BFT-SMR
consensus protocols that rely on a dedicated primary server to
receive client requests and start the consensus, the following
adaptation is needed: allowing all servers to act as a primary
to propose transactions/blocks and reaching consensus on
the finality of multiple transactions/blocks concurrently. For
example, Casper FFG [14], a BFT-style blockchain protocol,
allows every eligible participant to propose a block during a
checkpoint cycle. The network finalizes only one block out of
multiple proposed blocks for each checkpoint.

For blockchain networks with a complex application layer
such as smart contract, transaction execution often incurs
significant computation. While in popular BFT-SMR schemes
such as PBFT execution is integrated into the consensus
process. An early work by Yin et al. [63] presents an al-
ternative BFT-SMR framework that separates consensus (i.e.
agreement on execution order) from execution, as the latter
conveniently requires only an honest majority of execution
nodes instead of an honest two-thirds of consensus nodes
required by the former. This separation scheme is adopted by
Zyzzyva [46] and Tendermint [12] wherein a small group of
nodes are dedicated to the consensus task. Hyperledger Fabric
[15] further separates the consensus task into ordering service
and validation service for better modularity.

From the performance perspective, BFT protocols are noto-
rious for their limited scalability in network size. Epitomized

by PBFT, the message complexity of partially synchronous
BFT protocols grows quadratically with the network size N.
This means that given a fixed network bandwidth at each node,
a growing network size leads to exploding communication
overhead and diminishing transaction capacity. According to
the performance evaluation in [16], PBFT achieves a max-
imum throughput of 16,000 TPS when N = 8; this figure
drops to around 3,000 when N = 64. On the other hand, for
asynchronous protocols like HoneyBadgerBFT where erasure
coding and threshold encryption are used to reduce com-
munication complexity and enhance security, the extensive
use of cryptography also brings non-negligible computation
overhead, adding to local processing delays. On the bright
side, a typical BFT protocol achieves deterministic finality,
which is also known as forward security [64] in that a settled
transaction will never be altered. As we will discuss in Section
V, this allows BFT protocols to take advantage of shorter block
intervals and attain high transaction throughput.

Other blockchain compatibility challenges for BFT-SMR
protocols include: 1) allowing nodes to join and leave flexibly
without interrupting consensus while countering Sybil at-
tacks; 2) adapting to real-world peer-to-peer networks that are
sparsely connected. In later sections we will revisit these issues
for blockchain protocols that incorporate BFT consensus.

IV. AN OVERVIEW OF BLOCKCHAIN CONSENSUS

Compared to traditional distributed computing with a clear
client-server model, a blockchain network allows every partic-
ipant to be both a client (to issue transactions) and a server (to
validate and finalize transactions). The underlying ledger data
structure, the blockchain, is the consensus target and consists
of chronologically ordered and hash-chained blocks. Each
block contains a bundle of valid transactions and transactions
across the blockchain should be consistent with each other (i.e.
no double-/over-spending nor appropriation). Meanwhile, a
blockchain system is often associated with a financial applica-
tion and bears the responsibility of transaction processing and
clearing. As a result, the responsibility of a blockchain con-
sensus protocol is further-reaching than traditional distributed
consensus protocols. In this section we provide a background
of the blockchain network and data structure, introduce the
blockchain consensus goal adapted from the BFT consensus
paradigm and the five-component framework that we use to
analyze blockchain consensus protocols.

A. Blockchain Infrastructure

Network The foundational infrastructure of blockchain,
as is adopted by most public cryptocurrencies and distributed
ledger systems, is a peer-to-peer overlay network on top of
the Internet. Every node (or peer) in the network operates
autonomously with respect to the same set of rules that cover
peering protocol, consensus protocol, transaction processing,
ledger management, and in some cases a wire protocol for
transport-layer communication [65], [66].

Depending on the control of network participation,
blockchain networks generally fall into two categories: per-
missionless and permissioned.

9

TABLE I
A COMPARISON OF PERMISSIONLESS AND PERMISSIONED BLOCKCHAIN.

Permissionless
blockchain

Permissioned
blockchain

Governance Public Private / Consortium
Participation Free join and leave Authorized
Node identity Pseudonymous Revealed
Transparency Open Closed / Open
Network
size

Large
(thousands or more)

Small
(tens∼hundreds)

Network
connectivity

Low High
(oft. fully-connected)

Network
synchrony

Asynchronous / par-
tially synchronous

Partially synchronous
/ synchronous

Transaction
capacity (tps)

Low
(oft. sub-ten∼tens)

High
(oft. thousands)

Application
examples

Cryptocurrency,
smart contract, public
record, DApp

Inter-bank clearing,
business contract,
supply chain

• A permissionless blockchain allows for free join and
leave without any authorization, as long as the node
holds a valid pseudonym (account address) and is able
to send, receive, and validate transactions and blocks by
common rules. Permissionless blockchain is also known
as public blockchain for that there is usually one such
blockchain network instance on a global scale which
is subject to public governance. Specifically, anyone
can participate in blockchain consensus, though one’s
voting power is typically proportional to its possession
of network resources, such as computation power, token
wealth, storage space, etc. The operational environment
of permissionless blockchain is often assumed to be
zero-trust, which often cautions the community against
increasing transaction processing capacity or using more
efficient consensus schemes [22].

• A permissioned blockchain requires participants to be
authorized first and then participate in network opera-
tion with revealed identity. The network governance and
consensus body can be either the subsidiaries of a single
private entity or a consortium of entities [19]. Compared
to permissionless blockchain, the identity-revealing re-
quirement and more effective network governance of per-
missioned blockchain make it ideal for internal or multi-
party business applications. Meanwhile, the limited size
of a permissioned blockchain’s consensus body allows
for the deployment of more efficient consensus protocols
that achieve higher transaction capacity [22], [67].

Table I summarizes the major differences between permission-
less and permissioned blockchain in nine aspects.

Beneath the blockchain peer-to-peer network lies the basic
infrastructure of the Internet. Thanks to the transport layer
protocols (especially the retransmission mechanism), mes-
sage delivery is considered guaranteed, while the message
delay may vary but most likely will not grow longer as
time elapses (weak synchrony) or remains within a certain
bound (∆-synchrony). Therefore we often consider a practical

Fig. 4. Blockchain data structure. Blocks are sequentially chained together
via hash pointers. The Merkle tree root (MT root) is a digest of all transactions
included in a block.

blockchain network partially synchronous, just like most dis-
tributed networks overlaying on the Internet. This allows the
consensus protocol to take advantage of the timing services
of the Internet. For example, in Bitcoin the partial synchrony
assumption is echoed by its usage of local timestamps for
loose chronological ordering, showing time consciousness. For
the blockchain networks that reside on an ad hoc infrastruc-
ture not based on the Internet, the message transmission is
subject to unexpected network delays, which gives rise to
asynchronous consensus protocols such as HoneyBadgerBFT,
as we discussed in Section III.

Transaction A blockchain transaction can be regarded as a
public static data record showing the token value redistribution
between sender and receiver [21]. Take Bitcoin as an example,
a transaction transfers token ownership from the sender ac-
count to the receiver account(s). It specifies a list of inputs and
a list of outputs, with each input claiming a previous unspent
transaction output (UXTO) that belongs to the sender, who
needs to attach its signature to the inputs to justify the claim.
Each output specifies how many tokens go to which receiver
and the total token value of the outputs is equal to the UXTOs
claimed by the inputs. Therefore, we can always recover the
ownership records of any specific token by tracing back the
signatures along the chain of transactions. The token balance
of an account equals to the summed UXTOs that belong to
the account.

Blockchain data structure Blockchain is the underly-
ing data structure for transaction ledger keeping. It is also
the consensus target of the network. The basic structure of
blockchain is illustrated in Fig. 4. Every block encloses a
set of transactions that should be valid and clear of double
spending. As was pioneered by Bitcoin, the transactions are
often organized in a Merkle tree. Merkle tree is a data structure
widely used for data storage and efficient data integrity check
[68]. In blockchain, every block contains one Merkle tree in
which each leaf node is labeled with a transaction hash. The
Merkle tree root serves as a digest of the transaction set and
is placed in the block header. The block header also contains
a hash of the previous block (except in the genesis block)
and other configuration information, which typically includes
a timestamp and the blockchain state at block generation. The
growing chain of blocks and the aforementioned transaction
format essentially constitute the blockchain data structure used
for the storage, serialization, and validation of new transactions
which are continuously injected into the network.

Aside from recording the transaction history, the blockchain
can also record auxiliary information used for other purposes.

10

TABLE II
FIVE COMPONENTS OF A BLOCKCHAIN CONSENSUS PROTOCOL.

Component Purpose Counterpart in traditional
SMR consensus protocols

Available options

Block
proposal

Generating blocks and at-
taching essential generation
proofs (for Sybil attack re-
sistance).

Clients issuing operation re-
quests and the primary server
starting the consensus.

Proof of work (PoW), proof of stake (PoS), proof of
authority (PoA), proof of retrievability (PoR), proof of
elapsed time (PoET), round robin, committee-based,
etc.

Information
propagation

Disseminating blocks and
transactions across the net-
work.

Reliable broadcast of operation
requests.

Advertisement-based gossiping, block header solicit-
ing, unsolicited block push (broadcast), relay network
(for mining pools), etc.

Block
validation

Checking blocks for gener-
ation proofs and validity of
enclosed transactions.

Signature check and execution
of operation requests.

Proof checking (for proof-of-X block proposal), dig-
ital signature & eligibility checking (for committee-
based block proposal), etc.

Block
finalization

Reaching agreement on
the acceptance of validated
blocks.

Servers reaching an agreement
on current state, executing re-
quests and logging the result.

Longest-chain rule, GHOST rule, BFT and other
Byzantine agreements, checkpointing, etc.

Incentive
mechanism

Promoting honest participa-
tion and creating network
tokens.

N/A. Network token rewards (block rewards, transaction
fees), eligibility for issuing new transactions, etc.

The locking and unlocking scripts associated with transaction
inputs and outputs can be repurposed for constructing off-chain
payment channel (eg. Lightning Network [69]) and global state
machine that helps build smart contracts, which are the basis of
many important applications such as supply chain management
and decentralized autonomous organization. The block header
may also contain extra fields that facilitate system coordina-
tion. For example, Ethereum’s proof-of-stake (PoS) scheme
Casper FFG [70] utilizes smart contract to implement the
staking process; Algorand [13] attaches a cryptographic proof
to each new block to show the block proposer’s eligibility to
propose. As a result, the blockchain can hold the necessary
control information usable by the consensus protocol. We will
revisit these protocols in later sections.

B. Consensus Goal
The goal of a blockchain consensus protocol is to ensure that

all participating nodes agree on a common network transaction
history, which is serialized in the form of a blockchain.
Based on the previous discussion on BFT consensus and
the consensus goal abstraction provided in [22], we similarly
define the following requirements for blockchain consensus:
• Termination At every honest node, a new transaction is

either discarded or accepted into the blockchain, within
the content of a block.

• Agreement Every new transaction and its holding block
should be either accepted or discarded by all honest
nodes. An accepted block should be assigned the same
sequence number by every honest node.

• Validity If every node receives a same valid transac-
tion/block, it should be accepted into the blockchain.

• Integrity At every honest node, all accepted transactions
should be consistent with each other (no double spend-
ing). All accepted blocks should be correctly generated
and hash-chained in chronological order.

The termination and validity requirements are similar to
their counterparts in classical distributed consensus, as they

represent the system’s liveness. The agreement requirement
is enhanced with total ordering, which represents the serial-
ization of blocks and transactions. The integrity requirement
dictates the correctness of the origin of transactions and
blocks, fulfilling the promise of anti-double-spending and
ledger tamper-proofing. These requirements can serve as the
design principles of new blockchain protocols. For different
application scenarios, they can be tailored or supplemented
with more specification.

C. Components of Blockchain Consensus Protocol
Based on the discussion on consensus goal and our digest

of the blockchain documentation corpus, we identify five key
components of a blockchain consensus protocol:
• Block proposal: Generating blocks and attaching genera-

tion proofs.
• Information propagation: Disseminating blocks and

transactions across network.
• Block validation: Checking blocks for generation proofs

and transaction validity.
• Block finalization: Reaching agreement on the acceptance

of validated blocks.
• Incentive mechanism: Promoting honest participation and

creating network tokens.
For each component we also specify its counterpart in

traditional SMR consensus protocols and a list of available
options in Table II. The available options are non-exhaustive,
as many more are being developed at the time of writing.
It is worth noting that the incentive mechanism is unique to
blockchain consensus and has no counterpart in traditional
SMR consensus protocols. The reason is that traditional SMR
protocols are purely designed for transaction processing and
serialization within a preexisting network of participants,
of which the continuous participation of honest parties is
presumed. Meanwhile, a typical blockchain network allows
for voluntary participation and often bears numerous real-
world obligations. To this end, a fair and universal incentive

11

mechanism is needed to encourage honest participation, so
as to sustain the system’s reliable operation. For large-scale
permissionless blockchains, a robust incentive mechanism
along with the block generation proofs also help demoralize
Sybil attackers.

Though the five components are all vital to successful
blockchain consensus, a new blockchain consensus protocol
proposal may not cover all of them. For example, the incen-
tive mechanism is indispensable to permissionless blockchain
networks especially those carrying a financial responsibility;
however for permissioned blockchains in which participation
is sanctioned as a privilege (similar to a traditional distributed
computing system), it is not a must-have. Interestingly, many
new public blockchain initiatives have been fixating only on
block proposal, while inheriting the other four components
from the Nakamoto consensus protocol of Bitcoin. This is
likely due to that Bitcoin’s PoW-based block proposal attracts
the most criticism for its limited scalability and inefficient
energy use. For this reason, block proposal mechanism can be
a good reference angle for a general classification of consensus
protocols. In the remaining part we dedicate Section V to
Nakamoto consensus and its variations that are built upon
PoW, while Section VI is dedicated to four genres of PoS-
based protocols. Detailed protocol composition is described
when it comes to specific features.

V. THE NAKAMOTO CONSENSUS PROTOCOL AND
VARIATIONS

The Nakamoto consensus protocol is the key innovation
behind Bitcoin [1] and many other established cryptocurrency
systems such as Ethereum [71] and Litecoin [72]. In this
section we use Bitcoin as the application background to
introduce the Nakamoto consensus protocol and summarize
its drawbacks and vulnerabilities. We also introduce two well-
known improvement proposals and four hybrid PoW-BFT
protocols in the later part of this section.

A. Network Setting and Consensus Goal

In blockchain networks, block or transaction messages are
propagated across the P2P network through gossiping. Fig. 5
shows an example of block propagation in the Bitcoin network.
Specifically, the one-hop propagation adopts advertisement-
based gossiping, as was first characterized in [73]. For each
new block received and validated, a node advertises it to
peers, who will request for this block if it extends their local
blockchain. The gossiping process continues until every node
in the network has this block.

Compared to the general consensus goal introduced in
Section IV, Nakamoto enhances the termination requirement
with the probabilistic finality specification:
• Probabilistic finality For any honest node, every new

block is either discarded or accepted into its local
blockchain. An accepted block may still be discarded
but with an exponentially diminishing probability as the
blockchain continues to grow.

The probabilistic finality property echoes the probabilistic
termination property for asynchronous consensus. As we will

show later, because of this property the Nakamoto consensus
protocol can only achieve eventual double-spending resistance
in a decentralized network of pseudonymous participants.

B. The Nakamoto Consensus Protocol

In correspondence to the five components of a blockchain
consensus protocol, the Nakamoto consensus protocol can be
summarized by the following rules:
• Proof of Work (PoW): Block generation requires finding

a preimage to a hash function so the hash result satisfies
a difficulty target, which is dynamically adjusted to
maintain an average block generation interval.

• Gossiping rule: Any newly received or locally generated
transaction or block should be immediately advertised
and broadcast to peers.

• Validation rule: A block or transaction needs to be
validated before being broadcast to peers or appended to
the blockchain. The validation includes double-spending
check on transactions and proof-of-work validity check
on block header.

• Longest-chain rule: The longest chain represents network
consensus, which should be accepted by any node who
sees it. Mining should always extend the longest chain.

• Block rewards and transaction fees: Generator of a block
can claim a certain amount of new tokens plus fees
collected from all enclosed transactions, in the form of a
coinbase transaction to itself.

The hashing-intensive PoW mechanism is designed for
mitigating Sybil attacks. Due to Bitcoin’s permissionless and
pseudonymous nature, Sybil attackers can obtain new identities
or accounts with little effort. Hashing power, however, comes
from real hardware investment and cannot be easily forged.
The longest-chain rule implies that the stabilized prefix of
the longest chain can act as a common reference of the
network history, given that no one is authoritative in Bitcoin’s
decentralized network. Block Brewards and transaction fees
are used to incentivize miners to participate honestly and inject
new coins into circulation.

To better illustrate how these rules harmonize with each
other, we present an abstracted version of the Nakamoto
protocol in Algorithm 3. During block generation, a higher
mining difficulty demands more brute-force trials in order to
find a fulfilling nonce. To ensure every block is sufficiently
propagated before the next block comes out, the mining
difficulty is adjusted every 2016 blocks so that the expected
block interval remains a constant value (10 minutes in Bitcoin)
no matter how the gross hashing power fluctuates.

