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Abstract—WiFi-based motion sensing has received a lot of
research attention in recent years. Taking advantage of Channel
State Information(CSI) collected from physical layer, previous
techniques are able to extract useful information from CSI values
to infer human movements. However, these works concentrate
either on coarse-grained motion sensing or on fine-grained but
context-related motion sensing. In this paper, we propose WiTalk,
a new fine-grained human motion sensing technique with the
distinct context-free character. To profile human motion using
CSI, WiTalk generates CSI spectrograms using signal processing
techniques and extracts features by calculating the contours of
the CSI spectrograms. We verify the proposed technique in the
application scenario of lip reading, where the fine-grained motion
is the mouth movements. We implement WiTalk on a commercial
laptop. Experiment results show that WiTalk can achieve over
92.3% recognition accuracy to discern a set of 12 syllables and
74.3% accuracy to discern a set of short sentences up to six
words.

I. INTRODUCTION

WiFi-based motion sensing has received a lot of research
attention in recent years, leveraging the fact that human
motion will change the channel states between transceivers.
By monitoring these channel state changes, researchers are
able to extract useful information to infer human motion.
Channel State Information(CSI) is one of the most popular
measurements for the purpose of motion sensing because it
provides more fine-grained channel information than Received
Signal Strength Index(RSSI). CSI is the time series of the
channel frequency responses(CFR) which can be collected
from physical layer of off-the-shelf WiFi devices thanks to
the previously released CSI collecting tools [1], [2].

Previous work on human motion sensing has made great
effort focusing on several application scenarios like human
localization [9], [10], activity detection and recognition [11],
[12], human authentication [13], [14], health care [15], [16]
and fine-grained motion sensing [17]–[20], [23]. Using a quad-
rant classification method, we position these previous research
works and the proposed work in this paper in Fig. 1. The four
quadrants are determined by whether the motion to be detected
is coarse-grained or fine-grained, and by whether the detection
is context-free or not. For example, E-eyes [12] can recognize
human activities by comparing the testing CSI measurements
to a set of CSI profiles. The CSI profiles constructed in time
domain are not the same in different contexts such as at
different locations. E-eyes needs to set up a profile group
for a single human activity. We classify E-eyes into quadrant
III as a coarse-grained context-related solution. On the other

Fig. 1: Research Position: Interpretation of the Four Quadrants

hand, CARM [11], WifiU [13] extract features from CSI
spectrograms in time-frequency domain. CSI spectrogram is
proved to be intrinsically correlated to the moving speed of
different human body parts but not correlated to contexts. We
classify them into quadrant II as coarse-grained context-free
solutions. The work proposed by Liu et al. [16] makes use
of channel information in both time and frequency domain
to capture human breathing rate and heart rate. These scalar
values of vital signs are estimated in frequency domain and are
uncorrelated to contexts. Thus we also classify it into quadrant
II.

In the right half plane of Fig. 1, existing fine-grained motion
sensing solutions construct the CSI profiles in time domain.
Time domain CSI profiles are subject to changes of contexts,
including changes of locations, users or multipath environ-
ments. For example, WiKey [17] recognizes keystrokes based
on CSI-waveform for each key. WindTalker [19] inferences
mobile device keystrokes exploiting the strong correlation
between the CSI fluctuation and the keystrokes. WiFinger [18]
senses and identifies subtle movements of finger gestures by
examining the unique patterns in CSI. WiHear [23] detects and
analyzes fine-grained radio reflections from mouth movements
by introducing Mouth Motion Profile. These solutions are
all context-related. They require the construction and testing
of the CSI profiles in the same contexts. For a different
user, different location, or a different multipath environment,
the profiles need to be reconstructed. We classify them into



quadrant IV as fine-grained context-related solutions.
To design a context-free fine-grained motion sensing solu-

