
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015 69

New Algorithms for Secure Outsourcing of
Large-Scale Systems of Linear Equations

Xiaofeng Chen, Xinyi Huang, Jin Li, Jianfeng Ma, Wenjing Lou, and Duncan S. Wong

Abstract— With the rapid development in availability of cloud
services, the techniques for securely outsourcing the prohibitively
expensive computations to untrusted servers are getting more
and more attentions in the scientific community. In this paper,
we investigate secure outsourcing for large-scale systems of linear
equations, which are the most popular problems in various engi-
neering disciplines. For the first time, we utilize the sparse matrix
to propose a new secure outsourcing algorithm of large-scale
linear equations in the fully malicious model. Compared with the
state-of-the-art algorithm, the proposed algorithm only requires
(optimal) one round communication (while the algorithm requires
L rounds of interactions between the client and cloud server,
where L denotes the number of iteration in iterative methods).
Furthermore, the client in our algorithm can detect the misbe-
havior of cloud server with the (optimal) probability 1. Therefore,
our proposed algorithm is superior in both efficiency and
checkability. We also provide the experimental evaluation that
demonstrates the efficiency and effectiveness of our algorithm.

Index Terms— Cloud computing, outsource-secure algorithms,
system of linear equations.

I. INTRODUCTION

CLOUD Computing, the long dreamed vision of com-
puting as a utility, enables convenient and on-demand

network access to a centralized pool of configurable computing

Manuscript received December 19, 2013; revised May 6, 2014 and
October 10, 2014; accepted October 10, 2014. Date of publication October 16,
2014; date of current version December 5, 2014. This work was supported
in part by the National Natural Science Foundation of China under Grant
61272455, Grant 61472083 and Grant 61472091, in part by the Doctoral
Fund, Ministry of Education, China, under Grant 20130203110004 and
Grant 20123503120001, in part by the Distinguished Young Scholars Fund,
Department of Education, Fujian Province, under Grant JA13062, in part by
the Fok Ying Tung Education Foundation under Grant 141065, in part by
the Program for New Century Excellent Talents in University under Grant
NCET-13-0946, in part by the Program for New Century Excellent Talents
in Universities of Fujian under Grant JA14067, in part by the Fundamental
Research Funds for the Central Universities under Grant BDY151402, and in
part by the 111 Project, China, under Grant B08038. The work of W. Lou
was supported by the U.S. National Science Foundation under Grant CNS-
1217889. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Sen-Ching S. Cheung. (Corresponding
author: Xiaofeng Chen.)

X. Chen is with the State Key Laboratory of Integrated Service Networks,
Xidian University, Xi’an 710065, China (e-mail: xfchen@xidian.edu.cn).

X. Huang is with the School of Mathematics and Computer Science, Fujian
Normal University, Fuzhou 350007, China (e-mail: xyhuang81@gmail.com).

J. Li is with the School of Computer Science, Guangzhou University,
Guangzhou 510006, China (e-mail: lijin@gzhu.edu.cn).

J. Ma is with the School of Computer Science and Technology, Xidian
University, Xi’an 710065, China (e-mail: jfma@mail.xidian.edu.cn).

W. Lou is with the Department of Computer Science, Virginia Poly-
technic Institute and State University, Blacksburg, VA 24061 USA (e-mail:
wjlou@vt.edu).

D. S. Wong is with the Department of Computer Science, City University
of Hong Kong, Hong Kong (e-mail: duncan@cityu.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2014.2363765

resources that can be rapidly deployed with great efficiency
and minimal management overhead [46], [47]. Cloud comput-
ing has plenty of benefits for real-world applications such as
on-demand self-service, ubiquitous network access, location
independent resource pooling, rapid resource elasticity, usage-
based pricing, outsourcing, etc. In the outsourcing computa-
tion paradigm, the users with resource-constraint devices can
outsource heavy computation workloads into the cloud server
and enjoy the unlimited computing resources in a pay-per-
use manner. As a result, the enterprises and individuals can
avoid large capital outlays in hardware/software deployment
and maintenance.

Despite the tremendous benefits, outsourcing computa-
tion also inevitably suffers from some new security chal-
lenges [42], [50]. Firstly, the computation tasks often contain
some sensitive information that should not be exposed to
the (semi-trusted) cloud servers. Therefore, the first security
challenge is the privacy of the outsourcing computation: the
curious cloud servers should not learn anything about what it is
actually computing (including the secret inputs and outputs).
We argue that the traditional encryption technique can only
provide a partial solution to this problem since it is very diffi-
cult to perform meaningful computations over the ciphertext.
Though the fully homomorphic encryption could be a potential
solution, the existing schemes are not practical yet. Secondly,
the semi-trusted cloud servers may return an invalid result. For
example, the servers might contain a software bug that will
fail on a constant number of invocation. Moreover, the servers
might decrease the amount of the computation due to financial
incentives and then return a computationally indistinguishable
(invalid) result. Therefore, the second security challenge is the
checkability of the outsourcing computation: the outsourcer
should have the ability to detect any failures if the cloud
servers misbehave. Trivially, the test procedure should never
be involved in some other complicated computations since
the computationally limited devices may be incapable to
accomplish a complicated test. At the very least, it must be far
more efficient than accomplishing the computation task itself
(recall the motivation for outsourcing computations).

The large-scale system of linear equations Ax = b [8], [23]
is one of the most basic algebraic problems in the scientific
community. In practice, there are many real world problems
that would lead to very large-scale and extremely dense
systems of linear equations with up to hundreds of thousands
or even millions unknown variables. For example, a typical
double-precision 50, 000 × 50, 000 system matrix resulted
from electromagnetic application would easily occupy up to
20 GBytes storage space. Hence, the storage requirements of
the system coefficient matrix may easily exceed the available

1556-6013 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

70 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

memory of the customer’s computing device such as a modern
portable laptop. Plenty of researchers have devoted consider-
able amount of effort on seeking efficient algorithms for the
task. Recently, Wang et al. [48] proposed a secure outsourcing
mechanism for large-scale linear equations based on the itera-
tive methods. However, one fatal disadvantage of Wang et al.’s
scheme is multi-round communication between the client C
and server S. More precisely, it may require dozens of (or even
hundreds of) iterations for different matrix A by using the
iteration methods (we present some examples in Table 4).
As a result, it also requires dozens (or even hundreds) round
of communications between C and S. Therefore, the scheme
could be impractical for real-world applications.