Fork resolution Ideally, the 10-minute block interval
should be enough to ensure the thorough propagation of a
new block so that no block of the same height is proposed.
However due to the delay during the message propagation and
the probabilistic nature of the hashing game, the possibility of
two blocks of the same height being propagated concurrently
in the network can not be ignored. This situation is called a
“fork”, detectable by any node. Correspondingly, the longest-
chain rule provides the criterion for fork resolution. Assume
a miner receives two valid blocks Bk

1,B
k
2 of the same block

12

(a) (b) (c)

Fig. 5. A toy example of block propagation in the Bitcoin network. (a) The P2P network structure, an undirected graph. (b) The gossiping process. A solid
blue arrow represents one-hop block propagation (advertise→get block→transmit), while a dotted black arrow represents only advertise. Number denotes the
gossiping hop (0 for the block producer). (c) Block propagation in one hop.

Algorithm 3: Nakamoto consensus protocol general pro-
cedure
/* Joining network */

1 Join the network by connecting to known peers;
2 Start BlockGen();
/* Main loop */

3 while running do
4 if BlockGen() returns block then
5 Write block into blockchain;
6 Reset BlockGen() to the current blockchain;

/* Gossiping rule */
7 Broadcast block to peers;
8 end

/* Longest-chain/validation rule */
9 if block received & is valid & extends the longest

chain then
10 Write block into blockchain;
11 Reset BlockGen() to the current blockchain;
12 Relay block to peers;
13 end
14 end
/* PoW-based block generation */

15 Function BlockGen():
16 Pack up transactions (including coinbase);
17 Prepare a block header context C containing the

transaction Merkle tree root, hash of the last block
in the longest chain, timestamp, and other essential
information reflecting blockchain status;
/* PoW hashing puzzle */

18 Find a nonce that satisfies the following condition:

Hash(C |nonce)< target

wherein more preceding zero bits in target indicates
a higher mining difficulty;

19 return new block;
20 end

height k sequentially, then a fork is detected by this miner. It
chooses Bk

1 (the first arrived) to continue and may encounter
the following cases:
• Case 1: If receiving or successfully generating a block

Bk+1
1 confirming Bk

1, accept Bk
1, Bk+1

1 and orphans Bk
2.

• Case 2: If receiving a block Bk+1
2 confirming Bk

2, switch
to Bk+1

2 and accept Bk
2, then orphans Bk

1.
• Case 3: If simultaneously receiving two blocks Bk+1

1 and
Bk+2

2 confirming respectively Bk
1 and Bk

2, choose one to
follow and continue until case 1 or 2 is met.

Wherein to “orphan” a block means to deny it into the main
chain. Because of the randomized nature of PoW mining,
the likelihood of encountering case 3 drops exponentially as
time elapses, reflecting the probabilistic finality of Nakamoto
consensus.

Security analysis In contrast to the classical distributed
computing system whose fault tolerance capability is charac-
terized by the number of faulty nodes the system can tolerate,
fault tolerance of Nakamoto consensus is by characterized
by percentage of adversarial hashing power the system can
tolerate. It is proved by Garay et al. [74] that if the network
synchronizes faster than the PoW-based block proposing rate,
an honest majority among the equally-potent (in hashing
power and bandwidth) miners can guarantee the consensus
on an ever-growing prefix of the blockchain. The prefix
represents the probabilistically stable part of the blockchain.
As long as less than 50% of total hashing power is maliciously
controlled, the blocks produced by honest miners are timely
propagated, the main chain contributed by the honest majority
can eventually outgrow any malicious branch.

From the perspective of classical distributed consensus,
Nakamoto consensus cleverly circumvents the fundamental
1/3 BFT bound by adopting probabilistic finality. In classical
BFT consensus if more than 1/3 of population are malicious,
the honest nodes will end up deciding conflicting values,
leading to consensus failure. In Nakamoto consensus, however,
conflicting decisions are allowed temporarily in the form of
blockchain forks, as long as they will be eventually trimmed
out by continuing effort of the honest majority. Therefore,
the 1/3 BFT bound is not applicable to Nakamoto consensus

13

or other blockchain consensus protocols designed for proba-
bilistic finality. Readers are referred to Abraham et al. [75]
for an interesting discussion on the correspondence between
Nakamoto consensus and classical BFT-SMR framework.

As for double-spending resistance, assuming the adversary
controls α fraction of the total hashing power and wishes to
double-spend an output which is m blocks old, it needs to redo
the PoW mining all the way from m blocks behind and grow
a malicious chain fast enough to overtake the incumbent main
chain. The probability of this adversarial catch-up is (α

1−α
)m if

α < 50%, which drops exponentially as m increases, reflecting
probabilistic finality. This probability equals to 1 if α ≥ 50%.
As a result, the 50% threshold is the safeguard behind Bitcoin’s
probabilistic finality, as well as resistance to double-spending
and transaction history tampering.

C. Drawbacks and Vulnerabilities of Nakamoto Consensus
1) Tight tradeoff between performance and security: The

Nakamoto consensus is widely criticized for its low transaction
throughput. For instance, Bitcoin can process up to 7 TPS
meanwhile the VISA payment network processes 2500 TPS on
average [76]. The limited performance of Nakamoto consensus
protocol follows from the security implication of its probabilis-
tic finality and two protocol parameters: block interval and
block size. As we discussed previously, the 10-minute block
interval ensures every new block is sufficiently propagated
before a new block is mined. Reducing the block interval
increases the transaction capacity, but will leave new blocks
insufficiently propagated and causes more forks incidents,
undermining the security of the main chain. Note that although
any fork can be resolved given enough time, the higher the fork
rate, the larger the portion of honest mining power is wasted,
which enables a double-spending attacker to overthrow the
main chain with less than 50% mining power (estimated 49.1%
by Decker et al. [73] in 2013). On the other hand, increasing
the block size (currently 1MB) has the same effect, since
larger block sizes lead to higher block transmission delays and
insufficient propagation. According to the measurement and
analysis by Croman et al. [3] in 2016, given the current 10-
min block interval the maximum block size should not exceed
4MB, which yields a peak throughput of 27 TPS.

2) Energy inefficiency: As of November 2019, an average
Bitcoin transaction consumes 431 KWh of electricity which
can power 21 U.S. households for a day [5]. This enormous
energy consumption is directly caused by the PoW-based
block proposing scheme of Nakamoto consensus. As Bitcoin
network’s gross mining capacity grows, the Nakamoto con-
sensus protocol has to raise the mining difficulty to maintain
the average 10-min block interval, which in turn encourages
miners to invest into more mining equipment with higher
hashing rates. This vicious cycle shall continue as Bitcoin
gains more popularity. In response, the blockchain community
has come up with various block proposing schemes such as
proof of stake (PoS), proof of authority (PoA), proof of elapsed
time (PoET) as energy-saving alternatives to PoW.

3) Eclipse attack: As was discussed above, the security
of Bitcoin network relies on the hashing power and commu-
nication capability of honest miners. If a powerful attacker

manages to dominate the in/outward communication between
a victim miner and the main network (i.e. “eclipsing”), then
the victim will no longer be able to contribute to the extension
of the main chain [77]. Assume the percentage of hashing
power controlled by the eclipse attacker, the eclipsed victims,
the remaining honest miners are α, ε , 1−α − ε , then the
attacker’s mining power shall be amplified to at least α

1−ε
. If

the attacker decides to exploit the eclipsed victims for growing
the malicious chain, its mining power can be further enhanced
up to α+ε [78]. As a result, a double-spending attack becomes
viable for the eclipse attacker if α + ε > 50%.

Eclipse attack is in fact an exploit of the weak connectivity
of permissionless peer-to-peer network based upon the Inter-
net, which is subject to unpredictable physical bottlenecks and
adversarial influences. A general approach to counter eclipse
attacks is to secure the communication channels and increase
the connectivity and geographical diversity of the peer-to-peer
connections.

4) Selfish mining: The 50% fault tolerance of Nakamoto
consensus is built upon the assumption that all miners (both
honest and malicious) strictly follow the broadcast rule that
new blocks are broadcast immediately upon successful gen-
eration. If a malicious mining group withholds newly mined
blocks and strategically publicizes them to disrupt the prop-
agation of blocks mined by honest miners, they can partially
nullify the work of honest miners and amplify their effective
mining power. This strategy is known as selfish mining. It is
shown by Eyal et al. [79] that a selfish mining group can
generate a disproportionately higher revenue than that from
honest mining if the group’s mining power surpasses a certain
threshold θ , assuming the group has a certain communication
capability measured by γ ∈ [0,1], which is the fraction of
honest nodes that will follow the malicious chain in case of
forks. As a result, the selfish mining group can attract new
miners and eventually outgrow the honest miners. Notably,
this threshold approaches zero if the selfish mining group
are able to convince almost all honest miners to follow the
malicious chain (i.e. γ→ 1). It is also shown that by adopting
a randomized chain selection strategy at honest miners, which
is equivalent to setting γ = 0.5, the threshold can be raised
up to 25%. A later work by Sapirshtein et al. [80] shows that
an optimized selfish mining strategy can further enhance the
selfish mining pool’s effective mining power fraction from α

to the upper bound α

1−α
(achievable when γ = 1).

Selfish mining attack and eclipse attack have only happened
to smaller blockchains such as Monacoin [81], but never to
Bitcoin or other mainstream blockchains. This is probably due
to two reasons. First, miners in established public blockchain
networks actually care about the system’s longevity and rep-
utation, which can positively affect the exchange rate of the
cryptocurrency and thus their mining revenue. Second, estab-
lished blockchains tend to be better connected (reflected by
the existence of dedicated mining pools and relay networks),
which allows for an effective detection of any selfish mining
and eclipse attack behavior.

5) Mining pools and centralization risk: According to the
incentive mechanism of Nakamoto consensus, the mining
revenue of a miner is proportional to its computing power.

14

Since bitcoins can be traded for fiat currencies at exchanges,
higher-earning miners have the financial advantage to purchase
more efficient mining hardware, which consumes less joules
per hash operation. Furthermore, higher-earning miners are
often backed by large organizations that can direct huge capital
into the mining business. As a result, small individual miners
are either forced out of the game, or alternatively join in
mining pools for stabler income. All members in a mining
pool are registered with a coordinator and work to extend a
common chain, while transaction validation, packaging and
block proposal can be performed independently. To incentivize
pool participation, block rewards are redistributed among the
pool through a reliable remuneration scheme so that every
pool member routinely gets a fair share of the pool’s mining
rewards according to its registered computing power.

In fact, joining in a mining pool has become the dominant
way of participation in major PoW-based blockchains. The
measurement study by Gencer et al. [82] in 2018 shows that
throughout a one-year observation period, over 50% of the
gross mining power was controlled by eight mining pools
in Bitcoin and five mining pools in Ethereum. Moreover,
the empirical study by Kondor et al. [83] in 2014 shows
that the wealth distribution among Bitcoin addresses has
been converging to a stable exponential distribution, and the
wealth accumulation of node is positively related to its ability
to attract new connections, which is another advantage of
established large miners.

D. Improvements to the Nakamoto Consensus Protocol

1) GHOST Rule: The greedy heaviest-observed subtree
(GHOST) block finalization rule was proposed by Sompolin-
sky et al. [84] for Bitcoin in 2015. According to the longest-
chain rule, all unconfirmed blocks in a fork shall be orphaned,
resulting in a waste of honest mining power which could
otherwise have been used to contribute to the longest-chain’s
security. The longest-chain rule also limits the transaction
capacity since the tight tradeoff between performance and
security mandates that the block interval should be sufficiently
long. The GHOST rule is an alternative to the longest-chain
rule that the orphaned blocks also contribute to the main
chain security, effectively reducing the impacts of forks, which
allows for a shorter block interval and thus higher transaction
capacity. GHOST requires that given a tree of blocks with
the genesis block being the root, the longest chain within the
heaviest subtree shall be used as the main chain. Similar to the
Nakamoto consensus, the probabilistic finality of the heaviest
subtree up to the current block height will hold as long as
more than 50% of mining power are honest.

The simulation result in [84] shows that given the same
block interval, applying GHOST rule leads to a slightly
lower transaction throughput than that with the longest-chain
rule when block interval is fixed, but near-perfectly prevents
the security degradation when the block interval decreases,
allowing for a higher transaction throughput. A variation of
GHOST is implemented in the Ethereum blockchain, wherein
the “uncle blocks” (i.e. blocks with a valid proof of work
but orphaned out of the main chain) may get rewarded for

Fig. 6. Bitcoin-NG blockchain data structure. Key blocks track miners and are
generated through PoW. Micro blocks curate transactions and are generated
by the most recent key block miner.

their redundant mining effort. As a result, Ethereum adopts a
much shorter block interval (10-15 seconds) and achieves up
to 25 TPS throughput, in contrast to Bitcoin’s 10-minute block
interval and 7 TPS throughput.

2) Bitcoin-NG: Bitcoin-NG was proposed by Eyal et al. [7]
in 2016 to scale up Bitcoin’s transaction capacity. A variant of
Bitcoin-NG called Waves-NG [85] is currently used in Wave
Platform, a blockchain initiative. The key insight of Bitcoin-
NG is decoupling block generation into two planes: leader-
election and transaction serialization, which respectively cor-
respond to two types of blocks: key blocks and micro blocks.
The key blocks resemble Bitcoin’s blocks, which contain a
solution to a hash puzzle representing the proof of work and
have an average block interval of 10 minutes, except for the
actual transactions which are included in the micro blocks.
Once a key block is mined, all subsequent micro blocks
shall be generated by the current key block miner until the
generation of the next key block. The generation of micro
blocks is deterministic and does not contain proof of work.
As a result, the micro block frequency is in the control of
the key block miner (up to a maximum) to accommodate as
many transactions as possible. The blockchain data structure
of Bitcoin-NG is shown in Fig. 6.

The longest-chain rule is still applied to finalize and resolve
forks of key blocks. As for the micro blocks, since they are
batch-generated by key block miners, Bitcoin-NG relies on a
combination of a heaviest-chain extension rule and a longest-
chain extension rule to finalize and resolve forks of micro
blocks. To encourage honest participation and discourage the
current key block miner from double-spending and other
malfeasance, 60% of the transaction fees collected from micro
blocks by the current key block miner are redistributed to the
miner of the next key block.

As for Bitcoin-NG’s performance, since key blocks do not
carry transactions, the transaction throughput entirely depends
on the micro block size and frequency. The micro block
frequency needs to be controlled, for an excessive amount of
them may exhaust the network bandwidth and cause frequent
key block forks. Hypothetically, if we kept the key block
frequency at 10 minute and micro block size at 1MB, set the
micro block frequency to 12 seconds (the minimum practical
block interval under current Bitcoin network condition [86]),
Bitcoin-NG would achieve up to 200 TPS throughput.

On the downside, due to the determinism in micro block
generation, the key block miner may become a target of

15

denial-of-service or corruption attacks. A compromised key
block miner may enclose transactions selectively or finalize
contradicting transactions, the inconsistency caused by which
can cost the network more than one key block cycle to remedy.

E. Hybrid PoW-BFT Consensus Protocols

The limited transaction capacity and tight tradeoff between
performance and security of Nakamoto consensus are much
warranted by its probabilistic finality and decentralized ideal.
In contrast, BFT consensus assumes fixed participants with
revealed identities and achieves deterministic finality, allowing
much shorter block intervals and thus much higher transaction
throughput. In response, hybrid PoW-BFT protocols have been
proposed to get the best of two worlds. Here we introduce four
popular proposals.

1) PeerConsensus: Proposed by Decker et al. [64] in 2014,
PeerConsensus uses a PoW-based blockchain to throttle and
certify new identities joining the network, while being agnostic
to any application built upon it. The number of identities a
player may control is proportional to its share of computation
power, which provides Sybil resistance. With the identities
established by the blockchain, the application can employ an
efficient BFT protocol such as PBFT and SGMP [87] for
committing transactions. The transaction fees collected are
distributed to all identities equally. As a result, PeerConsensus
effectively decouples participation management from transac-
tion processing, allowing the latter to scale up throughput. On
the downside, since the transaction history is not recorded in
blockchain, PeerConsensus cannot control the malleability of
transactions.

2) SCP: The scalable consensus protocol (SCP), proposed
by Luu et al. [88] in 2015, incorporates BFT and shard-
ing into blockchain consensus. The key idea of SCP is to
partition the network into sub-committees (i.e. shards) with
a PoW mechanism, so that each sub-committee controls a
limited amount of computation power and the number of sub-
committees is proportional to the network’s gross computation
power. This is aimed to limit the size of a sub-committee,
which operates independently and curates a local blockchain
using a BFT consensus protocol. A dedicated finalization
committee is responsible for combining the outputs of all
sub-committees into the global blockchain. A block in the
global chain stores the hash and transaction Merkle tree root
of every block proposed by every sub-committee. To ensure
consensus safety, SCP requires each sub-committee as well
as the whole network to maintain a two-thirds majority of
honest computation power. However, the use of sharding and
a dedicated finalization committee assumes the preexistence
of network coordination, which to some extent counters the
decentralized ideal of public blockchains.

Notably, using sharding to scale up blockchain transaction
throughput has been extensively studied in the developer
communities. Interested readers are referred to [89] for a
development history and the state-of-the-arts of blockchain
sharding.