tion in quadrant I, some specific challenges that differ from
previous research settings must be addressed. First, WiFi sig-
nal reflections from fine-grained human motion are very tiny,
much smaller than those from large-scale human movements.
CSI dynamics caused by fine-grained human motion are easily
buried in noise and interferences. To ensure the CSI dynamics
to be detectable, previous solutions make some assumptions
or use special tools. For example WiKey [17] assumes that
the tested motion takes place near one end of the transceivers.
WiFinger [18] assumes that the tested motion takes place near
the line of sight(LOS) between the transceivers. WiHear [23]
and WindTalker [19] use special purpose directional anten-
nas to enhance signal-to-noise ratio(SNR) in CSi dynamics.
Second, effective denoise methods must be adopted to reduce
noises and interferences and obtain a clean CSI waveform that
reflects the motion to be detected. Third, to design a context-
free solution, intrinsic properties in CSI dynamics that are
only correlated to fine-grained motion to be detected must
be identified. To effectively detect the fine-grained motion,
feasible features must also be carefully identified and selected.

In this paper, we present WiTalk, the first context-free fine-
grained motion sensing system using WiFi physical layer
channel information. Similar to previous CSI-based motion
sensing solutions, WiTalk infers human motion by analyzing
the CSI dynamics. To effectively denoise CSI streams, we use
principal component analysis(PCA) filtering methods based
on the observation that signal fluctuations on all subcarriers
are correlated. To address the context-free challenge, we
identify CSI spectrogram in time-frequency domain as the
stable property in CSI dynamics and extract features from CSI
spectrograms by calculating the contours of the spectrograms.

We verify the feasibility and performance of WiTalk in the
application scenario of lip reading. To ensure that the CSI
dynamics generated by mouth movements are detectable, we
make similar assumptions as in previous solutions. Specif-
ically, we assume that mouth movements take place near
one end of the transceivers similar to [17], based on the
observation that people tend to hold the phone close to the
cheek while talking over the phone. Directional antennas can
also be used to further amplify CSI dynamics and eliminate
CSI noises. We leave this as future research work.

The main contributions of WiTalk are summarized as fol-
lows:
• To the best of our knowledge, WiTalk is the first feasible

system in the context-free fine-grained quadrant of mo-
tion sensing solution plane using WiFi CSI dynamics.
We show the existence of this quadrant I solution by
identifying the CSI spectrograms as the intrinsic stable
properties that correlate to fine-grained human motion.

• We identify and extract effective features from CSI spec-
trograms by calculating the contours of CSI spectrograms.
These new discerning features solve the problem of low
time-frequency resolution using discrete wavelet trans-
form(DWT).

• We verify the feasibility of WiTalk by applying it to
the lip reading scenario. Experiment results show that
WiTalk achieves comparable results to previous fine-
grained context-related solutions.

We implement WiTalk on a commercial laptop and demon-
strate its feasibility through experiments. The performance is
evaluated under various contexts with different transceivers
distances, different locations and users. The results show
that WiTalk can achieve over 92.3% recognition accuracy to
discern a set of 12 syllables and 74.3% accuracy to discern a
set of short sentences up to six words.

The rest of the paper is organized as follows. We introduce
the technical background in Section II. The system design is
detailed in Section III. The performance of WiTalk is verified
in Section IV under the lip reading scenario. We discuss related
work in Section V and conclude the paper in Section VI.

II. BACKGROUND

CSI-based motion sensing researches rely on the same
principle that the change of CSI values has correlation with
the motion to be detected. In this section, we briefly introduce
the CSI related backgrounds, especially the CSI-speed model
proposed in [11].

In WiFi protocols like IEEE 802.11a/n/ac, Orthogonal Fre-
quency Division Multiplexing(OFDM) is adopted as the modu-
lation format. In OFDM, the channel frequency response(CFR)
is measured on subcarrier level. Let X(f, t) and Y (f, t) be
the transmitted and received signals in frequency domain
respectively, then we have Y (f, t) = H(f, t)X(f, t), where
H(f, t) is the CFR at frequency f and time t. As the FFT/IFFT
operations are integrated in OFDM receivers, the receivers are
ready to calculate CFRs. Taking advantage of the released
tools [1], [2], CFR values are revealed from NIC firmware
to drivers and then to upper layers in the format of CSI. In
IEEE 802.11 standards, CFRs on 30 selected subcarriers are
reported for every received 802.11 frame. If a WiFi link has
Ntx and Nrx of emitting and receiving antennas respectively,
then the reported CFRs form a CSI matrix in dimensions of
30×Ntx×Nrx. A CSI matrix is instantaneous. For a specific
subcarrier on an antenna pair, we name the time-series of CFRs
a CSI stream. Then the time-series of the CSI matrix contains
30×Ntx×Nrx CSI streams. We can see that CSI characterizes
the frequency response of the wireless channels.

