
1

A Distributed Algorithm to Achieve Transparent
Coexistence for a Secondary Multi-hop MIMO

Network
Xu Yuan, Member, IEEE, Xiaoqi Qin, Student Member, IEEE, Feng Tian, Member, IEEE,

Yi Shi, Senior Member, IEEE, Y. Thomas Hou, Fellow, IEEE, Wenjing Lou, Fellow, IEEE,
Scott F. Midkiff, Senior Member, IEEE, and Sastry Kompella, Senior Member, IEEE

Abstract—The transparent coexistence (TC) paradigm allows
simultaneous activation of the secondary users with the primary
users as long as their interference to the primary users can
be properly canceled. This paradigm has the potential to offer
much more efficient spectrum sharing than traditional interweave
paradigm. In this paper, we design a distributed algorithm to
achieve this paradigm for a secondary multi-hop network. For
interference cancelation (IC), we employ MIMO at secondary
nodes. We present a distributed iterative algorithm to maximize
each secondary session’s throughput while meeting all IC require-
ments under TC. By maintaining two local sets for each node,
we can keep track of the node’s IC responsibility. Although no
explicit node ordering is maintained in our distributed algorithm,
we prove that our distributed data structure at each node (with
the use of two local sets) can be mapped to an explicit global node
ordering for IC among all nodes in the network. This guarantees
that each active node’s degree-of-freedoms (DoFs) allocated for
IC is feasible at the physical (PHY) layer. Our algorithm is
iterative in nature and all steps can be accomplished based on
local information exchange among the neighboring nodes. We
present simulation results to show that the performance of our
distributed algorithm is highly competitive when compared to
an upper bound solution from the corresponding centralized
problem.

Index Terms—Primary network, secondary network, spectrum
sharing, coexistence, distributed algorithm, multi-hop network,
MIMO, interference cancelation.

I. INTRODUCTION

A spectrum sharing paradigm is defined by how the sec-
ondary and the primary users achieve coexistence. In [3],
Goldsmith et al. outlined three main paradigms, namely in-
terweave, underlay, and overlay. Interweave is a simple but
conservative approach that follows the traditional interference
avoidance paradigm. Under interweave, a secondary network
is allowed to access radio spectrum only when it is not in

Manuscript received July 9, 2015; revised January 18, 2016; accepted
May 27, 2016. An abridged version of this paper was presented at IEEE
IPCCC, Austin, TX, USA, 2014 [21]. The associate editor coordinating the
review of this paper and approving it for publication was W. Wang.

X. Yuan, X. Qin, Y.T. Hou, W. Lou, and S.F. Midkiff are with the Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
(email: {xuy10, xiaoqi, thou, wjlou, midkiff}@vt.edu).

F. Tian is with the Nanjing University of Posts and Telecommunications,
Nanjing, Jiangsu 210003, China. (e-mail:tianf@njupt.edu.cn).

Y. Shi is with the Intelligent Automation Inc., Rockville, MD, 20855, USA.
(e-mail: yshi@vt.edu).

S. Kompella is with the U.S. Naval Research Laboratory, Washington, DC
20375, USA. (email: sastry.kompella@nrl.navy.mil).

conflict with the primary users in time, frequency, or space
[2], [5], [17]. On the other hand, overlay is considered an
aggressive spectrum sharing paradigm as it encourages proac-
tive cooperation between the primary and secondary networks
in data forwarding [7], [8], [11], [15], [23], [26]. In terms of
spectrum sharing efficiency and network performance, overlay
represents the ultimate coexistence paradigm, although its
actual adaptation and deployment may still be years away due
to the need of significant change in primary users’ behavior.
In this research, we focus on the underlay paradigm, which
is considered as a major step forward beyond the interweave
paradigm while requiring minimal change on the primary
network. The underlay refers to that secondary users may
be active simultaneously with the primary users in the same
vicinity and in the same frequency, as long as the secondary
user’s interference to primary users are negligible (or below a
given threshold).

Underlay coexistence paradigm has been explored in [1],
[10], [24], [25]. In [1], Gao et al. studied the transmission
strategies for a MIMO secondary link with a primary link.
They proposed a secondary transmission strategy consisting of
environment learning, channel training, and data transmission.
In [24], Zhang and Liang studied the transmission strategy
for a single secondary MIMO link coexisting with multiple
primary receivers with interference-power constraints. In [25],
Zhang et al. studied the secondary-link beamforming pattern
to achieve the coexistence of a single secondary link with
multiple primary links. They aimed to maximize the secondary
user’s throughput while keeping the interference temperature
at the primary receivers below a certain threshold. In [10], Kim
and Giannakis studied the coexistence of multiple secondary
links with one primary link. They proposed a distributed
resource allocation algorithm to maximize the weighted sum
rate of secondary links under a transmit power constraint at the
secondary transmitters and an interference power constraint
at the primary receiver. All these prior efforts were from
information theoretic perspective. A common limitation of
these prior efforts is that they are all limited to very simple
network settings, e.g., several nodes or link pairs, all for single-
hop communications.

In a recent study [19], we explored the underlay paradigm
for a secondary multi-hop network under the name of trans-
parent coexistence (TC). Under TC, there is no change on the
primary network’s behavior. It uses the spectrum as it wishes

2

and is not concerned with the needs of the secondary network.
On the other hand, the secondary network is allowed to access
the spectrum in the same time, frequency, and location with
the primary network, as long as its activities are “invisible” to
the primary network. Such transparency is achieved by having
the secondary network proactively cancel its interference to
the primary network with powerful physical (PHY) layer
techniques so that the primary nodes do not feel the presence
of the secondary nodes. As a result, simultaneous activation of
the secondary network along with the primary network is pos-
sible. In [19], we developed centralized mathematical models
to characterize (i) inter-network interference cancelation (IC)
relationships between two networks – secondary transmitters
need to cancel their interference to the primary receivers while
secondary receivers need to cancel the interference from the
primary transmitters; and (ii) intra-network IC – secondary
nodes need to perform IC within their own network so that data
can be transported successfully within the secondary network.

The results in [19] showed the concept of achieving TC for
a multi-hop primary and secondary network through a cen-
tralized solution. But it is also desirable to have a distributed
solution to achieve TC. The main contribution of this paper is
the development of a distributed scheduling algorithm for the
secondary network to achieve TC with the primary network,
while maximizing its own network throughput. For IC, we
assume each secondary node is equipped with MIMO, while
there is no requirement on the primary nodes. We employ a
MIMO IC model that was developed in [14] to keep track
of degree-of-freedoms (DoFs) allocation for transporting data
streams (i.e., spatial multiplexing (SM)) and IC. It was shown
in [14] that this IC model is efficient in DoF allocation while
guaranteeing feasibility in the final solution. By feasibility, we
mean there exists a feasible precoding and decoding vector
for each data stream at the PHY layer. However, this model
is centralized in nature and requires to maintain a global node
ordering among the secondary nodes in the network, which
is not possible in a distributed network environment. In this
paper, instead of maintaining a global node ordering, we only
maintain two local sets at each node to keep track of the node’s
IC responsibilities. We show how to establish, maintain, and
update these two local sets at each node in each iteration of
our distributed algorithm. Our distributed algorithm increases
the data stream on each active link iteratively based on local
computation. Since the nodes in the two local sets of a
node directly affect the node’s IC responsibility, our algorithm
attempts to switch nodes in the two sets if it can improve the IC
structure. Although no explicit node ordering is maintained in
our distributed algorithm, we prove that our distributed data
structure at each node (with the use of two local sets) can
be mapped to an explicit global node ordering for IC among
all nodes in the network. From this global node ordering for
IC among all nodes, we show there exist a set of feasible
precoding vectors at each secondary transmitter and a feasible
set of decoding vectors at each secondary receiver so that
all data (in both primary and secondary networks) can be
transported free of interference. Through numerical results, we
show that the iterative distributed algorithm that we propose
offers competitive performance when compared with an upper

TABLE I
NOTATION

Primary Network
P The set of nodes in the primary network
T The number of time slot in a frame
F̃ The set of sessions in the primary network
L̃ The set of active primary links

Secondary Network
S The set of nodes in the secondary network
S The number of secondary nodes in the network, S = |S|
Ai The number of antennas at secondary node i ∈ S
F The set of sessions in the secondary network
L The set of secondary links

bound result from centralized optimization.
The remainder of this paper is organized as follows. In

Section II, we describe our problem. Section III presents the
design of an iterative distributed algorithm to achieve TC for
a secondary multi-hop network. In Section IV, we present a
feasibility proof of our distributed algorithm at the PHY layer.
In Section V, we analyze the complexity and overhead of our
distributed algorithm. Section VI presents numerical results
and demonstrates the competitive performance of the proposed
distributed algorithm. Section VII concludes this paper.

II. PROBLEM DESCRIPTION

In this paper, we consider a multi-hop primary network
(with a set of nodes P) and a multi-hop secondary network
(with a set of nodes S) that are co-located in the same
geographical area, as shown in Fig. 1. Table I lists the notation
in this paper. The primary network is assigned a certain
spectrum band for its communication. Suppose scheduling
is done in the time domain, with T time slots in a frame.
For the primary network, it performs scheduling for trans-
mission/reception without any consideration of the secondary
network. A secondary node, however, is allowed to transmit
in a time slot only if it is able to cancel its interference to
its neighboring primary receivers. We assume the primary
nodes are single antenna nodes. Suppose that there is a set
of sessions F̃ in the primary network P . Each session has
a source node and a destination node and traverses multi-
hop relay nodes as needed. The route from a session’s source
node to its destination node is given a prior, which may be
found by some standard routing protocols (e.g., AODV [12],
DSR [9]). Denote L̃ as a set of links in the network that
are traversed by the active sessions in F̃ . Suppose the set
of links L̃ is operating under a feasible scheduling solution
(for transmisson/reception) for the primary sessions F̃ , where
interference at a primary receive node is avoided either through
time slot or sufficient spatial separation. Since each primary
node has only a single antenna, it can transmit at most one
data stream to another node in a time slot.

