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Abstract—This paper investigates bandwidth minimization un-
der AoI constraints – a fundamental problem that has not been
studied in AoI research. The problem is of critical importance
in bandwidth-limited IoT environment when AoI is used as
a constraint. We present a novel fast algorithm called Aion
that can construct a scheduler to satisfy AoI constraints with
strong theoretical guarantee in terms of minimizing required
bandwidth. Specifically, we prove that the bandwidth required
by Aion is minimum if the AoI constraint vector meets a special
mathematical structure called Fractional Consecutively Divisible
(FCD). In the general case when the given AoI constraint vector is
not FCD, we prove that the bandwidth required by Aion is tightly
upper bounded by a factor of the minimum. The results from
this paper lay the foundation for future research on bandwidth
minimization with AoI guarantee.

Index Terms—Age of Information, AoI Constraint, Bandwidth
Minimization, Scheduling, Wireless Communication.

I. INTRODUCTION

Age of Information (AoI) is an application layer metric used

to quantify the freshness of information [1], [2]. It measures

the elapsed time between the present and the generation time

of the information. Since its inception, AoI has attracted active

research efforts in the research community (see [3] for a

comprehensive bibliography). A main line of research has been

focused on minimizing AoI under certain resource constraints,

with resource ranges from bandwidth (e.g., [4]–[9]), to energy

(e.g. [10]–[14]), and to throughput (e.g., [15]–[18]). Another

line of research has been focused on modeling, analysis, and

optimization of AoI (e.g., [19]–[24]). There are also some

other branches on AoI research, e.g., game theory for AoI

(e.g., [25]–[28]), channel coding for AoI (e.g. [29]–[32],), and

AoI applications (e.g., [33]–[35]), to name a few.

Recently, there has been a new line of research on problems

under AoI constraints, with the objective of either determining

the feasibility of AoI constraints (e.g., [36]) or optimizing

energy subject to feasible AoI constraints (e.g., [37]).

Indeed, AoI constraints arise from many important IoT ap-

plications such as autonomous vehicles, industrial automation,

telemedicine, smart building management, to say a few. To

guarantee AoI constraints, one of the most important network

resources that needs to be consumed is bandwidth. Bandwidth

resource is especially of concern when an IoT system operates

in a bandwidth-limited environment. A well-known example is

the wireless channel in an access network, which is typically

the first hop for collecting information from the IoT source

nodes to the edge Base Station (BS). In this environment, a

scheduler that uses the minimum bandwidth to guarantee AoI

is of critical importance. Unfortunately, to date, there is hardly

any research on bandwidth minimization under AoI constraints

in the community. This may be attributed to the significant

technical challenge that the underlying problem entails.

In this paper, we study the problem of bandwidth mini-

mization under AoI constraints – a long overdue, but critically

important problem in understanding and harnessing AoI. We

employ the most widely accepted model for edge IoT data col-

lection, which consists of a BS and a set of source nodes. We

focus on uplink data collection where information collected

at the sources should be sent to the BS. The communication

between all source nodes and the BS is through a wireless

channel. Clearly, if one had infinite bandwidth on the wireless

channel, then the AoI of all information maintained at the

BS (from the source nodes) will always be fresh and meet the

AoI constraints. But for a bandwidth-limited scenario, which is

what one would encounter in practice, minimizing the required

bandwidth of the wireless channel while guaranteeing the AoI

constraints for all sources is a challenging problem. The main

contributions of this paper are summarized as follows:

• This is the first paper to investigate bandwidth minimiza-

tion with AoI guarantee. For this problem, we present a

novel fast algorithm called Aion1 that can always con-

struct a scheduler that satisfies d for any AoI constraint

vector d for N source nodes.

• We show that Aion has strong theoretical performance

guarantee for minimizing the required channel bandwidth.

Our theoretical results for Aion are based on a mathemat-

ical structure of a constraint vector d that we call Frac-
tional Consecutively Divisible (FCD). Specifically, we

show that if the AoI constraint vector d is FCD, then Aion

can always construct a scheduler φ that uses the minimum

bandwidth K∗. In the general case when d is not FCD,

we show that the bandwidth required by φ is tightly upper

bounded by a factor
(⌈∑N

i=1
1
l∗i

⌉
/
⌈∑N

i=1
1
di

⌉)
of K∗,

where l∗i is the i-th element of a FCD vector l∗.

• The performance of Aion hinges upon how to map a

general AoI constraint vector d to a FCD vector l∗ so that⌈∑N
i=1

1
l∗i

⌉
is minimized. This is the first problem that

our Aion will address. By exploiting an intrinsic property

that relates d and l∗, we develop an algorithm (RCS)

1Aion is a Hellenistic deity associated with time, the orb or circle encom-
passing the universe, and the zodiac.
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Fig. 1. System model: N IoT source nodes collect data samples from
environment and forward them to a BS through a shared wireless channel.

that can substantially reduce the search space for l∗.

Subsequently, we show that the optimal mapping problem

(from d to l∗) can be transformed into a shortest path

problem, which is a very interesting result on its own.

• Once a general AoI constraint vector d is mapped op-

timally to a FCD vector l∗, our Aion needs to have

an algorithm to find a scheduler φ that can satisfy l∗

with a bandwidth Kl∗ =
⌈∑N

i=1
1
l∗i

⌉
. We present an

algorithm (SUD) that does this job. This is the second

key component in Aion. The key idea of SUD is to use a

novel technique to scale up and scale down cycle length

to handle fractional l∗. A time slot grouping method

(and a corresponding dynamic resource accounting) is

embedded in SUD to ensure that the final cyclic scheduler

(φ) retains its discrete nature (in integral time slots).

