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Abstract— Cross-client data deduplication has been widely
used to eliminate redundant storage overhead in cloud storage
system. Recently, Abadi et al. introduced the primitive of MLE2
with nice security properties for secure and efficient data dedu-
plication. However, besides the computationally expensive non-
interactive zero-knowledge proofs, their fully randomized scheme
(R-MLE2) requires the inefficient equality-testing algorithm to
identify all duplicate ciphertexts. Thus, an interesting challenging
problem is how to reduce the overhead of R-MLE2 and propose
an efficient construction for R-MLE2. In this paper, we introduce
a new primitive called µR-MLE2, which gives a partial positive
answer for this challenging problem. We propose two schemes:
static scheme and dynamic scheme, where the latter one allows
tree adjustment by increasing some computation cost. Our main
trick is to use the interactive protocol based on static or dynamic
decision trees. The advantage gained from it is, by interacting
with clients, the server will reduce the time complexity of
deduplication equality test from linear time to efficient loga-
rithmic time over the whole data items in the database. The
security analysis and the performance evaluation show that our
schemes are Path-PRV-CDA2 secure and achieve several orders
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of magnitude higher performance for data equality test than
R-MLE2 scheme when the number of data items is relatively
large.

Index Terms— Deduplication, convergent encryption,
message-locked encryption, interactive protocol.

I. INTRODUCTION

REMOTE cloud storage have become an indispensable
part for various applications in nowadays network, which

store a large amount of data and provide the partial data
needed. With the rapid growing of cloud storage services, such
as cloud storage [2]–[4], encryption becomes an important
technique for protecting the confidentiality of data. Although
data encryption provides an important guarantee for the secu-
rity and privacy of clients’ data, it limits the manners of
the accessibility and availability of the encrypted data. The
limitation of schemes with encrypted data is that, when some
special processing applications over the data are needed, such
as cross-client data deduplication [5]–[7], query [8]–[13], sort-
ing over encrypted data [14]–[18], the schemes usually become
inefficient due to the frequent date encryption and decryption
operations. Thus, it is important to design efficient schemes
to support secure and efficient computation outsourcing
[19], [20] and storage outsourcing [21].

Data deduplication enables data storage systems to find
and remove duplication within data without compromising its
availability. The goal of data deduplication is to store more
data in less space by storing and maintaining files (blocks in
fine-grained deduplication manner) into a single copy, where
the redundant copies of data are replaced by a reference to this
copy. It means that data deduplication storage system could
reduce the storage size of u clients, who share the same data
copy m, from O(u ·|m|) to O(u+|m|) if some implementation-
dependent constants are hidden. Also, clients do not need to
upload their data to the cloud storage server when there has
been one copy stored, which will not only greatly reduce the
communication cost of clients and cloud server, but also save
the network bandwidth.

Since the data from different clients is encrypted with
different secret keys, it is difficult to conduct ciphertext data
deduplication among clients. A secure cross-client dedupli-
cation scheme should enable a storage server to detect data
deduplication over the data encrypted by different clients, and
efficiently prevent the practical attacks [22]–[24] from poor
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deduplication. Douceur et al. [21] proposed the first solution
for secure and efficient data deduplication, and they call it
convergent encryption. This idea promoted many significant
applications, where various schemes [25], [26] are imple-
mented or designed based on convergent encryption. Recently,
Bellare et al. [27] defined a new primitive, Message-Locked
Encryption (MLE), which brought rigor to security dedupli-
cation, and captured various security aspects of MLE. Also,
they constructed several schemes and provided some detailed
analysis over them. To strengthen the notions of security by
considering plaintext distributions depending on the public
parameter, Abadi et al. [28] proposed two approaches (fully
random scheme and deterministic scheme) that are secure
even for lock-dependent message in realistic. It answered the
question: Can message-locked encryption be secure for lock-
dependent message? The tag randomization design makes the
fully random scheme, R-MLE2 for short, satisfy the standard
secure notion of data confidentiality. Also, the overhead in the
length of the ciphertext is only additive and independent of
the message length.

However, concerning the challenging problem described
in [28], the R-MLE2 scheme is not efficient in the dedupli-
cation process because of the comparison of the randomized
tag introduced in their paper. It is important to maintain tags
for sub-linear deduplication time, since for large data sets
linear scans are prohibitive, particularly if they involve a linear
number of cryptographic operations. In this paper, we ask
whether the R-MLE2 scheme can be much more efficient (with
logarithmic or nearly logarithmic deduplication test overhead)
in data deduplication for large database while also keep the
security properties of the deduplication scheme? We adopt
client-server interaction based on randomly balanced tree,
mutable tree and self-generation tree to improve the efficiency
of our schemes, and design two (static/dynamic) efficient
R-MLE2 schemes (μR-MLE2). Both of the designed schemes
support efficient data equality test while keeping the security
of clients’ data by allowing a small number of interaction.

Our scheme is much more practical for cloud data dedu-
plication application compared with R-MLE2. Firstly, our
schemes inherit the security enhancement of R-MLE2. In other
words, the scheme avoids using tags that are derived determin-
istically from the message. Secondly, since our schemes reduce
the linear duplication test from linear time to sublinear time,
they are much more efficient in the duplication test, especially
when our scheme is applied to cloud storage server that storing
a huge number of data items.