A. Related Works

There are also plenty of research work on the securely
outsourcing computations in the past decades. Abadi et al. [2]
first proved the impossibility of secure outsourcing an expo-
nential computation while locally doing only polynomial time
work. Therefore, it is meaningful only to consider outsourcing
expensive polynomial time computations.

The theoretical computer science community has devoted
considerable attention to the problem of how to securely
outsource different kinds of expensive computations.
Atallah et al. [3] presented a framework for secure
outsourcing of scientific computations such as matrix
multiplications and quadrature. However, the solution used
the disguise technique and thus allowed leakage of private
information. Atallah and Li [4] investigated the problem
of computing the edit distance between two sequences
and presented an efficient protocol to securely outsource
sequence comparisons to two servers. Recently, Blanton et al.
proposed a more efficient scheme for secure outsourcing
sequence comparisons [11]. Benjamin and Atallah [6]
addressed the problem of secure outsourcing for widely
applicable linear algebra computations. However, the
proposed protocols required the expensive operations of
homomorphic encryptions. Atallah and Frikken [1] further
studied this problem and gave improved protocols based
on Shamir’s secret sharing. Some other works [36], [39]
also used Shamir’s secret sharing to perform homomorphic
computations over cloud. Trivially, the protocols based on
secret sharing require at least two non-colluding servers.
Wang et al. [49] presented efficient mechanisms for secure
outsourcing of linear programming computations. However,
the solution requires matrix-matrix operations (cubic-time
computational burden). Recently, Wang et al. [48] proposed a
secure outsourcing mechanism for solving large-scale systems
of linear equations based on the iterative methods. However,
it requires multi-round interactions between the client and the
cloud server and thus is impractical.

In the cryptographic community, Chaum and Pedersen [15]
firstly introduced the notion of wallets with observers, a piece
of secure hardware installed on the client’s computer to
perform some expensive computations. Hohenberger and
Lysyanskaya [33] proposed the first outsource-secure
algorithm for modular exponentiations based on the two
previous approaches of precomputation [14], [40], [43] and

server-aided computation [7], [27], [38], [51]. Recently,
Chen et al. [21] proposed more efficient outsource-secure
algorithms for (simultaneously) modular exponentiation in the
two untrusted program model. Chevallier-Mames et al. [22]
presented the first algorithm for secure delegation of elliptic-
curve pairings based on an untrusted server model. Besides,
the outsourcer could detect any failures with probability 1
if the server misbehaves. However, an obvious disadvantage
of the algorithm is that the outsourcer should carry out some
other expensive operations such as scalar multiplications and
exponentiations.

Since the servers (or workers) are not trusted by the out-
sourcers, Golle and Mironov [29] first introduced the concept
of ringers to solve the trust problem of verifying computation
completion. The following researchers focused on the other
trust problem of retrieving payments [5], [17]–[20], [45].
Besides, Gennaro et al. [25] first formalized the notion of
verifiable computation and presented a verifiable computa-
tion scheme for any function. However, it is inefficient for
practical applications due to the complicated fully homomor-
phic encryption techniques. Therefore, plenty of researchers
investigated verifiable computation for specific functions in
order to obtain much more efficient protocols [9], [12], [13],
[26], [28], [34], [35], [37].1 Benabbas et al. [10] presented the
first practical verifiable computation scheme for high degree
polynomial functions. Green et al. [24] proposed new methods
for efficiently and securely outsourcing decryption of attribute-
based encryption (ABE) ciphertexts. Based on this work,
Parno et al. [41] showed a construction of a multi-function
verifiable computation scheme.

B. Our Contribution

In this paper, we propose a new secure outsourcing algo-
rithm for large-scale systems of linear equations Ax = b.
Our proposed algorithm works with a single cloud server
and the server is assumed to be lazy, curious, and dishonest
(fully malicious model). Compared with the state-of-the-art
algorithm [48], the proposed algorithm is superior in both
efficiency and checkability. Our contributions are three folds:

1) For the first time, we utilize the sparse matrix to
investigate securely outsourcing for large-scale systems
of linear equations. Our algorithm is suitable for any
nonsingular dense matrix A. However, in algorithm [48],
A must be a strictly diagonally dominant matrix for
convergence.

2) Our proposed algorithm only requires (optimal) 1 round
communication between the client C and server S, while
algorithm [48] requires L interactions due to the iterative
method.

3) In the proposed algorithm, the client C can detect the
misbehavior of server S with the (optimal) probability 1.
Surprisingly, we use neither the complicated knowl-
edge proof techniques nor the boolean garbled circuits.

1We argue that it is inappropriate to claim these protocols which do not use
homomorphic encryption are absolutely superior to Gennaro et al.’s one [25]
since they have limited application scope for specific functions.

CHEN et al.: NEW ALGORITHMS FOR SECURE OUTSOURCING OF LARGE-SCALE SYSTEMS 71

Fig. 1. Outsourcing Computation Architecture.

The computational complexity for the verification is
still O(n2).

C. Organization

The rest of the paper is organized as follows: Some security
definitions for outsourcing computation are given in Section II.
The proposed new outsource-secure algorithm of linear equa-
tions and its security analysis are given in Section III. The
experimental evaluation of the proposed algorithm is given
in Section IV. Finally, conclusions will be made in Section V.

II. SECURITY MODEL AND DEFINITIONS

A. Security Model

We consider an outsourcing computation architecture in
which an honest while resources-constrained client C wants
to outsource an expensive computation task F : D → M to a
cloud server S, as illustrated in Fig. 1. Trivially, S is not fully
trusted by C . Without loss of generality, we say that (C, S)
correctly implements F if F(x) = C S(x) for ∀ x ∈ D, where
C S means that C is given oracle access to S that records all
of its computation over time.

Golle and Mironov [29] first introduced the “lazy-but-
honest” model for the inversion of one-way function class
of outsourcing computations. As a rational economic agent,
S will try to minimize the amount of work it needs to perform
in order to retrieve the payment, while it will honestly provide
the computation results to C . It is reasonable to assume that
S is honest in this kind of outsourcing computation model.
Actually, given an invalid computation result, C can detect it
immediately with probability 1 since the verification of the
result is equivalent to compute the one-way functions.

Another well-known model is the “honest-but-curious”
model (originally called the semi-honest model), firstly intro-
duced by Goldreich et al. [30]. In this model, both the parties
are guaranteed to properly execute a prescribed protocol, but,
at the end of it, one party can use its own view of the execution
to infer about the other’s input. Therefore, S will also honestly
send the computation results to C . However, S will try his
best to retrieve some sensitive information such as the secret
input/output of C . Note that the computation results (i.e., the
output of S) are different from the output of C (i.e., the real
computation aim of C).