For the secondary network, we assume each node is
equipped with MIMO, which offers IC capability that is
needed to achieve TC. We assume the number of antennas
at a secondary node i ∈ S is Ai. For the secondary network
S, suppose that there is a set of sessions F in S. Similar to
a primary session, a secondary session has a source node,
a destination node, and traverses multi-hop relay nodes as

3

Primary nodes Secondary nodes

Fig. 1. A multi-hop secondary network co-located in the same
area as a multi-hop primary network.

P1 P2

S3 S4

S1 S2
1

1

2

Fig. 2. A simple example illustrating SM and IC. A solid line
represents the primary link, a dashed line represents a secondary
link, and a dotted line represents an interference.

needed. The route from a secondary session’s source node
to its destination node is again given a priori. Denote L as the
set of links that are traversed by any session in F .

We use DoFs at a secondary node (no more than the number
of antennas at the node) to represent its available resources. A
DoF can be used for SM or IC. For SM, transmitting one data
stream requires one DoF at the transmitter and one DoF at the
receiver. In practice, the data rate carried in each data stream
may vary with different channel conditions. For simplicity, we
assume that the fixed modulation and coding scheme (MCS)
is used for a link’s data stream transmission, and one data
stream in one time slot corresponds to one unit data rate. On
the other hand, DoF consumption for IC depends on whether
the IC is done at the transmitter or receiver. We use a simple
example to illustrate this point. In Fig. 2, suppose P1 and P2

are a pair of primary transmit and receive nodes, while S1 and
S2, S3 and S4 are two pairs of secondary transmit and receive
nodes. Suppose that both the primary nodes P1 and P2 have
one antenna, and the secondary nodes S1, S2, S3, and S4 are
each equipped with 4 antennas (4 DoFs). P1 is transmitting 1
data stream to P2, S1 is transmitting 1 data stream to S2, and
S3 is transmitting 2 data stream to S4. For the interference
from S1 to S4, either transmitter S1 or receiver S4 can cancel
this interference. If S1 is to cancel this interference, then it
will use 2 DoFs since S4 is receiving 2 data streams; if S4

is to cancel this interference, then it will use 1 DoF since
S1 is transmitting 1 data stream. Note the difference in DoF
consumptions in IC by different nodes.

As described, to achieve TC, the secondary nodes have the
sole responsibility to cancel interference to/from the primary
nodes (i.e., inter-network interference) and interference within
the secondary network (i.e., intra-network interference). In this
example, for inter-network IC, secondary nodes S2 and S4

need to cancel the interference from primary transmit node
P1 with 1 DoF, respectively; the secondary transmit nodes S1

and S3 need to cancel their interference to primary receive
node P2 with 1 DoF, respectively. For intra-network IC, the
interference from S1 to S4 needs to be cancelled, either by
S1 (with 2 DoF) or by S4 (with 1 DoF) as discussed earlier;
the interference from S3 to S2 needs to be cancelled, either
by S3 (with 1 DoF) or by S2 (with 2 DoFs).

To successfully perform inter- and intra-network IC, it is

crucial for the secondary nodes to have accurate channel state
information (CSI). We propose one particular scheme for the
secondary nodes to obtain CSI between themselves and their
neighboring primary and secondary nodes while remaining
transparent to the primary nodes. The main idea of the scheme
is to have the primary and secondary nodes send out known
pilot signal so that neighboring secondary nodes can estimate
CSI. This is the practice for current cellular networks and
we will employ such a mechanism for both the primary and
secondary networks. Suppose the pilot sequences from the pri-
mary and secondary nodes are publicly available (as in cellular
networks). After the primary and secondary nodes send out the
pilot sequences, the neighboring secondary nodes can compare
the known pilot sequences with the actual received sequences
signal from the senders for channel estimation. Based on
the reciprocity property of a wireless channel, the estimated
CSI can also be used as CSIT (channel state information at
transmitter side) when the secondary node becomes a transmit
node. Therefore, each secondary node can obtain complete CSI
between itself and a neighboring primary or secondary node.
There are many other schemes that have been proposed to
address this issue (see, e.g., [4], [13], [18], [19], [21], [27]).
We omit their discussions here to conserve space. But the point
here is that there exist schemes that we can use to obtain the
necessary CSI for the secondary nodes to perform inter- and
intra-network IC.

In our design of distributed algorithm for the secondary
nodes to achieve TC, we consider a throughput maximization
problem, with the objective of maximizing the minimum
achievable session rate (in terms of data streams) among all
secondary sessions. We choose this objective since it focuses
on the worst case (minimum) achievable secondary session
throughput, which ensures fairness across all secondary ses-
sions.

III. A DISTRIBUTED ALGORITHM

We propose a distributed scheduling algorithm to the
throughput maximization problem while meeting all IC re-
quirements for the secondary nodes. As described in our
network setting, the set of sessions F̃ in the primary network
are transmitting under a given feasible scheduling solution. To
have the secondary sessions operate in the same set of time

4

i

Fig. 3. Maintaining two local sets at node i to distinguish IC responsibility
between node i and its neighboring nodes.

slots (to achieve TC), we employ MIMO at the secondary
nodes for IC. The algorithm that we propose is an iterative
greedy algorithm. We consider one link (from the set of links
L) at a time and try to increase the data streams on this link
by 1 in this iteration. This increment is successful only if the
transmitter, receiver and neighboring nodes of this link have
enough remaining DoFs to cancel this new interference on
neighboring primary and secondary nodes.

As discussed earlier, an interference can be canceled either
by a secondary transmit or receive node. For efficient and
feasible IC, a global node ordering scheme proposed in [14]
would be useful. But such a global node ordering scheme is
centralized in nature. Nevertheless, it gives us some hints in
our design of distributed algorithm.

We propose to maintain two local sets at each node to
keep track of the IC responsibility between this node and
neighboring nodes. For example, at each secondary node
i ∈ S , we maintain one local set Bi(t) to store i’s neighboring
nodes that require node i to use its DoFs for IC and the other
local set Yi(t) to store i’s neighboring nodes that use their own
DoFs for canceling interference to/from node i (see Fig. 3).
Note that there is no explicit node ordering among the nodes
in sets Bi(t) and Yi(t). By maintaining these two sets (with
Bi(t) before node i and Yi(t) after node i), we have achieved
the desired efficiency in IC locally at node i. We will discuss
the feasibility issue in Section IV.

The use of two local sets Bi(t) and Yi(t) at each secondary
node i is centerpiece in our design of distributed scheduling
algorithm to achieve TC. In our algorithm, we will exploit
these two sets at each node to its fullest extent to achieve IC
at the secondary nodes while meeting the resource constraints
(limited DoFs at each node). In particular, when we find that
a data stream cannot be further increased on a bottleneck
link, we will consider moving some nodes from one local
set into the other set so that the DoFs at a node can be re-
allocated. This step is called adjusting IC responsibility in our
algorithm (Step 3) and is a critical component to maximize
the performance of our algorithm. At any iteration when this
IC responsibility adjustment is not successful (and thus the
number of data streams on the associated link cannot be
further increased) for all time slots in a frame, our algorithm
terminates.

TABLE II
STATE INFORMATION AT EACH NODE i

Symbol Definition
si(t) The status of node i in time slot t. si(t) = Tx, Rx or Idle.
Bi(t) The set of nodes that node i allocates DoFs for IC to/from

them in time slot t.
Yi(t) The set of nodes that allocate their own DoFs for IC to/from

node i in time slot t.
λSM
i (t) The number of DoFs that node i has allocated for SM

in time slot t.
λIC
i (t) The number of DoFs that node i has allocated for IC

in time slot t.
λRM
i (t) The number of remaining DoFs at node i ∈ S in time slot t,

i.e., λRM
i (t) = Ai − λSM

i (t)− λIC
i (t).

α̃i(t) The total number of data streams from node i’s neighboring
primary transmitters in time slot t.

β̃i(t) The total number of data streams received by node i’s
neighboring primary receivers in time slot t.

αi(t) The total number of data streams from node i’s neighboring
secondary transmitters in time slot t.

βi(t) The total number of data stream received by node i’s
neighboring secondary receivers in time slot t.

zi,j(t) The number of data streams from transmit node i to
receive node j.

A. State Information at Secondary Nodes
The state information that needs to be maintained at a

secondary node (say i) is shown in Table II.
Local sets Bi(t) and Yi(t): For each interference involving
node i, it can be canceled by either node i or the other node
involved in this interference. To explicitly distinguish who is
responsible for IC for each interference, we maintain two local
sets Bi(t) and Yi(t) at each node i, as shown in Figure 3.
We denote Bi(t) as the set of secondary nodes that node i
(i ∈ S) allocates DoFs to cancel interference to/from them,
and denote Yi(t) as the set of secondary nodes that allocate
their DoFs to cancel interference to/from i. At the beginning
of our algorithm, we initialize Bi(t) and Yi(t) as empty sets,
i.e., Bi(t) = ∅ and Yi(t) = ∅ for i ∈ S.
Accounting of DoF resource: In Table II, zi,j(t) represents
the number of data stream transmitted from node i to node j.
λSM
i (t) and λIC

i (t) represents the number of DoFs allocated
for SM and IC at secondary node i in time slot t, respectively.
λRM
i (t) represents the number of remaining DoFs at a node

i in time slot t. At the beginning of our algorithm, the status
of each node i ∈ S is set to Idle, i.e., si(t) =Idle for
t = 1, 2, · · · , T . Then, the initial DoF allocation for SM
and IC at each node is 0. We have λSM

i (t) = λIC
i (t) = 0,

λRM
i (t) = Ai and zi,j(t) = 0 for i, j ∈ S, t = 1, 2, · · · , T in

the initialization stage. α̃i(t) and β̃i(t) are constants and are
calculated based on active sessions in the primary network.
These can be derived by the secondary nodes through mon-
itoring/sensing of the neighboring primary nodes’s activities.
On the other hand, the initial values for αi(t) and βi(t) are 0.

