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ABSTRACT
Unutilized spectrum, i.e. spectrum holes, are opportuni-

ties that may be used for communication or other RF services.
In this paper, we explore adversarial attacks that reduce the
size of spectrum holes by showing their advantage compared
to a random jammer. Using a game-theoretical approach,
we design an optimal scanning strategy that provides an in-
creased probability of detecting such an attack. The advan-
tage of our strategy is achieved by focusing scanning efforts
on bands that are more likely to be attacked, and neglecting
the others. However, such focused scanning is a disadvantage
since, if the adversary has a different objective, he can safely
sneak usage of the bands neglected by such a specially-tuned
spectrum scanner. To deal with this problem, we also derive
the optimal scanning allocation that balances between ap-
plying the anti-spectrum holes attack scanning strategy and
scanning the neglected bands so as to prevent the possibility
of the adversary using those bands without being detected.

Index Terms— Spectrum scanning, spectrum holes,
jamming, game theory

1. INTRODUCTION

The explosive growth of commercial wireless technologies will
severely impact the operation of a wide array of radio fre-
quency (RF) systems by reducing available radio spectrum.
Since radio spectrum is a finite resource, and the gap be-
tween RF supply and demand will widen, there is a signif-
icant challenge that must be addressed in order to improve
efficient spectrum utilization. One important approach to
increase spectrum efficiency is to apply cognitive RF capabil-
ities that locate spectrum opportunities (i.e., spectrum holes)
that may be used for communication or adapting other ser-
vices that use RF, such as position and navigation solutions.
On the other hand, the open and dynamic nature of the wire-
less medium make such cognitive RF systems susceptible to
malicious attacks, especially those involving jamming or in-
terference. A reader can find comprehensive surveys of such
threats in [1, 2]. Such threats can be quite simple, say, like
a random jammer’s attack or quite sophisticated, like ab em-
ulation attack whereby a malicious user emulates a licensed
primary user to obtain the resources of a given channel and
wards-off other users from using the channels.

As new spectrum-adaptive wireless technologies are devel-
oped, there are new threats that arise associated with that
wireless technology and can be tuned in a way to benefit the
adversary. In particular, although a spectrum opportunity
might open up and be utilized by a cognitive radio scanning

spectrum, these spectrum holes can also be easily closed by
an adversary that injects interference to close spectrum holes.
Consequently, there are deep challenges associated with de-
tecting an adversary attempting to make these spectrum op-
portunities unavailable. In this paper, to get insight into this
problem, we first show by means of a simple model that an ad-
versary’s attack aimed to reduce the size of spectrum holes is
more dangerous for spectrum utilization than a random jam-
mer. Secondly, using a game-theoretical approach, we design
the optimal spectrum scanning strategy as well as the optimal
adversary’s strategy for closing spectrum holes. We prove the
efficiency of such scanning compared with random scanning.
This efficiency is achieved by focusing scanning on the bands
that will more probably be attacked and neglecting bands
that might be unlikely to be attacked by an adversary intent
on reducing the size of spectrum holes. Such focusing of the
scanning strategy has its advantages and disadvantages: on
the one hand, it is the best response against such “spectrum
holes” attack; on the other hand, the spectrum scanner gen-
erally cannot know the true objective of the adversary. If the
adversary has a different objective, he can take an advantage
of such focused scanning and sneak usage of the other bands
safely. To prevent the possibility of undetected sneaking, we
further explore a model that allows one to find the optimal
frequency with which to apply the suggested focused scan-
ning strategy, while also scanning the rest of the bands to
detect unauthorized usage of those bands.