We can view S in the above two models as a passive
adversary. In many applications, we must consider the case that
S is an active attacker. For example, S can intentionally send a

computationally indistinguishable (invalid) result to C . That is,
S may be not only lazy and curious, but also dishonest. This
is the strongest adversarial model, and we name it the “fully
malicious model.” It seems to be very difficult to design secure
and efficient outsourcing algorithms for generic computations
in the full malicious model.

Hohenberger and Lysyanskaya [33] first introduced a
weaker model called “two untrusted program model” for
outsourcing exponentiations modulo a large prime. In the
two untrusted program model, there are two non-colluding
servers S1 and S2 and we assume at most one of them is
adversarial while we cannot know which one. Besides, the
misbehavior of the dishonest server can be detected with
an overwhelming probability. Recently, Canetti et al. [16]
introduced the so-called “refereed delegation of computation
model,” where the outsourcer delegates the computation to
n servers under the assumption that at least one of the servers
is honest. Trivially, two untrusted program model can be
viewed as a special case of refereed delegation of computation
model for n = 2.

B. Formal Definition

Gennaro et al. [25] presented a formal definition for securely
outsourcing computation.

Definition 1: A securely outsourcing computation scheme
consists of a five-tuple (KeyGen, ProbGen, Compute, Verify,
Solve):

1) KeyGen(F, k) → (PK, SK): Given a security parame-
ter k, the randomized key generation algorithm generates
a public key PK that encodes the target function F, and
a corresponding secret key SK which is kept private by
the client C .

2) ProbGenSK(x) → (σx , τx): The problem generation
algorithm uses the secret key SK to encode the function
input x as a public value σx which is given to the
server S to compute with, and a secret value τx which
is kept private by the client C .

3) ComputePK(σx) → σy : Given the public key PK and
the encoded input σx , the server computes an encoded
version σy of the output y = F(x).

4) VerifySK(σy) → 1 ∪ 0: On input the secret key SK,
and the encoded value σy , the verification algorithm
outputs 1 if σy is valid; Otherwise, outputs 0.

5) SolveSK(τx , σy) → y: On input the secret key SK,
the secret “decoding” τx , and the encoded value σy ,
the solving algorithm outputs the computation result
y = F(x).

C. Security Requirements

In the following, we introduce some security requirements
for outsourcing computation.

The first requirement is the privacy for the input/output
of the computation task. Informally, it means that the server
cannot learn anything from its interaction in the protocol in
the sense of indistinguishability argument.

Definition 2 (Privacy [25]): Given a security parameter k,
a pair of algorithms (C, S) is said to be privacy for the

72 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

input/output of F if for any probabilistic polynomial time
(PPT) adversary A,

AdvC S

A (F, k) ≤ negl(k),

where AdvC S

A (F, k) = | Pr
[
b = b′

] − 1
2 | is defined as the

advantage of A in the experiment as follows:

(PK, SK)
R← KeyGen(F, k);

(x0, x1) ← APubProbGenSK(·)(PK)

(σ0, τ0) ← ProGenSK(x0);
(σ1, τ1) ← ProGenSK(x1);

b
R← {0, 1};

b′ ← APubProbGenSK(·)(PK, x0, x1, σb)
During the above experiment, the adversary A is allowed

to request the encoding of any input he desires. The oracle
PubProbGenS K (x) calls ProGenS K (x) to obtain (σx , τx)
and returns only the public part σx . Trivially, the output of
PubProbGenS K (x) is probabilistic.

The second requirement is the efficiency of outsourcing
algorithms. That is, the local computation done by the client C
should be substantially less than that to accomplish the original
computation by itself (i.e., without outsourcing).

Definition 3 (α-Efficiency [33]): A pair of algorithms
(C, S) is said to be an α-efficient implementation of F if (1)
C S correctly implements F and (2) for ∀ x ∈ D, the running
time of C is no more than an α-multiplicative factor of the
running time of F.

Finally, the output of outsourcing algorithms can be checked
for correctness. More precisely, the invalid output given by any
malicious server can not pass the verification and the client C
will detect the error with a non-negligible probability.

Definition 4 (β-Checkability [33]): A pair of algorithms
(C, S) is said to be a β-checkable implementation of F
if (1) C S correctly implements F and (2) for ∀ x ∈ D,
if a malicious S′ deviates from its advertised functionality
during the execution of C S ′(x), C will detect the error with
probability no less than β.

III. NEW OUTSOURCING ALGORITHM

OF LINEAR EQUATIONS

A. High Description

The problem for securely outsourcing large-scale systems
of linear equations can be formulated as follows: The client C
seeks for the solution to a large-scale system of linear equa-
tions Ax = b, where A ∈ R

n×n is a real coefficient matrix
with rank n, and b ∈ R

n is a coefficient vector. Due to the
lack of computing resources, C could be infeasible to carry out
such expensive computation as O(nρ) for 2 < ρ ≤ 3 locally.
Therefore, C will outsource the computation workloads to
cloud server S in a pay-per-use manner. In this paper, we
only focus on general nonsingular dense matrices A, while our
proposed solution is also applicable to sparse matrices. While
for the case of (extremely) sparse matrices, C may be able to
compute the solution of linear equations efficiently with other
methods.

In this section, we propose a new algorithm LE for securely
outsourcing large-scale systems of linear equations in the fully
malicious model. That is, the computation is delegated to
only one server who may be lazy, curious, and dishonest.
Our main trick is that we use two random sparse matrices
to hide A. More precisely, C chooses two random sparse
matrices M, N ∈ R

n×n and computes T = MAN. Due to the
random blinding technique, we can prove that the proposed
outsourcing algorithm satisfies the privacy for A, b and the
solution x. Besides, it does not require any special encryption
techniques with the homomorphic property. We argue that the
complexity to compute T is O(n2) since both M and N are
sparse matrices.

Our proposed algorithm only requires one round commu-
nication between C and S. Furthermore, C can detect the
misbehavior of S with the probability 1. The computational
complexity for the verification is still O(n2). This is due to
the observation that it requires at most n2 multiplications to
compute Ty for any (even totally dense) matrix T and any
coefficient vector y.

Remark 1: It is well-known that the computational com-
plexity for two dense matrices multiplication is O(n3). In the
following, we consider the case that a sparse matrix M
multiplies a dense one A, i.e., MA. Without loss of generality,
we assume that there are at most λ non-zero elements for each
row of M, where λ << n. In the real applications, we can let
λ = 10 for the case that M and A are both 50, 000× 50, 000
matrices. Obviously, it takes at most λn2 multiplications to
calculate MA. That is, the computational complexity is O(n2)
since the constant λ << n. Thus, C can efficiently compute
MAN and the complexity is still O(n2).