For these state information, except that α̃i(t) and β̃i(t) are
constants, the values for si(t), Bi(t), Yi(t), λSM

i (t), λIC
i (t),

λRM
i (t), zi,j(t), αi(t) and βi(t) are variables and will be

updated during each iteration of the algorithm.

B. Step 1: Choosing a Link
To make a rate increment of each session by 1 DoF is

equivalent to increasing the DoF on each active link by 1 DoF

5

Fig. 4. Four cases of link status.

if each active link is traversed by 1 session. In the general case
when an active link is traversed by multiple sessions, we need
to increase the DoFs on this active link by multiple times,
each for one session. In our distributed algorithm, we choose
an active link for increment during an iteration. If a link is
traversed by multiple sessions, then it is necessary to represent
the link multiple times so that each session traversing this link
is to be considered for data stream increment. Suppose there
are k sessions traversing a link l ∈ L. Then we represent link
l by k logical links. We want to set a round robin for these
logical links for rate increment so that each logical link is
considered once in each cycle.

To do this, we employ the so-called distributed ranking
algorithm by Zaks [28]. This algorithm was designed to
solve the problem of sorting and ranking n processors in a
distributed system. The input is an initial value unique for each
processor. The output is a ranking of all n processors. To apply
the distributed ranking algorithm, we assign an initial value
for each logical link. Each initial value is generated randomly
and guaranteed to be unique (under a reasonably good random
number generator). We let the transmitter of each logical link
to maintain the logical link’s rank. After a logical link obtains
its rank, it will know precisely when it will be considered for
data stream increment.

C. Step 2: Data Stream Increment

After we identify a logical link (in Step 1), our algorithm
will try to increase one data stream on the selected link,
while satisfying IC constraints and transparency to the primary
network.1 We first present the necessary conditions under
which one more data stream can be added on the link in a
time slot. Then we describe how to update state information
on the nodes that are involved in this increment.
Sufficient Conditions for Data Stream Increment. We
now discuss when the number of data streams on a chosen
link can be increased by 1 in a given time slot. Suppose
link (i, j) is the link. Then both nodes i and j first check
their current status (“Tx”, “Rx”, or “Idle”). Some cases can
be clearly ruled out for consideration, i.e., si(t) = Rx or
sj(t) = Tx. In these cases, link (i, j) cannot be considered
for data stream increment in time slot t and we move to the
next time slot (t+1) immediately. When link (i, j) is suitable
for data stream increment, there are four possible statuses as
shown in Figure 4. The sufficient conditions for data stream
increment on link (i, j) are as follows.
Case (a): si(t) = Idle and sj(t) = Idle.

1We drop the fine distinction between “link” and “logical link” when there
is no confusion.

• si(t) = Idle: Since node i is idle, the local sets Bi(t)
and Yi(t) are empty. We need to establish the sets Bi(t)
and Yi(t) (see Figure 3) to decide the IC relationships
between node i and its neighboring secondary receive
nodes that will be interfered by i. We can put all these
neighboring receive nodes in time slot t either in Bi(t)
or Yi(t).

– If all neighboring receive nodes are put into Yi(t),
then the interference from node i to them will be
canceled by these receive nodes. The following two
conditions must be satisfied: (i) the total number
of DoFs at node i should be greater than the total
number of data streams received by its neighboring
primary receivers, i.e., Ai > β̃i(t), (ii) all secondary
receivers that are in Yi(t) must have at least one
remaining DoFs to cancel one more data stream
interference from node i.

– If all neighboring receive nodes are put into Bi(t),
node i needs to cancel its interference to all these
neighboring receive nodes. The following condition
must be satisfied: the total number of DoFs at node
i is more than the sum of data streams received by
both neighboring primary and secondary receivers,
i.e., Ai > β̃i(t) + βi(t).

• sj(t) = Idle: Similar to node i, we put node j’s
neighboring transmit nodes in either Bj(t) or Yj(t). The
sufficient conditions for j are similar as i, we omit its
discussion here.

If the conditions for si(t) = Idle and sj(t) = Idle are
both satisfied, we proceed with this increment and update
state information at nodes i, j and their neighboring nodes
according to Figure 5 and Figure 6.

State update at idle node i and neighboring receiver k
1. If si(t) = Idle:
2. Update si(t) = Tx; λSM

i (t)← λSM
i (t) + 1;

λRM
i (t)← λRM

i (t)− 1; zi,j(t)← zi,j(t) + 1.
3. If Yi(t)← {Neighboring active secondary receivers.}
4. Update λIC

i (t)← β̃i(t);λ
RM
i (t)← λRM

i (t)− λIC
i (t);

5. For each receive node k ∈ Yi(t):
6. Bk(t)← Bk(t) ∪ {i}; λIC

k (t)← λIC
k (t) + 1;

λRM
k (t)← λRM

k (t)− 1.
7. Else if Bi(t)← {Neighboring active secondary receivers.}
8. Update λIC

i (t)← β̃i(t) + βi(t); λRM
i (t)← λRM

i (t)− λIC
i (t).

9. For each node k ∈ Bi(t): Yk(t) = Yk(t) ∪ {i}.

Fig. 5. Pseudocode to update state information when si(t) = Idle.

State update at idle node j and neighboring transmitter k
1. If sj(t) = Idle:
2. Update sj(t) = Rx; λSM

j (t)← λSM
j (t) + 1;

λRM
j (t)← λRM

j (t)− 1; zi,j(t)← zi,j(t) + 1.
3. If Yj(t)← {Neighboring active secondary transmitters.}
4. Update λIC

j (t)← α̃j(t);λ
RM
j (t)← λRM

j (t)− λIC
j (t)

5. For each transmit node k ∈ Yj(t):
6. Bk(t)← Bk(t) ∪ {j}; λIC

k (t) = λIC
k (t) + 1;

λRM
k (t) = λRM

k (t)− 1.
7. Else if Bj(t)← {Neighboring active secondary transmitters.}
8. Update λIC

j (t)← α̃j(t) + αj(t); λRM
j (t)← λRM

j (t)− λIC
j (t).

9. For each k ∈ Bj(t): Yk(t)← Yk(t) ∪ {j}.

Fig. 6. Pseudocode to update state information when sj(t) = Idle.

Case (b): si(t) = Tx and sj(t) = Idle.

6

• si(t) = Tx : In this case, the following conditions must
be satisfied if node i wants to increase one more data
stream on link (i, j): (i) node i has at least one remaining
DoF for SM, i.e., λRM

i (t) ≥ 1; (ii) each receive node
k ∈ Yi(t) has at least one remaining DoF to cancel the
new interference from node i.

• sj(t) = Idle : This case has been discussed in Case (a).
If the conditions for si(t) = Tx and sj(t) = Idle are

both satisfied, we proceed with this increment and update
state information at nodes i, j and their neighboring nodes
according to Figure 6 and Figure 7.

State update at transmit node i and neighboring receiver k
1. If si(t) = Tx:
2. Update λSM

i (t)← λSM
i (t) + 1; λRM

i (t)← λRM
i (t)− 1;

zi,j(t) = zi,j(t) + 1.
3. For each receive node k ∈ Yi(t):
4. Update λIC

k (t)← λIC
k (t) + 1;λRM

k (t)← λRM
k (t)− 1.

Fig. 7. Pseudocode to update state information when si(t) = Tx.

Case (c): si(t) = Idle and sj(t) = Rx.
• si(t) = Idle: This case has been discussed in Case (a).
• sj(t) = Rx: In this case, the following condition must

be satisfied if node j wants to increase one more data
stream on link (i, j): (i) node j has at least one remaining
DoF for SM, i.e., λRM

j (t) ≥ 1; (ii) each transmit node
k ∈ Yj(t) has at least one remaining DoF to cancel its
interference to node j.

If the conditions for si(t) = Idle and sj(t) = Rx are
both satisfied, we proceed with this increment and update
state information at nodes i, j and their neighboring nodes
according to Figure 5 and Figure 8.

State update at receive node j and neighboring transmitter k
1. If sj(t) = Rx:
2. Update λSM

j (t)← λSM
j (t) + 1; λRM

j (t)← λRM
j (t)− 1;

zi,j(t) = zi,j(t) + 1.
3. For each transmit node k ∈ Yj(t):
4. Update λIC

k (t)← λIC
k (t) + 1;λRM

k (t)← λRM
k (t)− 1.

Fig. 8. Pseudocode to update state information when sj(t) = Rx.

Case (d): si(t) = Tx and sj(t) = Rx. The case for si(t) =
Tx has been discussed in Case (b) and sj(t) = Rx has been
discussed in Case (c). If the conditions for si(t) = Tx and
sj(t) = Rx are both satisfied, we proceed with this increment
and update state information at nodes i, j and their neighboring
nodes according to Figure 7 and Figure 8.

Recall that there are T time slots in a time frame. Node ac-
tivities (both primary and secondary) and interference patterns
in each time slot are different. If the data stream increment
operation described above fails in the first time slot, we try it
again in the second time slot and so forth, until a data stream
increment is successful in a time slot or fails after all T time
slots.