Since the considered problem has two agents (the spec-
trum scanner and the adversary) with different objectives,
we apply game theory to model the problem as it provides
a rich set of mathematical tools to analyze such conflicted
multi-agents scenarios. In [3], readers can find a structured
and comprehensive survey of research contributions that an-
alyze and solve security and privacy problems using game
theory. Here, as examples of game-theoretic approaches, we
mention just a few such works: the problem of fighting jam-
ming with jamming was explored in [4]. A spectrum coexis-
tence problem was investigated in [5]. The interactions be-
tween a user and a smart jammer regarding their respective
choices of transmit power was explored in [6], while competi-
tive interactions between a selfish secondary user transmitter-
receiver pair and a jammer under incomplete knowledge of
the jammer’s location in the network was investigated in [7],
attack-type uncertainty on a network was investigated in [8],
an optimal tiling-scanning strategy to detect an intruder in
bandwidth was designed in [9], the competitive interactions in
adaptive packetized wireless communications was studied in
[10], and the uncertainty associated with the objective of ille-
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gal spectrum activity was studied in [11, 12], while resilience
of LTE networks and mobile devices against smart jamming
attacks were modelled in [13] and in [14] correspondingly. A
problem where a jammer is unaware of the exact positions of
the network nodes, but knows the prior distribution of their
location was investigated in [15], anti-jamming strategies fac-
ing an unknown type of low-power jamming attack was stud-
ied in [16], and a network protection problem, where it is
unknown whether an adversary is going to play Stackelberg
equilibrium or Nash equilibrium, was solved in [17].

The organization of this paper is as follows: in Section 2
a model of adversary’s attack on spectrum holes is presented.
In Section 3, we formulate a scanning strategy (anti-spectrum
hole attack scanning) that is designed to detect an adver-
sary intent on closing spectrum holes. Next, in Section 4, we
explore the optimal balance between random scanning and
applying such an anti-spectrum hole attack scanning when
the adversary might not be intent on attacking. Finally, in
Section 5, conclusions and discussions are offered.

2. ADVERSARY’S ATTACK ON SPECTRUM
HOLES

In this section, we describe a basic model for an attack that is
intent on reducing opportunities associated with “spectrum
holes” (i.e. periods of times for which spectrum bands are
unused). For simplicity, we shall assume that this spectrum
has been divided into n separate bands, and that each band
may or may not be utilized at any instant by benign users.
For example, a particular band might be allocated for con-
tinual DTV usage, while another band might be occasionally
used in support of medical purposes. We assume that there
is a probability pi that band i is being used at any particular
instant. Then, there is a probability 1− pi that band i is not
being used at any particular instant. An alternative view for
this is that pi describes the frequency with which band i is
being used.

Due to the fact that pi can be described as the frequency
with which band i is being used, the expected time between
signals being transmitted in band i is T =

∑∞
t=1 tpi(1 −

pi)t−1 = 1/pi. Thus, 1/pi can be interpreted as a distance
between two expected transmitted signals. Note that, if a
band is in use all of the time, i.e., if pi = 1, there are no spec-
trum holes in this band at all. In this case, Li(pi) = 1/pi− 1
(thus, Li(1) = 0) can be considered as a measure for spec-
trum hole size. The total size of the spectrum holes is given
by L(p) =

∑n

i=1 Li(pi) =
∑n

i=1(1/pi)− n. Thus, knowledge
of pi is important for technologies that scan in order to adapt
RF usage. Bands with smaller frequencies pi are more promis-
ing for spectrum utilization. On the other hand, such bands
are also more plausible targets for malicious attacks aimed to
reduce the possibility for such utilization. We assume that
the adversary can choose, at any particular instant, to trans-
mit on a single band. In this case, the adversary’s strategy is
represented as a probability vector y = (y1, . . . , yn), where yi

is the probability that the adversary transmits in band i, i.e.,∑n

i=1 yi = 1. Then, qi = pi +yi(1−pi) is the probability that
band i is either in use by legitimate users or by the adversary,
or both. Thus,

Fig. 1. The adversary’s strategies (left) and the total spec-
trum hole size (right) as functions on probability p1.

vA(y) =
n∑

i=1

(1/qi − 1) =
n∑

i=1

1/(pi + yi(1− pi))− n (1)

can be considered as a measure for the total size of spectrum
holes of the bandwidth in the presence of the adversary. This
measure is a cost function for the adversary. The adversary
intends to minimize it, i.e., to find a strategy y such that
y = arg miny vA(y).