B. Outsourcing Algorithm

The input of LE is a coefficient vector b ∈ R
n and a

coefficient matrix A ∈ R
n×n . The output of LE is a coefficient

vector x ∈ R
n such that Ax = b. The proposed algorithm

LE is given as follows:
1) KeyGen: To implement this functionality, C firstly picks

a random blinding coefficient vector r ∈ R
n and two ran-

dom sparse matrices M, N ∈ R
n×n . Note that (M, N, r)

must be kept secret by C .
2) ProbGen: C firstly computes c = Ar + b. Triv-

ially, the original linear equations can be rewritten
as A(x+ r) = c. Then, C computes T = MAN and
d = Mc. Without loss of generality, we denote y =
N−1(x+ r), where N−1 is the inverse of matrix N. Note
that in our algorithm, no party needs to compute N−1.
It appears here only for representing the form of y. In
fact, if N−1 had to be computed, the algorithm would
no longer be efficient as the time and computational
complexities incurred by computing N−1 would be very
undesirable. Please refer to Remark 2 below for more
discussions.
Note that

Ty =MAN · N−1(x+ r) =MA(x+ r) =Mc = d.

3) Compute: C sends T and d to S, and S responds with
the solution y such that Ty = d.

CHEN et al.: NEW ALGORITHMS FOR SECURE OUTSOURCING OF LARGE-SCALE SYSTEMS 73

4) Verify: C verifies whether the equations Ty = d hold.
If not, C outputs 0 and claims the misbehavior of S.

5) Solve: If Verify = 1, C computes x = Ny− r.

Remark 2: Note that no party needs to compute N−1 and this
is very important in our algorithm. The reason are two folds:
Firstly, though N is a sparse matrix, the inverse matrix N−1

may be extremely dense. As a result, the computation and
storage cost for N−1 will be very expensive. Secondly, the
computation complexity of N−1 is O(n3) if we use the naive
Gaussian elimination or Gauss-Jordan elimination method.2

In some scenario, it is even comparable to solving linear
equations. Trivially, this contradicts with the original aim of
outsourcing computation (recall that C cannot carry out such
expensive computation as O(nρ) for 2 < ρ ≤ 3).

Remark 3: Note that the sparse matrices M and N must
be invertible (also called nonsingular). By Lévy-Desplanques
Theorem (see [32, Th. 6.1.10]), we know that a strictly diag-
onally dominant matrix A ∈ R

n×n is definitely nonsingular.
Therefore, in the real applications, we could choose sparse and
row diagonally dominant matrix A such that

∑
j 	=i |ai j | < |aii |

for all 1 ≤ i ≤ n.
Remark 4: Given T and d, S can solve the systems of

linear equations Ty = d in any desired methods such as
elimination methods, decomposition (factorization) methods,
iterative methods, etc. However, as pointed out in [8], for the
systems comprising hundreds of millions or even billions of
equations in as many unknowns, iterative methods may be the
only option available (unless the iteration does not converge).
Furthermore, we argue that it does not require the interactive
protocol between C and S in our proposed solution. As a
result, S can efficiently compute y using the iterative methods.

Remark 5: Note that M, N and r in our scheme can be
used only one time and thus have to be generated each time
for different linear equations. However, as shown in Table 3,
KeyGen in our algorithm is extremely fast.

Moreover, in order to prevent the brute force attack (i.e.,
the adversary A systematically enumerates all possible can-
didate solutions of the problem and checks one by one until
the correct one is found), the size of non-zero elements of
M and N should be at least 80 bits for medium security.
Similarly, each component of the vector r is also 80 bits. For
long-term security, they should be 128 bits or more. Currently,
if a supercomputer could check a billion billion (1018) keys
per second, then breaking a 128-bit key space by brute force
requires about 3× 1012 years!

C. Security Analysis

Theorem 1: In the fully malicious model, the algorithms
(C, S) are privacy for A, b, and x.

Proof: We first prove the privacy for input b and out-
put x of LE. Note that the adversary A can only know
T and d throughout the whole algorithm LE. Besides, we have
b =M−1d−Ar, and x = Ny−r. Since r is a random blinding

2The complexity of Strassen algorithm is still O(n2.807).
Coppersmith and Winograd presented the state-of-the-art record which
stands at O(n2.376). However, the programming of the two algorithms are
so awkward and thus neither of them is suitable for practical applications.

coefficient vector in R
n , both b and x are blinded by r in the

sense of indistinguishability.
We then prove the privacy for input A of LE. Let

M = (mij), N = (ni j), M′ = (m′i j), and N′ = (n′i j) be
four random nonsingular sparse matrices generated by C .
Given two nonsingular dense matrices A = (ai j) and A′ =
(a′i j) which are chosen by the adversary A, C computes
T =MAN = (ti j) and T′ =M′A′N′ = (t ′i j), where

ti j =
n∑

i=1

n∑

j=1

mik · akl · nl j

and

t ′i j =
n∑

i=1

n∑

j=1

m′ik · a′kl · n′l j .

Note that the numerical value and position of all non-zero
elements of four matrices M, N, M′ and N′ are randomly
chosen by C , thus ti j and t ′i j are computationally indistinguish-
able. As a result, the advantage of A to distinguish between
T and T′ is negligible. �

Remark 6: Currently, we cannot prove the privacy for any
input A of LE. For example, if the adversary A chooses a
nonsingular matrix A and a singular one A′, then he can
distinguish between T = MAN and T′ = M′A′N′ with an
overwhelming probability since T′ is always singular.

Even in some special case that both A and A′ are nonsin-
gular, e.g., let A be a nonsingular dense matrix and A′ be
the identity matrix that is extremely sparse, we do not know
whether T and T′ are computationally indistinguishable or
not.3 It seems that there is a paradox between the privacy
and efficiency of the outsourcing scheme for any input A.
More precisely, in order to achieve privacy for any input A,
the blinding matrix M (and N) for masking A should also be
a random one (and thus may be a dense one). However, it
requires O(n3) computational overhead to compute T (or T′)
in this case. This makes the outsourcing totally meaningless.
We left it as an open problem.