• We evaluate the performance of Aion using a large

number of simulations for the general case of d. For

all simulated instances, Aion satisfies the AoI constraint

vector d, which confirms Aion’s theoretical guarantee.

Further, for all simulated instances, the bandwidth Kl∗

required by Aion is close to a lower bound of K∗.

II. PROBLEM STATEMENT

Consider a data collection scenario where there are N
sources and one BS (see Fig. 1). Each source collects data

samples from environment and forwards them to BS through

a wireless channel that is shared by all N sources. Assume

uplink transmission time is slotted. For clarity of terminology,

we use the term “at time t" to refer to “at the beginning of

time slot t" and use the term “in time slot t" to refer to the

underlying action is completed “at the end of time slot t".

When a source is chosen for transmission at time t, it will

transmit its most recent (freshest) sample to the BS. This

will help minimize the AoI of this source at the BS. In this

research, we assume (i) the transmission of a sample takes

exactly one time slot; and (ii) at most K ∈ Z
+ samples can

be transmitted in each time slot, where Z
+ denotes the set

of positive integers. Assumption (ii) is based on the state-

of-the-art transmission technologies used in cellular networks

(e.g., 5G, 4G LTE) where there is a large number of Resource

TABLE I
SUMMARY OF KEY NOTATIONS.

Notations Definitions

N Number of sources to be scheduled

K Bandwidth achieved by a scheduler

Ai(t) AoI for source i at the BS at time t

Gi(t)
Generation time of the sample which is from

source i and stored at the BS at time t

φK(t)
Set of scheduling decisions at time t

under a bandwidth K

Sj(t)
Source scheduled for transmission using

the j-th bandwidth unit at time t
x A general vector [x1 x2 · · · xN ]
di AoI threshold for source i
d A vector of AoI constraints [d1 d2 · · · dN ]

K∗ Minimum bandwidth that can be achieved by
any scheduler under AoI constraints d

Blocks (RBs) in each time slot that can be used for transmis-

sion by multiple users. For ease of reference, we call K the

bandwidth of the shared wireless channel. Naturally, K is a

precious commodity and the objective of this research is to

minimize K while meeting AoI constraints from the sources.

Following some widely used AoI models (see, e.g., [8], [9],

[36], [38], [39]), we assume each source collects a data sample

in each time slot, and the BS only stores the most recently

received sample from each source. For the sample from source

i that is maintained by the BS at time t, denote Gi(t) as the

generation time of this sample at source i. Then the AoI for

this sample at the BS at time t, denoted by Ai(t), can be

defined as the elapsed time between t and Gi(t), i.e., Ai(t) =
t−Gi(t) for i ∈ {1, 2, · · · , N} and t ∈ Z

+. Ai(t+1) is reset

to 1 whenever there is a new sample coming from source node

i in time slot t, or it is incremented by 1. That is,

Ai(t+1) =

{
1, if a sample from source i is transmitted to BS in t;

Ai(t) + 1, otherwise,

for i ∈ {1, 2, · · · , N}. We assume the BS does not have any

samples in the beginning. Therefore, we can define Ai(1) =
+∞ for each source i ∈ {1, 2, · · · , N}.

We assume that each source i has a pre-assigned AoI

threshold (deadline) di ∈ Z
+ at the BS. That is, the AoI

of source i must not be more than di at the BS. We denote

d = [d1 d2 · · · dN ] as the vector of AoI constraints for all

N sources at the BS. Without loss of generality, we assign

the node index among the source nodes so that the elements

in d are in non-decreasing order, i.e., d1 ≤ d2 ≤ · · · ≤ dN .

To satisfy this AoI constraint vector d, a properly designed

scheduler at the BS (to determine which subset of source

nodes to transmit their samples in each time slot) is critical to

conserve bandwidth K. The goal of this paper is to find such

an optimal scheduler that consumes the smallest K (denoted

as K∗) while meeting the AoI constraint vector d.

For a given K, denote φK(t) = {S1(t), · · · , SK(t)} as the

set of sources chosen for transmission at time t ∈ Z
+, where

Sj(t) = i denotes that the j-th bandwidth unit is to be used

to transmit the sample from source i at time t. Given that
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we assume d1 ≤ d2 ≤ · · · ≤ dN , we will follow the same

non-decreasing order for the elements in φK(t), i.e., S1(t) ≤
S2(t) ≤ · · · ≤ SK(t). Such notation will offer us much

clarity in identifying each unique scheduling solution. Note

that it is possible that not all K bandwidth units are allocated

for transmission. In this case, we assume the lower indexed

bandwidth units are used consecutively for transmission and

the higher indexed bandwidth units are idle. In particular, when

the j-th bandwidth unit is not scheduled to transmit any sample

from the sources, we denote Sj(t) = NULL.

More formally, we want to find a scheduler {φK∗
(t) : t ∈

Z
+} that minimizes the required bandwidth K∗ while the AoI

constraint vector d can be satisfied at the BS after the BS

receives at least one sample from all N sources.

In the end of this section, we present an important lemma

which gives both lower and upper bounds for K∗. This lemma

lays the foundation for our algorithm design.

Lemma 1: For any AoI constraint vector d =
[d1 d2 · · · dN ], ⌈

N∑
i=1

1

di

⌉
≤ K∗ ≤ N.