Theorem 1 The optimal adversary strategy y is unique, and
it has a water-filling form given as follows:

yi = yi(ω) :=
⌊(√

(1− pi)/ω − pi

)
/(1− pi)

⌋
+
, i = 1, . . . , n, (2)

where ω = ω∗ and ω∗ ∈ (0, p∗) with p∗ = maxi(1 − pi)/p2
i is

the unique root of the equation
∑n

i=1 yi(ω) = 1. Due to the
left-side of this equation being continuous with respect to ω >
0,and decreasing from infinity for ω ↓ 0 to zero for ω = p∗,
the root ω∗ can be found uniquely by the bisection method.

Figure 1(top) illustrates the optimal strategy for the ad-
versary as a function of the probability that band 1 is used
by the users for n = 5 and p = (p1, 0.32, 0.41, 0.25, 0.18). The
strategy has two switching points p1

1 = 0.32 and p2
1 = 0.43.

For p1 < 0.32 bands 1,2,3 and 4 are targets for attack by the
adversary, while for 0.32 < p1 < 0.43 all five of the bands are
under attack, and while for 0.43 < p1 bands 2,3,4 and 5 are
targets for attack by the adversary. The adversary’s strategy
y is continuous with respect to p1, which means it has a small
sensitivity to small variations in the frequencies with which
the bands are in use by legitimate users. Figure 1(bottom)
illustrates that such an adversarial attack strategy is more
efficient to achieve the goal of closing the size of spectrum
holes than applying an uninformed, random jamming attack
yR = (1/n, . . . , 1/n) in which the jamming attacks all of the
bands with equal probability.

3. SPECTRUM SCANNER

In this section, we consider the situation when the spectrum
is being monitored by some form of IDS (i.e. an intrusion de-
tection system, the spectrum scanner), which scans the bands
to detect malicious activity. We consider that the spectrum
scanner can only scan a single band at any time. Then, the
strategy for the spectrum scanner is represented by a prob-
ability vector x = (x1, . . . , xn), where xi is the probability
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that the spectrum scanner scans band i. The adversary can
be detected only if he transmits a signal in the same band
i being scanned by the spectrum scanner. In this case, we
assume then that the adversary’s signal can be detected with
certainty. Otherwise, the adversary’s signal cannot be de-
tected. The payoff to the scanner is detection probability,
i.e., vS(x,y) =

∑n

i=1 xiyi, and the IDS goal is to maximize
the payoff.

Then, if the spectrum scanner and the adversary apply
strategies x and y, we define the adversary cost function:

vA(x,y) =
n∑

i=1

1− xi

pi + (1− pi)yi

− n, (3)

which reflects the size of the spectrum holes if the adversary
is not detected.

The adversary wants to minimize his cost, while the spec-
trum scanner wants to maximize his payoff vS(x,y). Thus a
non zero-sum game arises [18], and we can look for (Nash)
equilibrium strategies. Recall that a pair of strategies (x∗,y∗)
is a (Nash) equilibrium if and only if

vA(x∗,y∗) ≤ vA(x∗,y), vS(x,y∗) ≤ vS(x∗,y∗)

for any (x,y). Due to vA being convex in y, and vS being
linear in x,there is at least one equilibrium [18]. The following
theorem proves that the equilibrium is unique and gives it in
closed form.

Theorem 2 In the considered game, the equilibrium (x,y)
is unique and given as follows:

xi(ω, ν) =

{
1− ω (pi + (1− pi)ν)2

1− pi
i ∈ I11(ω, ν),

0, i 6∈ I11(ω, ν),
(4)

yi(ω, ν) =


ν, i ∈ I11(ω, ν),

1
1− pi

(√
1− pi
ω − pi

)
, i ∈ I10(ω, ν),

0, i ∈ I00(ω, ν),

(5)

where

I00(ω, ν) =

{
i :

1− pi

p
2
i

≤ ω

}
,

I10(ω, ν) =

{
i :

1− pi

(pi + (1− pi)ν)2 ≤ ω <
1− pi

p
2
i

}
,

I11(ω, ν) =
{
i : ω <

1− pi

(pi + (1− pi)ν)2

}
,

(6)

where ω ∈ (0, p∗) and ν > 0 are the unique solution of the
equations

X(ω, ν) :=
n∑

i=1

xi(ω, ν) = 1, Y (ω, ν) :=
n∑

i=1

yi(ω, ν) = 1.