In indoor environments, wireless signals arrive at a receiver
antenna through multiple pathes including the LOS path,
pathes reflected by static objects like walls and pathes reflected
by moving objects like human body. The signals transmitted
through these pathes have different amplitudes and phases.
The CFR can be modeled as the sum of static and dynamic
components [11]:

H(f, t) = e−j2π∆ft(Hs(f) +Hd(f, t)) (1)

where ∆f is the carrier frequency difference between the
sender and the receiver, Hs(f) is the sum of static CFRs and



Fig. 2: WiTalk System Design and Workflow

Hd(f, t) is the sum of dynamic CFRs:

Hd(f, t) =
∑
k∈Pd

ak(f, t)e−j2π
dk(t)

λ (2)

where Pd is the set of dynamic pathes, ak is the attenuation
and initial phase of kth path and dk(t) is the length of path k
at time t.

The power of the CFR can be calculated to eliminate ∆f :

|H(f, t)|2 =
∑
k∈Pd

2|Hs(f)ak(f, t)|cos
(2πvkt

λ
+ φk(0)

)
+

∑
k,l∈Pd
k 6=l

2|ak(f, t)al(f, t)|cos
(2π(vk − vl)t)

λ
+ φk,l(0)

)
+
∑
k∈Pd

|ak(f, t)|2 + |Hs(f)|2 (3)

where φk(0) and φk,l(0) are initial phase and phase difference.
The total CFR power is the sum of a constant offset and a set of
sinusoids. The frequencies are functions of the speeds of path
length changes, which is further correlated to human move-
ment speed. This CSI-speed model is the technical principle
of using CSI dynamics to detect human motion.

III. SYSTEM DESIGN

The design of WiTalk is illustrated in Fig. 2. It consists of
the following components: CSI data collection and preprocess-
ing, interference elimination, segmentation, feature extraction,
classification and error correction. In this paper we mainly
focus on three components: interference elimination, feature
extraction and classification. We will briefly introduce CSI
data collection and preprocessing, segmentation and error cor-
rection components because they are not the core contributions
of this paper.

A. CSI Data Collection and Preprocessing

WiTalk is implemented on the receiving end of a WiFi link
and collects CSI measurements on each received packets. For
each pair of sending and receiving antennas, 30 CSI streams
are collected.

CSI streams are firstly normalized to obtain its z score as
Z = (Y − m)/s, where m and s are mean and standard
deviation vector respectively. After normalization, Z has a

(a) Original CSI Stream (b) Spectrum

Fig. 3: CSI Stream of Breathing and Corresponding Spectrum

mean of 0 and a standard deviation of 1. The reasons why
we normalize CSI streams are two-folds. WiTalk uses CSI
spectrograms in time-frequency domain, where the amplitude
of CSI streams does not affect our analysis. Besides, CSI
normalization helps in the PCA based filtering step because
after normalization, all CSI streams contribute equally to PCA
and none of them will dominate the PCA results.

B. Interference Elimination

CSI streams reported from WiFi NICs are very noisy. Fig. 3a
shows one original CSI stream collected at a sampling rate of
250Hz. The noise sources include environmental noises and
that are caused by WiFi NICs internal state transitions. These
noises are in the high frequency zone on the spectrum. Besides
the high frequency noises, some interferences also exit in CSI
streams. Typical interferences include reflected signals from
surrounding moving people and the movement of other body
parts of the target like chest movements when breathing. In this
section, we first use a Butterworth band pass filter to denoise
the CSI streams and analyze its parameters. PCA based filter
is then applied taking advantage of the correlation among CSI
streams.