Proof: The upper bound is trivial. We prove the lower

bound. For each source i, to satisfy di, there must be at least

one transmission over consecutive di time slots, and hence

1

di
≤ lim

T→∞
1

T
·

T∑
t=1

1A(i, t), for i = 1, 2, · · · , N,

where 1A(i, t) is the indicator function that is equal to 1 if

the source i is chosen to transmit its sample at time t, and

is equal to 0 otherwise. Overall, if K is the bandwidth of a

feasible scheduler that satisfies AoI constraints, we shall have

N∑
i=1

1

di
≤ lim

T→∞
1

T
·

N∑
i=1

T∑
t=1

1A(i, t)

= lim
T→∞

1

T
·

T∑
t=1

N∑
i=1

1A(i, t)

≤ lim
T→∞

1

T
·

T∑
t=1

K = K.

Hence the lower bound holds, considering that K ∈ Z
+.

III. WHEN d IS CONSECUTIVELY DIVISIBLE

For the special case when K = 1, Li et al. [36] designed a

fast procedure called PSC (Polynomial Scheduler Construc-

tion) that can always construct a scheduler satisfying AoI

constraints d if d is a polynomial vector. Specifically, they

define that a vector x = [x1 x2 · · · xN ] is a polynomial vector

if each element in x can be expressed as a polynomial term

with base 2, i.e., xi = b · 2ni for each i, where b is a positive

integer and ni is a non-negative integer. When d is polynomial,

their proposed PSC can construct a cyclic scheduler satisfying

d by directly setting the cycle length to dN and assigning every

di time slots in a cycle to source i for all i ∈ {1, 2, · · · , N}.

Algorithm 1 Consecutively Divisible Scheduler (CDS)

1: input: d = [d1 d2 · · · dN ] that is consecutively divisible

2: output: A cyclic scheduler φ
3: procedure
4: Set the cycle length of φ to dN
5: Set K =

⌈∑N
i=1

1
di

⌉
as the bandwidth for φ

6: for i = 1, 2, · · · , N do
7: Obtain the first available slot in the cycle of φ

that can be used to transmit one sample and

assign it to source i
8: Assign every di slots following the slot obtained

in Line 7 in the cycle of φ to source i

In this section, we extend this result to a more general form

beyond base 2. First, we introduce consecutively divisible:

Definition 1: A vector x = [x1 x2 · · · xN ] is consecutively
divisible if xi ∈ Z

+ for each i ∈ {1, 2, · · · , N} and xi/xi−1 ∈
Z
+ for each i ∈ {2, 3, · · · , N}.
Comparing a polynomial vector with a consecutively divis-

ible vector, they both require each element in the vector to be

a multiple of any element prior to it. However, each element

in the polynomial vector is required to be a power of 2, while

each element in the consecutive divisible vector does not have

this requirement and can offer much larger design space.

Theorem 1: For any vector d = [d1 d2 · · · dN ] that is
consecutively divisible, there exists a cyclic scheduler that re-
quires the minimum bandwidth K∗ to satisfy the AoI constraint
vector d.

A proof of Theorem 1 is based on construction. Specif-

ically, in Algorithm 1, we present a procedure called Con-
secutively Divisible Scheduler (CDS)2. CDS first sets the

bandwidth to be the lower bound of K∗ (see Lemma 1), i.e.,

K =
⌈∑N

i=1(1/di)
⌉

, and sets the cycle length of the cyclic

scheduler to be dN . Then it assigns time slots to sources

1, 2, · · · , N iteratively. In the i-th iteration, CDS finds the

first available slot that can be used to transmit one sample

and assigns it to source i. Subsequently, CDS assigns every

di slots following the first assigned slot to source i. A proof

(based on contradiction) of the correctness of CDS can be

easily constructed. Due to space limitation, we omit it here. It

is easy to show that CDS has a time complexity of O(N ·dN ).

IV. AION – AN OPTIMAL SCHEDULER

The results for CDS are inspiring but still suffer from a

serious limitation – it only works for consecutively divisible

AoI constraint vector d. In this section, we address this

limitation by presenting a novel fast algorithm (with codename

Aion) that can be applied to any AoI constraint vector d and

provide strong theoretical guarantee to minimize bandwidth.

A. Roadmap

Before we outline the roadmap for the design of Aion, we

introduce a notion called average transmission interval vector.

2CDS generalizes PSC in [36] (for K = 1) to the general case of K ≥ 1.
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Definition 2: A vector l = [l1 l1 · · · lN ] is an average
transmission interval vector if li is the average transmission
interval for source i, i ∈ {1, 2, · · · , N}.

In other words, li represents the average length of the

interval between two consecutive transmissions from source

i. Obviously a scheduler that satisfies AoI constraints vector

d will render a vector l that is no greater than d.

Property 1: If a scheduler can meet the AoI constraint vector
d, then the average transmission interval vector l under this
scheduler must satisfy 1 ≤ li ≤ di for all i ∈ {1, 2, · · · , N}.

For example, when we use CDS to construct a scheduler

to satisfy d that is consecutively divisible, the corresponding

average transmission interval vector l is exactly d, where each

source i transmits exactly every di time slots. Note that the

scheduler by CDS will have each li being an integer. But in

general a scheduler that satisfies d may render an l with a

fractional li, as illustrated in the following example.