3) ByzCoin: ByzCoin was proposed by Kogias et al. [90]
in 2016 as a blockchain consensus protocol that leverages

PoW for consensus group membership management and BFT
for transaction finalization. ByzCoin takes inspiration from
Bitcoin-NG’s ledger structure but features a subtle difference.
Instead of a linear structure, ByzCoin’s ledger consists of two
parallel blockchains: a keyblock chain and a microblock chain.
Keyblocks are mined via PoW as in Nakamoto consensus
and used for maintaining a consensus group from recent key-
block miners according to a sliding-share-window mechanism.
Specifically, when a miner finds a new keyblock, it is credited
one share in the consensus group and the share window moves
one share forward. Only miners with shares in the window can
participate in the subsequent consensus. Old shares expire once
being left out of the window and so does the share owner’s
eligibility of consensus participation. The window length is
subject to designer’s choice on the consensus group size as
well as the overall consensus participation fairness.

A microblock is produced by the current consensus group
via an adapted PBFT protocol based on collective signing
(CoSi) [91]. Compared to the original PBFT, the CoSi-based
PBFT reduces the communication complexity from O(N2) to
O(N logN) and thus scales better to large consensus groups. As
for transaction finalization, the current keyblock miner packs
up new transactions into a microblock and acts as the leader to
trigger the CoSi-based PBFT. In the end, the microblock will
be finalized and contain the collective signature of the con-
sensus group and the hash pointer to the preceding keyblock,
which also contains the collective signature.

ByzCoin configures that the sliding-share-window mech-
anism replaces one member of the consensus group at a
new keyblock. This yields a slightly tighter fault-tolerance
threshold than that of classical BFT consensus: N ≥ 3 f + 2
is needed anytime, where N is the consensus group size and f
the Byzantine population. Meanwhile, ByzCoin’s PoW-based
keyblock chain is still susceptible to forks. A fork can split
the consensus group and potentially make the PBFT consensus
stall, which can further aggravated by the presence of selfish
miners. In response, ByzCoin relies on a deterministic priori-
tization function tweaked with high output entropy to resolve
forks timely and reduce the impact of selfish miners.

4) Pass and Shi’s hybrid consensus: As a concurrent work
to ByzCoin, the hybrid consensus protocol proposed by Pass
and Shi [92] adopts a sliding-window idea similar to Byz-
Coin’s but less susceptible to forks. That is, assuming the
window size λ , the consensus group is populated by the last λ

miners of the “stable part” of the blockchain, which is the main
chain truncated off Θ(λ) blocks. This protocol keeps the PBFT
consensus off-chain; only the consensus epoch number and a
digest of the transaction log are attached to the new block.
Moreover, this protocol advocates using FruitChain [93] as the
underlying PoW blockchain, which was proposed by the same
authors and allegedly achieves better ledger tamper-resistance
than Nakamoto’s blockchain.

A short summary Due to the scalability concern that BFT
protocol’s communication overhead would be overwhelmingly
high if the consensus group grew out of control, the above
hybrid PoW-BFT protocols share a common trait that the
PoW mechanism is used for maintaining a stable consensus
group for each BFT protocol instance. Since the PoW-based

16

participation control does not involve actual authorization and
is open to any one with computation power, we consider
it a form of soft permission control for public blockchains.
Moreover, novel signature schemes such as CoSi [91] and ag-
gregated signature gossip [94] can help reduce communication
complexity in a sparsely-connected peer-to-peer network and
allow for a larger number of consensus participants.

We stress that there are more ways to hybridize PoW
and BFT in addition to the above proposals. Moreover,
independently proposed cryptographic techniques are often
complementary to the hybrid design. This observation also
applies to general hybrid PoX-BFT schemes.

VI. PROOF-OF-STAKE BASED CONSENSUS PROTOCOLS

Proof-of-Stake (PoS) originates from the Bitcoin commu-
nity as an energy efficient alternative to PoW mining. In
the simplest terms, a stake refers to the coins or network
tokens owned by a participant that can be invested in the
blockchain consensus process. From the security point of view,
PoS leverages token ownership for Sybil attack mitigation.
Compared to a PoW miner whose chance to propose a block is
proportional to its brute-force computation power, the chance
to propose a block for a PoS miner is proportional to its
stake value. From the economics point of view, PoS moves
a miner’s opportunity cost from outside the system (waste of
computation power and electricity) to inside the system (loss
of capital and investment gain) [95]. Because of the lack of real
mining, we often refer to a PoS miner as a validator, minter,
or a stakeholder for PoS’s close resemblance to investing in
capital markets.

We identify four classes of PoS protocols: chain-based
PoS, committee-based PoS, BFT-based PoS, and delegated PoS
(DPoS). Chain-based PoS inherits many of the components of
the Nakamoto consensus protocol such as information prop-
agation, block validation, and block finalization (i.e. longest-
chain rule), except that the block generation mechanism is
replaced with PoS. Committee-based PoS leverages a multi-
party computation (MPC) scheme to determine a committee
to orderly generate blocks. BFT-based PoS combines staking
with BFT consensus which guarantees deterministic finality
of blocks. DPoS employs a social voting mechanism that
elects a fixed-size group of delegates for transaction validation
and blockchain consensus on behalf of the voters. Popular
examples for each PoS class are listed in Fig. 7.

A. Chain-based PoS

Chain-based PoS is an early PoS scheme proposed by Bit-
coin developers as an alternative block generation mechanism
to PoW. It is within the framework of Nakamoto consensus in
that the gossiping-style message passing, block validation rule,
longest-chain rule, and probabilistic finality are preserved.
Early full-fledged chain-based PoS blockchain systems include
Peercoin and Nxt.

The general procedure of a chain-based PoS minter can be
summarized by Algorithm 4. Unlike PoW, PoS does not hinge
on wasteful hashing to generate blocks. A minter can solve the
hashing puzzle only once for a clock tick. Since the hashing

Fig. 7. Popular PoS blockchain initiatives classified under four classes and
performance highlights.

puzzle difficulty decreases with the minter’s stake value, the
expected number of hashing attempts for a minter to solve the
puzzle can be significantly reduced if her stake value is high.
Therefore, PoS avoids the brute-force hashing competition that
would occur had PoW been used, thus achieving a significant
reduction of energy usage.

Algorithm 4: Chain-based PoS general procedure (Peer-
coin, Nxt)

1 Join the network by connecting to known peers;
2 Deposit in the stake pool;
3 Start BlockGen();
/* Main loop */

4 while running do
5 (Same with Nakamoto’s protocol except that block

validation should include PoS check.)
6 end
/* PoS-based block generation */

7 Function BlockGen():
8 Pack up transactions and prepare a block header

context C containing the transaction Merkle tree
root and other essential blockchain information;
/* PoS hashing puzzle */

9 Set up a clock (whose tick interval is a constant) and
check for the following condition per clock tick:

Hash(C |clock time)< target× stake value

wherein more preceding zero bits in target indicates
a higher mining difficulty per unit of stake value;

10 return new block;
11 end

17

1) Peercoin and Nxt: Both Peercoin [6] and Nxt [96]
generally follow Algorithm 4. Their major difference lies in
how the stake is valued. Stake value is initially proportional to
stake quantity. To ensure the profitability of small stakeholders,
a stake valuation scheme can be used to adjust the value of
an unused stake as time passes. Peercoin uses the coin age
metric for stake valuation, which lets the value of a stake
appreciate linearly with time since the deposit. At the end of
a block cycle, the value of the winner’s stake returns to its base
value. To avoid stakeholders from locking in a future block by
deliberately waiting long, stake appreciation only continues for
90 days and stays flat since then. As a result, the chances of
small stakeholders to generate a block are supplemented with
time value that encourages them to stay participated even if
they have not generated a block for a long time.

In comparison, Nxt does not appreciate stake value con-
tinuously across block cycles like what Peercoin does. This
is because the latter’s coin age metric may lower the attack
cost—attackers can just invest a small amount of stakes
and keep attempting to generate blocks until they succeed,
which is especially unfair to big stakeholders who perform
honestly. Instead, Nxt requires the stake value appreciate only
within one block cycle and be reset to the base value once
the block cycle ends. Without coin age, Nxt addresses the
monopolization problem from the incentive angle. First, stakes
in Nxt are not actively managed by stakeholders; they are
essentially the account balances—the more tokens held in
its account, the higher the chance the stakeholder will win
the right to generate a block. Second, total token supply is
determined at the beginning and block rewards only come
from transaction fees, which effectively aligns a stakeholder’s
revenue with its validation work. As a result, all stakeholders
have the incentive to honestly validate transactions since it is
the only way to accumulate wealth.

2) Bentov’s PoA: Compared to Peercoin and Nxt, Bentov’s
proof of activity (PoA) [97] is a hybrid PoW-PoS adaptation
of the Bitcoin protocol that utilizes an algorithm called follow-
the-satoshi (FTS) to involve staking. FTS works as follows: 1)
Use a pseudo-random function (PRF) to locate an atomic piece
of token (eg. satoshi in Bitcoin, wei in Ethereum) in the token
universe; 2) If the atomic piece belongs to stakeholder A, then
output A. With the input being a sequence of random seeds,
FTS outputs a pseudo-random sequence of stakeholders such
that the chance for any stakeholder to be in it is proportional
to the volume of tokens owned by the stakeholder.

Bentov’s PoA works as follows. At the beginning of block
cycle k, an empty block header EBk is generated according
to the PoW rule and propagated across the network. After
receiving EBk, a stakeholder computes the N-tuple vector seed
S as follows:

S j = hash
(

hash(EBk)|hash(Bk−1)|SFj

)
for j = 1, ...,N

Bk−1 is the previous block, SF is a N-tuple of fixed suffix
values. N is a predefined value that should not be too large.
Then S is used as the input for FTS to compute the pseudo-
random sequence of stakeholders pSeq, which is also a N-
tuple. Every stakeholder in pSeq needs to sign the block and
broadcast the signature; the last stakeholder in pSeq wraps up

the block by including transactions and the N signatures and
broadcasts the final block Bk to the network. All stakeholders
in pSeq shares the reward of Bk with the PoW miner of EBk.

To avoid name conflict with proof of authority, we also refer
to Bentov’s PoA as PoAct.

Security analysis Chain-based PoS can tolerate up to 50%
of all stakes being maliciously controlled. And since every
token can be staked, the fault tolerance further generalizes to
50% of all tokens in the network. If colluding attackers control
more than 50% of stakes, they can grow their malicious chain
faster than the others and carry out a double-spending attack,
which is analogous to the 51% attack in PoW blockchains.
However, from the economic perspective, PoS attackers have
lower incentives to do so because of the capital loss risk.
As staking is recorded in the form of transaction scripts,
the blockchain users can retrieve the staking records from
which the consensus protocol can legally issue punishment to
violators, such as nullifying stakes and disbarring the violators
from participating in the future staking process.

B. Committee-based PoS

Chain-based PoS still relies on the hashing puzzle to gen-
erate blocks. As an alternative mechanism, committee-based
PoS adopts a more orderly regime: determining a commit-
tee of stakeholders based on their stakes and allowing the
committee to generate blocks in turns. A secure multiparty
computation (MPC) scheme is often used to derive such a
committee in the distributed network. MPC is a genre of
distributed computing in which multiple parties beginning with
individual inputs shall output the same result [98]. The MPC
process in the committee-based PoS essentially realizes the
functionality that takes in the current blockchain state which
includes the stake values from all stakeholders, and outputs
a pseudo-random sequence of stakeholders (we call it the
leader sequence) which will subsequently populate the block-
proposing committee. This leader sequence should be the same
for all stakeholders and those with higher stake values may
take up more spots in the sequence. A general procedure for a
stakeholder of committee-based PoS is shown in Algorithm 5.
In this algorithm, the CommitteeElect() functionality can also
be implemented in a privacy-preserving way with verifiable
random function (VRF) [99] in that only the stakeholder itself
knows if it gets elected into the committee.

Well-known committee-based PoS schemes include Ben-
tov’s chain of activity (CoA), Ouroboros, Snow White, and
Ouroboros Praos. These protocols and Algorand (see Section
VI-C) were developed concurrently by academics around 2017
and share many common traits.

1) Bentov’s CoA: Bentov’s CoA [100] was proposed in
2016 partially based on Bentov’s PoA. It follows the main
routine in Algorithm 5 in that each nominated stakeholder
gets to generate its own block. CoA first leverages a MPC
process to generate a string S of N random bytes. Then
S is fed to a FTS algorithm that outputs a pseudo-random
sequence BlockGenSeq. All parties should output the same
BlockGenSeq, which is then used to coordinate the generation
of the next N blocks.

18

Algorithm 5: Committee-based PoS general procedure

/* Joining network and staking */
1 Join the network by connecting to known peers;
2 Deposit in the stake pool;
/* Main loop */

3 while running do
/* Committee election */

4 if new block cycle then
5 Participate in CommitteeElect();
6 Check BlockGenSeq for my turns;
7 end

/* Block proposing & broadcast */
8 if my turn to generate block then
9 Collect transactions and generate block;

10 Write block to blockchain;
11 Broadcast block to the network;
12 end

/* Longest-chain&validation rule */
13 if block is received & is valid & extends the longest

chain then
14 Write block into blockchain;
15 Relay blocks to other committee members;
16 end
17 end
/* PoS-based committee election */

18 Function CommitteeElect():
19 Fetch the current blockchain state and the stake

information of all participants; use them as the
MPC input;

20 Participate in the MPC that produces BlockGenSeq, a
pseudo-random sequence of block generation
opportunities;

21 return BlockGenSeq;
22 end

2) Ouroboros: Ouroboros was developed by Kiayias et al.
[8] in 2017 and has been used as the consensus protocol for
cryptocurrency Cardano. Ouroboros divides the physical time
into fixed-time epochs and each epoch is subdivided into N
slots, each can be used by only one slot leader to generate
a block for the network. For each epoch, stakeholders with
enough stake can become electors, who will collectively elect
slot leaders (i.e. the committee) for the next epoch through
a MPC procedure known as publicly verifiable secret sharing
(PVSS), as is shown in Fig. 8. In the commit phase, elector
Ei broadcasts a commitment message that includes a random
secret. In the reveal phase, Ei broadcasts an opening message
that reveals the previously sent secret. In the recovery phase
every elector verifies that commitments and openings match
and then form a seed string with the revealed secrets. All
electors have the same seed string and shall obtain the same
slot leader sequence after executing FTS. As we shall see next,
Ouroboros’ one-slot-one-leader arrangement entails stringent
network synchrony, and the PVSS-based leader selection may
expose the elected leaders to targeted attacks.

Fig. 8. PVSS-based slot leader sequence generation in Ouroboros. Secrets
generated by electors at the beginning of the commit phase eventually form
the random seed string. All electors shall go through FTS and obtain the same
slot leader sequence at the end.

3) Ouroboro Praos: Ouroboros Praos was proposed by
David et al. [101] in 2017 to address two security concerns
of Ouroboros. First, Ouroboros requires stringent network
synchrony for slot leaders to use their allocated slots precisely,
which is vulnerable to desynchronization attacks. In compar-
ison, Ouroboros Praos is designed for partially synchronous
networks wherein a maximum delay of ∆ slots is allowed
for message delivery, albeit ∆ is unknown to electors. This
is achieved by allocating empty slots that help electors to re-
synchronize to the network and allowing a slot to have multiple
slot leaders. Second, Ouroboros is susceptible to adaptive
corruption against slot leaders. Since the leader sequence
for the next epoch is known to all network participants, an
attacker may target and try to corrupt slot leaders ahead
of their block proposing. In comparison, Ouroboros Praos
employs a locally executed verifiable random function (VRF)
[99] that allows only the elector herself to know her block
proposing slots for the next epoch, which is verified by the
corresponding VRF proofs. Compared to Ouroboros’ PVSS-
based leader selection, the VRF scheme saves much of the
communication overhead at the cost of local cryptographic
computation. Similar schemes are also used in contemporary
protocols such as Snow White and Algorand.

Because of its reduced synchrony requirement and the
privacy-preserving nature of the VRF scheme, Ouroboros
Praos does not limit the size of consensus participants and
allows for a flexible committee. Ouroboros Praos also adopts
key-evolving signatures (KES) to counter posterior corruption
and provide forward security, which we will elaborate in
Section VI-E.

4) Snow White: Snow White was developed by Daian et
al. [9] in 2017. It is a PoS protocol specifically designed
to accommodate the sporadic participation model in which
nodes can switch online/offline arbitrarily. Similar to the
committee-based PoS schemes above, Snow White employs
a MPC procedure to decide the block proposing committee,
each of which is issued an eligibility ticket privately. For
each epoch, every stakeholder takes the current blockchain
(including staking information) as input and output the com-
mittee for the next epoch. Specially, Snow White executes a
modified version of the sleepy consensus protocol [102], an

19

asynchronous consensus protocol that ensures the consensus
safety in case of sporadic participation and committee re-
configuration. Compared to contemporary schemes (including
Ouroboros, Praos and Algorand), this feature enables Snow
White to work under harsh network conditions with frequent
disconnections and volatile message delays. Moreover, Snow
White uses a checkpointing scheme to finalize earlier history
that protects the blockchain from posterior corruption attack
[97] and adaptive key selection attack.

Security analysis In spite of having an orderly block
proposing scheme, committee-based PoS still adheres to the
longest chain rule for probabilistic finality. So long as fewer
than 50% stakes are held by the malicious party, the honest
parties can safely maintain the longest chain. Meanwhile,
the expansion of the committee may lead to deterioration
in network connectivity which can result in a significant
drop in protocol performance and desynchronization of block
proposal. The round-based committee election process with a
predetermined round duration (eg. Ouroboros’ fixed timeslot)
also faces scalability problems, as large committee sizes may
lead to never ending consensus cycles due to the excessive
communication overhead. To mitigate such risks, the duration
of a communication round can be extended sufficiently to
ensure that all broadcast messages are delivered before the
participants proceed to the next round. This however leads to
longer transaction conformation latency and lower throughput.
A more straightforward approach is limiting the committee
size by imposing a minimum stake requirement for the com-
mittee members. For example, Cardano, the cryptocurrency
platform that deploys Ouroboros, mandates that every com-
mittee member should own no less than 2% of total tokens in
circulation. This effectively limits the committee size to 50,
safeguarding an efficient consensus process.