1) Band Pass Filtering: The key of designing a band
pass filter is to determine its cut-off frequencies. Fine-grained
human motion has low speed comparing to large-scale move-
ments. For example, previous study on mechanical properties
of lip movements [24], [25] shows that average movement
speed of human jaw and lips when speaking is between
3 − 6cm/s, corresponding to 0.5 − 1.1Hz dynamics in CSI
streams for 5.18GHz WiFi signals. Instantaneous speed is
higher than the average speed, which means a higher CSI
frequency. In WiHear [23] the authors use a frequency range of
2−5Hz. In this paper, We choose a wider frequency range of
1− 10Hz to keep more details. In application scenarios other
than lip reading, the cut-off frequencies should be determined
by the corresponding applications.

In a static environment, human respiration is the most
significant interference existing in CSI streams. Fig. 3a shows
one original CSI stream in a static environment. The repeated
pattern of breathing can be clearly observed in this figure.
Typical respiratory rate for a healthy adult at rest is 12 − 20
breaths per minute [26], corresponding to 0.2 − 0.33Hz
dynamics in CSI streams. Fig. 3b shows the spectrum of the
CSI stream in Fig. 3a.



(a) Original CSI Stream (b) After Butterworth band-pass filter (c) After PCA based denoising

Fig. 4: Denoising the CSI Streams

To eliminate out-band interferences and noises, we use
band-pass filter on CSI streams. According to what we dis-
cussed above, we set the cutoff frequency of the band-pass
filter to be 1− 10Hz. We keep the frequency components up
to 10Hz to get more details of the mouth movements. We
choose 3-order Butterworth filter because it has a maximal
flat amplitude response in the pass-band. Most of the high
frequency burst noises and low frequency interference caused
by respiration can be removed by the band-pass filter. Fig. 4b
shows the band-pass filter results of the original CSI stream
in Fig. 4a.

2) PCA Based Filtering: To further denoise the CSI streams
and strengthen the effective CSI dynamics, we use principal
components analysis(PCA) to track the correlation introduced
in CSI streams by human motion. We get 30 × 3 × 1 = 90
CSI streams in total when a WiTalk device has three antennas
and the other end of the WiFi link has one antenna.

Among all the 90 CSI streams, we observe that not all of
them show strong correlation. Specifically, the correlation is
time varying and antenna related. Subcarriers from different
antennas tends to be uncorrelated. For example, Fig. 5a shows
three CSI streams that are collected from the three different
antennas. Though the bottom two streams has some observable
correlations, the top CSI stream from the third antenna does
not seem to be correlated with them. CSI streams of the third
antenna are more “noisy”. If we use PCA on all 90 CSI streams
from 3 antennas, noises from the third antenna will impinge
the performance of PCA. Thus before PCA, we calculate the
mean values of the correlation coefficients of the 30 CSI
streams from an antenna, and setup a threshold to filter out
the “noisy” antenna(s). We choose the threshold value 0.95.
If none of the three antennas has a correlation coefficients
higher than this threshold, we simply choose the antenna with
the highest mean coefficient.

There are four main steps of applying PCA to CSI streams.
The first step is data preprocessing. Data of CSI streams are
segmented into small chunks to form a data matrix H. Next, we
calculate the correlation matrix of the data matrix as HT ×H.
The dimension of the correlation matrix is N×N , where N =
90 is the number of CSI streams. The third step is to perform
eigen-decomposition of the correlation matrix. In the last step,
the principal components are reconstructed as hi = H × qi,

(a) Original CSI Stream (b) Filtered CSI Stream

Fig. 5: Different CSI Waveform for the Same Syllable

where qi is ith eigenvector.
Only the first several principal components of PCA results

with highest variance are valuable to our analysis. Due to cor-
related nature of CSI streams, all principal PCA components
contain the same information. We discard the first principal
component because noises caused by internal state changes
are highly correlated and are captured in the first principal
component [11]. We chose the second principal component
as the input of the feature extraction step. Fig. 4c shows the
second principle component of the PCA results. Compared to
the band-pass filtered result of the same CSI stream in Fig. 4b,
this PCA component contains more details of the CSI stream
with higher strength.