Example 1. Consider four sources {A,B,C,D} and d =
[3 5 5 5], which is not consecutively divisible. So CDS cannot

be applied here. But it is easy to verify that the following

cyclic scheduler with a cycle length of 5 is optimal:

ABACD

which requires the minimum bandwidth of 1 to satisfy d.

The corresponding vector l achieved for this scheduler is

l = [2.5 5 5 5]. Here lA = 2.5 is not an integer. �
By allowing l to be fractional, we are ready to describe our

design roadmap for Aion. Given an arbitrary AoI constraint

vector d, we can find a consecutively divisible vector l (likely

fractional), with li ≤ di for i ∈ {1, 2, · · · , N}, whose

scheduler (found by CDS), will satisfy the AoI constraint

vector d. But in Definition 1, for l to be consecutively

divisible, each element in l must be an integer. This definition

appears to be overly restrictive (as shown in Example 1).

Therefore, in Section IV-B, we first generalize the definition

of consecutively divisible to include fractional values. Then

we present an algorithm (SUD) that can construct a scheduler

to satisfy l, which in turn also satisfies any d with l ≤ d.3

One question that we need to address is for an arbitrary AoI

constraint vector d, how to find an l (with l ≤ d) that requires

the minimum (or a close-to-minimum) bandwidth K. We

propose a novel mapping procedure to address this question

in Section IV-C. Our proposed algorithm Aion combines the

mapping procedure and SUD together. In Section IV-D, we

present the theoretical performance guarantee of Aion.

B. When l is Fractional Consecutively Divisible

Definition 3: A vector x = [x1 x2 · · · xN ] is Fractional
Consecutively Divisible (FCD) if xi ≥ 1 for each i ∈
{1, 2, · · · , N} and xi/xi−1 ∈ Z

+ for each i ∈ {2, 3, · · · , N}.
Comparing Definition 1 to Definition 3, each element in

a consecutively divisible vector is required to be an integer,

while that in a FCD vector can be fractional. For example, the

vector [2.5 5 5 5] is FCD, but not consecutively divisible.

3In this paper l ≤ d denotes that li ≤ di for all i ∈ {1, 2, · · · , N}.

For an average transmission interval vector l that is FCD,

we need an algorithm to construct a scheduler φ to satisfy l. A

natural question is whether we can simply extend CDS for this

purpose. The answer is, unfortunately, no. The main challenge

comes from CDS’s intrinsic property – CDS is designed to

have each source i transmit one sample exactly every li time

slots to satisfy l when li’s are all integers. But for a fractional

li, it is not clear which time slot should be assigned to source

i for its first transmission. Neither is clear how CDS should

schedule subsequent transmissions. So there does not appear

to exist a simple extension of CDS to satisfy a FCD l.
Before we show how to design a scheduler φ to satisfy FCD

l, let’s first find what bandwidth (denoted as Kl) φ would use.

The following lemma addresses this question.

Lemma 2: For any average transmission interval vector
l = [l1 l2 · · · lN ] that is FCD, there exists a cyclic scheduler
using a bandwidth of Kl =

⌈∑N
i=1

1
li

⌉
to satisfy l.

A proof of Lemma 2 is based on construction of such a

scheduler that uses a bandwidth of Kl to satisfy l. Algorithm 2

(SUD) is such an algorithm. In Lemma 2, it does not say

whether Kl is the minimum required bandwidth. This question,

or the general question of how much the gap is (between Kl
and optimal K∗) will be discussed in Lemma 3.

SUD – Key Idea For a FCD vector l, we can always scale it up

by a factor, say a such that a · l1 is an integer. By doing so, the

scaled-up vector, denoted as l̂ = [a · l1, a · l2, · · · , a · lN ], has

all its elements being integers and is consecutively divisible.

Hence it is possible to construct a cyclic scheduler φ̂ with a

cycle length of (a · lN ) to satisfy l̂. Although it is tempting to

use CDS to construct this scheduler φ̂ that satisfies l̂, this is

not our ultimate goal. Our ultimate goal is to use φ̂ as a step

stone to design a scheduler φ that satisfies l. To ensure this

Scaling Up and Down (SUD) idea indeed works, we need to

take some extra care in our design of scheduler φ̂. Specifically,

we must ensure that φ̂ meets the following three criteria:

(i) φ̂ must satisfy l̂;
(ii) When scaling down φ̂ to construct φ, φ must satisfy l;
(iii) The bandwidth used by φ cannot exceed Kl.

In this section, we present SUD that meets all criteria. First,

we use the following example to illustrate how SUD works.

Example 2. Consider 6 sources {A,B,C,D,E, F} and l =
[1.5 1.5 1.5 4.5 4.5 9] that is FCD. The bandwidth of the

cyclic scheduler φ that we want to construct is:

Kl =

⌈
1

1.5
+

1

1.5
+

1

1.5
+

1

4.5
+

1

4.5
+

1

9

⌉
= 3.

Now we show how to construct such a scheduler φ with

bandwidth Kl to satisfy l.
First, we scale up l by a factor of a = 2 and get l̂ =

[3 3 3 9 9 18]. Now we construct a cyclic scheduler φ̂ to

achieve l̂ with a cycle length of 18. Later, we will construct

φ by scaling down the cycle length of φ̂ by a factor of a = 2
(i.e., with a cycle length of 9) while satisfying l.