C. BFT-based PoS

Chain-based PoS and committee-based PoS largely follow
the Nakamoto consensus framework in that the longest-chain
rule is still used to provide probabilistic finality of blocks.
In comparison, BFT-based PoS (or hybrid PoS-BFT) incor-
porates an extra layer of BFT consensus that provides fast
and deterministic block finalization. Algorithm 6 shows the
general procedure of BFT-based PoS at every participant.
Block proposing can be done by any PoS mechanism (round-
robin, committee-based, etc.) as long as it injects a stable flow
of new blocks into the BFT consensus layer.

Aside from the general procedure, a checkpointing mech-
anism can be used to seal the finality of the blockchain (not
shown in Algorithm 6). As a result, the longest-chain rule
can be safely replaced by the most-recent-stable-checkpoint
rule for determining the stable main chain. Popular BFT-based
PoS blockchain protocols include Tendermint, Algorand, and
Casper FFG. DPoS protocols such as EOSIO also use BFT
consensus for block finalization within delegates.

1) Tendermint: Tendermint was developed by Kwon et al.
[12], [103] in 2014 and currently used in Cosmos Hub network
[104]. It is the first public blockchain project to incorporate
a BFT consensus layer and takes inspiration from the DLS

Algorithm 6: BFT-based PoS general procedure

1 Join the network by connecting to known peers;
2 Start BlockGen();
/* Main loop */

3 while running do
/* Block proposing & broadcast */

4 if BlockGen() returns block then
5 Add block to its tempBlockSet;
6 Broadcast block to the network;
7 end

/* Block validation */
8 if block is received & is valid then
9 Add block to its tempBlockSet;

10 Relay block to the network;
11 end

/* BFT consensus layer */
12 if new consensus epoch then
13 Perform BlockFinBFT() on tempBlockSet;
14 Write the winning block to blockchain;
15 Clear tempBlockSet;
16 end
17 end
/* PoS-based block generation */

18 Function BlockGen():
19 Elect a block proposer, whose success rate is

proportional to stake value;
20 Propose block;
21 return block;
22 end
/* BFT-based block finalization */

23 Function BlockFinBFT():
24 Participate in a BFT consensus that finalizes one

winning block out of tempBlockSet;
25 return the winning block;
26 end

protocol [28] and PBFT [27]. Tendermint works in consensus
cycles. Each cycle involves a multi-round BFT consensus
process to finalize one block. Each round consists of three
phases: Propose, Prevote, Precommit. Specially, in the Propose
phase a validator is designated by a deterministic algorithm
as the block proposer in a round-robin fashion such that
validators are chosen with frequency proportional to the value
of their deposited stakes. A validator continues iterating the
three-phase rounds until one block receives more than 2/3 of
Precommits. The validator then broadcasts Commit votes for
the block and listens for other validators’ Commit votes. When
a block receives more than 2/3 of Commit votes, it will be
finalized in blockchain. As long as more than 2/3 of validators
of each round are honest, Tendermint can achieve consen-
sus safety. On the other hand, because Tendermint selects
block proposers deterministically, the future block proposers
are susceptible to targeted attacks (eg. DDoS). Tendermint
addresses this risk by deploying sentry nodes which act as
proxies of block proposers and never reveal the IP addresses
of the latter [105]. Notably, since Tendermint decouples the

20

PoS mechanism from the BFT layer, a validator’s stake value
does not add weight to its consensus votes. For this reason,
Tendermint is often considered an early effort on applying
BFT consensus to blockchain.

Tendermint’s also features an equal-sharing-style incentive
mechanism instead of winner-takes-all. For every block height,
the block reward is distributed among the block proposer and
validators from whom the proposer received Commit votes.
However, fairness may be impaired if Commit votes are not
delivered in time before the next cycle, as is demonstrated by
Amoussou-Guenou et al. [106].

2) Algorand: Algorand is a cryptocurrency system devel-
oped by Gilad et al. [13] at MIT CSAIL in 2017. It employs
committee-based PoS for block proposing and Byzantine
agreement for block finalization. First, similar to Ouroboros
Praos’ block proposer election mechanism, the election of
Algorand’s block proposing committee is done by a VRF
scheme called cryptographic sortition which sorts candidates
according to the amount of coins they own. Only those with
rankings above a threshold are admitted into the committee for
the next block cycle. Every individual user can check privately
if it is in the committee. At each user i, cryptographic sortition
also outputs an eligibility proof signed by the user’s private
key σ

ep
ski

showing that it is truly a committee member. σ
ep
ski

is
broadcast to the network along with the new block proposed
by user i. Upon receiving the block, other users can verify the
proof via the user i’s public key pki.

On top of the cryptographic sortition-based block proposing
scheme, Algorand relies on a Byzantine agreement protocol
called BA? for block finalization. BA? reduces the consensus
problem to binary Byzantine agreement: either agreeing on a
proposed block or an empty block. In the ideal case where
strong network synchrony is assumed, the committee follows
BA? to exchange votes on proposed blocks so that they will
decide a final block, or an empty block if no blocks pass the el-
igibility proof check. In a weakly synchronous network where
block propagation and message exchange among committee
members can suffer from uncertain delays, BA? outputs ten-
tative blocks if none of the proposed blocks can be finalized,
which results in a fork. To resolve the forks of tentative blocks,
Algorand periodically runs a recovery protocol to accept a
tentative block if there is any. Specially, the recovery protocol
needs to be invoked by a synchronized committee. Therefore,
according to the authors [13], weak synchronony is sufficient
for consensus safety during BA?’s routine operation while
strong synchrony is required for consensus liveness when
kicking off the recovery protocol for resolving forks.

3) Casper FFG: Casper FFG was first envisioned by Zam-
fir [107] in 2015 and formally presented by Buterin [14] in
2017. It is a light-weight PoS consensus layer built on top of
Ethereum’s current PoW-based block proposing mechanism
(Ethash). Casper FFG slightly deviates from Algorithm 6
for that it directly incorporates PoS into block finalization.
Algorithm 7 shows the general procedure of Casper FFG
for each validator. Newly generated and received blocks are
attached to the BlockTree, which is similar to the tree data
structure used by the GHOST rule. The actual consensus
subject, however, is the CheckPointTree, which is a subtree

Algorithm 7: Casper FFG

1 Deposit in the stake pool;
/* Main loop */

2 while running do
3 (Block proposing and block validation are the same

as in Algorithm 6, except that blocks are attached to
BlockTree rather than stored in a temporary set.)
/* BFT consensus layer */

4 if new consensus epoch then
5 Identify valid checkpoint blocks and attach them

to CheckPointTree;
6 Participate in CheckPointVote() w.r.t.

CheckPointTree, which returns CPs,CPt ;
7 Mark CPs finalized and CPt justified;
8 end
9 end
/* Staked checkpoint voting */

10 Function CheckpointVote():
11 Broadcast a vote for a source-target checkpoint pair

in CheckPointTree;
12 Check received votes against the slashing rules and

then evaluate them by signer’s deposited stake;
13 if pair 〈CPs,CPt〉’s votes cover more than 2/3 of total

deposited stakes then
14 return CPs,CPt ;
15 end
16 end

of BlockTree. Specifically, for every consensus epoch (100 in
BlockTree’s height or 1 in CheckPointTree’s height), every val-
idator broadcasts to peers a vote for a block as the checkpoint.
The height of the block in BlockTree must be divisible by
100. The vote consists of a justified source checkpoint CPs
and its height h(s), a target checkpoint CPt and its height h(t)
(h(s) < h(t)), and the validator’s signature S. All votes are
broadcast to the network and are weighted by the signer’s
stake value. If the source-target checkpoint pair 〈CPs,CPt〉
is voted by validators who possess more than 2/3 of total
deposited stakes, then CPt is justified and CPs is finalized. All
blocks between CPs and CPt are finalized as well. Casper FFG
relies on two so called Casper Commandments for ensuring
consensus safety: 1) validator must not cast two distinct votes
for the same checkpoint height, and 2) validator must not cast a
new vote whose source-target span is within that of its existing
vote. Violators are subject to slashing rules including forfeiting
stakes and temporarily banning from staking. Since every vote
is signed with the validator’s private key and received by peer
validators, Casper FFG can conveniently detect violators and
enforce the slashing rules.

The current smart contract implementation of Casper FFG
is documented in EIP 1011 [70]. A stakeholder becomes a
participating validator by depositing a stake in the dedicated
smart contract, which encodes Casper FFG and can be ac-
cessed via Ethereum transactions. Notably, Casper FFG is the
preamble project of Casper Correct-by-Construction (Casper
CBC), the PoS protocol family that will be used by Ethereum

21

2.0 to complete the transition to pure PoS [108].
To further improve performance and scalability, Ethereum

2.0 also plans to combine PoS with sharding [109]. In a
nutshell, all Ethereum 2.0 participants are divided into shards.
Each shard runs a blockchain instance via a consensus scheme
not limiting to PoS. On the top level, the main chain, known
as the “beacon chain”, will be maintained by a group of
known validators via a Casper CBC protocol. Each validator
is randomly assigned to a shard as the shard manager and
periodically commits a digest of the shard chain to the main
chain. The parallelism of sharding and the energy efficiency
of PoS can theoretically scale up both transaction throughput
and network size. Nonetheless, the sharding scheme is still
an ongoing work and faces several challenges before being
harmonized with Casper CBC. They include the increased
take-over risk related to small shard size, the difficulty in
coordinating inter-shard communication and token transfer.

Security analysis BFT-based PoS’s consensus fault toler-
ance varies among the three above-mentioned implementa-
tions. In Tendermint, although block proposers are determined
based on PoS, all validators have the equal weight in the
consensus process. Therefore Tendermint tolerates up to 1/3
of Byzantine validators. In comparison, Algorand and Casper
FFG tolerate up to 1/3 of maliciously-possessed stakes. In
Algorand, if an attacker owns more than 1/3 of total tokens,
then chance is high that more than 1/3 of the elected committee
members is compromised by the attacker, leading to consensus
failure of BA?. In Casper FFG, if an attacker owns more than
1/3 of total deposited stakes and dominates the communication
within the network, the compromised validators can vote on
conflicting checkpoints without getting punished. Since a typ-
ical BFT consensus protocol can incorporate a checkpointing
mechanism to ensure deterministic finality of blocks, costless
simulation attacks can be naturally avoided (to introduce in
Section VI-E).

D. Delegated PoS (DPoS)

DPoS can be seen as a democratic form of committee-
based PoS in that the committee (consensus group) is chosen
via public stake delegation. It is currently used by BitShares
2.0 (2015) [110], Lisk (2016) [111], EOSIO (2017) [10], and
Cosmos [104]. DPoS was designed to control the size of the
consensus group so that the messaging overhead of the consen-
sus protocol remains manageable. Members of the consensus
group are also called delegates. The election of delegates
is called the delegation process, and a general example is
shown in Fig. 9. In the actual case, the delegation process
and the soliciting of votes may involve outside incentives.
And the delegation process may turn out to be an interesting
socioeconomic phenomenon.

Generally, an aspirating delegate needs to attract enough
votes from normal token holders. This is often accomplished
by offering a popular application and building up reputation
through propaganda campaigns. By casting a vote to a delegate
via a blockchain transaction, a token holder entrusts the
delegate with its own stake. As a result, the delegate harvests
the stake voting power from her voters and acts as their

Fig. 9. Illustration of the delegation process in DPoS. Small stakeholders
vote for delegates with their stakes and the most voted delegates form the
consensus group.

proxy in the consensus process. A token holder can switch
vote to another delegate via another delegation transaction.
Take EOSIO for example, the EOSIO protocol mandates that
anyone can be a delegate and solicit votes, but only those
who ascend to top 21 can join the consensus group, among
whom the right of block proposal is equally shared. EOSIO
employs a pipelined PBFT-style consensus scheme to finalize
the proposed blocks across the 21 delegates [112]. Specially,
the physical time is divided into slots and the 21 delegates
take turn to propose a block in a round-robin fashion. At each
slot when a delegate proposes a block, the consensus scheme
goes through pre-commitment and commitment phases and
decides on the fate of the proposed block. Because of the small
consensus group size and orderly PBFT-style procedure, every
new valid transaction can be near-instantly propagated to the
consensus group and finalized in the blockchain.

To enforce transaction validation and consensus safety,
DPoS’s incentive mechanism is designed to encourage hon-
est delegation and consensus participation. Every delegate
receives daily vote-reward proportional to the votes she has.
Once ascending to the consensus group, delegates also receive
block rewards for validation work.

Security analysis Assuming BFT is used by the consensus
group for block finalization, which is recommended since the
group size is limited, DPoS can tolerate 1/3 of delegates being
malicious. For example, EOSIO can tolerate at most 6 out of
21 delegates being malicious. In the real world they may not
wish to misbehave or collude at all, since all delegates have
revealed their identities to voters and would be scrutinized for
any misconduct.

E. Vulnerabilities of PoS

Although heralded as the most promising mechanism to
replace PoW, PoS still faces several vulnerabilities.

1) Costless simulation: Costless simulation is a major vul-
nerability of non-BFT-based PoS schemes, especially chain-
based PoS in which PoS is used to simulate the would-be
PoW process. Costless simulation literally means any player
can simulate any segment of blockchain history at the cost
of no real work but speculation, as PoS does not incur
intensive computation while the blockchain records all staking
history. This may give attackers shortcuts to fabricate an
alternative blockchain. The four subsequent vulnerabilities,
namely nothing-at-stake, posterior corruption attack, long-
range attack, and stake-grinding attack are all based on
costless simulation.

22

2) Nothing-at-stake: Nothing-at-stake is the first identified
costless simulation problem that affects chain-based PoS. It
is also known as “multi-bet” or “rational forking” problem.
Unlike a PoW miner, a PoS minter needs little extra effort
to validate transactions and generate blocks on multiple com-
peting chains simultaneously. This “multi-bet” strategy makes
economical sense to PoS nodes because by doing so they can
avoid the opportunity cost of sticking to any single chain.
Consequently if a significantly fraction of nodes perform the
“multi-bet” strategy, an attacker holding far less than 50%
of tokens can mount a successful double spending attack
[113]. Nothing-at-stake problem can be practically solved by
penalizing whoever multi-bets, such as forfeiting part of or all
their stakes. However the penalties could still be reversed if
the attacker eventually succeeds in growing a malicious chain.

3) Posterior corruption: Dubbed by Bentov [97] as “brib-
ing attack” in 2014, posterior corruption is another attack
utilizing costless simulation against PoS. The key enabler of
posterior corruption is the public availability of staking his-
tory on the blockchain, which includes stakeholder addresses
and staking amounts. An attacker can attempt to corrupt
the stakeholders who once possessed substantial stakes but
little at present by promising them rewards after growing an
alternative chain with altered transaction history (we call it
a “malicious chain”). When there are enough stakeholders
corrupted, the colluding group (attacker and corrupted once-
rich stakeholders) could own a significant portion of tokens
(possibly more than 50%) at some point in history, from
which they are able to grow an malicious chain that will
eventually surpass the current main chain. Since posterior
corruption is only possible because the private/public keys are
fixed for blockchain participants, key-evolving cryptography
(KEC) [114] can be applied so that the past signatures cannot
be forged by the future private keys. Ouroboros Praos [101]
currently adopts KEC for this purpose. Alternatively, as is in
Snow White [9] and Casper FFG [14], checkpointing can be
used to finalize the ledger and eliminate the possibility of
posterior corruption.

4) Long-range attack: Coined by the Ethereum founder
Vitalik Buterin [115], long-range attack can be viewed as the
ultimate form of costless simulation. It foresees that a small
group of colluding attackers can regrow a longer valid chain
that starts not long after the genesis block. Because there were
likely only a few stakeholders and a lack of competition at
the nascent stage of the blockchain, the attackers can grow
the malicious chain very fast and redo all the PoS blocks
(i.e. by costless simulation) while claiming all the historical
block rewards. If the blockchain network is not incentivized
by block rewards, the attackers can still deploy a similar long-
range scheme called stake-bleeding attack [116] as long as
transaction fees exist. That is, the attackers can accumulate
significant amount of wealth by collecting most of historical
transaction fees through the malicious chain. Through either
scheme, once the malicious chain overtakes the main chain, it
is released to public and becomes the new main chain.

While zero transaction fees can counter stake-bleeding
attacks, general long-range attacks (and costless simulation as
a whole) can be resolved by checkpointing, a more radical

measure. Checkpointing is widely used in BFT protocols to
ensure the finality of system agreements and safely discard
older records. For permissionless blockchains (the main venue
for chain-based PoS), however, checkpointing can undermine
decentralization, as the finality of checkpoints always requires
the endorsement from certain authoritative entities.