D. Step 3: Adjusting a Node’s IC Responsibility

If the sufficient conditions at either node i or node j cannot
be satisfied, we move on to this step. The only reason why
link (i, j) fails to increase one data stream in step 2 is the
lack of DoF resources at some nodes (bottleneck nodes), i.e.,

node i, j or nodes in Yi(t) and Yj(t). Since a node’s local
sets B and Y directly affects its DoF consumption for IC,
we will try to swap some nodes between the sets B and Y ,
and thus change their IC responsibilities. For example, if node
k is short on DoFs, we can move some node m ∈ Bk(t)
to Yk(t), thereby transferring the IC responsibility from k
to m. Through this change, some new DoF resources for
the bottleneck node k become available, possibly allowing
a new data stream increment to be made on the link under
consideration.

The main idea of this step is as follows. For each time slot t,
we identify the set of bottleneck nodes (denoted as D(i,j)(t)),
which do not have enough remaining DoF resources should
one more data stream is added onto link (i, j). For each node
k ∈ D(i,j)(t), we adjust node k’s IC responsibility by moving
some other nodes in Bk(t) to Yk(t). To ensure feasibility,
only a subset of nodes (denoted as B̄k(t)), B̄k(t) ⊆ Bk(t),
is eligible for moving from Bk(t) to Yk(t). After identifying
B̄k(t) for k, we consider nodes in B̄k(t) in the order of non-
increasing remaining DoFs, i.e., starting with the one that
has the maximum remaining DoF (denoted as node a) if it
is moved to Yk(t). If this movement is infeasible, then our
attempted adjustment fails in this time slot and we move on
to the next time slot. Otherwise, we move a from Bk(t) to
Yk(t) and update their state information. After this movement,
if a new data stream can be added on link (i, j), we are done.
Otherwise, we continue moving the next node in B̄k(t) that
has the maximum remaining DoF (denoted as node b) to Yk(t)
following the same process. This step terminates upon a new
data stream can be successfully added on link (i, j) or all
nodes in D(i,j)(t) are considered for all time slots in a frame.
In the rest of this section, we give more details for this idea.
Finding bottleneck nodes D(i,j)(t): D(i,j)(t) can be easily
found by identifying those nodes that would need more DoFs
than their remaining DoFs should one more data stream were
added on link (i, j).
Node sequence in D(i,j)(t): To consider nodes one at a
time in D(i,j)(t) in a distributed environment, we could use
a token to pass along from one node to the next so that at
any time, only one node is considered for adjustment. There
is no preference on which node to start but for the rest of the
discussion, we assume that we start with node i, then j, before
the other nodes in D(i,j)(t). Note that a token is passed to the
next node in D(i,j)(t) only if the adjustment in the previous
node is successful. Otherwise, the algorithm moves on to the
next time slot in the frame.
Finding eligible subset nodes for swapping: Suppose the
token is now passed onto node k ∈ D(i,j)(t). To adjust node
k’s IC responsibility, we want to move one or more nodes
in Bk(t) to Yk(t), thus relieving node k’s IC responsibility
for these nodes. But for feasibility, not every node in Bk(t)
is eligible for swapping. Now we discuss how to identify a
subset of nodes B̄k(t) that are eligible to be moved to Yk(t).
By “eligible”, we mean that when we move the subset of nodes
from Bk(t) to Yk(t), the IC responsibilities for all other nodes
in B̄k(t) and Yk(t) are not affected. We propose a sufficient
condition to check whether or not a node is an eligible node
as follows.

7

...

y

a

x

...

...

(a) An illustration of determining
the eligibility of receive node a ∈
Bk(t).

requ
est

m

...

x

...

send

a

(b) Steps involved in determining
the eligibility of receive node a ∈
Bk(t).

Fig. 9. Determining the eligibility of receive node a ∈ Bk(t) when node k
is a transmit node.

Suppose node k is a transmitter. Then it can consider those
receive nodes in Bk(t) for moving to Yk(t). We denote c← b
as node b cancels interference to or from c. For a receive
node a ∈ Bk(t), it can be moved to Yk(t) if the following
conditions are satisfied. For each transmit node x ∈ Ya(t)
that needs to do IC to a (i.e., a ← x), there cannot exist a
receive node y ∈ Yx(t) that y handles IC from x (i.e., x← y),
and k handles IC to y (i.e., y ← k) (see Figure 9 (a)). That is,
there does not exist a receive node y, such that the following
IC relationship holds: a ← x ← y ← k. If this condition is
satisfied and a’s remaining DoFs is at least one after moving to
Yk(t), a is an eligible node; otherwise, a is not. In Section IV,
we will show that this condition can guarantee IC feasibility
among all nodes.

To do this check, we have node a send a request for state
information to those transmit nodes in Ya(t). Upon receiving
this request, each transmit node x ∈ Ya(t) will send its state
information Yx(t) to node a (see Figure 9(b)). Upon receiving
this state information, node a can check whether some receive
nodes in Yx(t) are also in Bk(t). If none of these receive
nodes are in Bk(t) and a’s remaining DoFs is at least one
after moving to Yk(t), then a is eligible. Otherwise, a is not
eligible.

The above discussion is for the case when node k is a
transmit node. The case when node k is a receive or idle node
can be handled in a similar manner.
Moving node(s) in B̄k(t) to Yk(t): Assume node a ∈ B̄k(t)
has the maximum remaining DoFs after moving to Yk(t). If
B̄k(t) = ∅, there is no eligible node and we move to next
time slot immediately. Otherwise, at node k, we move a from
B̄k(t) to Yk(t) while at node a, we move k from Ya(t) to
Ba(t), and update their state information as follows.
• Case sk(t) = Tx or sk(t) = Rx: In this case, k only

needs to release one DoF. Since at node k, we move a
from Bk(t) to Yk(t) while at node a, we move k from
Ya(t) to Ba(t), then at least one DoF can be released
from k. The node k updates the state information based
on Figure 10, and the node a updates its state information
based on Figure 11.

• Case sk(t) = Idle: Recall that for the bottleneck node

k in D(i,j)(t), it might be i, j, or node in Yi(t) or in
Yj(t). Since Yi(t) represents the set of i’s neighboring
receive nodes that should allocate DoFs to cancel in-
terference from node i, and Yj(t) represents the set of
j’s neighboring transmit nodes that should allocate DoFs
to cancel their interference to node j, then all nodes
in Yi(t) and Yj(t) are active nodes. Therefore, node
k can only represent node i or node j. Let’s consider
the case when node k is node i. The case when node
k is node j is similar. Recall that when sk(t) = Idle,
both Bk(t) and Yk(t) are empty. We establish Bk(t) and
Yk(t) by putting all neighboring active nodes in either
Bk(t) or Yk(t). Clearly, putting all neighboring receive
nodes in Yk(t) will add additional IC burden on all
these nodes in Yk(t) and may require adjusting each
node’s IC responsibility in Yk(t). On the other hand,
putting all neighboring receive nodes to Bk(t) will not
have this issue as the IC responsibility on those nodes
in Bk(t) are not affected and we only need to focus on
adjusting node k’s responsibility with one node in Bk(t).
We adopt the latter approach and put all neighboring
receive nodes in Bk(t) and set Yk(t) = ∅ (see Figure 12
(a)). For each node p ∈ Bk(t), node k is added to Yp(t).
Therefore, λIC

k (t) =
∑sn(t)=Rx

n∈Bk(t)
λSM
n (t) + β̃k(t), where

β̃k(t) is the total number of data streams received by
node i’s neighboring primary receivers, and λRM

k (t) =
Ak − λIC

k (t). We start to put node a (the node in B̄k(t)
that has the maximum remaining DoFs after movement)
(see Figure 12 (b)) into Yk(t) . Both nodes k and a’s
state information is updated based on Figures 10 and
11, respectively. For the new sets, if a new data stream
can be added on link (i, j), we are done. Otherwise, we
continue to move another node b ∈ B̄k(t) that has the
maximum remaining DoFs after movement following the
same process (see Figure 12(c)). The process terminates
if node k has at least one remaining DoF or B̄k(t) = ∅.
For the latter case, the adjustment fails and we move on
to the next time slot.

IV. FEASIBILITY

In our design of distributed algorithm, for each node k, we
put its neighboring nodes in two sets: Bk(t) and Yk(t). For
the set of nodes in Bk(t), node k is responsible to cancel
its interference to them if k is a transmit node or cancel the
interference from them if k is a receive node. For the ease of
understanding, we can consider the set of nodes in Bk(t) being
positioned before node k while the set of nodes in Yk(t) being
positioned after node k. That is, there is a relative ordering
among nodes in Bk(t), node k, and nodes in Yk(t). Under
this notion, node k, being positioned after the set of nodes
in Bk(t), is responsible to cancel interference to/from nodes
in Bk(t). Note that we did not make a finer distinction of
the relative positions (or ordering) among the set of nodes in
Bk(t) or Yk(t).

In this section, we show that the coarse set-based ordering
Bk(t) or Yk(t) at node k locally can in fact be mapped into a

8

State Information Update at node k
1. Update Bk(t)← Bk(t)− {a}, Yk(t)← Yk(t) ∪ {a};
2. If sk(t) = Tx:
3. Update λIC

k (t)← λIC
k (t)− (λSM

a (t)− zk,a(t));
λRM
k (t)← λRM

k (t) + (λSM
a (t)− zk,a(t));

4. Else if sk(t) = Rx:
5. Update λIC

k (t)← λIC
k (t)− (λSM

a (t)− za,k(t));
λRM
k (t)← λRM

k (t) + (λSM
a (t)− za,k(t));

6. Else if sk(t) = Idle:
λIC
k (t)← λIC

k (t)− λSM
a (t); λRM

k (t)← λRM
k (t) + λSM

a (t);

Fig. 10. Update state information at k.