The iterations of SUD procedure is given in Fig. 2. In the

initialization step, we lay out 18 columns (because the cycle

length of φ̂ is 18), with each column corresponds to a time
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Initialization

Schedule A

A A A A A A

A A B B BB A B A B A

Schedule B

A

A A B B BB A B A B A

Schedule C

ACC C C C C

A A B B BB A B A B A

Schedule D

ACC C C C C
D D

A A B B BB A B A B A

Schedule E

ACC C C C C
D D EE

A A B B BB A B A B A

Schedule F

AC
D E D

C CC CC
EF

Scale down

A
A

A C A
AB

B
B

B
B

B

D E D
A

E
C

C
CC

C

F

Fig. 2. Iterations of SUD to construct a cyclic scheduler φ to satisfy l that is
FCD. We have 6 sources {A,B,C,D,E, F} and l = [1.5 1.5 1.5 4.5 4.5 9].

slot for which we can make scheduling decisions in φ̂. For

these 18 columns, we partition them to 9 groups, with each

group consisting of 2 columns (as a = 2). This is because

eventually we will scale down the cycle length of φ̂ by 2 to

construct φ. In other words, scheduling decision in every 2

consecutive columns in φ̂ will be combined into 1 column in

φ. The bandwidth of φ̂ is set to K̂l = 2. This is because

corresponding to Kl = 3 bandwidth for φ, the bandwidth

(rows) required by φ̂ is �3/2� = 2. Note that this still leaves

us one more scheduling slot to φ̂ in each group than those to

φ in each time slot. To ensure we do not have an overflow

when we perform the scaling down step, we set a countdown

counter Mi for each group i ∈ {1, 2, · · · , 9} in φ̂, which is

initialized to Kl, i.e., Mi = 3. Each time when we schedule

a resource block in group i in φ̂ for transmission, the counter

Mi is decremented by 1.

In general, φ̂ transmits each source i every a · li time slots.

The question is which resource block is the first one that we

assign to source i. When determining this first block, there are

two requirements. (i) To ensure that φ̂ transmits source i every

a · li time slots periodically, the first assigned block should be

within the first a · li time slots. (ii) Note that after constructing

φ̂ by N iterations, we want the number of assigned resource

blocks in each group to be no greater than Kl, i.e., we want

Mi ≥ 0 for all Mi ∈ M after N iterations. Hence when

determining the first block, we want to balance the values of

all Mi ∈ M. Combining the two requirements, we find the

largest element in [M1 M2 · · · M�li�] to help figure out the

first resource block which we assign to source i.
For source A, since l̂A = 3, we simply assign every 3 time

slots to source A. And we have M = [2 2 3 2 2 3 2 2 3].
To schedule source B, since l̂B = 3, we need to assign a

resource block to B every 3 time slots. Since M1 = 2 is the

largest element among M1 and M2, the first resource block

is from the group 1 and can either come from time slot 1
or slot 2. Here from the purpose of balancing the number of

assigned blocks over all time slots, we assign slot 2 to source

B. Following the first assignment, we assign a resource block

every 3 time slots to B and update the counter vector M for

the 9 groups to be M = [1 2 2 1 2 2 1 2 2].
Similar to source B, for source C, the first resource block

assigned is from the time slot 3. And following this first

assigned block, we assign a resource block to C every 3 time

slots. The updated M is now M = [1 1 1 1 1 1 1 1 1].
The scheduling for source D follows the same token as that

for source C, except that we assign every 9 time slots to D
since l̂D = 9. Time slots 1 and 10 are assigned to D and the

M vector becomes M = [0 1 1 1 0 1 1 1 1]. Similarly, time

slots 3 and 12 are assigned to E and the M vector becomes

M = [0 0 1 1 0 0 1 1 1]. For source F , since l̂F = 18, we

only assign a resource block in time slot 5 to F . The updated

M vector is now M = [0 0 0 1 0 0 1 1 1].
Upon the completion of the last step, we have a scheduler φ̂

that satisfies l̂ = [3 3 3 9 9 18]. To construct scheduler φ, we

scale down the cycle length of φ̂ by a factor of 2. Specifically,

we combine the resource blocks in each group (consisting of

2 consecutive columns) into 3 rows. For example, resource

blocks in time slot 1 assigned to A and D and the resource

block in time slot 2 assigned to B under φ̂ are combined into

three resource blocks (3 rows) assigned to A, B, and D in

time slot 1 under φ. It can be easily verified that φ achieves

the original vector l = [1.5 1.5 1.5 4.5 4.5 9]. �
We formalize the ideas in the above example in Algorithm 2,

which we call SUD. With SUD in hand, the proof of Lemma 2

can be easily constructed (by following the above example and

the pseudocode in SUD). We omit the proof of the correctness

of SUD here due to space limitation. To be succinct, (i) in

Line 9 of SUD, we can find a slot within the first a · li
slots of the cycle for scheduling source i, as the number of

samples that can be transmitted within the first a·li slots when

scheduling source i is no greater than Kl · li, and

Kl · li =
⎡
⎢⎢⎢

N∑
j=1

1

lj

⎤
⎥⎥⎥ · li ≥

i∑
j=1

1

lj
· li = 1 +

i−1∑
j=1

li
lj
,

where li/lj upper bounds the number of assigned samples for
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Algorithm 2 Scaling Up and Down (SUD)

1: input: l = [l1 l2 · · · lN ], and l is FCD

2: output: A cyclic scheduler φ and Kl
3: procedure
4: Set cycle length of the scheduler φ̂ to be a · lN

where a is the smallest integer such that a · l1 ∈ Z
+

5: Let Kl =
⌈∑N

i=1
1
li

⌉
and K̂l =

⌈
Kl
a

⌉
6: Let M = [M1 M2 · · · M�lN�] with each Mj = Kl
7: for i = 1, 2, · · · , N do
8: Find the first largest element in the vector