5) Stake-grinding attack: Generally, the block generation
competition in Nakamoto-style blockchain with proof-of-X
block proposal is a pseudo-random process that a higher X (eg.
work, stake) yields a higher probability of winning the com-
petition. However, unlike PoW in which pseudo-randomness
is guaranteed by the brute-force use of a cryptographic hash
function, PoS’s pseudo-randomness is influenced by extra
blockchain information—the staking history. Malicious PoS
minters may take advantage of costless simulation and other
staking-related mechanisms to bias the randomness of PoS in
their own favor, thus achieving higher winning probabilities
compared to their stake amounts [8]. For example, in chain-
based PoS blockchains such Peercoin, at a certain historical
point of the blockchain, attackers may iterate through different
block headers and increase the probability of generating a
valid block with their stakes [117]. For committee-based and
BFT-based PoS schemes that decouple the election of block
proposers from block generation, stake-grinding attacks can
be mitigated by ensuring the PoS pseudo-randomness with a
secure block proposer election scheme that involves minimal
local information. Examples include Ouroboros, Ouroboros
Praos, and Algorand.

6) Centralization risk: PoS faces a similar wealth central-
ization risk as with PoW. In PoS the minters can lawfully
reinvest their profits into staking perpetually, which allows the
one with a large sum of unused tokens become wealthier and
eventually reach a monopoly status. When a player owns more
than 50% of tokens in circulation, the consensus process will
be dominated by this player and the system integrity will not
be guaranteed. Take Ethereum’s Casper FFG for example, the
proposed PoS scheme is built upon the current PoW system,
of which the cryptocurrency ethers can be directly used for
staking. This gives initial advantages to those who have
already accumulated huge wealth during Ethereum’s PoW
operation. Potential countermeasures against monopolization
in PoS mainly come from the incentive mechanism and eco-
nomic perspective. In addition to the stake valuation scheme
that improves the winning chances of small stakeholders (see
Section VI-A), we can use off-chain factors to complicate the
staking process (EOSIO for example) and impose taxation on
the blocks generated by large stakeholders, to name a few.

VII. OTHER EMERGING BLOCKCHAIN CONSENSUS
MECHANISMS AND PROTOCOLS

The majority of contemporary blockchain consensus proto-
cols make use of established schemes including PoW, PoS,
and BFT. There are also numerous other promising proposals
for specific application scenarios, many of which are still
conceptual and cover just one or two of the five blockchain
consensus protocol components. In this section we present five
of such proposals, namely proof of authority (PoA), proof

23

of elapsed time (PoET), proof of TEE-stake (PoTS), proof
of retrievability (PoR), Ripple consensus protocol/algorithm
(RCPA). A comprehensive review of two types of DAG-based
protocols, namely blockDAG and txDAG, are also provided.

A. Proof of Authority (PoA)

Proof of authority was coined by Ethereum co-founder
Gavin Wood as an alternative to PoW and PoS. It is currently
deployed in Ethereum’s Rinkeby (2017) and Kovan (2017)
testnet, and POA Network (2018) [11]. To avoid name con-
flicts, in later comparisons we refer to Bentov’s PoA as PoAct,
and proof of authority as PoA. In a nutshell, PoA is a special
case of PoS in that a validator stakes with its identity instead
of monetary tokens. To qualify as a PoA validator in the
consensus group, a participant needs go through a mandatory
certification process to build up its authority. It generally
involves having the unique identity verified, demonstrating the
ability to contribute consistently to the consensus, and making
all certification documents publicly available. The consensus
group should be stable and small in size, and publicly scruti-
nized so that users can entrust the consensus group for reliable
transaction processing and blockchain curation. If a validator
shows incompetence in such tasks or misbehaves, it will be
discredited by users and peer validators.

Security analysis The fault tolerance of a PoA blockchain
depends on the consensus protocol used by the consensus
group. Besides BFT protocols with 1/3 fault tolerance thresh-
old, Nakamoto-style protocols such as Parity’s Authority-
Round (AuRa) [118] can also be used to tolerate up to
50% of colluding validators. Featured by its small but trusted
consensus group, PoA is a good example of trading decen-
tralization for security and performance. To prevent validators
from collusion, they are required to operate independently
and constantly monitored by users. PoA is currently used in
Ethereum’s Rinkeby/Kovan testnet and POA Network [11].

B. Proof of Elapsed Time (PoET)

PoET was proposed by Intel as an alternative mining
mechanism in 2016 and subsequently used in the Hyperledger
Sawtooth family [119]. Instead of undergoing the hashing-
intensive mining, PoET simulates the time that would be
consumed by PoW mining. That is, every node randomly backs
off for an exponentially distributed period of time before an-
nouncing its block. To ensure that the local time truly elapses,
PoET requires the back-off mechanism to be carried out in
a trusted execution environment (TEE), which is an isolated
memory area that provides integrity and confidentiality to
the program running inside, against a compromised hosting
platform. Specially, the program enclosed in a TEE is called
an “enclave”. Intel SGX [120] and Arm TrustZone [121] are
the two major TEE solutions. Among other utilities, TEE
provides an integrity proof of enclave program through remote
attestation, which essentially helps the network establish trust
on consensus participants.

Taking Hyperledger Sawtooth for example, the PoET pro-
tocol works in two phases for every participating node i:

1) TEE setup: Node i first obtains the PoET protocol pro-
gram from a trusted source and instantiates the program
on its SGX machine wherein the random back-off routine
runs inside an enclave. The trusted program generates
a signing key pair 〈PKi,SKi〉 for node i and starts the
attestation process which results in sending an attestation
report to the network. The attestation report contains the
public key PKi and the enclave measurement signed by
the Intel Enhanced Privacy Identification (EPID) private
key inside the enclave. Other nodes in the network will
validate the node i’s hardware authenticity through Intel
Attestation Service (IAS) and validate the attestation
report before accepting node i.

2) Participating in consensus: The consensus process is
similar to Nakamoto except for block generation and
validation. For each block cycle, node i waits for a period
dictated by the random back-off routine running in the
enclave before producing a new block. The enclave then
generates a certificate of back-off completion signed by
node i’s private key SKi which is broadcast to the network
along with the new block. Upon receipt of the new block,
other nodes validate the block content and the back-off
completion certificate with node i’s public key PKi. A
block shall be appended to the blockchain if it passes
validation and the finalization rule.

While PoET was initially proposed to substitute the PoW for
block proposal without touching on the longest-chain rule, the
usage of hardware-assisted public key cryptography actually
enables the use of more efficient BFT algorithms for block
finalization. The hybrid PoET-BFT idea is currently used by
Sawtooth PBFT [122], a sub-project of Hyperledger Sawtooth.

Security analysis PoET can tolerate up to 50% TEE nodes
being malicious. Since every TEE node runs the same random
back-off routine in its enclave, a player can shorten its ex-
pected back-off time by running multiple TEE nodes, which is
susceptible to Sybil attacks. If more than 50% of TEE devices
collude or are controlled by an attacker, they can ultimately
win the block race and keep extending the malicious chain.
Therefore, PoET is most suited for permissioned blockchains,
where every participant is authenticated and runs one TEE
node.

For Hyperledger Sawtooth, Intel is the sole TEE hardware
vendor and attestation service provider, which poses a single
point of risk to the network. The validity of remote attestation
depends on the integrity of SGX implementation and the
availability of IAS. Recent attacks such as cache attacks
[123], Foreshadow [124] and Foreshadow-NG [125] have
demonstrated the ability to extract the EPID private key from
hardware exploiting side channels and speculative execution,
posing a security threat at the hardware level.

C. Proof of TEE-Stake (PoTS)

PoTS is another protocol harmonizing TEE and blockchain
consensus. It was first proposed by Li et al. [126] in 2016 and
formalized by Andreina et al. [127] in 2019. A PoTS node i
follows the same setup procedure as in PoET to bootstrap a
TEE enclave, generate the signing key pair 〈SKi,PKi〉, and

24

attest the setup to the network. Instead of simulating the
would-be elapsed time of PoW mining, the enclave program
of PoTS is akin to Algorand’s cryptographic sortition scheme
that randomly selects a committee according to the stake
distribution. Every node in the committee is eligible to propose
a new block for the coming block cycle. To prove the block
proposal eligibility to the network, the block also includes
the eligibility proof signature σ

ep
SKi

, which is produced by the
enclave program of the block generating node i. Once other
nodes receive this block, they validate the block content as
well as signature σ

ep
SKi

using node i’s public key PKi. The
longest-chain rule is then used to determine whether to accept
this block into the blockchain.

Security analysis PoTS can tolerate up to 50% of all
stake value at TEE nodes being maliciously controlled, the
same as the fault tolerance of chain-based or committee based
PoS. Compared to PoET, the incorporation of staking gives
PoTS higher robustness against Sybil attacks, which implies
its applicability to permissionless blockchains. Furthermore,
the security offered by public key cryptography and TEE-
certified execution of committee selection helps PoTS counter
the stake-bleeding and stake-grinding attack. The single point
of risk in TEE hardware vendor still exists.

D. Proof of Retrievability (PoR)

PoR was originally proposed by Juels et al. [128] in 2007 as
a cryptographic building block for a semi-trusted distributed
archiving system. The core feature of PoR is to allow a
file owner to check if its online files or file fragments are
securely stored and retrievable through a challenge-response
protocol. The retrievability of a target file F at a remote node
ni can prove ni indeed spends the required amount of storage
resources on F . Because of the space requirement behind
retrievability, PoR is also known as proof of space.

In the role of a consensus protocol, PoR was first used
by the cryptocurrency Permacoin, proposed by Miller et al.
[129] in 2014. It was designed as a mining-free alternative to
PoW. First, a central dealer publishes a target dataset F and
computes the digest of F (the Merkle hash tree root of all
segments of F). Then each participant stores some random
segments of F per its storage capability, and computes the
digest of these segments. For every block cycle, the dealer
initiates a lottery game with a random puzzle. Then every
participant derives a lottery ticket consisting of a fixed number
of PoR challenges from its locally stored segments, public
key, and the puzzle. Participants with more segments stored
have higher probability of winning the lottery and thus being
eligible to generate a block. All PoR challenges are stored in
the new block and verified by the whole network. Permacoin
also implements a signature scheme to discourage participants
from outsourcing the storage task. Aside from PoR, Permacoin
inherits Bitcoin for other consensus components.

Compared to PoW, PoR has two economical advantages.
First, file storage consumes far less energy than brute-force
mining, and storage space as a resource can be recycled.
Second, PoR can be repurposed for meaningful storage tasks.
For example the target dataset can be some extremely large

but useful public dataset. In fact, the latter advantage is not
seen in any other proof-of-X schemes.

Security analysis Since the block winning rate of a
participant is proportional to its local storage space, PoR can
tolerate up to 50% of gross storage being held up by the
malicious party. Although this still can trigger an arm race
of storage resources, it downplays the efficacy of ASICs and
encourages a wider variety of mining participants. Meanwhile,
the 50% threshold depends on the job of the randomness of the
central dealer. To ensure the diversity of lottery tickets across
all participants and increase the randomness of the lottery,
the target dataset should be large enough so that participants
stores almost non-overlapping segments. This assumption can
be undermined if the dealer chooses a dataset not large enough
or deliberately distributes overlapped segments.

E. Ripple Consensus Protocol/Algorithm (RCPA)

RCPA was proposed by Schwartz et al. [130] in 2014 as the
underlying protocol for Ripple, a global payment and gross
settlement network operated by the Ripple company. Unlike
public blockchains such as Bitcoin and Ethereum, Ripple treats
individual transactions as the ledger’s atomic items, similar to
a transaction log.

In Ripple network, only validator nodes can participate in
consensus. We call a validator node “node” for simplicity.
Nodes collect transactions from clients and propose them
to peer nodes for consensus. In initialization, every node
establishes a unique node list (UNL) which identifies the nodes
it can trust and directly exchange messages with. A UNL
relationship is reciprocal. We call a group of nodes that are
fully connected by UNL relationships a UNL clique.

Algorithm 8: RPCA (validator node)

1 Joining Ripple network as a validator;
/* Main loop */

2 for new epoch do
3 Collect valid transactions (new or leftover from

previous epochs) ⇒ CandidateSet;
4 for r = 1→MaxRound do
5 Broadcast CandidateSet to UNL peers;
6 After receiving transactions from UNL peers, add

them to CandidateSet and broadcast a vote on
the veracity (yes/no) of every transaction;

7 After receiving votes from UNL peers, discard
transactions from CandidateSet whose yes-votes
fall short of a threshold T Hr
(T HMaxRound = 80%);

8 end
9 The remaining transactions in CandidateSet are

accepted into the ledger;
10 end

The operation of RCPA at one node is shown in Algorithm
8. RCPA runs in epochs, each of which finalizes a certain set
of transactions into the ledger. Every epoch involves multiple
rounds of transaction filtering. The ledger is marked “closed”
after the final round. Specially, the yes-vote threshold of the

25

final round T HMaxRound = 80%, which is designed to cope with
the network connectivity assumption that any two UNL cliques
UNLi,UNL j must be at least 20% overlapped, i.e. sharing at
least 1

5 max(|UNLi|, |UNL j|) inter-clique UNL relationships.
In an ideal environment, as long as MaxRound is large enough,
all valid transactions proposed by non-faulty nodes should
eventually surpass the 80% yes-vote threshold.

Security analysis RCPA imitates a relaxed DLS protocol
with an artificial BFT bound of 1/5. It further requires no more
than 1/5 of nodes are faulty in every UNL clique in order to
ensure overall network consensus. Compared to PBFT that
achieves 1/3 Byzantine fault tolerance with O(N2) message
complexity in a fully connected network, RPCA’s 1/5 fault
tolerance bound trades for a lower connectivity requirement
and thus lower message complexity per block cycle, which is
O(MK2) = O(NK) where K is the clique size and M = N/K
is the number of cliques. Therefore Ripple demonstrates the
possibility of trading fault tolerance for better performance
when a certain level of trust is assumed. On the down side,
RCPA’s multi-round broadcast scheme among a UNL clique
and the quick convergence of votes require high synchrony
among clique members. This impairs Ripple’s decentralization
capability in practical settings.

Ripple’s current customers are primarily established corpo-
rations and financial institutions. Possible reasons include the
above-mentioned synchrony requirement and that the 1/5 fault
tolerance can be too restrictive for low-trust environments.
Interestingly, Stellar [131], originally a fork project of the
Ripple, has shifted to federated Byzantine quorum systems
(FBQS) for a loose synchrony requirement on participants and
achieves the 1/3 BFT bound [132].

F. BlockDAG-based Consensus Protocols

Starting from 2016 there have been increasing interests in
non-linear ledger structures for the aim of better performance,
among which directed acyclic graph (DAG) has received the
most attention. Consensus schemes with DAG ledger structure
mark a significant divergence from Nakamoto’s blockchain
design. Their key insight is that transaction throughput should
not be limited by a restrictive consensus object, such as a
linearly growing chain of blocks with fixed time intervals.
Instead, the influx of transactions should drive the ledger
expansion. There are two types of DAG ledgers: block-based
DAG (blockDAG) and transaction-based DAG (txDAG). In
this subsection we focus on blockDAG and defer the latter
type to the next subsection.

In a blockDAG, every vertex contains a collection of trans-
actions which is similar to the block concept in blockchain.
What sets blockDAG apart from blockchain is that every
block can be hash-pointed to multiple parent blocks. This
leads to a situation that every new block can be appended
to the DAG with considerable flexibility on how many and
which parents to point to. This parent-selecting conundrum
is commonly regarded as the major challenge for DAG-based
consensus schemes and pertains to the system’s transaction
processing capability and security against Sybil and double-
spending attacks. Next we introduce two concurrently pro-

posed blockDAG schemes, SPECTRE and PHANTOM, with
a focus on the parent-selection mechanism.

1) SPECTRE: Proposed by Sompolinsky et al. [133]
in 2016, SPECTRE is one of the first well-documented
blockDAG proposals. SPECTRE requires any node who wants
to mine a new block to find all blocks of zero in-degree
(i.e. “tips”) in the DAG and hash-point the new block header
to these tips before starting the PoW mining for the new
block. The node broadcasts the newly mined block to the
network. Every node initiates a recursive voting procedure to
determine the order of any two blocks in the current DAG. This
recursive procedure eventually results in a pairwise ordering
over the blockDAG. Every new block should be incremental
to the past pairwise ordering effort. This pairwise ordering
scheme essentially allows SPECTRE to decide between two
conflicting blocks (i.e. containing transactions that spend the
same UXTO).

2) PHANTOM: PHANTOM [134] is a concurrent
blockDAG proposal of SPECTRE by the same authors. One
notable weakness of SPECTRE is that the pairwise ordering
of blocks may not extend to a fully linear ordering. This leads
to SPECTRE’s weak liveness (i.e. only supports naturally
chronological transactions) and an increased risk of balancing
attacks in that conflicts may not be solved. In contrast,
PHANTOM realizes fully linear ordering of transactions and
blocks in the DAG via the following algorithm. Every node
searches the blockDAG for the largest k-cluster of blocks. k
denotes the node degree in the cluster, and is a predefined
security parameter that rarely k or more honest blocks are
created simultaneously. The k-cluster is regarded as honest
and all blocks within are linearly ordered. The transactions
covered by the cluster are then validated in the new order.
Notably, the largest 0-cluster case is equivalent to the
longest-chain rule of Nakamoto consensus. The authors also
argues that PHANTOM can be utilized alongside SPECTRE
for more flexible consensus performance, as the two ordering
schemes are complimentary to each other.