State Information Update at node a
1. Update Ya(t)← Ya(t)− {k},Ba(t)← Ba(t) ∪ {k};
2. If sk(t) = Tx:
3. Update λIC

a (t)← λIC
a (t) + (λSM

k (t)− zk,a(t));
λRM
a (t)← λRM

a (t)− (λSM
k (t)− zk,a(t));

4. Else if sk(t) = Rx:
5. Update λIC

a (t)← λIC
a (t) + (λSM

k (t)− za,k(t));
λRM
a (t)← λRM

a (t)− (λSM
k (t)− za,k(t));

6. Else if sk(t) = Idle: No Changes;

Fig. 11. Update state information at a.

a

...

b

...

k

(a) Before movement

...

b

...

k a

(b) Move a to Yk(t)

...
...

k
a

b

(c) Move b to Yk(t)

Fig. 12. An illustration of movement process when node k is an idle node.

“global node ordering” for IC among all the nodes explicitly.
More formally, we give the following definition.

Definition 1: A global node ordering for IC is a list of
nodes where the position of a node in the list determines its
IC responsibility. Based on this list, a node is responsible for
canceling interference to/from these nodes that are before itself
in the list; a node does not need to cancel the interference
to/from those nodes that are after itself in the list as that
interference will be canceled by those nodes.

Based on this definition, we show if there exists a global
node ordering for IC among the active nodes in the network,
then there exists a set of feasible precoding vectors at each
secondary transmitter and decoding vectors at each secondary
receiver so that all data (in both primary and secondary
networks) can be transported free of interference using zero-
forcing technique on the secondary nodes. That is, if a global
node ordering for IC exists among the active nodes, then there
exist feasible precoding and decoding vectors at the PHY layer
to implement the desired IC and SM in the network.

Lemma 1: Upon the termination of the distributed algo-
rithm, there exists a global node ordering for IC among all
nodes in each time slot t.

Proof: Before we start our algorithm, all secondary nodes
are inactive and there does not exist any ordering among the
nodes. Since none of the primary nodes perform IC (due to
the fact that potential interference among the primary nodes
is handled by interference avoidance through time slot), we
can envision a list containing all active primary nodes with
arbitrary order among them. We will build upon this list to
establish a global node ordering for IC.

To achieve TC, all interferences to/from primary network
is canceled by the secondary nodes. Following the definition
of global node ordering for IC, the secondary nodes must be
placed after the primary nodes. We now show that we can

maintain a global node ordering for IC at each iteration. Upon
termination of the last iteration, the list remains a global node
ordering for IC.

If a link fails to increase one data stream at the end of
any iteration, the current global ordering for IC will not
be affected. So in our proof, we only need to discuss the
case that we can increase one data stream upon the end of
the an iteration. Our proof is based on induction. For the
first iteration, a secondary link is selected for data stream
increment. We append the secondary transmit and receive
nodes of this link at the end of the current list. Since there is
no IC relationship between the secondary transmit and receive
nodes of the chosen link, we can put transmit node either
before or after the receive node. The new global ordering
list consists of all active primary nodes, plus the secondary
transmit and receive nodes of the chosen link. Since we can
increase one data stream on this link, all interference from this
link’s transmit node to the neighboring primary receivers can
be canceled by this transmit node, and all interference from
neighboring primary transmitters to the chosen link’s receive
node can be canceled by this receive node. Obviously, this
new list satisfies global node ordering for IC by definition.

Upon the end of n-th iteration, suppose there exists a global
node ordering for IC. Then, we show that at the end of the
(n + 1)-th iteration, there still exists a global node ordering
for IC. Denote link (i, j) as the link chosen for data stream
increment during the (n+1) iteration. We consider two cases:
(i) a data stream can be added onto (i, j) without adjusting
node ordering; (ii) a data stream can be added onto (i, j) but
requiring adjusting node ordering:
• (i) We first consider that one data stream can be added

onto (i, j) without adjusting node ordering in the current
global node ordering list. We take node i as an example.
There are two cases:

9

– Node i is not yet on the current global node ordering
list. In this case, si(t) =Idle and our algorithm will
put node i’s neighboring receive nodes (not including
j) either in Bi(t) or Yi(t). Since all these neigh-
boring receive nodes are active, they already have
their positions in the current global ordering list in
a previous iteration. If node i’s neighboring receive
nodes are put in Bi(t), it is the same as putting
node i after these neighboring receive nodes. If node
i’s neighboring receive nodes are put in Yi(t), it is
the same as putting node i before these neighboring
receive nodes. In either case, other nodes’ relative
ordering on the current global node ordering list is
not affected, and thus IC responsibilities among them
remain the same. Since one data stream can be added
onto link (i, j) successfully, node i must be able to
cancel interference to these nodes in Bi(t) (if these
receive nodes are put into Bi(t)), or the interference
from i can be canceled by these nodes in Yi(t) (if
these receive nodes are put into Yi(t)). Therefore, on
the new list, each node is responsible for canceling
interference to/from these nodes that are before itself
in the list; each node does not need to cancel the
interference to/from those nodes that are after itself
in the list as that interference will be canceled by
those nodes. By definition, the new list satisfies the
global node ordering for IC.

– Node i is already on the global node ordering list. In
this case, si(t)=Tx and the node i only performs data
stream increment. There is no new node to be added
to the list or none of the nodes change its position
in the list. Therefore, the current ordering list is the
same as that in the n-th iteration and satisfies the
global node ordering for IC.

The case for node j is similar and we omit its discussion
here to conserve space.

• (ii) We then consider that one data stream can be added
onto (i, j) but requiring adjusting node ordering in the
current global node ordering. We assume that node k ∈
D(i,j)(t) is under consideration for adjustment. Suppose
k is a transmit node. Recall that a necessary condition for
a receive node a ∈ Bk(t) to be moved to Yk(t) is that:
for each transmit node x ∈ Ya(t) that needs to do IC to a
(i.e., a← x), there cannot exist a receive node y ∈ Yx(t)
that y handles IC from x (i.e., x← y), and k handles IC
to y (i.e., y ← k) (see Figure 9(a)). That is, there does not
exist a transmit node x and a receive node y, such that
the following IC relationship holds: a ← x ← y ← k.
Therefore, when node a is chosen to move from Bk(t) to
Yk(t), node a’s IC responsibility for other transmit nodes,
and node k’s IC responsibility for other receive nodes will
not change, except changing the position of k and a (i.e.,
moving a after k). Since this change is successful, a is
able to cancel the interference from k and other transmit
nodes that are before k. Therefore, the new list satisfies
the global node ordering for IC. The discussion when k
is a receiver is similar.

Primary node Secondary node

...

p1
...

pm
...

pM
............ ...

r1 rn rN

...

i

Fig. 13. A secondary transmit node i performs IC to neighboring primary
and secondary receive nodes in a time slot t.

Therefore, we conclude that after the (n+ 1)-th iteration, the
new list satisfies the global node ordering for IC.

Based on the above discussion, we conclude that upon the
termination of the distributed algorithm, we have a global node
ordering for IC.

Theorem 1: There exists a set of feasible precoding vectors
at each secondary transmitter and a feasible set of decoding
vectors at each secondary receiver so that all data (in both
primary and secondary networks) can be transported free of
interference based on the global node ordering for IC.

Proof: We first consider a secondary transmit node i
on the global node ordering list, as shown in Figure 13.
The dashed arrows represent the interference from node i to
those receive nodes that are before node i on the global node
ordering list. The nodes p1 · · · pM are i’s neighboring primary
receivers, while nodes r1 · · · rN are i’s neighboring secondary
receivers. Suppose that i transmits z(i,j) data streams to
secondary node j. Denote uq

i as an Ai × 1 transmit weight
vector at i for each data stream q (1 ≤ q ≤ z(i,j)), and vq

j as
an Aj × 1 receive weight vector at receiver node j to receive
data stream q. Since each primary link only transmits one
data stream, we use u1

p and v1
p to denote the primary node p’s

(p ∈ {p1, · · · , pM}) transmit and receive vectors .
Denote H(i,b) (b ∈ {p1, · · · , pM , r1, · · · , rN}) as the Ai ×

Ab channel gain matrix between nodes i and b. We assume a
rich scattering environment, where all channels Hi,b have full
rank and independent with each other. To successfully transmit
z(i,j) data stream from node i to its intended receive node j,
the transmit node i should cancel all its interference to primary
receive nodes p1 to pM and secondary receive nodes r1 to rN .
Then, we should have the following constraints:

(uq
i)

TH(i,j)v
q
j = 1 , (1 ≤ q ≤ z(i,j)) , (1)

(uq
i)

TH(i,j)v
d
j = 0 , (1 ≤ q, d ≤ z(i,j), d ̸= q) , (2)

(uq
i)

TH(i,pm)v
1
pm

= 0 , (1 ≤ q ≤ z(i,j), 1 ≤ m ≤M) ,
(3)

(uq
i)

TH(i,rn)v
d
rn = 0 , (1 ≤ q ≤ z(i,j), 1 ≤ n ≤ N,

1 ≤ d ≤ z(sn,rn)) , (4)

where sn is the transmit node which transports z(sn,rn) data
streams to secondary receive node rn.

The number of constraints from (1) and (2) are (z(i,j))
2.

The number of constraints from (3) is z(i,j)
∑M

m=1 1. The
number of constraints from (4) is z(i,j)

∑N
n=1 z(sn,rn). The

total number of constraints is therefore (z(i,j)
∑M

m=1 1 +

(z(i,j))
2 + z(i,j)

∑N
n=1 z(sn,rn)). Recall that in our algorithm,

in either step 2 or step 3, the total number of DoF consumption

10

cannot be more than the total number of DoFs at a node.
We have, z(i,j)

∑M
m=1 1 + (z(i,j))

2 + z(i,j)
∑N

n=1 z(sn,rn) ≤
z(i,j)(

∑M
m=1 1 + z(i,j) +

∑N
n=1 z(sn,rn)) ≤ z(i,j)Ai. That is,

the total number of constraints is no more than z(i,j)Ai.
Since the precoding vector uq

i is an Ai × 1 vector for each
data stream q (1 ≤ q ≤ z(i,j)), the total number of variables
at the transmit node i is z(i,j)Ai and the number of variables
is no less than the number of constraints. On the other hand,
since the channels H(i,b) are full rank and independent with
each other, it can be shown that the constraints in (1), (2),
(3), and (4) are linearly independent with each other based on
[14]. So for any given vq

j (1 ≤ q ≤ z(i,j)), we are guaranteed
to construct feasible precoding vectors uq

i (1 ≤ q ≤ z(i,j)) at
transmit node i.