A. Related Works

Convergent encryption [21] ensures data privacy in dedu-
plication. It is a deterministic scheme in which a ciphertext
C = E(k, m) is an encryption over message m under a
message-dependent key k = h(m), where h is a cryptographic
hash function and E is a block cipher. In the deterministic
scheme, identical plaintexts will be mapped to one ciphertext.
When a client uploads the encrypted plaintext to a server,
the server can find the duplicate ciphertext and store only
one copy of each data. In this cross-user secure deduplication

scheme, the clients do not need to coordinate their actions or
consider the existence of other clients who hold identical data
copy.

Bellare et al. [27] formalized this primitive as message-
locked encryption, and explored its application in space-
efficient secure outsourced storage. An MLE scheme MLE =
(P, K, E, D, T) is composed of five polynomial time algo-
rithms. In MLE , the parameter generation algorithm P is
used to generate the public parameter. The key generation
algorithm K is used to generate the message-derived key. On
inputting a key and a message the encryption algorithm E
outputs the ciphertext. The decryption algorithm D reverses
the process, whose output is used to compute the cipher-
text/plaintext, and the tag generation algorithm T is used to
generate the tag of the ciphertext. In the scheme, tag generation
maps the ciphertext to a tag and identical plaintext result in
one equal tag.

To enhance the security of deduplication and protect the data
confidentiality, Bellare et al. [25] showed how to protect the
data confidentiality by transforming the predictable message
into an unpredictable message. In their system, a third party
called key server is introduced to generate the file tag for
duplication check. Li et al. [26] addressed the key management
issue in block-level deduplication by distributing these keys
across multiple servers after encrypting the files. Li et al. [29]
considered the hybrid cloud architecture consisting of a public
cloud and a private cloud and efficiently solved the problem
of deduplication with differential privileges. Yuan and Yu [30]
proposed a deduplication system in the cloud storage to reduce
the storage size of the tags for integrity check. Recently,
Bellare and Keelveedhi [31] proposed a new primitive iMLE,
which adopted interaction as a new ingredient to provide
privacy for messages that are both correlated and dependent
on the public system parameters.

Abadi et al. [28] provided stronger security guarantee for
secure deduplication. The first approach was to avoid using
tags that are derived deterministically from the message. They
designed a fully randomized scheme that supported equality
test over ciphertext. More precisely, there were three com-
ponents in the fully randomized scheme, namely a payload,
a tag and a proof of consistency. The tag they designed for
plaintext m is computed as τ = (gr , grh(m)), where g is the
generator of a bilinear group, h is a sufficient strong collision-
resistant function, and r is a randomly chosen number. Given
two tags τ1 = (g1, h1) and τ2 = (g2, h2), the equality-testing

algorithm verifies e(g1, h2)
?= e(g2, h1). The second approach

was a deterministic scheme. It was made secure subject to the
condition where the distributions were efficiently samplable
using at most q queries to the random oracle. Thus, the
security of the second approach was guaranteed by limiting the
computational power of the adversarial message distributions.

B. Our Contributions

Building on the above insight, we make several contribu-
tions, as follows:

1) This is the first attempt to solve the challenging problem
pointed out by [28] “the first scheme (R-MLE2) requires
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a pairwise application of the equality-testing algorithm
to identify all duplicate ciphertexts.” We reduce the
linear pairing comparison times of the R-MLE2 to nearly
logarithmic times.

2) By adopting client-server interaction, we construct two
deduplication decision tree structures: static deduplica-
tion decision tree and dynamic deduplication decision
tree. The static one is suitable for static data, while
the dynamic one, based on the self-generation tree,
allows data update such as data insertion, deletion and
modification.

3) We provide the security and theoretical performance
analysis for the proposed schemes, and implement the
equality-testing schemes with the existing cryptographic
libraries and provide the performance evaluation of our
schemes.

This is the full version of the paper that has been presented
in ACISP 2016 [1]. The main differences from the conference
version are as follows: Firstly, introduce some explanations
and examples in our paper. Secondly, we add a new section
5 to present the formal security proof. Finally, we use a new
section 6 to provide a thorough experimental evaluation of the
proposed scheme and compare it with the R-MLE scheme over
data equality test.

II. PRELIMINARIES

A. Bilinear Pairings

Let G and GT be two cyclic multiplicative groups of prime
order p. Let g be a generator of G. A bilinear pairing is a
map ê : G×G→ GT with the following properties:

• Bilinearity: For all u, v ∈ G, and a, b ∈ Z∗p , we have
ê(ua, vb) = ê(u, v)ab.

• Non-degeneracy: ê(g, g) �= 1.

We say that G is a bilinear group if the group action in G

can be computed efficiently and there exists a group GT and
an efficiently computable bilinear map ê(ua, vb) = ê(u, v)ab.
Also, ê(, ) is symmetric since ê(ga, gb) = ê(gb, ga).

Definition 1 (Bilinear Diffie-Hellman (BDH) Problem):
Given a tuple g, ga, gb, gc ∈ G as input (for unknown
randomly chosen a, b, c ∈ Z∗p), compute e(g, g)abc ∈ GT .