C. Segmentation

Segmentation is an important preprocessing step to deter-
mine the start and end points of human motion. A good
quality of segmentation will improve the performance of
fine-grained motion sensing. WiTalk simply requires a short
static interval between the movements to be detected. The
static interval serves as the sentinel signal, helping WiTalk to
segment the movements. We make this requirement because
segmentation is not the research focus of this paper. In lip
reading application, more details about syllable and word
segmentation can be found in [23].

D. Feature Extraction

The design of a context-free fine-grained motion sensing
system requires us to find the intrinsic properties in CSI
streams that are stable and correlated to human motion only.



(a) /æ/ (b) /s/ (c) /u/

(d) /æ/ (e) /s/ (f) /u/

Fig. 6: Spectrogram and its Contour of Different Syllables

1) spectrogram Construction: Previous fine-grained motion
sensing systems [17]–[19], [23] use time domain CSI profiles
to extract features for subsequent classification step. However,
as time domain CSI waveforms change with different contexts,
it is infeasible to use CSI waveforms as the discerning profiles
in this paper. We verify this claim by performing experiments
on mouth movement sensing. Fig. 5a shows the original CSI
waveforms of /æ/ form three subcarriers on three different
antennas. Fig. 5b shows the corresponding band-pass filtered
waveform. The top red line of Fig. 5b is a CSI waveform of
/æ/ collected at a different location. Please be noted that there
are translations of the lines in Fig. 5b to see them clearly.
From Fig. 5b we can see that the waveforms from different
contexts are significantly different. This verify our claim that
it’s infeasible to use CSI waveforms as the profiles in context-
free settings.

As discussed in Section II, the CSi-Speed model proves
that CSI spectrogram in time-frequency domain is a stable
property of CSI streams that are highly correlated to human
movement speeds. The movement speeds of different human
body parts are correlated to a specific human activity like
pronouncing a syllable. In the lip reading scenario, when pro-
nouncing a specific syllable, there exists a specific movement
pattern of all mouth parts [34]. A movement pattern includes
the speed,direction and duration of the movements of every
evolving mouth parts. WiTalk identifies CSI spectrogram in
time-frequency domain as the stable property in CSI dynamics
and extract features from these CSI spectrograms.

We take the second principle component of PCA based
filtering process as the input to construct the spectrogram
following these steps:

(1) Divide the input into equal-length segments. The seg-
ments must be short enough that the frequency content of
the signal does not change appreciably within a segment. The
segments may or may not overlap. We choose the segment
size to be 128, corresponding to about 0.5 second of samples,
so that the time is smaller than pronouncing a syllable and
at the same time the number of samples is large enough to

calculate the short-time Fourier transform. The overlap is set
to be 126. Large overlap produces more spectrum lines and
therefore a smoother spectrogram.

(2) Window each segment using a Hamming window and
compute its spectrum using short-time Fourier transform.

(3) Display segment-by-segment the power of each spec-
trum in decibels and depict the magnitudes side-by-side as an
image with magnitude-dependent colormap.

(4) Segment the CSI spectrogram using the static intervals
to get the spectrograms for different syllables.

Fig. 6 shows the spectrograms for three different syllables.
The spectrograms show how the energy of each frequency
component evolves with time, where high-energy components
are colored in red. We can see that there exists distinguishable
patterns in the spectrograms, though not very clearly. As an
example, the energy of spectrogram of /æ/ concentrate in the
center. It is because when pronouncing /æ/, the jaw moves at
a relatively higher speed in a short time. On the contrary, the
spectrogram of /s/ spreads wider than /æ/, because when we
pronounce /s/, the lips move slower and last longer time.

2) Feature Extraction: Though the spectrogram patterns
are human distinguishable, we need to further extract features
from CSI spectrograms for classification of the fine-grained
motion.

We find that discrete wavelet transform (DWT) on CSI
spectrograms is not suitable for fine-grained motion sensing,
which is used in coarse-grained solutions in quadrant II such as
CARM [11]. Fine-grained motion like mouth movements have
lower speed than large-scale human activities like walking
or falling, which results in low frequency components in
CSI spectrograms. Without enough frequency resolution, it
is infeasible to extract frequencies at multiple resolutions on
multiple time scales using DWT.