The proof that we can construct the feasible decoding
vectors vq

j (1 ≤ q ≤ z(i,j)) at the secondary receive node
j (for any given precoding vectors uq

i (1 ≤ q ≤ z(i,j))) is
similar to the transmit node i. We omit its discussion here to
conserve space. Based on the above discussions, there exist
feasible precoding/decoding vectors at the secondary nodes.
Therefore, there exists a set of feasible precoding vectors at
each secondary transmitter and a feasible set of decoding
vectors at each secondary receiver so that all data (in both
primary and secondary networks) can be transported free of
interference. This completes the proof.

V. COMPLEXITY AND OVERHEAD ANALYSIS

A. Complexity Analysis

We now show that the overall computation complexity of
the distributed algorithm is polynomial time. Step 1 (ranking
of active secondary links) is done only once. As shown in [28],
this step can be done in O(S2). The iteration of our algorithm
involves steps 2 and 3. We now analyze the complexity of
each iteration and the number of iterations required in the
algorithm.

In step 2, nodes i and j (for a chosen link (i, j)) need
to check the feasibility of increasing one more data stream
over at most T time slots. The worst case scenario is that
both nodes i and j are idle (case (a) in Fig. 4). Since both
nodes i and j need to check the number of remaining DoFs
of each of their neighboring nodes and the number of DoFs
used for SM by these nodes, the complexity of this operation
is O(2S). Afterward, nodes i and j, and their neighbors, need
to update their DoF allocation status. The complexity of this
operation is O(S). Since there is a total of T time slots, the
total complexity of this step is T ·O(2S + S) = O(ST).

In step 3, nodes i and j, as well as their neighboring
nodes attempt to adjust IC responsibility in at most T time
slots. During each time slot, the computation consists of three
parts: (i) identifying the subset of nodes D(i,j)(t), which has
a complexity O(S); (ii) identifying the set of nodes B̄k(t)
for each k ∈ D(i,j)(t), which has a complexity of O(S2).
Since the number of nodes in D(i,j)(t) is at most S, the total
complexity for (ii) is O(S ∗ S2) = O(S3); (iii) adjusting the
IC responsibility for each node k ∈ D(i,j)(t), and updating
each node’s state information, which has a complexity O(S).

Since there is a total of T time slots, the total complexity of
step 3 is T ·O(S + S3 + S) = O(TS3).

Since each node has A antennas and there are L active links
in the network, the number of iterations of our algorithm is
at most O(LA). Therefore the overall complexity is O(S2 +
O(LA) · [O(ST) +O(TS3)]) = O(LATS3).

B. Overhead Analysis

In a distributed environment, the success of this distributed
algorithm relies on the message exchanges in the common
control channel among the secondary nodes. Since it is hard
to quantify overhead precisely induced by this algorithm, we
develop an upper bound for the total volume of message
exchanges among the secondary nodes in this algorithm. In
what follows, we analyze the volume of message exchanges in
each step. In Step 1, message exchange is required to sort the
links in the network. Here, we employ the distributed ranking
algorithm based on the results in [28], which require O(S2)
message exchanges in the worst case.

As for Step 2 and Step 3, there are at most O(TLA)
iterations. To find the volume of message exchange in each
iteration, we analyze each step separately. In Step 2, both
nodes i and j need to communicate with their neighboring
nodes to check the remaining number of DoFs and the number
of DoFs for SM by these nodes. This requires O(S) message
exchanges in each time slot. Afterward, nodes i and j need
to send messages to their neighboring nodes to update their
DoF allocation status. This requires O(S) messages. So the
total volume of message exchange in Step 2 is O(S). In
Step 3, for each bottleneck node, the volume of message
exchange with a node in Bk(t) is O(2) and there are at
most O(S) nodes in Bk(t). So Step 3 requires O(S) message
exchanges for each bottleneck node. Since there are at most
S bottleneck nodes, the total volume of message exchanges
induced by Step 3 is O(S2). Putting things together, the total
volume of message exchange induced by Step 2 and Step 3 is
O(TLA(S + S2)) = O(TLAS2).

By adding the message exchanges in the three steps to-
gether, this distributed algorithm requires O(S2 + TLAS2)
message exchanges in the worse case.

VI. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of the proposed distributed algorithm. We
compare our results with the centralized methods as discussed
in [21]. Since the centralized problem formulation is MILP,
which is NP-hard in general, we cannot obtain the optimal
solution for comparison. Instead, we will compare the perfor-
mance of our algorithm to an upper bound of the objective for
the centralized problem. Such an upper bound can be obtained
by running CPLEX for a given termination time. Clearly, such
a comparison approach is very aggressive and conservation.
This is because the optimal objective value (not obtainable) to
the centralized problem lies between the upper bound and the
feasible solution obtained by our distributed algorithm. There-
fore, if the feasible solution from our distributed algorithm is
somehow close to the upper bound by CPLEX, then we can

11

claim that our solution (objective) is even closer to the optimal
objective and thus is competitive.

A. Simulation Setting

We consider a secondary CR network co-locates with a
primary network within a 100 × 100 area. For generality,
we normalize the units for distance, bandwidth, and data
rate with appropriate dimensions. Each node (both primary
and secondary) is randomly deployed inside the 100 × 100
area. The primary nodes are traditional single-antenna node
while the secondary nodes are equipped with MIMO, with
four antennas on each node. We assume that each node’s
transmission range and interference range are 30 and 50,
respectively. We assume a time frame is divided into T = 10
time slots.

B. A Case Study

Before we present complete results, we show results for one
network instance, with 20 primary nodes and 30 secondary
nodes. The location of each node is shwon in Figure 14. We
assume there are three primary sessions and four secondary
sessions, with each session’s source and destination nodes
shown in Figure 14. For simplicity, we assume that minimum-
hop routing is used for each primary and secondary sessions,
although other routing methods may be used if needed.
Figure 14 shows the routing topology for each primary and
secondary sessions, where a solid line represents a primary
link and a dashed line represents a secondary link. Scheduling
for the primary and secondary links is given in this figure,
where numbers in the box represent the time slots used by the
corresponding link. Note that scheduling for the primary links
is solely determined by the primary network, while scheduling
for each secondary link is found by our distributed algorithm.

The objective value obtained from our distributed algorithm
is 0.6 (in less than a second computational time). On the other
hand, the upper bound obtained by CPLEX is 0.7 (with a cut-
off time of 8 hours). The CPLEX solver is run on a Dell
Precision T7600 workstation, with dual Intel Xeon CPUE5-
2687W CPUs (each with 8 cores) running at 3.1 GHz. The
memory of the workstation is 64 GB and the OS is Windows
7 Professional. As discussed, since the optimal solution lies
between 0.6 and 0.7, our objective value (0.6) is quite close
to the unknown optimal.

To show whether TC is achieved by the secondary network,
we consider one time slot, say 6. Figure 15 shows the set of
active links in time slot 6 for both networks. In this time slot,
secondary links S28 → S17, S13 → S24, S30 → S12, S3 →
S1, S4 → S11 and S4 → S5 are active simultaneous with
primary links P1 → P8 and P4 → P9, through IC by the
secondary nodes.

We first consider inter-network IC:
• For secondary link S28 → S17, its interference to P9 on

primary link P4 → P9 is canceled by S28 with 1 DoF,
while the interference from P4 and P1 to S17 is canceled
by S17, each with 1 DoF.

• For secondary links S3 → S1, S30 → S12, S13 →
S24, S4 → S11 and S4 → S5, the interference from their

transmitters (S3, S30, S13, S4) to receiver P8 on primary
link P1 → P8 is canceled by S3, S30, S13 and S4, each
with 1 DoF. The interference from P1 to S12 and S24 is
canceled by S12 and S24 with 1 DoF, respectively, and
the interference from P4 to S11 is canceled by S11 with
1 DoF.

For intra-network IC within the secondary network, our
solution shows that:
• S11 is canceling interference from S3 and S4, each with

1 DoF.
• S5 is canceling interference from S3 and S4, each with

1 DoF.
• The interference from S4 to S1 is canceled by S1 with 1

DoF.
• The interference from S3 to S12 is canceled by S12 with

1 DoF.
• The interference from S13 to S12 is canceled by S13 with

2 DoFs.
• The interference from S30 to S1 and S11 is canceled by

S30, each with 1 DoF.
The details of DoF allocation for SM and IC at each

active secondary node in time slot 6 are shown in Table III.
In this table, the second and third columns represent the
set of secondary nodes that are in Bi(t) and Yi(t) (i.e.,
before and after this node in the global node ordering) in
our distributed algorithm, respectively. The fourth column
represents the number of DoFs allocated for SM. The fifth
column represents the number of DoFs that are allocated for
IC to/from primary network. The last column represents the
number of DoFs allocated for IC for the set of secondary nodes
in Bi(t).

TABLE III
DOF ALLOCATION FOR SM AND IC AT EACH ACTIVE SECONDARY NODE

IN TIME SLOT 6.