Theorem 2: In the fully malicious model, the algorithms
(C, S) are an O(1

n)-efficient implementation of LE.
Proof: In the proposed algorithm LE, C needs to perform

four matrix-vector multiplication (we omit the vector-addition
operations), which takes O(n2) computations. Besides, C
also needs to compute T = MAN, which also takes O(n2)
computations (as discussed in Remark 1). On the other hand,
it takes O(n3) computations in order to solve the linear
equations directly. Thus, the algorithms (C, S) are an O(1

n)-
efficient implementation of LE. �

Theorem 3: In the fully malicious model, the algorithms
(C, S) are a 1-checkable implementation of LE.

Proof: Given a solution y, C can verify whether the
equations Ty = d hold efficiently because the computational
complexity for Ty is O(n2). Therefore, if S misbehaves

3Note that the product of extremely sparse matrices can be complete
dense [52], thus C could choose suitable M′ and N′ to ensure that T′ =M′N′
is a dense matrix. Obviously, it is impossible to distinguish T and T′ only
based on the sparsity of a matrix.

74 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

TABLE I

COMPARISON OF THE TWO ALGORITHMS

during any execution of LE, it will be detected by C with
probability 1. �

D. Efficiency Analysis

In this section, we present the theoretical analysis of effi-
ciency for the proposed algorithm.

We denote by M an operation of multiplication, by EN an
encryption (resp., by DE a decryption) of Paillier encryption
systems, by L the round of iteration for algorithm in [48],
by λ the maximum number of non-zero elements for each
row (or column) of the chosen sparse matrices, and by l a
constant. We omit other operations such as vector additions
in both algorithms. Table 1 presents the comparison of the
(local) computation for C , communication between C and S,
and the checkability between Wang et al.’s algorithm and our
proposed algorithm LE.4

Compared with Wang et al.’s algorithm, the proposed algo-
rithm LE is superior in both efficiency and checkability. More
precisely, LE requires only 1 round of communication between
C and S with 100 percent checkability. Also, since λ
 n,
our algorithm LE is much more efficient than [48] in all
phases of ProbGen, Verify and Solve (please also refer to the
experimental results in the next section). Thus, our proposed
algorithm LE is more suitable for real applications.

IV. PERFORMANCE EVALUATION

In this section, we provide a thorough experimental evalu-
ation of the proposed outsourcing algorithm. We implement
our mechanism using MATLAB language with a version
of R2013a. We also utilize mathematical software MAPLE
through its MATLAB interface for solving linear equations and
decrypting the results. The client side process is conducted on
a computer with Intel(R) Core(TM) i5-3470 CPU processor
running at 3.19 GHz, 4 GB RAM. The cloud side process
is conducted on a computer with Intel(R) Core(TM) i7-4770
CPU processor running at 3.40 GHz, 16 GB RAM. The
test benchmark for randomly generated sparse matrices only
focuses on the large-scale problems where n ranges from
5,000 to 20,000. For an extremely large n, we could use
some proper matrix splitting approaches to perform large-
scale matrix multiplications in case of insufficient memory.
Besides, we assume that each row (or column) of the chosen
sparse matrices has no more than 10 non-zero elements in our
algorithm.

4Generally, a matrix-vector multiplication needs at most n2 operations.
However, it only requires about λn operations for a sparse-matrix-vector
multiplication and λn
 n2.

In order to better understand the efficiency of our proposed
algorithm, we simulated all three phases (i.e., ProbGen,
Verify and Solve) on the client side. The correspond-
ing time costs for different size of problems are shown
in Fig. 2 (we set L = 200). Since the time costs for different
size of problems and different phases vary considerably in
magnitude, we use the multiple axis breaks in Origin tools
(marked with the double slash that means the vertical coordi-
nate interrupts at this point) in the figures. The evaluation of
our algorithm is based on a wide range samples. Obviously, the
computation cost of client is dominated in the ProbGen phase
that can be performed off-line, and the time cost of client is
also little in the Verify and Solve phases. This implies that
the most expensive computation overload is outsourced to the
server in our algorithm. We will give a detailed description in
the next section.

Besides, we present the comparison of computation cost
for client between our algorithm LE and direct method
in Table 2. Trivially, our algorithm LE can achieve noticeable
computation cost savings when the dimension of the problem
n increases.

A. Cost of ProbGen

We first consider the computation cost for customer per-
forming ProbGen (i.e., the step 2 of our algorithm). As shown
in Section 3.2, the main computation cost in ProbGen
is dominated by two sparse-matrix-matrix multiplications.
That is,

T =MAN = (MA)N.

The time cost for different size of problems are shown in
Table 3. We perform the experiments with n ranges from
5,000 to 20,000. For the largest benchmark size n = 20, 000,
ProbGen only requires less than 10 minutes on our client
computer (note that this could be performed in an off-line man-
ner). Compared to the baseline experiment where the customer
solves the equation directly by himself, such computational
burden should be considered practically acceptable.

B. Cost of Verify and Solve

As shown in the step 4 of Section 3.2, given the computation
result y by S, C can verify whether the equations Ty = d
hold. Hence, the main computation cost of Verify in our
algorithm is dominated by a matrix-vector multiplication with
complexity O(n2). Besides, if y is valid, then C can compute
x = Ny − r as the solution of the original linear equations.
The computation of Solve only requires a sparse-matrix-vector
multiplication with complexity O(n). Therefore, our algorithm
is much superior to Wang et al.’s algorithm [48] in the phases
of Verify and Solve. The time cost for different size of
problems are also given in Table 3.

On the other hand, we argue that IO is used only once
in our algorithm, thus it can achieve the (optimal) 1 round
communication between C and S. However, it requires multi-
round of interactive communication between C and S in [48].

CHEN et al.: NEW ALGORITHMS FOR SECURE OUTSOURCING OF LARGE-SCALE SYSTEMS 75

Fig. 2. The efficiency comparison of LE algorithm. (a) Time cost for each phase in LE algorithm. (b) Time cost comparison between the client and cloud
side.

TABLE II

COMPARISON OF COMPUTATION COST FOR CLIENT BETWEEN OUR

ALGORITHM AND THE DIRECT METHOD

TABLE III

STORAGE AND COMPUTATION COST OF OUR ALGORITHM FOR

DIFFERENT PROBLEM SIZE

C. Cost of Compute (Cloud Side)

The main task of S is to solve the transformed linear
equations Ty = d. It is well-known that there are two leading
methods for solving large linear systems, i.e., direct meth-
ods (such as Gauss elimination method, LU decomposition
method, and Cholesky decomposition method) and iterative
methods (such as Jacobi iteration, Gauss-Seidel iteration and
SOR iteration). Direct methods are more preferable than itera-
tive ones in some real applications because of their robustness
and predictable behavior. However, as we mentioned before,
for the systems comprising hundreds of millions or even
billions of equations in as many unknowns, iterative methods
may be the only option available (unless the iteration does not
converge). Recently, a number of efficient iterative methods
were discovered and the increased need for solving huge linear
systems triggered a noticeable and rapid shift toward iterative
techniques in many scenarios [44].