In WiTalk, we propose to first calculate the contours of the
spectrogram images to extract features. The contours represent
the edges of different energy levels of the spectrograms, and
depicts the unique patterns of the spectrograms of fine-grained
motion. Fig. 6 shows three contour lines for the corresponding
upper spectrograms. The top yellow contours mark the lines
of signal energy and noise. The bottom blue contours enclose
the major part of signal energy.

Directly using the contour lines as the classification features
leads to high computational costs for classification. There-
fore, we use the most relevant signal processing tool DWT
on the contour lines to compress their length by extracting
approximate sequences. In WiTalk we choose Daubechies
wavelet filter of order 4 because it has the best classification
performance.

E. Classification

People may perform the same micro motion at different
speeds, and even for the same person, the motion speeds may
vary from time to time. Dynamic time warping(DTW) can be
used to measure similarity between two temporal sequences
which may vary in speed. DTW calculates the optimal match
between the two time sequences and wraps the sequences to



Fig. 7: System Scenario of WiTalk

measure their similarity. The output of DTW is the distance
between the two series. Low distance means high similarity
between the two sequences. We build a classifier using the
DWT compressed contours of the CSI spectrograms as fea-
tures. The classifier calculate the DTW distances between the
input and all the contours in the dataset. The one with the
shortest distance is identified as the recognized motion.

F. Error Correction

The performance of fine-grained motion sensing can be fur-
ther improved using application specific context information.
For example, in the lip reading application, such information
includes constraints that reject sentences that are not following
these constraints. For example the sentence “The apple is red”
will be accepted but “The apple is angry” will be rejected [36].
In WiTalk, we implement context-based error correction using
a simple Bayesian method similar to [34].

IV. PERFORMANCE EVALUATION

We implement WiTalk on a commercial laptop, and evaluate
its performance in a typical lab environment. The system sce-
nario of WiTalk is illustrated in Fig. 7. WiTalk is implemented
on the receiving end of a WiFi link. The transmitter continually
sends packets to WiTalk at a speed of 250 packets/second.
WiTalk collects CSI data and use the proposed algorithms to
infer the fine-grained motion from the hidden patterns of CSI
streams. We design experiments to detect a set of pronounced
syllables, which is the bases for lip reading applications. We
select lip reading as our example application scenario because
it is the most fine-grained motion sensing in the literature that
is previously reported using WiFi CSI dynamics [23].

A. System Setup

WiTalk is implemented on a commercial Thinkpad X301
laptop. The laptop is equipped with an Intel Core 2 U9600
processor, 4GB memory and an Intel 5300 NIC with 3 omni-
directional antennas. The operating system running on the
laptop is Ubuntu 14.04 LTS. We install and configure Linux
802.11n CSI Tool as described in [1]. The laptop works as
the receiver and collects CSI streams using the CSI tool.
Collected data are processed using Matlab scripts for signal
processing and classification. Matlab version is R2016a. We
do the experiments on channel 36 at 5.180GHz.

We test WiTalk using two model of smartphones: a LG
Nexus 5 with Android 6.0.1 and a Samsung Note 5 with

Fig. 8: WiTalk Testbed

Fig. 9: Confusion Matrix of 12 Syllables: Same Context

Android 5.1.1. The smartphones work as the transmitters. The
transmitter continually sends packets to WiTalk at a rate of
250 packets/second during the experiments. The CSI streams
are collected and stored for later processing. WiTalk can also
work in realtime currently. By writing the CSI dynamics to a
named pipe, Matlab script can read from the pipe and process
the data simultaneously.

We test WiTalk in a normal lab environment depicted in
Fig. 8. The WiTalk device is tested at two positions marked
as blue dots. We collect data with three volunteers(all males).
The volunteers are asked to stand still at the positions marked
as stars. They hold the phone steadily in normal phone call
position the same way as depicted in Fig. 7. Instead of making
a real phone call, they are asked to read a set of syllables
and a set of short sentences no more than six words. Static
intervals are inserted intentionally between syllables and words
to facilitate segmentation. The set of syllables includes 12
elements: /a/ /i/ /u/ /e/ /O/ /b/ /f/ /d/ /g/ /j/ /S/ /z/. Each volunteer
reads the set of syllables 10 times at each test location, and
the set of short sentences 5 times at each location.