The value of the parameters ω and ν can be uniquely defined
in two steps:

Step 1: Since Y (ω, ν) is decreasing in ω ∈ (0, p∗] for a
fixed ν > 0 from infinity for ω ↓ 0 to zero for ω = p∗, and
Y (ω, ν) is increasing in ν for a fixed ω from zero for ν = 0 to

∑n

i=1
1

1−pi

⌊√
1−pi

ω
− pi

⌋
+

for ν tending to infinity. Thus,

for each ω ∈ (0, ω∗] there exists ν(ω) such that Y (ω, ν(ω)) =
1. This ν(ω) is continuous and increasing from 1/n for ω = 0
to infinity while ω ↑ ω∗.

Step 2: Since X(ω, ν) is decreasing in ν and ω, then
X(ω, ν(ω)) is also decreasing, and ω is defined as the unique
root in (0, ω∗) of the equation X(ω, ν(ω)) = 1. Since all of
the functions are monotonic, the bisection method can be ap-
plied to find ν(ω) and ν. Since the suggested algorithm is a
superposition of two bisection methods, the complexity of the
algorithm is given by product of complexity of these bisection
methods. This ν is detection probability of the adversary and
ν > 1/n. Thus, the scanning strategy x has higher efficiency
compare with uniform scanning strategy xU = (1/n, . . . , 1/n).

Figure 2(a) and (b) illustrate an increase in the detection
probability as well as an increase in the size of spectrum holes
that arises when applying the equilibrium scanning strategy x
compared with a uniform scanning strategy xU . This effect is
achieved by focusing the scanning efforts on the bands where
the spectrum scanner can detect the adversary with largest
probability, while neglecting the other bands due to their low
contribution in the expected payoff. Namely, for p1 < 0.28
only bands 1,4, and 5 are scanned, for 0.28 < p1 < 0.33
bands 1,2, 4, and 5 are scanned, and for 0.33 < p1 bands
2,4, and 5 are scanned (Figure 2(c)). We note the interesting
phenomena that the adversary uses more bands to attack
than the spectrum scanner to scan. Namely, for p1 < 0.48 all
of the bands are under attack, while for p1 > 0.48 all of the
bands except band 1 are being attacked. This explains why
for p1 > 0.48, the adversary’s attack strategy is constant.

4. HOW OFTEN TO SCAN THE NEGLECTED
BANDS

The advantage of the scanning strategy x is that it is tuned
for a jamming attack that seeks to close spectrum holes. This
efficiency is achieved by focusing the scanning efforts on the
bands that are more likely to be attacked, and neglecting the
others. Such focused efforts are also a disadvantage, since the
adversary could safely use bands that were neglected by such
a tuned strategy. To reduce this disadvantage, the scanning
strategy should, from time to time, also scan the remainder
of the bands that aren’t being scanned by the tuned strat-
egy. Then, a question arises: how often should the revised
strategy scan these other bands? To explore this, we con-
sider that the adversary is attempting to sneak usage of the
spectrum (and not necessarily to close the spectrum holes),
and thus introduce a new type of the adversarial strategy,
a sneaking strategy yS , by which the adversary randomly
uses bands I10 ∪ I00 that are not being scanned by the scan-
ning strategy x. To meet this new challenge, the (revised)
spectrum scanner should employ both strategy x as well as
a new strategy xS (like an ambush strategy [19]) that scans
the bands I10 ∪ I00 with uniform probability.

At any instant, the adversary does not know what type of
adversarial mode the spectrum scanner is scanning against;
similarly, at any instant, the spectrum scanner does not know
what type of attack mode the adversary will actually em-
ploy. Thus, the rivals face a dilemma in choosing the proper
strategies. This dilemma can be described by the following
zero-sum 2× 2 matrix game
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(a) (b) (c) (d)

Fig. 2. (a) Detection probabilities, (b) total spectrum hole size, (c) the spectrum scanner’s strategy and (d) the adversary’s
strategy as functions of the probability p1.