The BDH problem is hard to solve in G as the assumption
in [32]. In other words, G and GT are chosen so that there is
no known algorithm for efficiently solving the Diffie-Hellman
problem in either G or GT .

B. Decision Trees

A decision tree is a decision support tree-like model, which
works by partitioning the data space one attribute at a time.
For example, a decision tree consisting of nodes (circles) and
branches (lines) is shown in Fig. 1.

The nodes in the tree correspond to partitioning rules
(e.g. conditions in Fig. 1), and they are used to decide which
branch to take until a leaf node is encountered. A decision
tree typically begins with a given first decision called the root
node (the black circle). The lines that connect nodes are called
branches. Branches that emanate from a decision node are

Fig. 1. Example of decision tree.

called decision branches with possibly different conditions.
A leaf node or a termination node (gray circles) indicates a
final outcome for that branch. The decision process walks the
tree by starting from the root. Decision trees support three
main operations: query, insertion, and deletion.

Query: Find a specific element in the tree. In data dedupli-
cation scheme, only one element will be found or no element
is found.

Insertion: Insert new elements to a specific position of the
decision tree. It is obvious to insert a leaf node, which can
also be called node pending. However, we need to consider
the relationship of the nodes with the inserted node as a root
node, when inserting an intermediate node.

Deletion: Find a specific elements in the tree, and then
delete it. Similar to insertion operation, deletion operation
needs to consider node relationship if the deleted node is not
a leaf node.

C. MLE for Lock-Dependent Message

A message-locked encryption for lock-dependent
messages MLE2 [28] is a six-tuple Π =
(PPGen, KD, Enc, Dec, EQ, Valid) defined below.
• The parameter generation algorithm PPGen takes as

input 1λ and returns public parameters pp.
• The key derivation function KD takes as input public

parameters pp, a message m, and outputs a message-
derived key km .

• The encryption algorithm Enc takes as input public
parameters pp, a message m, and a message-derived key
km . It outputs a ciphertext c.

• The decryption algorithm Dec takes as input public
parameters pp, ciphertext c, and a secret key km and
outputs either a message m or ⊥.

• The equality algorithm EQ takes as input public parame-
ters pp, and two ciphertexts c1 and c2 and outputs 1 if
both ciphertexts are generated from the same underlying
message.

• The validity-test algorithm Valid takes as input public
parameters pp and a ciphertext c and outputs 1 if the
ciphertext c is a valid ciphertext.

III. NOTATION AND DEFINITIONS

A. Notation

The set of binary string of length n is denoted as {0, 1}n ,
and the set of all finite binary strings are denoted as {0, 1}∗.
We denote the bit length of a given binary string s as |s|. Given
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Fig. 2. The General Network Structure of μR-MLE2.

two binary strings s1 and s2, the concatenation is written as
s1||s2. The notation [1, n] denotes the integer set {1, ..., n} with
n ∈ N . We denote the output x of an algorithm A as x ← A.

Sampling uniformly random from a set X is denoted as x
R←

X . Also, A← B is used to denote the communication between
two entity A and B . B(x) denotes the bitwise exclusive or of
the digest of x , and the digest of x can be calculated with a
secure hash function. Throughout, λ is denoted as the security
parameter, and h(·) is modeled as hash function.

B. Security Model and Definitions

Our system consists of the clients and a cloud storage
server as shown in Fig. 2. The clients, who own the data,
will outsource and store their encrypted data to the untrusted
cloud storage server. We consider the following models and
basic properties of our scheme.

Definition 2 (μR-MLE2): An efficient fully random
message-locked encryption scheme with randomized tag
is an eight-tuple of polynomial-time algorithms Π =
(PPGen, KeyGen, Enc, Dec, TreeInit, EQ, Valid, Dedup)
run by a client and a deduplication server.

• pp← PPGen(1λ): The parameter generation algorithm
takes 1λ as input and outputs the public parameter pp.

• km ← KeyGen(pp, m): The key generation algorithm
takes the public parameters pp and a message m as
inputs, and outputs a message-derived key km .

• c ← Encpp(km, m): The encryption algorithm takes the
public parameters pp and the message derived key km as
inputs, and returns a ciphertext c.

• m ← Decpp(km, c): The algorithm takes the public
parameter pp and the message derived key km as inputs.
If the algorithm runs successfully, it will return the
plaintext m. Otherwise, it will return ⊥.

• ts ← TreeInit(1λ): The tree initialization algorithm takes
1κ as input, and outputs the tree state ts of the current
database.

• {0, 1} ← EQpp(τ1, τ2): The equality-testing algorithm
takes the public parameter pp and the tags τ1 and τ2 of
two ciphertexts as inputs, and outputs 1 if the tags of the
ciphertexts are generated from identical messages.

• {0, 1} ← Validpp(c): The validity-testing algorithm takes
public parameters pp and the ciphertext c as input.
It outputs 1 if the ciphertext c is a valid input and 0
otherwise.

• {0, 1} ← Deduppp(st, τ1, τ2): The data deduplication
algorithm takes the public parameters pp, τ1, and tag
τ2 as inputs. It returns whether a duplicate data copy has
been found.