[M1 M2 · · · M�li�], say Mr

9: Among the set of slots {(r − 1)a+ 1, (r − 1)a
+2, · · · ,min{ra, ali}}, choose the first slot that

currently carries the least number of samples,

and assign it to source i; Let Mr ← Mr − 1
10: Following the slot assigned in Line 9, assign a

slot to source i every a · li time slots along the

cycle length of φ̂ until we reach the end of

cycle length; Whenever we assign a slot, say

slot k, to source i, let M�k/a� ← M�k/a� − 1

11: Construct φ by scaling φ̂ down by a times:

12: Set the cycle length of φ to be �lN�
13: At each slot i ∈ {1, 2, · · · , �lN�}, φ transmits

those samples scheduled for transmission by the

set of slots {(i− 1) · a+ 1, (i− 1) · a+ 2,
· · · , (i− 1) · a+ a} in φ̂

source j (j < i); (ii) in Line 10 of SUD, by contradiction, we

can prove that we can assign a slot to source i every a·li slots,

considering that in Lines 9 and 10 we balance the number of

assigned samples in the slots of a cycle.

It is easy to show that SUD has a time complexity of O(a ·
lN · N). Also, returning to Example 1, one can use SUD to

construct a scheduler φ (given in that example) to satisfy l =
[2.5 5 5 5] with a bandwidth of 1, which is minimum.

For SUD for each source i, as φ̂ transmits its sample exactly

every a · li time slots, φ̂ satisfies an AoI constraint a · li. Hence

after scaling φ̂ down by a times, φ will achieve an average

transmission interval li and satisfy an AoI constraint �li� for

each source i. Recall that in Section II, the AoI threshold di
of each source i is an integer. Thus when SUD constructs

the scheduler φ under an average transmission vector l that is

FCD, φ will meet any AoI constraint vector d with d ≥ l. In the

following we further quantify the gap between the minimum

required bandwidth K∗ for d and Kl for l.
Lemma 3: For any AoI constraint vector d, if a FCD vector

l satisfies l ≤ d, then the bandwidth Kl required by φ (through
SUD) must satisfy

Kl ≤
⌈
K∗ · max

i∈{1,2,··· ,N}
di
li

⌉
,

where K∗ is the minimum bandwidth required to satisfy the
AoI constraint vector d.

Proof: It holds because of the following inequalities

Kl =

⌈
N∑
i=1

1

li

⌉
=

⌈
N∑
i=1

1

di
· di
li

⌉

≤
⌈

max
i∈{1,2,··· ,N}

di
li

·
N∑
i=1

1

di

⌉
≤

⌈
max

i∈{1,2,··· ,N}
di
li

·K∗
⌉

where the last inequality holds due to Lemma 1.

C. The Mapping Problem

In this section, we investigate the following mapping prob-

lem (denoted as MP): For an arbitrary AoI constraint vector d,

how to find a FCD vector l with l ≤ d such that the bandwidth

(Kl) required by l is minimized.

MP min
l1,l2,··· ,lN∈R

⌈
N∑
i=1

1

li

⌉

s.t. 1 ≤ li ≤ di, for i ∈ {1, 2, · · · , N},
li

li−1
∈ Z

+, for i ∈ {2, 3, · · · , N},
li ∈ R

+, for i ∈ {1, 2, · · · , N},
where Z

+ denotes positive integers and R
+ denotes positive

real numbers. It is easy to verify that to solve MP, it is

sufficient to solve the following problem (denoted as R-MP):

R-MP min
l1,l2,··· ,lN∈R

N∑
i=1

1

li

s.t. 1 ≤ li ≤ di, for i ∈ {1, 2, · · · , N},
li

li−1
∈ Z

+, for i ∈ {2, 3, · · · , N},
li ∈ R

+, for i ∈ {1, 2, · · · , N}.

Property 2: If l∗ = [l∗1 l∗2 · · · l∗N ] is an optimal solution to
R-MP, then there exists at least one i ∈ {1, 2, · · · , N} such
that l∗i = di.

Proof: Our proof is based on contradiction. Suppose there

exists an optimal solution l∗ to R-MP with l∗i < di for all

i ∈ {1, 2, · · · , N}. We will show that we can always construct

a better solution l̃ to R-MP (i.e.,
∑N

i=1(1/l̃i) <
∑N

i=1(1/l
∗
i ))

such that l̃i = di for some i ∈ {1, 2, · · · , N}.

To construct such a l̃, let us denote δ = min1≤i≤N (di/l
∗
i ).

Since l∗i 	= di and 1 ≤ l∗i ≤ di for all i ∈ {1, 2, · · · , N},

we must have l∗i < di. Then δ > 1 and we can construct

l̃ = [l̃1 l̃2 · · · l̃N ] by letting l̃i = δ · l∗i for all i. Clearly, l̃
remains FCD and is feasible to R-MP. Further

∑N
i=1(1/l̃i) <∑N

i=1(1/l
∗
i ) and this completes our proof.

Reducing Candidate Sets (RCS) In essence, Property 2 says

that comparing l∗ and d along its element index, there is at

least one index on which the corresponding elements in both

vectors are equal. This property can be exploited to narrow

down the search space for each l∗i , i ∈ {1, 2, · · · , N}.