M =
( y yS

x vS(x,y) 0
xS vS(xS ,y) vS(xS ,yS)

)
,

where the rows correspond to the spectrum scanner’s strate-
gies, and the columns correspond to the adversary’s strate-
gies. This payoff matrix reflects two cases of Theorem 2:
(a) if I10 6= ∅ then vS(xS ,y) > 0, and (b) vS(x,yS) = 0.
This matrix game has an equilibrium (see [18]). Moreover,
this equilibrium involves randomized (mixed) strategies due
to vS(xS ,y) < vS(xS ,yS) (since support of y is I10 ∪ I11
while xS and yS are uniform strategies in I10 ∪ I00) and
vS(xS ,y) < vS(x,y) (since (x,y) is the equilibrium).

Theorem 3 The considered game has a unique equilibrium.
Namely, with probability, α (αS), the spectrum scanner should
use strategy x (xS), and with probability, β (βS), the adver-
sary should use strategy y (yS), where

α =
vS(x

S
,y

S)− vS(x
S
,y)

vS(x,y) + vS(x
S
,y

S)− vS(x
S
,y)

, α
S = 1− α,

β =
vS(x

S
,y

S)
vS(x,y) + vS(x

S
,y

S)− vS(x
S
,y)

, β
S = 1− β.

The detection probability is

D =
vS(x

S
,y

S)vS(x,y)
vS(x,y) + vS(x

S
,y

S)− vS(x
S
,y)

.

Figure 3, illustrates some interesting properties of the strate-
gies. The spectrum scanner can maintain a permanent level
of security (detection probability) by a strategy that com-
bines the robustness to the environment’s parameters (as re-
flected by the probabilities pi associated with bands being
used by benign users) with sensitivity to its critical values.
In other words, it has piece-wise constant structure. Namely,
α = 0.6 for p1 < 0.26 and p1 > 0.32 while α = 0.8 for
0.26 < p1 < 0.32. Thus, in each of these intervals the strat-
egy is robust to varying in environment’s parameters (as well
as in related varying in the adversary’s attack). While, at
the critical points p1 = 0.26 and p1 = 0.32, it becomes very
sensitive and it changes by a jump discontinuity. Although,
the adversary strategy is continuous in p1 (so, less sensitive
to such varying), in contrast, the spectrum strategy requires
very precise (i.e., small) tuning to each small variation of the
environment’s parameters. The adversary, with higher proba-
bility, applies a minimize spectrum hole attack than it chooses

Fig. 3. Detection probabilities (left) and the spectrum scan-
ner’s strategy (right) as functions of the probability p1.

to sneak usage of the bandwidth. The spectrum scanner, in
response, also with higher probability tries to meet such an
attack instead of responding to sneaking usage. Is it quite an
interesting and surprising result that it is possible that the
spectrum scanner cares about the sneaking attack (and, so,
about the neglected bands) with higher probability than the
adversary intends to actually attack them, namely, αS > βS

due to α < β.

5. CONCLUSIONS

In this paper, we showed that a specially-aimed attack can
be devised that reduce the availability of spectrum holes, and
thus could present a dangerous attack for spectrum utiliza-
tion. To reduce the impact of such an attack, we used a
game-theoretical approach to arrive at a scanning strategy
that gives an increase in efficiency in detecting such an at-
tack. This improvement is achieved by focusing the scanning
on the most bands that are most promising from the adver-
sary’s point of view. However, an adversary might have other
objectives in mind and could exploit the bias of the scanning
strategy to instead sneak usage of (or even interfere with)
bands being neglected by the best response algorithm. We
thus found a revised scanning strategy that combines the pos-
sibility of the adversary trying to close spectrum holes with
the possibility that it is merely trying to use the spectrum
bands. The goal of our future work is to advance the for-
mulation for more sophisticated adversarial behaviour when
the adversary could have more nuanced objectives, and to
incorporate more general detection rules associated with the
scanner detecting an adversarial transmission.
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