Intuitively, our scheme conducts data deduplication item
by item among clients. A client does not need to upload
its encrypted data item to the storage server when there is
a duplicate copy stored. Otherwise, the client needs to upload
its data. We consider that the server stores a sequence of
data {c1, ..., cn} and the corresponding tag values {τ1, ..., τn}
at some point. When a client, holding message m′ and its
corresponding tag τ ′, wants to conduct data deduplication, the
scheme should efficiently direct to the identical data copy if
a duplicate value is stored in the storage server. The decision
tree state evolves after each storing (there is no duplication
data copy stored in the storage server), from ts0 to tsn , where
ts0 is the initial state. We define the following properties.

Definition 3 (Correctness): A μ-RMLE2 scheme for the
plaintext domain D is correct if for all security parameter
λ, tag equality test algorithm {0, 1} ← EQpp(τi , τ j ), and
deduplication algorithm {0, 1} ← Deduppp(st, τ ) for all data
sequence c1, ..., cn and tag sequence τ1, ..., τn , for all tree
states ts, we have

Deduppp(st, τi ) = Deduppp(st, τ j ) for all steps, and
finally get EQpp(τi , τ j ) = 1 if mi = m j .

We now define the security of our scheme, which intuitively
says that the scheme must not leak anything besides the bits
for deduplication path choosing in the deduplication test tree.
The security definition is the Path-PRV-CDA2. The definition
says that an adversary cannot distinguish between two test
sequences of values as long as the sequences have the same
tree path.

Path-PRV-CDA2 Security Game: The security game
between a client and an adversary Adv for security parame-
ter λ proceeds as follows:

The client and the server run μR-MLE2 as constructed, the
client and the adversary engage in a number of rounds of
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interaction (not larger than the height of deduplication decision
tree), where the client randomly samples message from real
or rand mode.

- At round i , the client will send 1-bit path decision value
to the adversary.

- With the additional bit information, the adversary conducts
the Path-PRV-CDA2 game, Expmode

�,A (λ), as defined in [28] .
- The adversary outputs b.
We provide our secure definition of Path-PRV-CDA2 secu-

rity based on the definition PRV-CDA2 security presented
in [28].

Definition 4 (Path-PRV-CDA2 security): A μR-MLE2
scheme � is Path-PRV-CDA2 secure if for any probabilistic
polynomial-time adversary A, there exists a negligible
function negl(λ) such that

AdvPath-PRV-CAD2
�,A (λ)

def= |Pr
[
Expreal

�,A(λ) = 1
]

− Pr
[
Exprand

�,A(λ) = 1
]
| ≤ negl(λ),

where for each mode ∈ {real, rand} and λ the experiment is
from Expmode

�,A (λ).
We also define the following two properties for the effi-

ciency analysis of our schemes.
Definition 5 (Efficiency): We say a μR-MLE2 scheme is

efficient, if the equality-test time of the deduplication scheme
is sublinear.

Definition 6 (Dynamic): We say a μR-MLE2 scheme is
dynamic, if the scheme can be efficiently added, deleted and
changed after the initial outsourcing.

IV. THE μR-MLE2 CONSTRUCTIONS

In this section, we present the general description of our
constructions and provide the μR-MLE2 scheme based on
static deduplication decision tree and dynamic deduplication
decision tree. Also, we discuss some detail properties about
our schemes.

A. High Description

Abadi et al. [28] proposed a construction for building
fully randomized message-locked encryption scheme based
on entropy-based DDH assumption. In the scheme, the “pay-
load" is used to store the encryption of message using some
underlying randomized encryption scheme, and the tag is
generated from the message. There is a proof of consistency,
which proves that the payload and the tag correspond to
the same message. A tag for a message m is computed
as τ = (gr , gr ·h(m)). Given two tags τ1 = (gr1 , gr1·h(m1))
and τ2 = (gr2, gr2·h(m2)) the equality algorithm verifies

ê(gr1, gr2·h(m2))
?= ê(gr2 , gr1·h(m1)).

However, the server needs to conduct data equality test
over the whole database, which is inefficient for practical
utilization. To solve this problem, we provide an efficient
scheme. The main trick is that we adopt an interactive way
to construct decision tree structures over the deduplication
database, where the client who wants to store data needs to
conduct a number of interactions with the server to verify
whether the data is a duplicate copy. More precisely, the server
maintains a decision tree, which stores the storage states of

the current database. A client, who wants to store data, will
interact with the server, where the server provides the tree state
and the client provides a path decision over the decision tree
in each communication round. Trivially, given the private key
h(m) and some relevant information, the client computes and
sends a 1-bit path decision to the server in each step. When
there is no duplicate data stored, the node pointer of the state
tree will move a null child node of a leaf node. Then, the
server will store the data and update the decision tree state.

The first decision tree, based on which the scheme conducts
data deduplication test without pairing computation, is a static
tree. It means that the deduplication scheme based on the
static deduplication decision tree is efficient. However, it
does not efficiently support the data insertion and deletion,
based on which the deduplication is difficult to support data
update. Note that efficient decision tree update is important
in practical applications, we design a deduplication decision
which supports efficient tree update. Our main trick is to use
a self-generation tree constructed from a public seed, where
the server verifies whether the data form is identical to the
current node in the tree and returns the result to the client
then indecently provides the server which node path to take
in the next step.