Example 3. Consider 3 sources {A,B,C} with an AoI

constraint vector d = [2 3 6]. According to Property 2, for
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the optimal solution l∗ to R-MP, we must have either (i) l∗A =
dA = 2, or (ii) l∗B = dB = 3, or (iii) l∗C = dC = 6.

Denote LA, LB , and LC as the set of values that l∗A, l∗B ,

and l∗C may take, respectively. Initially, LA = LB = LC = ∅.

Case (i): l∗A = dA = 2. For the source A, clearly we need to

put the value 2 to LA.

For the source B, due to the FCD requirement, the value of

l∗B must be an integer multiple of l∗A = 2. Further, we must

have 1 ≤ l∗B ≤ dB = 3. So l∗B can only take the value of 2
and we add 2 into LB .

For source C, due to the FCD requirement, the value of l∗C
must be an integer multiple of l∗B = 2. Further, we must have

1 ≤ l∗C ≤ dC = 6. So l∗C can only take the values of 2, 4, or

6 and we add these 3 values into LC . Now we have:

LA = {2}, LB = {2}, LC = {2, 4, 6}.
Case (ii): l∗B = dB = 3. For source B, we put 3 to LB .

For source A, due to the FCD requirement, the value of l∗A
must be l∗B = 3 divided by an integer. Further, we must have

1 ≤ l∗A ≤ dA = 2. So l∗A can only take the values of 1 or 1.5
(when l∗B is divided by 3 or 2). We add both values into LA.

For source C, due to the FCD requirement, the value of l∗C
must be an integer multiple of l∗B = 3. Further, we must have

1 ≤ l∗C ≤ dC = 6. So l∗C can only take the values of 3 or 6,

and we add both into LC . Since 6 is already in LC , it does

not need to be added again. Now we have:

LA = {1, 1.5, 2}, LB = {2, 3}, LC = {2, 3, 4, 6}.
Case (iii): l∗C = dC = 6. For the source C, we put the value

6 to LC . Since LC already has an element with value 6, we

don’t need to put it in again.

For source B, due to the FCD requirement, l∗B must be l∗C =
6 divided by an integer. Further, we have 1 ≤ l∗B ≤ dB = 3.

So l∗B can only take values of 1, 1.2, 1.5, 2, or 3. Since 2 and

3 are already in LB , we add 1, 1.2, and 1.5 into LB .

For source A, due to the FCD requirement, the value of l∗A
must be l∗B divided by an integer. Considering that in Case

(iii), l∗B can only take the values of 1, 1.2, 1.5, 2, or 3, and

we require 1 ≤ l∗A ≤ dA = 2, we find that l∗A can only take

the values of 1, 1.2, 1.5, or 2. Since 1, 1.5, and 2 are already

in LA, we only add 1.2 into LA. Now we have:

LA = {1, 1.2, 1.5, 2}, LB = {1, 1.2, 1.5, 2, 3},
LC = {2, 3, 4, 6}.

Note that our analysis (based on Property 2) has drastically

narrowed down the search space for l∗A, l∗B , and l∗C . �
In general, denote Li as the “reduced" set of possible values

that l∗i can take in an optimal solution l∗. Then following the

ideas in the above example, Algorithm 3 (code-named RCS)

find the set Li for each i ∈ {1, 2, · · · , N}. The key ideas are:

for each case of l∗i = di, exploit the FCD requirement and the

range of each lj (i.e., 1 ≤ lj ≤ dj) to determine a reduced set

of values for each Li, i ∈ {1, 2, · · · , N}. It is easy to verify

that RCS has a time complexity of O(N2 · dN ).

Algorithm 3 Reducing Candidate Sets (RCS)

1: input: d = [d1 d2 · · · dN ]
2: output: L1, L2, · · · , LN

3: procedure
4: Set Li = ∅ for all i ∈ {1, 2, · · · , N}
5: for each i = 1, 2, · · · , N do
6: Ii = {di}, Ij = ∅ for all j ∈ {1, · · · , N}, j 	= i
7: for each j = i− 1, i− 2, · · · , 1 do
8: Find all real numbers that are lower bounded

by 1, upper bounded by dj , and are divisible

of at least one element in Ij+1 by an integer.

Add these real numbers into Ij
9: for each j = i+ 1, i+ 2, · · · , N do

10: Find all real numbers that are lower bounded

by 1, upper bounded by dj , and are integer

multiples of at least one element in Ij−1.

Add these real numbers into Ij
11: for each j = 1, 2, · · · , N do
12: Add each element of Ij to Lj if it is not in Lj

1.2

1

1.5

3

3

2

4

6

Origin

2

1.2

1

1.5

2

Destination1st hop
(     )

2nd hop
(     )

3rd hop
(     )

1/2

1/1.5

1/1.2

1

1/6

1/2

Fig. 3. Construction of a directed graph with LA = {1, 1.2, 1.5, 2},
LB = {1, 1.2, 1.5, 2, 3}, and LC = {2, 3, 4, 6}.

Finding Optimal Mapping Now we have a reduced set of

possible values Li for each l∗i . The problem to solve now is to

pick one value from each set so that the vector l constructed by

these values is both FCD and that
∑N

i=1(1/li) is minimized.

We show that this problem is equivalent to finding the shortest

path in a directed network graph.

Example 4. Continuing with Example 4, we have:

LA = {1, 1.2, 1.5, 2}, LB = {1, 1.2, 1.5, 2, 3},

and LC = {2, 3, 4, 6}. We can construct a direct graph

as shown in Fig. 3. In this figure, we put an origin node and

destination node to denote the start and finish of our problem.