Without loss of generality, we can take Jacobi iterative
methods for example in this paper. Given the linear equations
Ty = d, S first computes B = −D−1R and f = D−1d, where
D is the diagonal of T, and R = T − D. Then, he performs
the following operations

y(k+1) = By(k) + f

until it meets the requirement of given accuracy, where y(k) is
the k-th iterative result.

The time cost of cloud side for different size of problems
is shown in Table 4. It is well-known that the round of
iteration is related to the accuracy ε = ‖y(k+1) − y(k)‖, the
initial value y(0), and the matrix T. We argue that different
linear equations have different round of iteration even for the
same size of the problems. For example, when n = 5000,
y(0) = {0, 0, · · · , 0}T , and ε = 10−6, the rounds of iteration
vary from 32 to 340 in our experiment. This indicates that
Wang et al.’s algorithm [48] may be impractical for application
even for small size of n. The main reason is that the iteration in
algorithm [48] requires the interactive communication between
C and S (while in our algorithm C is never involved in the
iteration).

D. Comparison

For the sake of completeness, we investigate the superiority
of our algorithm by making an experimental comparison with
algorithm [48]. To give a fair comparison, the experiments
of two algorithms are both implemented on the aforemen-
tioned same computer. Recalling that algorithm [48] is a stan-
dard interactive mechanism based on Paillier’s homomorphic
encryption scheme, we select a 1024 bit key and set L = 200
likewise. Under this condition, we also take communication
latency cost into consideration especially when iteration round
goes larger. In our experiment, we designate communication
latency as 50 msec in a scenarios with 100 Mbit/s bandwidth
(for more information, please refer to [31]).

Fig. 3 illustrates the time cost of three different phases
and provides a detailed comparison between two algorithms.
As expected in Table 1, the experiment results shows that our
algorithm is much more efficient than that in [48] for all three
phases.

E. Open-Source Soft Implementation

We develop an open-source soft implementation to justify
the usability of our outsourcing algorithm. The software and
the source code can be downloaded as a pack from the
following link: http://ste.xidian.edu.cn/cxf/le.html.

76 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

TABLE IV

CLOUD SIDE COMPUTATION COST FOR DIFFERENT SIZE OF PROBLEMS

Fig. 3. The time cost comparison of three phases between two algorithms. (a) Cost of ProbGen. (b) Cost of Verify. (c) Cost of Solve.

The language we used is MATLAB with a ver-
sion of R2013a on a development of Windows 32bit
(MCR-R2013a(8.1)-Windows 32-bit). The developed tool is
the GUI (Graphical User Interface) of MATLAB. Please
firstly install the MCR installer file before using the software.
The MCR installer file can be downloaded from the link:
http://www.mathworks.com.

In the following, we present the guide to use the software
Program.exe:

1) Open Program.exe, the interface will appear in your
screen within 10 seconds.

2) Input an integer for the problem size n (e.g., 1000), and
click the LeGen button in step 2. A random system of
linear equations (A, b) will be generated.

3) By clicking the KeyGen button in step 3, the corre-
sponding keys (M, N, r) will be generated; Note that the
length of some non-zero elements in the keys is 80-bits.

4) By clicking the ProbGen button in step 4, the values of
T =MAN and d =M(b+ Ar) are computed.

5) By clicking the two buttons in step 5, the value y is
computed such that Ty = d; The value x is computed
such that x = Ny− r. Trivially, x is the solution of the
linear equations (A, b).

Remark 6: The time to run the algorithm LeGen increases
rapidly with the growth of the problem size n. For example,
when n = 1000, the time to output a random (A, b) is about
3 seconds. However, when n = 5000, the time to output a
random (A, b) is about 2 minutes (note that LeGen will output
more than 25 million random elements in this case). Also,
for an extremely large n, please ensure that the computer has
enough memory in order to run the software.

On the other hand, our outsourced algorithm (i.e., step 3–5
of the software Program.exe) still runs very fast even for a very
large n. This further convinces the usability of our outsourcing
algorithm.

V. CONCLUSIONS

In this paper, we propose an efficient outsource-secure
algorithm for large-scale systems of linear equations, which
are the most basic and expensive operations in many engi-
neering disciplines. The proposed algorithm is suitable for
any nonsingular dense matrix even in the strongest adversarial
model (a.k.a. fully malicious model). Furthermore, our algo-
rithm is superior in both efficiency and checkability than the
state-of-the-art algorithm [48].

ACKNOWLEDGEMENT

We are grateful to the anonymous referees for their invalu-
able suggestions.

REFERENCES

[1] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear alge-
bra computations,” in Proc. 5th ACM Symp. Inf., Comput. Commun.
Secur. (ASIACCS), 2010, pp. 48–59.

[2] M. Abadi, J. Feigenbaum, and J. Kilian, “On hiding information from
an oracle,” in Proc. 19th Annu. ACM Symp. Theory Comput. (STOC),
1987, pp. 195–203.

[3] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H. Spafford,
“Secure outsourcing of scientific computations,” Adv. Comput., vol. 54,
pp. 215–272, Jan. 2002.

[4] M. J. Atallah and J. Li, “Secure outsourcing of sequence comparisons,”
Int. J. Inf. Secur., vol. 4, no. 4, pp. 277–287, Oct. 2005.

[5] M. Blanton, “Improved conditional E-payments,” in Applied Cryptog-
raphy and Network Security (Lecture Notes in Computer Science),
vol. 5037. Berlin, Germany: Springer-Verlag, 2008, pp. 188–206.

[6] D. Benjamin and M. J. Atallah, “Private and cheating-free outsourcing
of algebraic computations,” in Proc. 6th Annu. Conf. Privacy, Secur.
Trust (PST), Oct. 2008, pp. 240–245.

[7] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway, “Locally random
reductions: Improvements and applications,” J. Cryptol., vol. 10, no. 1,
pp. 17–36, Dec. 1997.

[8] M. Benzi, “Preconditioning techniques for large linear systems: A sur-
vey,” J. Comput. Phys., vol. 182, no. 2, pp. 418–477, Nov. 2002.