B. The Proposed μR-MLE2 Schemes

In this section, we present the detail construction
of our efficient randomized MLE2 (μR-MLE2) based
on the definition of fully randomized MLE2 [28]. The
scheme μR-MLE2 Π = (PPGen, KeyGen, Enc, Dec,
TreeInit, EQ, Valid, Dedup) is polynomial in the security
parameter. Since our schemes are based on R-MLE2, we
omit some construction details of the algorithms in [28], and
provide only the related three algorithms as follows:

• Tree initialization algorithm ts ← TreeInit(1λ): It ini-
tializes server state st with static/dynamic deduplication
decision tree and returns st .

• Equality-testing algorithm {0, 1} ← EQpp(τ1, τ2): On
input τ1 = (g1, h1) ∈ G2 and τ2 = (g2, h2) ∈ G2, the

algorithm verifies ê(g1, h2)
?= ê(g2, h1) and outputs 1 if

and only if ê(g1, h2) = ê(g2, h1).
• Data deduplication algorithm {0, 1} ←

Deduppp(st, τ1, τ2): On input the public parameters pp,
τ1, and tag τ2, it calls the algorithm EQ at each node in
a tree path until the leaf node if 0 ← EQ. It outputs 0
when all the EQ test output 0. Otherwise it outputs 1.

We design two equality test algorithms based on the static
and dynamic deduplication decision tree, respectively. The sta-
tic one is much more efficient, which does not need to conduct
expensive pairing computation. The dynamic one is efficient
in deduplication decision tree operations, which allows server
side data insertion and deletion. Also, the dynamic one will
further reduce the communication rounds between clients and
the server.

Static Deduplication Decision Tree: Fig. 2 provides an
example of storing m∗ based on static deduplication deci-
sion tree. A client, with message m∗, wants to conduct
secure deduplication. It generates the corresponding tag
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Fig. 3. Dynamic deduplication tree.

Algorithm 1 Equality Test Over Static Deduplication Decision
Tree

1.1 Client←→ Server: The client asks for the deduplication
of new data m∗, and the server returns the tag of the
current node (gri , gr0·h(mi )). (Initially, the current node
is the root of the tree and its tag is (gr0 , gr0·h(m0)).

1.2 Client: The client computes gri ·h(m∗) and verifies

gri ·h(m∗) ?= gri ·h(mi ).
1.3 Client−→Server: If gri ·h(m∗) = gri ·h(mi ), the client sends

“duplication find” to the server. Otherwise, it computes
b = B(gri ·h(m∗)) ∈ {0, 1} and sends b to the server.

1.4 Server: The server moves the current pointer of the tree
according to b. If b = 0, the server moves the pointer to
its left child. Otherwise, it moves the current pointer to
its right child. Then, return to step 1.1. The algorithm
stops, when the server receives “duplication find” or it
needs to move the pointer to an empty node.

τ = (gr∗, gr∗·h(m∗)) over message m∗. Also, the storage
server stores the deduplication data table and maintains its
corresponding deduplication decision tree.

As shown in Algorithm 1, the scheme based on the static
deduplication decision tree supports efficient query, leaf inser-
tion, and leaf deletion operations. In the scheme, the tag com-
parison query path is generated according to the data storage
sequence of clients. Since the path to each node is decided by
each node in the path, the static deduplication decision tree
only supports query, inserting/delete data at the leaf nodes.
When conducting an intermediate node insertion/deletion, the
server needs to reinsert all the nodes with the inserted/deleted
node as a root node. Since these nodes may come from
different clients, it is very difficult for the server to conduct
intermediate node insertion/deletion.

Dynamic Deduplication Decision Tree: Fig. 3 provides
an example of storing m∗ based on dynamic deduplication
decision tree. The dynamic deduplication decision tree is a
self-generation tree, where the seed s0 of the tree is a public
parameter generated by the server. The left(right) child of node
with s0b1b2...bi is s0b1b2...bi = h(s0b1b2...bi−1 ||0)(s0b1b2...bi =
h(s0b1b2...bi−1 ||1)). All the s0, s0b1 ... are used for computing
a random decision bit, which is foundation of the random
decision tree. The scheme, as shown in Algorithm 2, can

Algorithm 2 Equality Test Over Dynamic Deduplication Deci-
sion Tree

2.1 Client−→ Server: The client asks for the deduplication
of new data m∗ and sends the server τ = (gr∗, gr∗·h(m∗))
and bi . (Initially, b = −1, which means that the current
node is the root of the tree and the corresponding tag is
τ = (gr0, gr0·h(m0)).

2.2 Server: The server verifies whether e(gr∗, gri ·h(mi )) =
e(gri , gr∗·h(m∗)).

2.3 Server→ Client: The server returns 1 when the equation
holds, and 0 otherwise.

2.4 Client: When the client receives 0 from the server, the
client computes s0b1···bi = h(s0b1b2...bi−1 ||bi ). Then it
computes bi = B(h(m)||s0b1···bi−1). (The initial seed is
s0.)