Security analysis Though with an innovative blockDAG
ledger structure and a carefully designed ordering scheme
for finality, SPECTRE and PHANTOM inherit other protocol
components from Nakamoto’s, including PoW-based block
proposal, gossip-based information propagation, validity check
on PoW and transactions. Therefore, the two blockDAG based
schemes can tolerate up to 50% of maliciously controlled
computing power. On the performance side, blockDAG-based
schemes can theoretically support arbitrary throughput capac-
ity, only to be capped by network bandwidth and nodes’ pro-
cessing speed. On the downside, the increased parent-selection
flexibility may expose more attack surfaces to adaptive attack-
ers (such as the balancing attack against SPECTRE), which
is still an ongoing research topic. Alternatively, BlockDAG
can be designed to incorporate a specific blockchain as a
main chain, reflecting a similar idea as the GHOST rule.
Conflux, a recent blockDAG scheme proposed by Li et al. [86],
resorts to the GHOST rule for the finalization of a pivot chain,
which is used as the reference for partitioning the blockDAG
into chronological order. This scheme yields high transaction
throughput but also higher confirmation latency.

26

Fig. 10. An example of IOTA Tangle’s DAG structure. Every new transaction
(hollow green) needs to approve two unapproved transactions (“tips”, hollow
blue) and becomes a new tip. If only one tip is available, choose an approved
transaction for the other. The arrow direction symbolizes a user’s tip selection
behavior.

G. TxDAG-based Consensus Protocols

Compared to blockDAG, txDAG further breaks the shackles
of block. Since different blocks in a blockDAG can still hold
overlapped transactions, it takes extra bandwidth and process-
ing to solve conflicts. In txDAG, every vertex represents a
unique transaction and diverging branches from a vertex shall
hold disjoint transactions. This conveniently avoids the conflict
resolution effort as in blockDAG and effectively frees up more
processing power at each node and allows for higher transac-
tion throughput, only to be capped by network bandwidth.
On the other hand, the blockless design of txDAG also leads
to more challenges especially regarding to the convergence
and effective management of ledger. Next we introduce three
txDAG schemes: IOTA Tangle, Byteball, and Nano.

1) IOTA Tangle: IOTA is a blockchain initiative designed
for machine-to-machine micro payments in the IoT setting.
Tangle, its underlying consensus protocol, was formalized by
Popov [135] in 2016. An example of Tangle’s DAG is shown
in Fig. 10. To append a new transaction to the DAG, a user
needs to approve (i.e. validate) two unapproved transactions
(tips) of the DAG in order to submit a new transaction. If
there is only one tip available, the user chooses an approved
transaction instead. The user attaches the hashes of the two
chosen transactions to the new transaction and works on a
PoW puzzle. The proof is broadcast along with the new
transaction. Therefore, every vertex in the DAG has an out-
degree of two and contains a PoW proof. The two-tip rule also
serves as the incentive mechanism for honest participation. For
this reason, IOTA Tangle does not reward block miners with
cryptocurrency nor charge transaction fees.

When multiple conflicting tips (i.e. double-spending) are
detected by a user, only one can be valid. In this case the user
resorts to a tip-selection scheme to choose one that yields the
highest acceptance probability in the long term. Other conflict-
ing tips are considered invalid and then orphaned. Tangle cur-
rently employs a Markov-chain Monte Carlo (MCMC) based
scheme to estimate the long-term acceptance probabilities of
conflicting tips.

When there are more than two non-conflicting tips available
(i.e. multiple valid choices), the user chooses two tips accord-
ing to a weight based strategy, which works as follows. Every
transaction is assigned an initial weight, which is proportional
(discrete values) to the PoW effort spent on this transaction.

The user chooses two tips with the highest weights. If the
user only possesses a subgraph of the DAG, it performs two
weighted random walks from the beginning of the subgraph to
decide two tip choices [136]. The weights of a tip transaction
and its preceding transactions along the lineage of approvals
in the DAG shall accumulate by the weight of the approving
transaction. As a result, as time passes the DAG ledger will
look like a cascade of transactions that advances toward the
direction of the highest accumulative weight. The MCMC-
based scheme, the highest-accumulated-weight strategy, and
the weighted random walk algorithm can be regarded as the
DAG version of longest-chain rule, and essentially contribute
to Tangle’s tamper-resistance and probabilistic finality.

Theoretically, Tangle’s DAG data structure can boost IOTA’s
transaction capacity to millions per second, or unbounded.
This is due to the DAG’s native support for branches: when
multiple valid tips are present, a new transaction just chooses
two to approve, while leaving the remaining tips to other
new transactions. As a result, the more new transactions are
generated, the more likely a tip gets approved, which can
accommodate more new transactions. In practice, Tangle’s
transaction capacity is still capped by link-/physical-layer
communication bandwidth.

2) Byteball: Byteball was proposed by Churyumov [137] in
2016 and currently used in the Obyte cryptocurrency. Byteball
features three major differences from Tangle: arbitrary tip
number, a main chain (MC) for tip selection, a fixed witness
group for DAG consensus and finalization. Every vertex v
is assigned a main chain index (MCI), which refers to the
height of the closest MC vertex that has a directed path to
v. Whenever a node wants to attach a new transaction to a
tip, the tip should be chosen based on its validity and MCI.
Meanwhile, the MC is determined by the collective effort of
the witness group and the network. Byteball’s witness group
consisting of 12 reputable entities decides the next vertex of
MC. The participation of witnesses in the blockDAG helps
assign a witness level to any candidate vertex. The one with
the higher witness index is attached to MC.

To mitigate Sybil attacks and spams, Byteball collects
a storage fee for every byte of transaction content (both
header and payload) recorded in the txDAG. These fees,
also known as commissions, are paid to witnesses for their
honest contribution. Therefore, the witnesses are essentially
the consensus participants that work towards the Byteball’s
operation safety. Their revealed identities and small population
contributes to deterministic finality and efficient consensus, but
also an increased risk of targeted DoS attack.

3) Nano: Nano was proposed by LeMahieu in 2014, for-
mally presented in 2018 [138], and is currently used by the
namesake cryptocurrency. Compared to Tangle and Byteball’s
txDAG ledger, Nano has a more refined ledger structure which
is built upon parallel blockchains. Nano’s txDAG can be
characterized as a block-lattice structure. Every node runs a
local blockchain that is not entangled with the others. Notably,
we call it “blockchain” for the consistency with the whitepaper
[138], though every block is actually a single transaction.
A normal transaction is fulfilled by two transactions: a send
transaction at the sender’s blockchain and a receive transaction

27

at the receiver’s blockchain. PoW is also attached to transac-
tions for anti-spamming. When an account is detected double-
spending a transaction received by another node (i.e. a fork),
the receiver initiates a voting procedure wherein each vote is
weighted by the voter’s account balance (i.e. stake).

A key insight of Nano’s block-lattice based txDAG is that
forks and other faulty transactions only affect the accounts ref-
erenced in the said transactions. In other words, the resolution
of forks does not hamper the processing of transactions from
unaffected accounts. This property allows Nano to provide
stable and fast transaction confirmation. On the downside, the
stake-weighted voting scheme requires high synchrony among
nodes and may not scale well in network size.

Security analysis For Tangle, since PoW is enforced for
transaction generation, probabilistic finality is guaranteed as
long as the honest nodes control more than 50% of gross
computing power. Byteball’s consensus safety relies on the
majority consensus of the 12 witness. Since Nano resorts to a
stake-weighted scheme for fork resolution, its fault tolerance
is capped by 50% of tokens. In terms of network decentraliza-
tion, we consider Tangle the most desirable design among the
three txDAG schemes because it does not require a dedicated
identified group or a synchronized voting mechanism to ensure
consensus finality. Nonetheless, the current version of Tangle’s
MCMC-based tip-selection is susceptible to parasite chain
attack, as is documented in [135]. An attacker can grow a
parallel chain from some early point all the way to the current
DAG height, with intermittent connections to the DAG. An
attacker may need significantly less than 50% of network
computing power to succeed, as the malicious chain may carry
far fewer transactions than the main DAG. To address this
issue, Tangle currently relies on a centralized checkpointing
scheme to periodically confirm past transactions. The IOTA
community plans to improve the MCMC-based tip-selection
scheme in hope of obtaining the 50% fault tolerance in a truly
decentralized fashion.

Snowflake-Avalanche [139], a consensus protocol family
proposed by Cornell Team Rocket, provides an alternative
to Tangle’s tip selection problem. Specially, the txDAG-based
Avalanche protocol builds upon a hierarchy of leaderless BFT
schemes, namely Snowflake and Snowball, for conflict resolu-
tion during parent transaction selection. Interested readers are
referred to the whitepaper [139] for more details.

VIII. COMPARISON AND DISCUSSION

Table III, IV compare the protocols that we have discussed
so far from three aspects: five-component framework compo-
sition, fault tolerance, and transaction processing capability.
The latter includes maximum throughput and transaction con-
firmation latency. For some consensus protocols, not all the
five components are specified in the white paper. Protocols
designed for permissioned blockchains (eg. BFT-SMR, PoET,
PoTS) do not need to specify incentive mechanism; protocols
that were initially proposed to substitute PoW (eg. PoA, PoET,
PoR) inherit other components from Nakamoto’s protocol by
default.

The fault tolerance capability of a consensus protocol
largely depends on the block finalization mechanism. For

Fig. 11. Comparing different blockchain consensus protocols on transaction
throughput and scalability in network size. Note that for comparison purposes,
we consider DAG-based schemes as wide-sense blockchain protocols.

example, the 50% bound (of computing power or stake value)
applies to all protocols that inherit the probabilistic finality
property from Bitcoin; protocols with BFT-style block final-
ization typically achieve 33% fault tolerance and guarantee de-
terministic finality. In hybrid schemes, the 33% fault tolerance
is usually coupled with the block proposal mechanism or a pre-
existing identity scheme. In Hybrid PoW-BFT and BFT-based
PoS, each node’s voting weight in the BFT consensus stage is
augmented by its block proposing capability. This is achieved
by either linking a player’s opportunity of participation in
BFT consensus to the PoX process (eg. Hybrid PoW-BFT,
Tendermint), or directly weighting a player’s vote in the BFT
consensus by the player’s stake value (eg. Algorand, Casper
FFG). In other hybrid schemes such as PoA-BFT and PoET-
BFT, the PoX process is purposed for identity management
and thus the fault tolerance threshold is 33% of identities.
DAG-based protocols generally achieves probabilistic finality
(except Byteball) and 50% fault tolerance of either computing
power, consensus participants, or token wealth.

The statistics on transaction processing capability were
fetched from either the simulation result in protocol white
paper or documented experiment. The throughput metric mea-
sures the maximum TPS a protocol can handle, and is only
precise to the scale of magnitude, i.e. sub-ten, tens, hundreds,
or thousands. The confirmation latency metric estimates time
for a submitted transaction to be finalized in the blockchain.
We observe that protocols with probabilistic finality tend
to have higher confirmation latency (typically more than 1
minute), and high throughput is often accompanied by low
conformation latency.

We are also interested in another performance metric—
scalability in network size, which measures how well a con-
sensus protocol can maintain its transaction capacity when
network size grows. Given the difficulty of performing large-
scale experiments on actual blockchain networks, the scala-
bility results are either fetched from the simulation study in

28

TABLE III
A COMPARISON OF BLOCKCHAIN CONSENSUS PROTOCOLS

Consensus
Protocol

Five-Component Framework Fault
Tolerance

Throughput
(TPS)

(Examples/
Realizations)

Block
Proposal

Block
Validation∗

Information
Propagation

Block
Finalization

Incentive
Mechanism

[Confirmati-
on Latency]

BFT-SMR
(PBFT, Honey-
BadgerBFT)

Client
operation
request

Signature
check

Broadcast Mutual
agreement on
the same state

(N/A) 33%
servers

Thousands
[1s-1m]

Nakamoto
(Bitcoin,
Litecoin)

PoW PoW check Gossiping Longest-chain
rule†

Block reward
and
transaction fee

50%
computing
power

Sub-ten
[10m-60m]

Nakamoto-
GHOST
(Ethereum)

PoW
(Ethash)

PoW check Gossiping
via secure
channels

A variation of
GHOST rule†

Block reward
and
transaction fee

50%
computing
power

Tens
[6m-10m]

Bitcoin-NG
(Waves-NG)

PoW for key
blocks

PoW check
for key
blocks

Gossiping Longest-chain
rule†

Block reward
and
transaction fee

50%
computing
power

Hundreds
[10m]

Hybrid
PoW-BFT
(PeerConsens,
SCP, ByzCoin)

PoW-based
BFT
committee
election

PoW check Broadcast
among BFT
committee

Longest-chain
rule† for chain
(PBFT for
transactions)

� 33%
computing
power

Hundreds
[10s-1m]

Chain-based
PoS (Peercoin,
Nxt, PoAct)

PoS PoS check Gossiping Longest-chain
rule†

Block reward
and
transaction fee

50%
deposited
stake value

Tens
[10-60m]

Committee-bas-
ed PoS (Ourobo-
ros, Praos, CoA,
Snow White)

PoS-based
committee
election

Proposer
eligibility
check

Broadcast
among
committee

Longest-chain
rule†

Block reward 50% token
wealth

Hundreds
[1m-10m]

BFT-based PoS
—Tendermint
(Cosmos Hub)

PoS-based
round robin

Proposer
eligibility
check

Broadcast
among
validators

BFT (adapted
DLS)

Block reward 33% token
wealth

Thousands
[1s-3s]

BFT-based PoS
—Algorand

PoS-based
committee
election

Proposer
eligibility
check

Broadcast
among
committee

BFT (adapted
Byzantine
agreement)

Block reward 33% token
wealth

Hundreds
[20s-1m]

BFT-based PoS
—Casper FFG
(Ethereum 2.0)

PoW
(Ethash)

PoW &
Checkpoint
tree check

Broadcast
among
validators

BFT (with
staked votes)

Block reward
for miners and
validators

33%
deposited
stake value

Thousands
(if sharding
used)

DPoS
(EOSIO, Lisk,
BitShares)

PoS with
stake
delegation

Delegate
eligibility
check

Broadcast
among
delegates

BFT
(suggested,
not limited to)

Block reward
and vote
reward

33%
delegates

Thousands
[<1s]

PoA
(Rinkby, Kovan,
POA Network)

PoA Block propo-
ser identity
check

�
Broadcast‡

�
HoneyBadger-
BFT‡

�
Transaction
fee‡

50% TEEs
(33% if
BFT used)

Tens to
hundreds
[10s-1m]

PoET
(Hyperledger
Sawtooth family)

PoET within
TEE

TEE
certificate
check

�
Broadcast‡

�
PBFT‡

� 50% IDs
(33% if
BFT used)

Tens to
thousands
[10s-1m]

PoTS PoTS-based
committe
election

Proposer eli-
gibility&TEE
cert. check

� � � 50% token
wealth

(Unavailable)

PoR
(Permacoin)

PoR File
retrievability
check

� � � 50%
storage
space

(Unavailable)

RPCA
(Ripple)

Any server
can propose
transactions

UNL
membership
check

Broadcast to
UNL peers

Accepting
> 80% voted
transactions

Transaction
fee

20% nodes
in each
UNL

Thousands
[<1s]

∗Block validation also includes validating all transactions inside the block, which is omitted here for space saving.
†: With probabilistic finality. ‡: Unspecified in the protocol white paper, but found in one or more blockchain realizations. �: Unspecified
in the protocol white paper, but the Bitcoin counterpart is usable.

29

TABLE IV
A COMPARISON OF DAG-BASED CONSENSUS PROTOCOLS

Consensus
Protocol

Five-Component Framework Fault
Tolerance

Throughput
(TPS)

(Blockchain
Realizations)

Block/TX
Proposal

Block/TX
Validation

Information
Propagation

Block/TX
Finalization

Incentive
Mechanism

[Confirmati-
on Latency]

BlockDAG
—SPECTRE
—PHANTOM

PoW PoW check Gossiping Pairwise
ordering†/ k-
cluster-blocks
ordering†

� 50%
computing
power

Thousands
or more
[10s-2m]

BlockDAG
—Conflux

PoW PoW check Gossiping GHOST rule
to finalize
pivot chain†

� 50%
computing
power

Thousands
[5m-20m]

TxDAG
—Tangle
(IOTA)

Approving
two tips &
PoW

Tip approval
check &
PoW check

Gossiping Highest
cumulative
weight rule†

Eligibility for
issuing new
transactions

50%
computing
power

Thousands
or more
[1m-10m]

TxDAG
—Byteball
(Obyte)

Approving
tips per main
chain index

Tip approval
check

Gossiping Witnesses
consensus on
main chain

Commissions
collected from
storage fees

50% (or 6)
witness-
eses

Thousands
or more
[30s-10m]

TxDAG
—Nano
(Nano)

Cross-chain
sender-rece-
iver & PoW

Sender
account &
PoW check

Gossiping stake-
weighted
voting†

(Unspecified) 50% token
wealth

Thousands
or more
[1s-10s]

TxDAG
—Avalanche

Approving
one parent

Parent
approval
check

Gossiping Confidence
ordering to
solve conflict†

(Unspecified) 50% par-
ticipants

Thousands
[1s-5s]

†: With probabilistic finality. �: Unspecified in the protocol white paper, but the Bitcoin counterpart is usable.

protocol white paper or based on our speculation on the current
network status. It is worth noting that transaction throughput
and scalability in network size are often recognized as two
integral parts in scalability evaluation of a blockchain system
[18], [3], [140].