Node i Bi(t) Yi(t)
DoF IC to/from DoF for IC within

for SM primary secondary network
S1 {S4} {S30} 1 0 2
S3 {S5, S11, S12} 1 1 0
S4 {S1, S5, S11} 2 1 0
S5 {S3, S4} 1 0 2
S11 {S3, S4} {S30} 1 1 2
S12 {S3} {S13} 1 1 1
S13 {S12} 1 1 2
S17 1 2 0
S24 1 1 0
S28 1 1 0
S30 {S1, S11} 1 1 2

Now, we show that there exists a global node ordering for
IC among all nodes in time slot 6. Based on Table III, we
can establish a global node ordering for IC among all nodes
explicitly. Since none of the primary nodes perform IC, we put
active primary nodes p1, p4, p8 and p9 in the front of global
node ordering list with arbitrary order among them. Based
on Bi(t) and Yi(t) in Table III, we can establish a global
ordering among the secondary nodes, as shown in Figure 16.
The arrows originating from a node in the figure represent the
interference from that node.

In this figure, we first take a receive node S12 as an example.
S12 is being interfered by transmit nodes P1, S3 and S13. Since

12

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9 S

10

S
11

S
12

S
13

S
14

S
15

S
16

S
17

S
18

S
19

S
20

S
21

S
22

S
23

S
24

S
25

S
26

S
27

S
28

S
29

S
30

 8

 4

 6

 8

 7

 3

 5

 6

1 3 4 6 7 9
2 5 8 10

1 3 4 6 7 9

2 5 8 10

1 3 4 6 7 9

1 5 6

2 3 4 7 8

1 3 4 6 9 10

2 5 7 8

1 3 4 6

Fig. 14. Routing topology for each primary and secondary sessions
and scheduling on each link of the respective route. The numbers in the
box next to a link show the time slots when the link is active.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9 S

10

S
11

S
12

S
13

S
14

S
15

S
16

S
17

S
18

S
19

S
20

S
21

S
22

S
23

S
24

S
25

S
26

S
27

S
28

S
29

S
30

Primary link Secondary link Interference

Fig. 15. Active links in time slot 6 in both primary and secondary
networks.

P1 and S3 are before S12, S12 is responsible for canceling their
interference, each with 1 DoF. For the interference from S13,
S12 does not need to use any DoF to cancel this interference,
since S13 is after S12 in this global node ordering. This
interference is to be canceled by S13 with 2 DoFs. As a second
example, consider transmit node S3. S3 is interfering receive
nodes P8, S5, S11 and S12. Since P8 is before S3, S3 is
responsible for canceling this interference with 1 DoF. For
its interference to S5, S11 and S12, S3 does not need to use
any DoF to cancel this interference, since S5, S11 and S12

are after S3 in this global node ordering. This interference is
canceled by S5, S11 and S12, respectively, each with 1 DoF.
It is easy to verify that based on this global node ordering, the
IC responsibilities at nodes S4, S17, S24, S28, S5, S11, S1,
S30 and S13 are all satisfied.

C. Comparison to Interweave Paradigm

To show the benefits of TC paradigm, we compare our
results to those under the interweave paradigm. For the latter,
a secondary node is not allowed to transmit (receive) at the
same time when a nearby primary node is active. That is, the
secondary nodes will not perform inter-network IC for inter-
ference to/from the primary nodes. The problem formulation
for this paradigm is given in [22], which is similar to the
problem formulation for TC paradigm except that we remove
DoF allocation by the secondary nodes to cancel interference
to/from the primary nodes. The problem formulation remains
an MILP, and an upper bound can be obtained by running
CPLEX for a given termination time (i.e., 8 hours).

Following the same setting as in the case study in the last
section, we obtain an upper bound of 0.4 for the objective
value (comparing to 0.6 from our distributed solution in
Section VI-B). The time slot scheduling on each link of the
secondary sessions is shown in Fig. 17. Comparing Fig. 14 and
17, we find that the set of time slots used by each secondary
link under interweave paradigm is smaller. We take the link

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9 S

10

S
11

S
12

S
13

S
14

S
15

S
16

S
17

S
18

S
19

S
20

S
21

S
22

S
23

S
24

S
25

S
26

S
27

S
28

S
29

S
30

8

4

6

8

7

3

5

6

2 5 3 9 10

1

3 10

2 5

7 10

1 3

9 10

1 2

4 8

Fig. 17. Routing for each session and scheduling on each link for both
primary and secondary networks under the interweave paradigm.

S28 → S17 as an example. Under interweave paradigm, this
link cannot use time slot 6 as the neighboring primary link
P4 → P9 is using this it. However, under TC paradigm, this
link can use time slot 6 to achieve the simultaneous activation
with the primary link P4 → P9. For any secondary link in
Figure 17, we cannot find one that simultaneously actives with
the primary links. There is no inter-network interference in the
network.

D. Complete Results

We run our distributed algorithm for 50 random network in-
stances, with 20-node primary network and 30-node secondary
network. The number of primary and secondary sessions are
random, with the source and destination nodes of each session
are randomly generated. Table IV compares the objective
values from our distributed algorithm and the upper bounds

13

Primary node Secondary node

p1 p4 p8 p9

s3 s17s4 s24 s28 s12 s5 s11 s1 s30 s13

Fig. 16. A global node ordering for IC in time slot 6.

TABLE IV
RESULTS FOR 50 NETWORK INSTANCES.

Instance Our CPLEX Instance Our CPLEXAlgorithm Algorithm
1 0.8 0.9 26 0.7 0.8
2 0.7 0.9 27 0.6 0.7
3 0.4 0.5 28 0.5 0.7
4 0.4 0.4 29 0.5 0.6
5 0.4 0.6 30 0.7 0.8
6 0.5 0.6 31 1.0 1.1
7 0.9 1.1 32 0.8 1.0
8 0.7 0.8 33 0.3 0.4
9 1.1 1.1 34 0.7 0.9

10 0.3 0.3 35 0.5 0.6
11 0.6 0.7 36 0.8 0.9
12 0.7 0.8 37 0.6 0.8
13 0.3 0.4 38 0.5 0.5
14 0.9 1.0 39 0.6 0.7
15 0.7 0.8 40 0.4 0.4
16 1.0 1.0 41 0.6 0.7
17 0.9 1.0 42 0.8 0.9
18 0.2 0.4 43 0.3 0.3
19 0.6 0.6 44 0.5 0.7
20 0.6 0.7 45 0.4 0.5
21 1.1 1.1 46 0.6 0.6
22 0.6 0.7 47 0.8 0.9
23 0.8 0.8 48 0.4 0.5
24 0.6 0.9 49 0.5 0.6
25 0.6 0.6 50 0.8 1.0

from CPLEX solver. The average ratio between the two over
50 instances is 83.7%, with standard derivation of 0.073.
Since the optimal objective value (unknown) to the centralized
problem lies between the upper bound and the feasible solution
obtained by our distributed algorithm, these results affirm that
our distributed algorithm is highly competitive.

VII. CONCLUSIONS

TC is a new spectrum sharing paradigm that allows simul-
taneous activation of the secondary nodes with the primary
nodes. The enabling PHY layer technology for TC is IC, which
is the sole responsibility of the secondary nodes. In this paper,
we design a distributed algorithm to achieve TC for multi-
hop primary and secondary networks. The main challenge
in this algorithm is to ensure that IC is done efficiently
(i.e., canceled once by a secondary node) and in a feasible
manner (i.e., implementable at the PHY layer). In contrary
to a centralized IC algorithm which relies on a global node
ordering, we only maintain two local sets for each node to
keep track of the node’s IC responsibilities. We show how
to establish, maintain, and update these two local sets for

each node in each iteration of our distributed algorithm. Our
distributed algorithm increases the data stream on each active
link iteratively based on local computation. Since the nodes
in the two local sets of a node directly affect the node’s IC
responsibility, our algorithm attempts to switch nodes in the
two sets if it can improve the IC structure. Although no explicit
node ordering is maintained in our distributed algorithm, we
prove that our distributed data structure at each node (with
the use of two local sets) can be mapped to an explicit
global node ordering for IC among all nodes in the network.
This guarantees the existences of feasible precoding/decoding
vectors at the secondary nodes to achieve our desired IC
in the network (i.e., feasibility at the PHY layer). Through
simulation study, we show that our distributed algorithm
achieves TC between secondary and primary networks and
offers competitive throughput performance when compared to
a centralized optimization.

ACKNOWLEDGMENTS

This work was supported in part by NSF under Grants
1443889, 1343222, 1102013 and ONR under Grant N00014-
15-1-2926. The work of Dr. S. Kompella was supported in part
by the ONR. Part of W. Lou’s work was completed while she
was serving as a Program Director at the NSF. Any opinion,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not reflect the views
of the NSF.

REFERENCES

[1] F. Gao, R. Zhang, Y.-C. Liang, and X. Wang, “Design of learning-
based MIMO cognitive radio systems,” IEEE Transactions on Vehicular
Technology, vol. 59, no. 4, pp. 1707–1720, May 2010.

[2] S. Geirhofer, L. Tong, and B.M. Sadler, “Dynamic spectrum access
in the time domain: Modeling and exploiting white space,” IEEE
Communications Magazine, vol. 45, no. 5, pp. 66–72, May 2007.

[3] A. Goldsmith, S.A. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum
gridlock with cognitive radios: An information theoretic perspective,”
Proceedings of the IEEE, vol. 97, no. 5, pp. 894–914, May 2009.

[4] S. Gollakota and D. Katabi, “Zigzag decoding: Combating hidden
terminals in wireless networks,” in Proc. ACM SIGCOMM, pp. 159–
170, Seattle, WA, August 17–22, 2008.

[5] Y.T. Hou, Y. Shi, and H.D. Sherali, “Spectrum sharing for multi-hop
networking with cognitive radios,” IEEE Journal on Selected Areas in
Commun., vol. 26, no. 1, pp. 146–155, Jan. 2008.