2.5 Client →Server: The client sends bi+1 to the server.
2.6 Server: The server moves the current pointer over the

tree according to bi+1. If bi+1 = 0, the server moves the
pointer to its left child. Otherwise, it moves the node to
its right child. Then, go to step 2.3. The algorithm stops
as described in algorithm 1.

be called server-oriented deduplication scheme, where the
deduplication test is conducted by the storage server. It hides
the deduplication decision tree structure stored in the storage
server, which will defeat the security problem in static dedu-
plication scheme.

In the scheme based on dynamic deduplication decision
tree, the seed of self-generation tree is a public parameter.
The tree construction relies on the self-generated hash value
s0b1...bi in self-generation tree, and clients can generate the
tree paths themselves of the owned data items. More precisely,
the path decision of dynamic deduplication scheme is decided
according to b = B(h(m)||s0b1...bi ), which is independent of
data storage sequence. The insertion/deletion operations of leaf
nodes are obvious. However, the server needs the assistant
from the client who own the data items. For example, to insert
an intermediate node at a certain position of the data tree
path, the server first conducts the complement operation and
moves the existing data to a leaf node with the help of the
data owner. Then, it inserts the specified data to the empty
position that storing the previous data item. To delete a node,
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TABLE I

COMPUTATION OVERHEAD OF DATA DEDUPLICATION

TABLE II

DATA DEDUPLICATION COMMUNICATION OVERHEAD

firstly delete the current node. Then, choose an appropriate
leaf node with the deleted node in it path and insert it to the
position of the deleted node. It is obvious that, in this scheme,
only the intermediate node insertion operation needs the help
from an additional client. Thus, it is efficient compared with
the scheme based on static deduplication decision tree over
decision tree operation. With dynamic deduplication tree, we
are able to improve the efficiency of our scheme by conducting
tree balancing as illustrated in Appendix B. To further reduce
the communication round, the client could compute and send
multiple bits to the server each time. Also, the client could
reduce some computational overhead of the hash value gen-
eration by storing some hash elements of the self-generation
tree.

V. SECURITY ANALYSIS

Theorem 1: Our deduplication schemes are correct in data
equality testing.

Proof: (Correctness) We assume that the storage server is
honest but curious, and it strictly follows the protocol and
constructs the deduplication decision tree. The correctness
property required of the scheme is straightforward: equality
should finally return only the right tags that exist at the server
and the equality test algorithm will finally output the correct
result.

Firstly, we need to prove that the client will get the right
tree path. In scheme based on the static deduplication decision
tree, if two messages are m and m′, we get path decision bit
b = B(gri ·h(m)) and b′ = B(gri ·h(m′)) for m and m′, respec-
tively. If m = m′, we get b = b′. Since the entrance of each
tree path is the root of the decision tree, we will get the same
tree path if the tree is deterministic. We need to remark that the
scheme based on the static deduplication decision tree does not
allow the server to change the tree construction, except adding
leaf nodes. Thus, it is difficult to conduct any optimization the
equality test over the deduplication database. In scheme based
on the dynamic deduplication decision tree, since the tree is
self-generated, it is obvious that sα = sβ if α = 0b1...bi ,
β = 0b′1...b′i , and α = β. Then, if we assume b = B(h(m)||sα)
and b′ = B(h(m′)||sβ), we will get b = b′ if m = m′.

Secondly, in each step of the two schemes, the client also

needs to verify e(gri , gri ·h(m))
?= e(gri , gri ·h(m′)). It is obvious

that the equation holds only when m = m′. The interaction of

the client and server will reach a final deduplication test result
as defined in correctness definition.

Theorem 2: Our μR-MLE2 scheme is Path-PRV-CDA2
secure.

Proof: Consider any adversary A and any two sequences
of values A distinguishes v = (v1, ..., vn) and v′ =
(v ′1, ..., v ′n). The view of A consists of the information the
server receives in the security experiment. The first is to use
the security of R-MLE2 which is PRV-CDA2 secure. Then,
we examine the information the adversary learns in case when
the client uploads v and v′, and show that this information is
information-theoretically the same when the uploaded message
is of the same path.

For this goal, we proceed inductively in the number of
values to be uploaded. The base case is when no value is
uploaded and we can see that A starts off with the same
information. Now considering that after i steps, we show that
the information after i + 1 steps also remains the same.

We have two possibilities. The first possibility is that vi is
in the deduplication table. Then the encoding of v ′i is also in
the deduplication table because v and v′ have the same tree
path relation. In this case, the client does not give any more
information to A. The second possibility is that the encoding
of vi is not in the deduplication table. Since v and v′ have
the same order relation, the path down in the tree taken by
client and A must be the same. Also, the only information the
client gives to the server is which path to take in deduplication
decision tree, which is also the same for both cases. Therefore,
A receives the same information in both cases, and hence is
Path-PRV-CDA2 secure, which leaks bits no more than the
tree height of the deduplication decision tree.

VI. PERFORMANCE ANALYSIS

In this section, we provide theoretical and piratical effi-
ciency analysis of the proposed schemes and give a compari-
son with scheme [28].