Fig. 11 illustrates performance of consensus protocols with
respect to transaction throughput and scalability in network
size along with suitability for permissioned or permissionless
blockchains. For protocols with BFT-style block finalization
mechanism to achieve thousands of TPS, the network size
should be small, typically around several hundred. Meanwhile,
protocols that work for large-scale public networks are pre-
dominantly permissionless and employ a block finalization
mechanism that only achieves probabilistic finality. Their
transaction throughput is usually capped by a hundred TPS
for security reasons. Generally, protocols illustrated farther
to the top right in Fig. 11 tend to achieve better overall
performance and scalability. However the security implication
of such superiority, exemplified by Bitcoin-NG and DAG-
based protocols, is subject to constant scepticism and attracts
ongoing research effort.

As for the suitability for permissioned or permissionless
blockchains, we stress that protocols that need a stable con-
sensus group with participation control and identification are
suitable for permissioned blockchains. These protocols include
PBFT, HoneyBadgerBFT, PoET-BFT, PoA-BFT, and RPCA.
In comparison, protocols including Nakamoto, Nakamoto-
GHOST, chain-based PoS, Bitcoin-NG, Algorand, and Tan-
gle are specifically designed for large-scale permissionless
blockchains. Meanwhile DPoS, Tendermint, hybrid PoW-BFT,
committee-based PoS are designed for permissionless scenar-
ios but rely on an election mechanism for maintaining a stable

consensus group, of which the identities may be revealed for
public supervision. DAG-based protocols are designed with
the aim of scaling up in participant count and thus suited for
permissionless networks.

IX. ON DESIGNING BLOCKCHAIN CONSENSUS PROTOCOL

The rich variety of blockchain initiatives often confounds
novice protocol designers. In this section we offer a succinct
tutorial that hopefully helps protocol designers form reason-
able objectives and avoid pitfalls.

A. The Paradigm Shift in Protocol Design

In the early days of blockchain development, consensus
protocol designs were often coupled with designer’s ingenuity
and heuristics. Anticipating that the increasing number of par-
ticipants would lead to more block contentions and blockchain
forks in Bitcoin, Nakamoto designated the longest-chain rule
for block finalization and cautiously fixed the average block
interval to ten minutes for consensus security [1]. Litecoin [72]
and Ethereum [71] adopted shorter block intervals for faster
transaction settlement. Observing the energy inefficiency of
Bitcoin and the financial value of unused tokens, Peercoin
pioneered the PoS mechanism which could substitute PoW
with far less energy consumption [6]. Yet its stake valuation
scheme seemed to be heuristically designed. These early-day
initiatives also commonly lacked sufficient security analysis,
which were often scrutinized by researchers and practitioners
[74], [79], [96].

Later blockchain consensus protocols, especially those pro-
posed after 2016, have started to take inspirations from the
established research of distributed computing, cryptography,

30

Fig. 12. Illustration of the security-decentralization-scalability trilemma.

and trusted computing. For example, HoneyBadgerBFT [16],
BEAT [17], Algorand [13] extend reliable broadcast and
Byzantine agreement to blockchain scenarios. Committee-
based PoS protocols, such as Ouroboros [8], Snow White [9],
Bentov’s CoA [100], make use of MPC for the management
of consensus committee and block proposal. PoET [119] and
PoTS [127] leverage trusted execution environment (TEE) for
secure block proposal and mining substitution. Furthermore,
some proposals incorporate innovative cryptographic primi-
tives for enhancing privacy of network participants. Zero-
knowledge proof (ZKP) and ring signatures are used by Zero-
cash [141] and Monero [142] to construct privacy-preserving
transactions that hide essential transaction values and sender-
receiver addresses; Algorand and Ouroboros Praos [101] use
cryptographic sortition and VRF for the PoS-based election
of consensus committee without revealing participant’s stake
value. The privacy of consensus participants in large-scale
permissionless blockchains is still a fresh research topic.

Besides increased sophistication in design, new protocol
proposals are also often accompanied by formal security
analysis, via security frameworks such as the random oracle
model [143] and universal composibility [144]. In summary,
This paradigm shift has brought the design and analysis of
blockchain consensus protocols into formal scientific research,
echoing Cachin et al. [19] that blockchain design should follow
the rigor established by prevailing wisdom.

B. The Security–Decentralization–Scalability Trilemma

Observing the existence of various blockchain consensus
protocols, we stress that the design of consensus protocol
should seek a balance between three objectives: security,
decentralization, and scalability.
• Security refers to the blockchain’s consensus security in

the presence of malicious players and anti-censorship
capability. The two concepts correspond to the safety and
liveness property in classical distributed consensus.

• Decentralization refers to the decentralization profile of
the blockchain network, which is normally associated
with geographic diversity, connectivity pattern, and syn-
chrony of networked nodes.

• Scalability means two-fold: the system needs to remain
secure and efficient with rising transaction throughput as
well as larger network size. Scalability is often considered
as a broader concept of system performance.

Fig. 12 sketches the relationships and trade-offs between the
three objectives.

For most blockchain consensus protocols especially those
tailored for financial application, security is always the top
priority. Meanwhile, security level can be practically traded
for system’s scalability. Lower security requirement gives rise
to more scalable protocol design. For classical BFT protocols,
lower fault tolerance threshold (the “ f ” parameter) leads to
fewer consensus rounds [25], [55] or less communication per
round [27], effectively alleviating message complexity caused
by large network sizes. For many public blockchain networks
that use Nakamoto consensus, the probabilistic finality and
mandatory multi-block confirmation give rise to permission-
less access and higher scalability in network size. Meanwhile,
a shorter block interval yields higher transaction throughput
but also leads to higher chance of 51%-attack [73]. For DAG-
based protocols, the security implications associated with their
scalability with both network size and throughput are not well
studied and remain an ongoing research.

A protocol designer should also anticipate the security
implications of a blockchain network’s decentralization profile.
A more decentralized network tends to be less synchronized,
owing to the increased diversity of geographic locations and
sparsity of connections. On one hand, the increased geo-
graphic diversity makes censorship by one suppressing regime
more challenging, which effectively enhances the system’s
liveness. On the other hand, the reduced synchrony implies
that inter-player communications are less bounded by delay
requirements. This contributes to the heterogeneity of network
connections and allows better connected players to gain unfair
advantages, which potentially impairs consensus security of
the network. Take protocols with the gossiping rule and
longest-chain rule for example, the heterogeneity of network
connections gives well-connected nodes a communication ad-
vantage of disseminating new blocks faster in the network than
the less-connected ones, effectively enhancing the former’s
winning chance in blockchain fork races. As a result, in
a sparsely connected network but with one well-connected
adversary, the adversary may need significantly less than 50%
of mining power to commit a double-spending attack.

Last but not least, a protocol designer should be aware that
the tradeoff between decentralization and scalability depends
on the practical needs. For example, Bitcoin was designed
to operate in a weakly synchronized network and there is
no enforceable criterion for message delivery and timeout.
As a result Nakamoto consensus protocol needs to rely on
best-effort mining and long block intervals to achieve the
security against double spending, at the price of low trans-
action throughput. In comparison, BFT-based protocols are
designed for permissioned networks where every participant
operates with revealed identity and the overall network is
small and well-connected and with enforceable time-out mech-
anisms. This enables the network to achieve higher transaction
throughput. On the flip side, the high dependence on network

31

connectivity and synchony for throughput brings high messag-
ing complexity and network management overhead. When the
network grows in size and inevitably becomes sparse, message
relaying can be a major burden for each participant which po-
tentially leads to jammed communication channel and stalled
consensus process. Therefore, we argue that under a certain
security premise, increased need for network connectivity and
synchrony leads to higher transaction throughput but lower
scalability with network size.

C. Protocol Composability
The discussions above demonstrate that there is never a one-

fits-all blockchain consensus protocol. The existence of hybrid
consensus protocols highlights the possibility to cherry-pick
individual protocol components to fulfill specific application
needs. Sawtooth [119], a Hyperledger project featuring the
utilization of trusted hardware for PoET-based block proposal,
has the flexibility of plugging in different block finalization
schemes—Raft for crash fault tolerance and PBFT for Byzan-
tine fault tolerance. Similarly, POA Network [11] uses PoA for
block proposal and has opted for HoneyBadgerBFT for block
finalization to achieve best performance under asynchronous
network conditions.

Besides block proposal and finalization, the choice of infor-
mation propagation mechanism largely depends on the under-
lying network topology. In a public blockchain network where
gossiping is the default information propagation method,
broadcast can be used among a small set of identified nodes
for better efficiency [3]. The block validation mechanism is
associated with the block proposal mechanism and takes the
current blockchain as input. The incentive mechanism is aimed
for promoting honest execution of the former tasks. It needs
to account for off-chain factors as well, such as the long-term
system sustainability, financial stability, and subtle security
issues [115], [116], [117].

The composability of blockchain consensus protocol also
demonstrates the feasibility of progressive protocol improve-
ment, in that one individual protocol component is updated
at a time instead of overhauling the entire protocol. This is
particularly important for large-scale established blockchain
systems in which any protocol change requires network-wide
consensus and significant joint effort.

X. CONCLUSION

In this survey we provided a summary of classical fault-
tolerance consensus research, a five-component framework for
a general blockchain consensus protocol, and a comprehensive
review of blockchain consensus protocols that have gained
great popularity and potential. We analyzed these protocols
with respect to fault tolerance, performance, vulnerabilities
and highlighted their use cases. Notably, many of these pro-
tocols are still under development and are subject to major
changes at the time of writing. We hope the five-component
framework, classification methodology, protocol abstractions,
performance analyses, and discussion on protocol design pro-
vided in this survey can help researchers and developers
grasp the fundamentals of blockchain consensus protocols and
facilitate future protocol design.

ACKNOWLEDGMENT

The authors would like to thank Dr. Christian Cachin,
Dr. Yonggang Wen, and the anonymous reviewers for their
constructive comments on this paper. This work was supported
in part by US National Science Foundation under grants CNS-
1916902, CNS-1916926.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] “Global bitcoin nodes distribution,” Bitnodes. [Online]. Available:

https://bitnodes.earn.com/
[3] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,

A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in International Conference on Financial Cryptography
and Data Security. Springer, 2016, pp. 106–125.

[4] “VISA fact sheet,” VISA Inc. [Online]. Avail-
able: https://usa.visa.com/dam/VCOM/download/corporate/media/
visanet-technology/aboutvisafactsheet.pdf

[5] “Bitcoin energy consumption index,” Digiconomist. [Online].
Available: https://digiconomist.net/bitcoin-energy-consumption

[6] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency
with proof-of-stake,” self-published paper, August, 2012. [Online].
Available: https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf

[7] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-NG:
A scalable blockchain protocol.” in NSDI, 2016, pp. 45–59.

[8] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Annual
International Cryptology Conference. Springer, 2017, pp. 357–388.

[9] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable
consensus and applications to provably secure proofs of stake,” Tech-
nical Report. Cryptology ePrint Archive, Report 2016/919, Tech. Rep.,
2017.

[10] “EOS.IO technical white paper v2,” EOS.IO, 2018.
[Online]. Available: https://github.com/EOSIO/Documentation/blob/
master/TechnicalWhitePaper.md

[11] “POA network whitepaper,” POA Network, 2018. [Online]. Available:
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper

[12] J. Y. Kwon, “Tendermint: Consensus without mining,”
2014. [Online]. Available: https://cdn.relayto.com/media/files/
LPgoWO18TCeMIggJVakt tendermint.pdf

[13] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-
rand: Scaling byzantine agreements for cryptocurrencies,” in Proceed-
ings of the 26th Symposium on Operating Systems Principles. ACM,
2017, pp. 51–68.

[14] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[15] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference.
ACM, 2018, p. 30.

[16] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of BFT protocols,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS 16).
ACM, 2016, pp. 31–42.

[17] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft made
practical,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS 18). ACM, 2018, pp.
2028–2041.

[18] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in International Workshop on Open Problems in
Network Security. Springer, 2015, pp. 112–125.

[19] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the
wild,” in 31 International Symposium on Distributed Computing
(DISC), 2017.

[20] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Consensus in the age of blockchains,” arXiv
preprint arXiv:1711.03936, 2017.

[21] W. Wang, H. Dinh Thai, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. In Kim, “A survey on consensus mechanisms and mining
strategy management in blockchain networks,” IEEE Access, vol. PP,
pp. 1–1, 01 2019.

https://bitnodes.earn.com/
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://digiconomist.net/bitcoin-energy-consumption
https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf
https://github.com/EOSIO/Documentation/blob/master/Technical WhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/Technical WhitePaper.md
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper
https://cdn.relayto.com/media/files/LPgoWO18TCeMIggJVakt_tendermint.pdf
https://cdn.relayto.com/media/files/LPgoWO18TCeMIggJVakt_tendermint.pdf

32

[22] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “Distributed consensus
protocols and algorithms,” Blockchain for Distributed Systems Security,
p. 25, 2019.

[23] M. Belotti, N. Božić, G. Pujolle, and S. Secci, “A vademecum on
blockchain technologies: When, which and how,” IEEE Communica-
tions Surveys & Tutorials, 2019.

[24] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in
message-passing systems,” Journal of the ACM (JACM), vol. 42, no. 1,
pp. 124–142, 1995.

[25] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[26] H. Attiya and J. Welch, Distributed computing: fundamentals, simula-
tions, and advanced topics. John Wiley & Sons, 2004, vol. 19.

[27] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173–186.

[28] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[29] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[30] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp.
228–234, 1980.

[31] B. Alpern and F. B. Schneider, “Defining liveness,” Information pro-
cessing letters, vol. 21, no. 4, pp. 181–185, 1985.

[32] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[33] ——, “Using time instead of timeout for fault-tolerant distributed
systems,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 6, no. 2, pp. 254–280, 1984.

[34] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys (CSUR),
vol. 22, no. 4, pp. 299–319, 1990.

[35] F. Cristian, H. Aghili, R. Strong, and D. Dolev, Atomic broadcast:
From simple message diffusion to Byzantine agreement. International
Business Machines Incorporated, Thomas J. Watson Research Center,
1986.

[36] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM (JACM), vol. 32, no. 4, pp. 824–840,
1985.

[37] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Computing Surveys
(CSUR), vol. 36, no. 4, pp. 372–421, 2004.

[38] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp.
225–267, 1996.

[39] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new
primary copy method to support highly-available distributed systems,”
in Proceedings of the seventh annual ACM Symposium on Principles
of distributed computing. ACM, 1988, pp. 8–17.

[40] B. Liskov and J. Cowling, “Viewstamped replication revisited,” MIT-
CSAIL: Computer Science and Artificial Intelligence Laboratory Tech-
nical Report, 2012.

[41] L. Lamport, “The part-time parliament,” ACM Transactions on Com-
puter Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[42] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[43] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 USENIX Annual Technical Conference
(USENIX ATC 14), 2014, pp. 305–319.

[44] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie, “Fault-scalable byzantine fault-tolerant services,” ACM SIGOPS
Operating Systems Review, vol. 39, no. 5, pp. 59–74, 2005.

[45] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq
replication: A hybrid quorum protocol for byzantine fault tolerance,”
in Proceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 177–190.

[46] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” ACM SIGOPS Operating Sys-
tems Review, vol. 41, no. 6, pp. 45–58, 2007.

[47] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 3, no. 3, pp. 202–215,
2006.

[48] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin
one’s wheels? byzantine fault tolerance with a spinning primary,” in
Reliable Distributed Systems, 2009. SRDS’09. 28th IEEE International
Symposium on. IEEE, 2009, pp. 135–144.

[49] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making byzantine fault tolerant systems tolerate byzantine faults.” in
NSDI, vol. 9, 2009, pp. 153–168.

[50] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next
700 bft protocols,” in Proceedings of the 5th European conference on
Computer systems. ACM, 2010, pp. 363–376.

[51] A. N. Bessani, “(BFT) state machine replication: the hype, the
virtue, and even some practice,” Tutorials in EuroSys 2012. [Online].
Available: http://www.di.fc.ul.pt/∼bessani/publications/T1-bftsmr.pdf

[52] G. Bracha, “Asynchronous byzantine agreement protocols,” Informa-
tion and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[53] M. Ben-Or, “Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols,” in Proceedings of the
second annual ACM symposium on Principles of distributed computing.
ACM, 1983, pp. 27–30.

[54] M. O. Rabin, “Randomized byzantine generals,” in 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983). IEEE, 1983,
pp. 403–409.

[55] G. Bracha, “An asynchronous [(n-1)/3]-resilient consensus protocol,”
in Proceedings of the third annual ACM symposium on Principles of
distributed computing. ACM, 1984, pp. 154–162.

[56] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computa-
tions with optimal resilience,” in Proceedings of the thirteenth annual
ACM symposium on Principles of distributed computing. ACM, 1994,
pp. 183–192.

[57] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement with
optimal resilience,” in Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing. ACM, 1993, pp. 42–51.

[58] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in Annual International Cryptology
Conference. Springer, 2001, pp. 524–541.

[59] C. Cachin and S. Tessaro, “Asynchronous verifiable information dis-
persal,” in Reliable Distributed Systems, 2005. SRDS 2005. 24th IEEE
Symposium on. IEEE, 2005, pp. 191–201.

[60] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous byzantine consensus with t < n/3 and o(n2) messages,” in
Proceedings of the 2014 ACM symposium on Principles of distributed
computing. ACM, 2014, pp. 2–9.

[61] J. Baek and Y. Zheng, “Simple and efficient threshold cryptosystem
from the gap diffie-hellman group,” in GLOBECOM’03. IEEE Global
Telecommunications Conference (IEEE Cat. No. 03CH37489), vol. 3.
IEEE, 2003, pp. 1491–1495.