[6] Y.T. Hou, Y. Shi, and H.D. Sherali, Applied Optimization Methods for
Wireless Networks, Cambridge University Press, 2014, ISBN-13: 978-
1107018808.

14

[7] S. Hua, H. Liu, M. Wu, and S.S. Panwar, “Exploiting MIMO antennas
in cooperative cognitive radio networks,” in Proc. IEEE INFOCOM,
pp. 2714–2722, Shanghai, China, April. 10-15, 2011.

[8] S.K. Jayaweera, M. Bkassiny, and K.A. Avery, “Asymmetric cooperative
communication based spectrum leasing via auctions in cognitive radio
networks,” IEEE Trans. on Wireless Commun., vol. 10, no. 8, pp. 2716–
2724, August 2011.

[9] D. Johnson, Y. Hu, D. Maltz, “The Dynamic Source Routing Protocol
(DSR) for Mobile Ad Hoc Networks for IPv4,” IETF RFC 4728,
Feb 2007.

[10] S.-J. Kim and G.B. Giannakis, “Optimal Resource Allocation for MIMO
Ad Hoc Cognitive Radio Networks,” IEEE Transactions on Information
Theory, vol. 57, no. 5, pp. 3117–3131, May 2011.

[11] R. Manna, R.H.Y. Louie, Y. Li, and B. Vucetic, “Cooperative spectrum
sharing in cognitive radio networks with multiple antennas,” IEEE Trans.
on Signal Processing, vol. 59, no. 11, pp. 5509–5522, Nov. 2011.

[12] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (AODV) routing,” IETF RFC 3561, July 2003.

[13] H. Rahul, S. Kumar, and D. Katabi, “JMB: scaling wireless capacity
with user demands,” in Proc. ACM SIGCOMM, pp. 235–246, Helsinki,
Finland, Aug. 2012.

[14] Y. Shi, J. Liu, C. Jiang, C. Gao, and Y.T. Hou, “A DoF-based link
layer model for multi-hop MIMO networks”, IEEE Trans. on Mobile
Computing, vol. 13, no. 7, pp. 1395–1408, July 2014.

[15] O. Simone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, and
R. Pickholtz, “Spectrum leasing to cooperating secondary ad hoc net-
works,” IEEE Journal on Selected Areas in Commun., vol. 26, no. 1,
pp. 203–213, Jan. 2008.

[16] G.S. Smith, “A Direct Derivation of a Single-Antenna Reciprocity
Relation for the Time Domain.” in IEEE Trans. on Antennas and
Propagation, vol. 52, no. 6, pp. 1568–1577, June 2004.

[17] A.M. Wyglinski, M. Nekovee, and Y.T. Hou, Cognitive Radio Commu-
nications and Networks: Principles and Practice. Chapter 12, Academic
Press/Elsevier, 2010.

[18] X. Xie, X. Zhang, and K. Sundaresan, “Adaptive feedback compression
for MIMO networks,” in Proc. of ACM MobiCom, pp. 477–488, Miami,
FL, Sep. 2013.

[19] X. Yuan, C. Jiang, Y. Shi, Y.T. Hou, W. Lou, S. Kompella, and S.F. Mid-
kiff, “Toward transparent coexistence for multi-hop secondary cognitive
radio networks,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 5, pp. 958–971, May 2015.

[20] X. Yuan, C. Jiang, Y. Shi, Y.T. Hou, W. Lou, and S. Kompella,
“Beyond interference avoidance: on transparent coexistence for multi-
hop secondary CR networks,” in Proc. IEEE SECON, pp. 398–405, New
Orleans, LA, June 24–27, 2013.

[21] X. Yuan, Y. Shi, Y.T. Hou, W. Lou, S.F. Midkiff, and S. Kompella,
“Achieving Transparent Coexistence in a Multi-hop Secondary Network
Through Distributed Computation,” in Proc. IEEE IPCCC, Austin, TX,
Dec. 5–7, 2014.

[22] X. Yuan, X. Qin, F. Tian. Y. Shi, Y.T. Hou, W. Lou, S.F. Mid-
kiff, and S. Kompella, “A Distributed Algorithm to Achieve
Transparent Coexistence for a Secondary Multi-hop MIMO Net-
work,” The Bradley Department of Electrical and Computer
Engineering, Virginia Tech, Blacksburg, VA, July 2015. URL:
https://www.dropbox.com/s/w65ge63ajgori3j/TR20160117%20
with%20appendix.pdf?dl=0.

[23] X. Yuan, Y. Shi, Y.T. Hou, W. Lou, and S. Kompella, “UPS: A United
Cooperative Paradigm for Primary and Secondary Networks,” in Proc.
IEEE MASS, Hangzhou, China, Oct. 14–16, 2013.

[24] R. Zhang and Y.-C. Liang, “Exploiting multi-antennas for opportunistic
spectrum sharing in cognitive radio networks,” IEEE Journal of Selected
Topics in Signal Processing, vol. 2, no. 1, pp. 88–102, February 2008.

[25] Y.J. Zhang and A.M.-C. So, “Optimal spectrum sharing in MIMO
cognitive radio networks via semidefinite programming,” IEEE Journal
on Selected Areas in Communications, vol. 29, no. 2, pp. 362–373,
February 2011.

[26] J. Zhang and Q. Zhang, “Stackelberg game for utility-based cooperative
radio network,” in Proc. ACM MobiHoc, pp. 23–32, New Orleans, LA,
USA, May 18–21, 2009.

[27] X. Zhang, K. Sundaresan, M.A. Khojastepour, S. Rangarajan, and
K.G. Shin, “NEMOx: scalable network MIMO for wireless networks,”
in Proc. ACM MobiCom, pp. 453-464, Miami, FL, Sep. 2013.

[28] S. Zaks, “Optimal distributed algorithms for sorting and ranking,” IEEE
Trans. on Computers, vol. 5, no. 1, pp. 376–379, April 1985.

Xu Yuan (S’13–M’16) received his Ph.D. degree in
the Bradley Department of Electrical and Computer
Engineering at Virginia Tech, Blacksburg, VA in
2016. His current research interest focuses on algo-
rithm design and optimization for spectrum sharing,
coexistence, and cognitive radio networks.

Xiaoqi Qin (S’13) received her B.S. and M.S.
degree in Computer Engineering from Virginia Tech
in 2011 and 2013, respectively. Since Fall 2013, she
has been pursuing her Ph.D. degree in the Bradley
Department of Electrical and Computer Engineering
at Virginia Tech, Blacksburg, VA. Her current re-
search interest are algorithm design and cross-layer
optimization for wireless networks.

Feng Tian (M’13) received his Ph.D. degree in
Signal and Information Processing from Nanjing
University of Posts and Telecommunications, Nan-
jing, China in 2008. He is currently an Associate
Professor at the same university. He is a visiting
scholar at Virginia Tech, USA from 2013-2015. His
research focuses on performance optimization and
algorithm design for wireless networks.

Yi Shi (S’02–M’08–SM’13) is a Senior Research
Scientist at Intelligent Automation Inc., Rockville,
MD, and an Adjunct Assistant Professor at Virginia
Tech. His research focuses on optimization and
algorithm design for wireless networks and social
networks. He has co-organized three IEEE and ACM
workshops and has been a TPC member of many
major IEEE and ACM conferences. He is an Editor
of IEEE Communications Surveys and Tutorials. He
authored one book, five book chapters and more than
110 papers on wireless network algorithm design

and optimization. He has named an IEEE Communications Surveys and
Tutorials Exemplary Editor in 2014. He has a recipient of IEEE INFOCOM
2008 Best Paper Award, IEEE INFOCOM 2011 Best Paper Award Runner-Up,
and ACM WUWNet 2014 Best Student Paper Award.

Y. Thomas Hou (F’14) is the Bradley Distinguished
Professor of Electrical and Computer Engineering
at Virginia Tech, Blacksburg, VA. He received his
Ph.D. degree from NYU Tandon School of Engi-
neering (formerly Polytechnic Univ.). His current re-
search focuses on developing innovative solutions to
complex cross-layer optimization problems in wire-
less networks. He has published two graduate text-
books: Applied Optimization Methods for Wireless
Networks (Cambridge University Press, 2014) and
Cognitive Radio Communications and Networks:

Principles and Practices (Academic Press/Elsevier, 2009). He is the Steering
Committee Chair of IEEE INFOCOM conference and a member of the IEEE
Communications Society Board of Governors.

15

Wenjing Lou (F’15) is a professor in the computer
science department at Virginia Tech. She received
her Ph.D. in Electrical and Computer Engineering
from the University of Florida. Her research interests
are in the broad area of wireless networks, with spe-
cial emphases on wireless security and cross-layer
network optimization. Since August 2014, she has
been serving as a program director at the National
Science Foundation. She is the Steering Committee
Chair of IEEE Conference on Communications and
Network Security (CNS).

Scott F. Midkiff (S’82–M’85–SM’92) is Professor
& Vice President for Information Technology and
Chief Information Officer at Virginia Tech, Blacks-
burg, VA. From 2009 to 2012, Prof. Midkiff was
the Head of the Bradley Department of Electrical
and Computer Engineering at Virginia Tech. From
2006 to 20009, he served as a program director
at the National Science Foundation. Prof. Midkiff’s
research interests include wireless and ad hoc net-
works, network services for pervasive computing,
and cyber-physical systems.

Sastry Kompella (S’04–M’07–SM’12) received his
Ph.D. degree in computer engineering from Virginia
Tech, Blacksburg, Virginia, in 2006. Currently, he
is the Head of Wireless Network Theory section,
Information Technology Division at the U.S. Naval
Research Laboratory (NRL), Washington, DC. His
research focuses on complex problems in cross-
layer optimization and scheduling in wireless and
cognitive radio networks.