A. Theoretical Analysis

In Appendix A, we discuss the theoretical results over
our decision tree. Also, Appendix B provides the tree opti-
mization from deduplication tree balancing. Based on these
analysis, Table I and Table II illustrate the comparison among
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the three schemes in terms of both asymptotic computation
and communication complexity and actual execution time.
In our computation analysis, Hash denotes hash operation
mapping a bit-string to a designed length value, Mul denotes
a multiplication operation, Exp denotes the exponentiation
operation in G, and Pair denotes the pairing operation. In
our communication analysis, we consider the bit-length of the
content that is needed to transfer between the client and the
server. In our analysis, SND and RCV denote the overhead
of sending and receiving a message with a certain length
respectively.

As shown in Table I and Table II, the client needs to
conduct one-time tag generation and transmission. Then, the
server will use pairing computation over the whole database to
realize the equality test. More precisely, the computation and
communication overhead of the server are O(1) and O(n),
respectively.

The scheme based on static deduplication decision tree
needs to fetch the tags in the path of deduplication decision
tree and verify whether there is a duplicate copy of data stored
in the server. Then, it sends a 1-bit path decision information to
the server for choosing the path over the deduplication decision
tree. The server just provides the tag values for the client
according to the 1-bit path decision information each time.
Since the static scheme is client side equality test, the scheme
does not need the expensive pairing computation. Instead,
compared with the scheme based on dynamic deduplication
decision tree, the scheme based on the static one needs
much more communication overhead in each communication
round.

The scheme based on dynamic deduplication decision tree,
will greatly reduce both the communication and computation
overhead of the client. More precisely, the client will only
compute the path decision bit with the seeds of self-generation
tree and send it to the server each time. The server will conduct
the expensive equality test based on bilinear pairing. The
maximum communication rounds of our schemes are decided
by the deduplication decision tree height h, while not the
whole data items n stored in the server. Actually, with the self-
generation tree, the client could send multiple bits to help the
server to conduct path decision each time, which will further
reduce the communication rounds of the scheme. Compared
with the scheme based on static deduplication decision tree,
the client conducts lightweight hash operations and leaves the
expensive pairing computation to the server.

Remark 1: Since our schemes are correct, the maximum
equality test times of our schemes are the height of the dedu-
plication decision tree. According to the theoretical analysis
of the deduplication decision tree height in the Appendix A,
our scheme is efficient. As the tree updating and the tree
balancing discussed in the appendix, it is obvious that the
scheme based on the dynamic deduplication decision tree is a
dynamic scheme. For data deletion, the server could directly
delete the relation between the deduplication decision tree and
the data item. For data insertion, if a node is empty, the server
will just insert the data item. Otherwise, the server needs the
owner of the data to move the data to a leaf node of the tree
according to the deduplication policy and then it will insert

Fig. 4. The deduplication tree height.

the data element to an appropriate position of the decision
tree.

B. Implementation

We implement the equality-test algorithms of R-MLE2 and
μR-MLE2 schemes based on the Pairing Based Cryptography
library (PBC) [33]. In our implementations, we instantiate the
bilinear map with type-A pairing (λ = 512), which offers a
level of security that is equivalent to 1024-bit DLOG [33]. For
all the schemes, we instantiate the hash function with SHA-1
provided by the OpenSSL cryptographic library [34]. In our
scheme, we construct the tree structure with C language. We
provide the efficiency analysis of the schemes based on some
random values. For comparison, the algorithms run by the
storage server and the clients are both executed on a machine
with Linux OS, 2.70GHz Intel(R) Core(TM) i7-4600U CPU
and 8GB RAM.

Since the deduplication decision tree height (the maximum
path length) is closely related to equality test time of dedupli-
cation, Fig. 4 shows the height of deduplication decision tree
generated from random values. Since the equality-test times
of R-MLE2 scheme are linear with the data item, we use a
tree where each node has only one child. In our μR-MLE2
schemes, the height of our randomly generated deduplication
decision tree is nearly logarithmic to the data items as shown
in Fig. 4. We also get the result based on our simulation that
the tree height is around 20 for 100,000 data item, which is
not provided in Fig. 4.

We provide the time to generate the deduplication decision
tree in Fig. 5. It is obvious that, to generate a tree with different
data, our scheme achieves 1-2 orders of magnitude higher
performance than the state-of-the-art R-MLE2 scheme even
when there are less than 1000 data items in the tree. Also, our
schemes will be much more efficient when applied over large
data set deduplication.

Since the data items and the deduplication decision tree
are randomly generated, the storage time of each data item
is usually not the same each time. Fig. 6 and Fig. 7 show
some detail about deduplication time of our static and dynamic
schemes. It is obvious that, the deduplication time for the
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Fig. 5. Tree construction time.

Fig. 6. Static μR-MLE2 storing time.

Fig. 7. Dynamic μR-MLE2 storing time.

sequential test is nearly logarithmic to the number of data
items, and it is nearly linear for the random test. Since the
client only needs to calculate the hash values, the client time
cost in dynamic μR-MLE2 is not obvious compared to the
expensive pairing computation at the server.

Fig. 8 shows the deduplication time comparison of our
μR-MLE2 schemes. The static μR-MLE2 scheme needs less
deduplication testing time than the dynamic one, since the
client does not need to conduct pairing operations each time.
The advantage of the dynamic scheme is that, the client only

Fig. 8. Deduplication time comparison of the μR-MLE2 schemes.

needs to conduct the lightweight hash function and leave the
expensive pairing computation to the storage server.