[62] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” in International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1998, pp.
1–16.

[63] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating agreement from execution for byzantine fault tolerant
services,” in ACM SIGOPS Operating Systems Review, vol. 37, no. 5.
ACM, 2003, pp. 253–267.

[64] C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin meets strong
consistency,” in Proceedings of the 17th International Conference on
Distributed Computing and Networking. ACM, 2016, p. 13.

[65] “Bitcoin wire protocol 101,” Bitcoin Developer Network, 2019.
[Online]. Available: https://bitcoindev.network/bitcoin-wire-protocol/

[66] “Ethereum wire protocol,” Ethereum Foundation, 2019. [Online]. Avail-
able: https://github.com/ethereum/devp2p/blob/master/caps/eth.md

[67] K. Wüst and A. Gervais, “Do you need a blockchain?” in 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT). IEEE, 2018,
pp. 45–54.

[68] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

[69] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” 2016.

[70] “EIP 1011: Hybrid Casper FFG,” Ethereum Improvement Proposals
(EIPs). [Online]. Available: https://eips.ethereum.org/EIPS/eip-1011

[71] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[72] “Litecoin official website,” Litecoin Foundation. [Online]. Available:
https://litecoin.org/

http://www.di.fc.ul.pt/~bessani/publications/T1-bftsmr.pdf
https://bitcoindev.network/bitcoin-wire-protocol/
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://eips.ethereum.org/EIPS/eip-1011
https://litecoin.org/

33

[73] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth
International Conference on. IEEE, 2013, pp. 1–10.

[74] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone proto-
col: Analysis and applications,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2015, pp. 281–310.

[75] I. Abraham, D. Malkhi et al., “The blockchain consensus layer and
bft,” Bulletin of EATCS, vol. 3, no. 123, 2017.

[76] “Visanet: The technology behind visa,” Visa Inc. [On-
line]. Available: https://usa.visa.com/dam/VCOM/download/corporate/
media/visanet-technology/visa-net-booklet.pdf

[77] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks
on bitcoin’s peer-to-peer network.” in USENIX Security Symposium,
2015, pp. 129–144.

[78] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 3–16.

[79] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in International conference on financial cryptography and
data security. Springer, 2014, pp. 436–454.

[80] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2016, pp. 515–532.

[81] D. Gutteridge, “Japanese cryptocurrency monacoin hit by selfish
mining attack,” 2018. [Online]. Available: https://www.ccn.com/
japanese-cryptocurrency-monacoin-hit-by-selfish-mining-attack/

[82] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer,
“Decentralization in bitcoin and ethereum networks.” in Proc. of the
Financial Cryptography and Data Security Conference, 2018.

[83] D. Kondor, M. Pósfai, I. Csabai, and G. Vattay, “Do the rich get richer?
an empirical analysis of the bitcoin transaction network,” PloS one,
vol. 9, no. 2, p. e86197, 2014.

[84] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in International Conference on Financial Cryptography and
Data Security. Springer, 2015, pp. 507–527.

[85] “Wave-ng protocol,” Wave Platform. [Online].
Available: https://docs.wavesplatform.com/en/waves-environment/
waves-protocol/waves-ng-protocol.html

[86] C. Li, P. Li, W. Xu, F. Long, and A. C.-c. Yao, “Scaling nakamoto
consensus to thousands of transactions per second,” arXiv preprint
arXiv:1805.03870, 2018.

[87] M. K. Reiter, “A secure group membership protocol,” IEEE Transac-
tions on Software Engineering, vol. 22, no. 1, pp. 31–42, 1996.

[88] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, and P. Saxena,
“SCP: A computationally-scalable byzantine consensus protocol for
blockchains,” See https://www.weusecoins.com/assets/pdf/library/SCP,
vol. 20, no. 20, p. 2016, 2015.

[89] “Sharding FAQs: On sharding blockchains,” Ethereum Foun-
dation. [Online]. Available: https://github.com/ethereum/wiki/wiki/
Sharding-FAQ

[90] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th USENIX Security Symposium (USENIX
Security 16), 2016, pp. 279–296.

[91] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities” honest or bust”
with decentralized witness cosigning,” in 2016 IEEE Symposium on
Security and Privacy (SP). Ieee, 2016, pp. 526–545.

[92] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the
permissionless model,” in 31st International Symposium on Distributed
Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[93] ——, “Fruitchains: A fair blockchain,” in Proceedings of the ACM
Symposium on Principles of Distributed Computing. ACM, 2017, pp.
315–324.

[94] J. Long and R. Wei, “Scalable bft consensus mechanism through
aggregated signature gossip,” in 2019 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). IEEE, 2019, pp. 360–367.

[95] A. Poelstra et al., “Distributed consensus from proof of stake is
impossible,” Self-published Paper, 2014.

[96] “Nxt whitepaper revision 4,” Nxt community, 2014. [Online]. Avail-
able: https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper
v122 rev4.pdf

[97] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended abstract]
y,” ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 3,
pp. 34–37, 2014.

[98] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty
protocols with honest majority,” in Proceedings of the twenty-first
annual ACM symposium on Theory of computing. ACM, 1989, pp.
73–85.

[99] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science (Cat.
No. 99CB37039). IEEE, 1999, pp. 120–130.

[100] I. Bentov, A. Gabizon, and A. Mizrahi, “Cryptocurrencies without proof
of work,” in International Conference on Financial Cryptography and
Data Security. Springer, 2016, pp. 142–157.

[101] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

[102] R. Pass and E. Shi, “The sleepy model of consensus,” in International
Conference on the Theory and Application of Cryptology and Infor-
mation Security. Springer, 2017, pp. 380–409.

[103] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, 2016.

[104] “Cosmos SDK documentation - validators overview,” Tendermint
Inc. [Online]. Available: https://cosmos.network/docs/cosmos-hub/
validators/overview.html

[105] “Tendermint documentation: Sentry node,” Tendermint Inc.
[Online]. Available: https://tendermint.com/docs/spec/p2p/node.html#
sentry-node

[106] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and
S. Tucci-Piergiovanni, “Correctness and fairness of tendermint-core
blockchains,” arXiv preprint arXiv:1805.08429, 2018.

[107] V. Zamfir, “Introducing casper the friendly ghost,” Ethereum
Blog URL: https://blog. ethereum.org/2015/08/01/introducing-
casperfriendly-ghost, 2015.

[108] “Casper proof of stake compendium,” The Ethereum Foundation,
2019. [Online]. Available: https://github.com/ethereum/wiki/wiki/
Casper-Proof-of-Stake-compendium

[109] “Sharding introduction R&D compendium.” The Ethereum Foundation,
2019. [Online]. Available: https://github.com/ethereum/wiki/wiki/
Sharding-introduction-R&D-compendium

[110] “Bitshares 2.0 documentation,” The BitShares Organization, 2015.
[Online]. Available: http://docs.bitshares.org/bitshares/index.html

[111] “Liskś consensus algorithm,” Lisk. [Online]. Available: https:
//lisk.io/documentation/lisk-protocol/consensus

[112] D. Larimer, “DPOS BFT pipelined byzantine fault tol-
erance,” 2018. [Online]. Available: https://medium.com/eosio/
dpos-bft-pipelined-byzantine-fault-tolerance-8a0634a270ba

[113] J. Martinez, “Understanding proof of stake: The nothing at stake
theory,” 2018. [Online]. Available: https://medium.com/coinmonks/
understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027

[114] M. Franklin, “A survey of key evolving cryptosystems,” International
Journal of Security and Networks, vol. 1, no. 1-2, pp. 46–53, 2006.

[115] V. Buterin, Ethereum Foundation, 2014. [On-
line]. Available: https://blog.ethereum.org/2014/05/15/
long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/

[116] P. Gaži, A. Kiayias, and A. Russell, “Stake-bleeding attacks on proof-
of-stake blockchains,” in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT). IEEE, 2018, pp. 85–92.

[117] “Grinding attack on proof of stake,”
The Ethereum Foundation. [Online]. Available:
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#
how-does-validator-selection-work-and-what-is-stake-grinding

[118] “Aura - authority round - wiki,” Parity Tech Documentation. [Online].
Available: https://wiki.parity.io/Aura

[119] “Hyperledger sawtooth project,” The Linux Foundation, 2018.
[Online]. Available: https://www.hyperledger.org/projects/sawtooth

[120] V. Costan and S. Devadas, “Intel SGX explained.” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[121] “Introducing arm trustzone,” Arm Ltd, 2018. [Online]. Available:
https://developer.arm.com/technologies/trustzone

[122] “Hyperledger sawtooth RFC,” The Linux Foundation, 2018.
[Online]. Available: https://github.com/hyperledger/sawtooth-rfcs/blob/
master/text/0019-pbft-consensus.md

[123] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure: SGX cache attacks

https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/visa-net-booklet.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/visa-net-booklet.pdf
https://www.ccn.com/japanese-cryptocurrency-monacoin-hit-by-selfish-mining-attack/
https://www.ccn.com/japanese-cryptocurrency-monacoin-hit-by-selfish-mining-attack/
https://docs.wavesplatform.com/en/waves-environment/waves-protocol/waves-ng-protocol.html
https://docs.wavesplatform.com/en/waves-environment/waves-protocol/waves-ng-protocol.html
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://cosmos.network/docs/cosmos-hub/validators/overview.html
https://cosmos.network/docs/cosmos-hub/validators/overview.html
https://tendermint.com/docs/spec/p2p/node.html#sentry-node
https://tendermint.com/docs/spec/p2p/node.html#sentry-node
https://github.com/ethereum/wiki/wiki/Casper-Proof-of-Stake-compendium
https://github.com/ethereum/wiki/wiki/Casper-Proof-of-Stake-compendium
https://github.com/ethereum/wiki/wiki/Sharding-introduction-R&D-compendium
https://github.com/ethereum/wiki/wiki/Sharding-introduction-R&D-compendium
http://docs.bitshares.org/bitshares/index.html
https://lisk.io/documentation/lisk-protocol/consensus
https://lisk.io/documentation/lisk-protocol/consensus
https://medium.com/eosio/dpos-bft-pipelined-byzantine-fault-tolerance-8a0634a270ba
https://medium.com/eosio/dpos-bft-pipelined-byzantine-fault-tolerance-8a0634a270ba
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/
https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#how-does-validator-selection-work-and-what-is-stake-grinding
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#how-does-validator-selection-work-and-what-is-stake-grinding
https://wiki.parity.io/Aura
https://www.hyperledger.org/projects/sawtooth
https://developer.arm.com/technologies/trustzone
https://github.com/hyperledger/sawtooth-rfcs/blob/master/text/0019-pbft-consensus.md
https://github.com/hyperledger/sawtooth-rfcs/blob/master/text/0019-pbft-consensus.md

34

are practical,” in 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

[124] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom with
transient out-of-order execution,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 991–1008.

[125] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom,
“Foreshadow-ng: Breaking the virtual memory abstraction with tran-
sient out-of-order execution,” Technical report, Tech. Rep., 2018.

[126] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing proof-of-
stake blockchain protocols,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology. Springer, 2017, pp. 297–315.

[127] S. Andreina, J.-M. Bohli, W. Li, G. O. Karame, and G. A. Marson,
“Potsa secure proof of tee-stake for permissionless blockchains.”

[128] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM conference on Computer and
communications security. Acm, 2007, pp. 584–597.

[129] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repur-
posing bitcoin work for data preservation,” in 2014 IEEE Symposium
on Security and Privacy (SP). IEEE, 2014, pp. 475–490.

[130] D. Schwartz, N. Youngs, A. Britto et al., “The ripple protocol consen-
sus algorithm,” Ripple Labs Inc White Paper, vol. 5, 2014.

[131] D. Mazieres, “The stellar consensus protocol: A feder-
ated model for internet-level consensus,” 2015. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
696.93&=&rep=rep1&=&type=pdf

[132] C. Cachin and B. Tackmann, “Asymmetric distributed trust,” arXiv
preprint arXiv:1906.09314, 2019.

[133] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol.” IACR Cryptology ePrint Archive,
vol. 2016, p. 1159, 2016.

[134] Y. Sompolinsky and A. Zohar, “Phantom: A scalable blockdag proto-
col.” IACR Cryptology ePrint Archive, vol. 2018, p. 104, 2018.

[135] S. Popov, “The tangle,” 2016. [Online]. Available: http://www.
descryptions.com/Iota.pdf

[136] “Tangle tip selection,” IOTA Foundation. [Online]. Avail-
able: https://docs.iota.org/docs/the-tangle/0.1/concepts/tip-selection#
in-depth-explanation-of-the-tip-selection-algorithm

[137] A. Churyumov, “Byteball: A decentralized system for storage and
transfer of value,” URL https://byteball. org/Byteball. pdf, 2016.

[138] C. LeMahieu, “Nano: A feeless distributed cryptocurrency network,”
URL: https://nano. org/en/whitepaper, 2018.

[139] T. Rocket, “Snowflake to avalanche: A novel metastable consensus
protocol family for cryptocurrencies,” 2018.

[140] C. Natoli, J. Yu, V. Gramoli, and P. Esteves-Verissimo, “Deconstructing
blockchains: A comprehensive survey on consensus, membership and
structure,” arXiv preprint arXiv:1908.08316, 2019.

[141] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in 2014 IEEE Symposium on Security and Privacy. IEEE,
2014, pp. 459–474.

[142] S. Noether, “Ring signature confidential transactions for monero,” IACR
Cryptology ePrint Archive, vol. 2015, p. 1098, 2015.

[143] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle method-
ology, revisited,” Journal of the ACM (JACM), vol. 51, no. 4, pp. 557–
594, 2004.

[144] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.93&=&rep=rep1&=&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.93&=&rep=rep1&=&type=pdf
http://www.descryptions.com/Iota.pdf
http://www.descryptions.com/Iota.pdf
https://docs.iota.org/docs/the-tangle/0.1/concepts/tip-selection#in-depth-explanation-of-the-tip-selection-algorithm
https://docs.iota.org/docs/the-tangle/0.1/concepts/tip-selection#in-depth-explanation-of-the-tip-selection-algorithm

	I Introduction
	II Previous Surveys and Tutorials
	III Fault-Tolerant Distributed Consensus
	III-A System Model
	III-A1 Distributed system and task
	III-A2 Process failure
	III-A3 Network synchrony

	III-B Byzantine Fault Tolerant Consensus
	III-C Consensus in Distributed Computing
	III-D Consensus Protocols for Partially Synchronous Network
	III-D1 DLS protocol
	III-D2 Viewstamped Replication (VR)
	III-D3 Paxos
	III-D4 Practical Byzantine Fault Tolerance (PBFT)

	III-E Consensus Protocols for Asynchronous Network
	III-E1 Bracha's RBC and asynchronous consensus protocol
	III-E2 Ben-Or's ACS protocol for MPC
	III-E3 HoneyBadgerBFT

	III-F Blockchain Compatibility of Classical BFT-SMR Protocols

	IV An Overview of Blockchain Consensus
	IV-A Blockchain Infrastructure
	IV-B Consensus Goal
	IV-C Components of Blockchain Consensus Protocol

	V The Nakamoto Consensus Protocol and Variations
	V-A Network Setting and Consensus Goal
	V-B The Nakamoto Consensus Protocol
	V-C Drawbacks and Vulnerabilities of Nakamoto Consensus
	V-C1 Tight tradeoff between performance and security
	V-C2 Energy inefficiency
	V-C3 Eclipse attack
	V-C4 Selfish mining
	V-C5 Mining pools and centralization risk

	V-D Improvements to the Nakamoto Consensus Protocol
	V-D1 GHOST Rule
	V-D2 Bitcoin-NG

	V-E Hybrid PoW-BFT Consensus Protocols
	V-E1 PeerConsensus
	V-E2 SCP
	V-E3 ByzCoin
	V-E4 Pass and Shi's hybrid consensus

	VI Proof-of-Stake Based Consensus Protocols
	VI-A Chain-based PoS
	VI-A1 Peercoin and Nxt
	VI-A2 Bentov's PoA

	VI-B Committee-based PoS
	VI-B1 Bentov's CoA
	VI-B2 Ouroboros
	VI-B3 Ouroboro Praos
	VI-B4 Snow White

	VI-C BFT-based PoS
	VI-C1 Tendermint
	VI-C2 Algorand
	VI-C3 Casper FFG

	VI-D Delegated PoS (DPoS)
	VI-E Vulnerabilities of PoS
	VI-E1 Costless simulation
	VI-E2 Nothing-at-stake
	VI-E3 Posterior corruption
	VI-E4 Long-range attack
	VI-E5 Stake-grinding attack
	VI-E6 Centralization risk

	VII Other Emerging Blockchain Consensus Mechanisms and Protocols
	VII-A Proof of Authority (PoA)
	VII-B Proof of Elapsed Time (PoET)
	VII-C Proof of TEE-Stake (PoTS)
	VII-D Proof of Retrievability (PoR)
	VII-E Ripple Consensus Protocol/Algorithm (RCPA)
	VII-F BlockDAG-based Consensus Protocols
	VII-F1 SPECTRE
	VII-F2 PHANTOM

	VII-G blackTxDAG-based Consensus Protocols
	VII-G1 IOTA Tangle
	VII-G2 Byteball
	VII-G3 Nano

	VIII Comparison and Discussion
	IX On Designing Blockchain Consensus Protocol
	IX-A The Paradigm Shift in Protocol Design
	IX-B The Security–Decentralization–Scalability Trilemma
	IX-C Protocol Composability

	X Conclusion
	References