[9] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, “Multi-prover
interactive proofs: How to remove intractability assumptions,” in Proc.
ACM Symp. Theory Comput. (STOC), 1988, pp. 113–131.

CHEN et al.: NEW ALGORITHMS FOR SECURE OUTSOURCING OF LARGE-SCALE SYSTEMS 77

[10] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of com-
putation over large datasets,” in Advances in Cryptology (Lecture Notes
in Computer Science), vol. 6841. Berlin, Germany: Springer-Verlag,
2011, pp. 111–131.

[11] M. Blanton, M. J. Atallah, K. B. Frikken, and Q. Malluhi, “Secure and
efficient outsourcing of sequence comparisons,” in Computer Security
(Lecture Notes in Computer Science), vol. 7459. Berlin, Germany:
Springer-Verlag, 2012, pp. 505–522.

[12] M. Blum, M. Luby, and R. Rubinfeld, “Program result checking against
adaptive programs and in cryptographic settings,” in Proc. DIMACS
Workshop Distrib. Comput. Crypthography, 1990, pp. 107–118.

[13] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting with
applications to numerical problems,” J. Comput. Syst. Sci., vol. 47, no. 3,
pp. 549–595, Dec. 1993.

[14] V. Boyko, M. Peinado, and R. Venkatesan, “Speeding up discrete log
and factoring based schemes via precomputations,” in Advances in
Cryptology (Lecture Notes in Computer Science), vol. 1403. Berlin,
Germany: Springer-Verlag, 1998, pp. 221–235.

[15] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
Advances in Cryptology (Lecture Notes in Computer Science), vol. 740.
Berlin, Germany: Springer-Verlag, 1993, pp. 89–105.

[16] R. Canetti, B. Riva, and G. N. Rothblum, “Practical delegation of
computation using multiple servers,” in Proc. 18th ACM Conf. Comput.
Commun. Secur. (CCS), 2011, pp. 445–454.

[17] B. Carbunar and M. Tripunitara, “Conditional payments for comput-
ing markets,” in Cryptology and Network Security (Lecture Notes in
Computer Science), vol. 5339. Berlin, Germany: Springer-Verlag, 2008,
pp. 317–331.

[18] B. Carbunar and M. Tripunitara, “Fair payments for outsourced com-
putations,” in Proc. 7th Annu. IEEE Commun. Soc. Conf. Sensor, Mesh
Ad Hoc Commun. Netw. (SECON), Jun. 2010, pp. 1–9.

[19] X. Chen, J. Li, and W. Susilo, “Efficient fair conditional payments for
outsourcing computations,” IEEE Trans. Inf. Forensics Security, vol. 7,
no. 6, pp. 1687–1694, Dec. 2012.

[20] X. Chen, J. Li, J. Ma, W. Lou, and D. S. Wong, “New and efficient
conditional e-payment systems with transferability,” Future Generat.
Comput. Syst., vol. 37, pp. 252–258, Jul. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2013.07.015

[21] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for
secure outsourcing of modular exponentiations,” in Computer Security
(Lecture Notes in Computer Science), vol. 7459. Berlin, Germany:
Springer-Verlag, 2012, pp. 541–556.

[22] B. Chevallier-Mames, J.-S. Coron, N. McCullagh, D. Naccache, and
M. Scott, “Secure delegation of elliptic-curve pairing,” in Smart Card
Research and Advanced Application (Lecture Notes in Computer Sci-
ence), vol. 6035. Berlin, Germany: Springer-Verlag, 2010, pp. 24–35.

[23] K. Forsman, W. Gropp, L. Kettunen, D. Levine, and J. Salonen,
“Solution of dense systems of linear equations arising from integral-
equation formulations,” IEEE Antennas Propag. Mag., vol. 37, no. 6,
pp. 96–100, Dec. 1995.

[24] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryp-
tion of ABE ciphertexts,” in Proc. 20th USENIX Conf. Secur., 2011,
p. 34. [Online]. Available: http://static.usenix.org/events/sec11/tech/
full-papers/Green.pdf

[25] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Advances
in Cryptology (Lecture Notes in Computer Science), vol. 6223. Berlin,
Germany: Springer-Verlag, 2010, pp. 465–482.

[26] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating compu-
tation: Interactive proofs for muggles,” in Proc. ACM Symp. Theory
Comput. (STOC), 2008, pp. 113–122.

[27] M. Girault and D. Lefranc, “Server-aided verification: Theory and prac-
tice,” in Advances in Cryptology (Lecture Notes in Computer Science),
vol. 3788. Berlin, Germany: Springer-Verlag, 2005, pp. 605–623.

[28] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complex-
ity of interactive proof systems,” SIAM J. Comput., vol. 18, no. 1,
pp. 186–208, 1989.

[29] P. Golle and I. Mironov, “Uncheatable distributed computations,” in
Topics in Cryptology (Lecture Notes in Computer Science), vol. 2020.
Berlin, Germany: Springer-Verlag, 2001, pp. 425–440.

[30] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in Proc. 19th Symp. Theory Comput., 1987, pp. 218–229.

[31] M. Gondree and Z. N. J. Peterson, “Geolocation of data in the cloud,”
in Proc. 3rd ACM Conf. Data Appl. Secur. Privacy, 2013, pp. 25–36.

[32] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[33] S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Theory of Cryptography (Lecture Notes
in Computer Science), vol. 3378. Berlin, Germany: Springer-Verlag,
2005, pp. 264–282. [Online]. Available: http://www.cs.jhu.edu/
~susan/papers/HL05.pdf

[34] J. Kilian, “A note on efficient zero-knowledge proofs and arguments
(extended abstract),” in Proc. ACM Symp. Theory Comput. (STOC),
1992, pp. 723–732.

[35] J. Kilian, “Improved efficient arguments,” in Advances in Cryptology
(Lecture Notes in Computer Science), Berlin, Germany: Springer-Verlag,
1995, pp. 311–324.

[36] A. Lathey, P. K. Atrey, and N. Joshi, “Homomorphic low pass filtering on
encrypted multimedia over cloud,” in Proc. 7th IEEE Int. Conf. Semantic
Comput., Sep. 2013, pp. 310–313.

[37] S. Micali, “CS proofs,” in Proc. 35th Annu. Symp. Found. Comput.
Sci. (FOCS), Nov. 1994, pp. 436–453.

[38] T. Matsumoto, K. Kato, and H. Imai, “Speeding up secret compu-
tations with insecure auxiliary devices,” in Advances in Cryptology
(Lecture Notes in Computer Science), vol. 403. Berlin, Germany:
Springer-Verlag, 1990, pp. 497–506.