VII. CONCLUSION

Interactive avenues are explored to improve the efficiency
of fully randomized secure deduplication scheme R-MLE2.
To achieve secure and efficient data deduplication, we con-
struct two interactive schemes based on static and dynamic
deduplication decision tree structures, respectively. The static
deduplication decision tree is constructed based on the random
elements from the client, which does not allow the tree to
update. However, the dynamic deduplication decision tree is
constructed based on the designed self-generation tree, which
allows the server to conduct tree update and some other
optimization. The security, theoretical and practical perfor-
mance analysis show that our scheme is Path-PRV-CDA2
secure and it achieves several orders of magnitude higher
performance than the state-of-the-art schemes in practical data
deduplication.

APPENDIX A
TREE HEIGHT

Most operations on a deduplication decision tree take time
directly proportional to the height of the tree, so it is desirable
to keep the height small. A binary tree with height h can
contain at most 2h+1 − 1 nodes. It follows that a tree with n
nodes and height h where h ≥ �logn

2�.
We model the hash function as random oracle in this paper.

Since the input gr ·h(m) each time is random in our first
deduplication decision tree construction, we consider gr ·h(m)

as a random bit-string. Then, we also consider b = B(gr ·h(m))
as random bit.

In the self-generation binary tree, we consider the adopted
hash function from a family of hash functions which maps
the value of each key from some universe U into m.
H = h : U → [m], where ∀x, y ∈ U, x �= y : Pr

h∈H
[h(x) =

h(y)] ≤ 1
m . Then, we can model any value in the

self-generation tree as random value. Finally, we model
b = B(s||h(m)) as random bit.

The two deduplication decision trees constructed in our
scheme are similar to the random binary trees widely studied
to provide information useful in evaluating algorithms based
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on this storage structure. In our constructions, we model the
hash value as the random input and adopt the compressed
binary b to make path decision.

We construct a binary search tree from a sequence of n
different numbers by inserting them in the random order into
an initially empty tree as shown in our two constructions.
Let Hn be the height of the constructed tree on n nodes.
As n approaches ∞, there exist constants α = 4.311...
and β = 1.953..., such that the expected value E(Hn) =
αlnn − βlnlnn + O(1), and the variety of Hn is V ar(Hn) =
O(1) [35]. Here, ln is the natural logarithm and log is the
base 2 logarithm. The expected height of the two deduplication
decision trees is of logarithmic equality-testing time, which
means that our schemes are efficient.

APPENDIX B
DEDUPLICATION DECISION TREE BALANCING

In computer science, an optimal binary search tree (BST)
is usually used to provide the smallest possible search time
for a given sequence of accesses. We consider the server side
optimization over our dynamic deduplication decision tree,
since it could gradually collect and record the deduplication
access frequency of all the elements stored in the database.
Actually, it is not practical for us to conduct tree balancing
over the static deduplication decision tree, as we will never
know how the current storing sequence and frequency affect
the structure of deduplication decision tree in the future. Also,
if the server wants to change the position of a node in static
deduplication for performance optimization, all the first data
owners relevant to the node’s children need to take part into
this procedure. Thus, we just consider tree balancing over the
scheme based on dynamic deduplication decision tree, where
the tree can be modified at any time, typically by permitting
tree rotations.

By generalizing the problem, we consider not only the
frequencies with which a successful search is completed,
but also the frequencies where unsuccessful searches occur.
In our deduplication tree, we consider there are n elements
B1, ..., Bn and 2n + 1 frequencies β1, ..., βn, α1, ..., αn with∑

βi +∑
α j = 1, where βi is the frequency of encountering

element Bi , and α j is the frequency of encountering an
element which lies between B j and B j+1 as defined in [36]. In
the dynamic deduplication decision tree with n interior nodes
and n+ 1 leaves, as defined in [37], the weighted path length
of the tree is

P =
n∑

i=1

βi (bi + 1)+
n∑

j=0

α j a j . (1)

Let n = 2k − 1, βi = 2−k + εi , with
n∑

i=1

εi = 2−k and

ε1 > ε2 > · · · > εn > 0 for 1 ≤ i ≤ n and α j = 0 for
1 ≤ j ≤ n. In a balanced tree for the above frequency
distribution, as shown in [37], its weighted path length is

P ≤ 2−(k−1)
n∑

i=1

(bi + 1) ≤ 2−(k−1)
n∑

i=1

2(l−1) · l ≤ 2 · logn.

(2)

We get βi > β j where βi is the frequency of encountering
element Bi and β j is the frequency of Bi ’s child node B j . The
weighted path length sum of the two node is P . If we exchange
the position of element Bi and B j , the sum of the weighted
path length of the two node is P ′. Since the distance of node
Bi from the root is always smaller than that of its children,
we have bi < b j . Then, we get

P − P ′ = βi (bi + 1)+ β j (b j + 1)− βi (b j + 1)

−β j (bi + 1)

= (βi − β j )(bi − b j ) < 0 (3)

Equation 3 shows that we will get smaller weighted
path length, if we move the element with larger frequency
closer to the root. Thus, the server will be able to opti-
mize the tree structure by moving element closer to the
root in our scheme based on dynamic deduplication decision
tree.
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