Fig. 10: Confusion Matrix of 12 Syllables: Mixed Context

B. Syllables Classification Accuracy

The recognition results for the syllables set are depicted in
Fig. 9 and Fig. 10. We do the experiments in two steps to
verify the syllable detection performance. We first train and
test the classifier in the same context with the same volunteer
at the same location. The confusion matrix is reported in
Fig. 9 with an average detection accuracy of 92.3%. Next
we mix the data collected from different users, different
transmitters at different locations for both training and testing.
The confusion matrix is reported in Fig. 10. In the mixed
contexts situation, the average detection accuracy is 82.5%.
The reasons for the lower accuracy in mix contexts situation
are two-folds: 1) There are slight differences for different
people to pronounce the same syllable. For example, in our
experiments one of the volunteers tends to pronounce /u/
more lightly than others. His lips pucker very little when
he makes this pronunciation, which impinges the detection
accuracy of this syllable. 2) Signal reflection multipathes are
significantly changed at different locations. This will introduce
noises to CSI streams which cannot be removed completely.
This impinges the classification performance compared to the
same-context situation.

C. Sentence Recognition Accuracy

We evaluate the performance of sentence recognition with
and without context-based error correction. The set of short
sentences include sentences from 1 word to 6 words. As shown
in Fig. 11, with the increase of the number of words, the
accuracy drops significantly. For 6 words situation, without
context based correction, the recognition accuracy is only
about 43%. With context based correction, the accuracy is
improved by 16%. This is because the longer the sentences,
the more they context information can be applied. The drop
of the performance is mainly because the difficulty of in-word
syllables segmentation. To solve this problem, continuous lip
reading model could be adopted as in [35].

Fig. 11: Sentence Recognition Accuracy

Fig. 12: Performance with Distance

D. Performance with Distance

Fig. 12 depicts the performance with increase of distance
between the transceivers. For the receiver location marked as
B, we only did the experiments at transmitter location 1, 2
and 5. The distance of B1,B2 and B5 are 1.5m, 1.5m and
3m respectively. As we can see from Fig. 12, the syllable
discerning accuracy drops by 9% when the distance increase
from 0.5m to 5m in the same room with LOS available. And
the accuracy of sentence detection drops by 19%. However
in through-the-wall scenario as in location 5, both syllable
and sentence detection rate drop significantly by over 25%
compared to location 4 at the same distance. To improve the
performance and increase the working range of WiTalk, using
a directional antenna will be a promising choice.

V. RELATED WORK

Motion sensing. Motion sensing based human localization,
human tracking, gesture and activity recognition have been
studied a lot in the research community. Existing work on
motion sensing can be divided in three categories: vision-
based, sensor-based and RF-based.

The most popular approaches for video gaming and vir-
tual reality platforms are vision-based. Such systems include



Microsoft Xbox Kinect [3], Leap Motion [4], and Sony
PlayStation Camera [5]. They use color and infrared cameras
to do body-depth perception, motion tracking and gesture
recognition. The main problem of vision-based motion sensing
is that its performance is highly influenced by the condition
of lighting. These systems also require line-of-sight(LOS) for
proper operation.

Wearable device based methods like RF-IDraw [6] traces
trajectory of fingers and hands by attaching RFID to the
fingers. Xu et. [7] uses smartwatch to identify 37 gestures
with an accuracy of 98%. TypingRing [8] asks the users to
wear a ring for text inputting with the capability of detecting
and sending key events in real-time with an average accuracy
of 98.67%.

Earlier work on RF-based motion sensing rely on special-
ized hardware. WiTrack [27] tracks 3D human body motion
using an FMCW(Frequency Modulated Carrier Wave) radar
at the granularity of 10cm. WiSee [28] works by looking
at the minute Doppler shifts and multi-path distortions for
gesture recognition. Google Project Soli [29] uses on-chip
60GHz radar to detect fine-grained motion. However, the short
effective range limit its application in long distance scenarios.