[39] M. Mohanty, W. T. Ooi, and P. K. Atrey, “Scale me, crop me, knowme
not: Supporting scaling and cropping in secret image sharing,” in Proc.
IEEE Int. Conf. Multimedia Expo, Jul. 2013, pp. 1–6.

[40] P. Q. Nguyen, I. E. Shparlinski, and J. Stern, “Distribution of modular
sums and the security of server aided exponentiation,” in Proc. Workshop
Comput. Number Theory Cryptograph., 1999, pp. 1–16.

[41] B. Parno, M. Raykova, and V. Vaikuntanathan, “How to delegate and
verify in public: Verifiable computation from attribute-based encryption,”
in Theory of Cryptography (Lecture Notes in Computer Science),
vol. 7194. Berlin, Germany: Springer-Verlag, 2012, pp. 422–439.

[42] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan./Feb. 2012.

[43] C. P. Schnorr, “Efficient signature generation by smart cards,” J. Cryp-
tol., vol. 4, no. 3, pp. 161–174, 1991.

[44] Y. Saad, Iterative Methods for Sparse Linear Systems. Boston, MA,
USA: PWS Pub. Company, 1996.

[45] L. Shi, B. Carbunar, and R. Sion, “Conditional E-cash,” in Financial
Cryptography and Data Security (Lecture Notes in Computer Science),
vol. 4886. Berlin, Germany: Springer-Verlag, 2007, pp. 15–28.

[46] S. Sundareswaran, A. C. Squicciarini, and D. Lin, “Ensuring distributed
accountability for data sharing in the cloud,” IEEE Trans. Dependable
Secure Comput., vol. 9, no. 4, pp. 556–568, Jul./Aug. 2012.

[47] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, “Secure overlay
cloud storage with access control and assured deletion,” IEEE Trans.
Dependable Secure Comput., vol. 9, no. 6, pp. 903–916, Nov./Dec. 2012.

[48] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud for
securely outsourcing large-scale systems of linear equations,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1172–1181, Jun. 2013.

[49] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing of
linear programming in cloud computing,” in Proc. 30th IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr. 2011, pp. 820–828.

[50] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE Trans. Par-
allel Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, Aug. 2012.

[51] W. Wu, Y. Mu, W. Susilo, and X. Huang, “Server-aided verification
signatures: Definitions and new constructions,” in Provable Security
(Lecture Notes in Computer Science), vol. 5324. Berlin, Germany:
Springer-Verlag, 2008, pp. 141–155.

[52] R. Yuster and U. Zwick, “Fast sparse matrix multiplication,” in Annual
European Symposium on Algorithms (Lecture Notes in Computer Sci-
ence), vol. 5324. Berlin, Germany: Springer-Verlag, 2004, pp. 604–615.

Xiaofeng Chen received the B.S. and M.S. degrees
in mathematics from Northwest University, Xi’an,
China, in 1998 and 2000, respectively, and the Ph.D.
degree in cryptography from Xidian University,
Xi’an, in 2003, where he is currently a Professor.
His research interests include applied cryptography
and cloud computing security. He has authored
over 100 research papers in refereed international
conferences and journals. His work has been cited
over 1800 times at Google Scholar. He is on the
Editorial Board of Computing and Informatics, the

International Journal of Grid and Utility Computing, and the International
Journal of Embedded Systems. He has served as the Program/General Chair
or a Program Committee Member for over 30 international conferences.

78 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

Xinyi Huang received the Ph.D. degree from the
School of Computer Science and Software Engineer-
ing, University of Wollongong, Wollongong, NSW,
Australia, in 2009. He is currently a Professor with
the Fujian Provincial Key Laboratory of Network
Security and Cryptology, School of Mathematics
and Computer Science, Fujian Normal University,
Fuzhou, China. His research interests include cryp-
tography and information security. He has authored
over 90 research papers in refereed international
conferences and journals. His work has been cited

over 1500 times at Google Scholar (H-index: 22). He is on the Editorial
Board of the International Journal of Information Security (Springer), and
has served as the Program/General Chair or a Program Committee Member
for over 60 international conferences.

Jin Li received the B.S. and M.S. degrees in
mathematics from Southwest University, Chongqing,
China, and Sun Yat-sen University, Guangzhou,
China, in 2002 and 2004, respectively, and the Ph.D.
degree in information security from Sun Yat-sen
University, in 2007. He is currently a Professor
with Guangzhou University, Guangzhou, China. His
research interests include design of secure pro-
tocols in cloud computing (secure cloud storage,
encrypted keyword search, and outsourcing compu-
tation) and cryptographic protocols. He served as a

Senior Research Associate with the Korea Advanced Institute of Technology,
Daejeon, Korea, and the Illinois Institute of Technology, Chicago, IL, USA,
from 2008 to 2010, respectively. He has authored over 40 papers in inter-
national conferences and journals. He also served as a Technical Program
Committee Member for many international conferences.

Jianfeng Ma received the B.S. degree in math-
ematics from Shaanxi Normal University, Xi’an,
China, in 1985, and the M.E. and Ph.D. degrees in
computer software and communications engineering
from Xidian University, Xi’an, China, in 1988 and
1995, respectively. From 1999 to 2001, he was with
the Nanyang Technological University of Singapore,
Singapore, as a Research Fellow. He is currently
a Professor with the School of Computer Science,
Xidian University. His current research interests
include distributed systems, computer networks, and

information and network security.

Wenjing Lou received the B.S. degree and the M.S.
degree in computer science and engineering from
Xi’an Jiaotong University, Xi’an, China, the M.A.Sc.
degree in computer communications from Nanyang
Technological University, Singapore, and the Ph.D.
degree in electrical and computer engineering from
the University of Florida, Gainesville, FL, USA.
She is currently an Associate Professor with the
Department of Computer Science, Virginia Polytech-
nic Institute and State University, Blacksburg, VA,
USA.

Duncan S. Wong received the B.Eng. (Hons.)
degree in electrical and electronic engineering from
the University of Hong Kong, Hong Kong, in 1994,
the M.Phil. degree in information engineering from
the Chinese University of Hong Kong, Hong Kong,
in 1998, and the Ph.D. degree in computer science
from Northeastern University, Boston, MA, USA, in
2002. He has been a Visiting Assistant Professor
with the Chinese University of Hong Kong for
one year before joining the City University of
Hong Kong, Hong Kong, in 2003, where he is

currently an Associate Professor with the Department of Computer Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