CSI-based method like CARM [11] builds a CSI-speed
model and a CSI-activity model, which depicts the relationship
between CSI value dynamics and human body parts movement
speeds, and the relationship between the body movement
speeds and specific human activities. CARM is coarse-grained
as it discerns human activities like walking, falling and sitting
down. Different from CARM, WiTalk is fine-grained and
reads the motion of human mouth. CARM also requires a
sampling rate as high as 2500 samples per second. It is very
difficult to reach such high sampling rate in WiTalk scenario.
WiKey [17] uses CSI waveform shape as the features and can
recognize keystrokes in a continuously typed sentence with
an accuracy of 93.5%. WiKey works well only in controlled
environments and specific devices positioning. WiFinger [18]
also uses CSI waveform shape as the features and can discern 8
finger gestures with 93% recognition accuracy. WiFinger also
requires static transceivers and finger motion must be near
the LOS line of the transceivers. Different from WiKey and
WiFinger, WiTalk removes the limitation of static transceivers
and works on mobile devices. WindTalker [19] allows an
attacker to infer the sensitive keystrokes on a mobile device
using CSI. However, WindTalker requires that the mobile
device being placed in a stable environment. Wi-Wri [21]
uses WiFi signals to recognize written letters. WiDraw [22]
leverages WiFi signals from commodity mobile devices to
enable hands-free drawing in the air. These two projects
focus on the users hand trajectory tracking, which is not
WiTalk’s research target. The most related work to our work
is WiHear [23]. Our work is inspired by WiHear, but we
must point out that the system setting and techniques used
are significantly different. WiHear uses specialized directional
antennas to obtain usable CSI variations. It takes 5-7 seconds
for stepper motors to adjust the emitted angle of the radio
beam to locate the target’s mouth, which is not acceptable for

a real-time eavesdropping system in our setting. Furthermore,
WiHear does not have enough noise filter mechanisms. It
still needs the training process per location per user. On the
other hand, WiTalk can be implemented on commercial WiFi
devices and has the one-time training feature.

Lip reading. [31] present a combination of acoustic speech
and mouth movement image to achieve higher accuracy of
automatic speech recognition in noisy environment. [32]
presents a vision-based lip reading system and compares view-
ing a person’s facial motion from profile and front view. [33]
shows the possibility of sound recovery from the silent video.
SilentTalk [34] generates ultrosonic signals from mobile phone
and analyzes the frequency-shift caused by mouth movements
from the reflections. It can identify 12 basic mouth motion
up to 95.4% accuracy. Chung et. [35] presents their recent
results on lip reading which performs better than hum pros.
The system was trained using 5000 hours of videos including
118,000 sentences.

VI. CONCLUSION AND FUTURE WORK

WiTalk is the first fine-grained motion sensing system using
CSI dynamics of WiFi. WiTalk can be implemented on a single
WiFi device. We analyse and verify the feasibility of WiTalk
in the application of CSI-based lip reading on smartphones.
We propose to denoise CSI streams using band-pass filtering
and PCA based filtering. We identify the spectrograms of CSI
dynamics as the intrinsic features that correlate to human fine-
grained motion only, and extract features from the contours of
CSI spectrograms. WiTalk needs only one-time training and
works for different environments. Experiment results show that
WiTalk can discern a set of 12 syllables with an accuracy of
92.3% and short sentences up to six words with an accuracy
of 74.3%.

The current implementation of WiTalk has some limitations.
First, the performance of WiTalk degrades with the increase
of the distance between the two transceivers and the distance
between the transceiver and moving human body parts. The
main reason is that the reflected signal power from fine-
grained motion is too small and is easily buried in noises
and interferences. Using directional antennas is one possible
solution, which we leave as future work.

Second, WiTalk requires the user staying relatively still
for the fine-grained motion sensing. If the user talks over
the phone while walking around, WiTalk will fail because
the useful CSI dynamics will be buried in the CSI changes
caused by the moving user body and legs. Even if the user
stays still at one location, if he/she makes some hand or
body gestures, the extraction of useful CSI dynamics will also
become harder. How to eliminate these interferences will be
our future research target.
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