Then we put down the nodes for each of the three hops from

original to destination, corresponding to different values from

sets LA, LB , and LC . That is, we have 4 nodes for the first hop

(corresponding to the values in LA), 5 nodes for the second

hop (corresponding to the values in LB), and 4 nodes for the

third hop (corresponding to the values in LC).

Now we add directed links to the graph, along with their

costs. From the origin node, we can have 4 directed links to

the 4 nodes in the first hop, with the cost of each link being
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Algorithm 4 Aion – The Complete Algorithm

1: input: d = [d1 d2 · · · dN ]
2: output: A cyclic scheduler φ and Kl∗

3: procedure
4: Run RCS to find Li for all i ∈ {1, 2, · · · , N}
5: Use Li’s to construct a direct graph and use shortest

path routing to find optimal mapping l∗

6: Run SUD with input l∗ to find scheduler φ and Kl∗

1/l∗A, l∗A ∈ {1, 1.2, 1.5, 2} = LA, as shown in the figure. For

the second hop, a link from one of the 4 nodes in LA to one of

the 5 nodes in LB exists only if it meets the FCD requirement.

That is, a link from a node in LA to a node in LB exists only

if l∗B/l
∗
A is a positive integer. For example, a link from node

2 in LA to node 2 in LB exists because 2/2 = 1. Node 1.5 in

LA has a link to nodes 1.5 and 3 in LB because 1.5/1.5 = 1
and 3/1.5 = 2. After we find the 7 links from the 4 nodes

in LA to the 5 nodes in LB , we mark the cost of each link

in the figure, which is 1/l∗B , l∗B ∈ {1, 1.2, 1.5, 2, 3} = LB .

We repeat the same process to add the links for the third hop

(from the 5 nodes in LB to the 4 nodes in LC). Finally, for

the 4 nodes in LC , each has a directed link to the destination

node, with an artificial link cost of 0.

Based on this directed graph, it is easy to see that to

minimize
∑N

i=1(1/li) is equivalent to finding a least cost path

from the origin to the destination. For this example, there are

two shortest paths: (origin → 2 → 2 → 6 → destination) and

(origin → 1.5 → 3 → 6 → destination), both of which have

a total cost of 7/6. Hence, the optimal vector l∗ can be either

[2 2 6] or [1.5 3 6], both of which are FCD. �
In general, we can always use the key idea in the above

example to construct a directed graph from a fictitious origin

node to a fictitious destination node. The set of nodes in the

i-th hop (i ∈ {1, 2, · · · , N}) corresponds to the elements in Li

and the links from an (i− 1)-th hop node to an i-th hop node

are determined by the FCD requirement. Further, the link cost

is the reciprocal of the value of the corresponding i-th hop

node. Subsequently, any shortest path routing algorithm (e.g.,

Dijkstra’s algorithm) can be used to find the optimal solution.

D. Aion: The Complete Algorithm and Performance Analysis

Main Algorithm Combining results in Sections IV-B and

IV-C, Algorithm 4 shows the complete procedure for Aion on

how to find a scheduler for an arbitrary AoI constraint vector

d.

Performance The performance gap between the required

minimum bandwidth Kl∗ by Aion and that by the optimal

(unknown) K∗ is given in the following theorem.

Theorem 2: To guarantee an arbitrary AoI vector d =
[d1 d2 · · · dN ], the required bandwidth Kl∗ for the scheduler
φ that is constructed by Aion (in Algorithm 4) satisfies:

Kl∗

K∗ ≤
⌈∑N

i=1
1
l∗i

⌉
⌈∑N

i=1
1
di

⌉ ,

Fig. 4. Behavior of Ai(t) for sources i = A, E, I, X .

where K∗ is the minimum bandwidth to satisfy d.
Proof: It holds directly due to Lemmas 1 and 2.

Theorem 2 suggests that the theoretical gap between the

bandwidth Kl∗ required by Aion and the minimum K∗ heavily

depends on the mapping between l∗ and d. For the special

case when d is consecutively divisible, l∗ obtained by Aion

is identical to d and hence Kl∗ is optimal. This special case

result is consistent to that of CDS.

Computational Complexity Aion has a time complexity of

O(N4 · (dN )2): In line 4, the time complexity of running

RCS to find Li, i ∈ {1, 2, · · · , N} is O(N2 · dN ). In line

5, the time complexity of constructing the directed graph is

O(N4 · (dN )2). Also in line 5, the time complexity of using

the shortest path routing to find l∗ is O(N4 · (dN )2). In line

6, running SUD has a time complexity of O(N · (dN )2).

V. NUMERICAL RESULTS

In this section we evaluate Aion. First, we use a case study

to demonstrate that the scheduler φ constructed by Aion can

indeed guarantee the given AoI constraint vector d. Then we

study the bandwidth Kl∗ required by Aion, and compare it

against the lower bound and upper bound derived for K∗ in

Lemma 1. We further study how the bandwidth achieved by

Aion is affected by the number of sources N .

A Case Study Let’s consider 25 sources {A,B · · · , X, Y }
with the following AoI constraint vector d:

[3 3 3 4 5 5 6 6 8 8 8 8 9 9 9 9 9 9 12 12 14 15 15 15 16].

Following the Aion algorithm, we first find the following FCD

vector l∗ for d as follows:

[3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 12 12 12 12 12 12 12].

Then following Aion, we use SUD to construct scheduler φ
with a cycle length of L = 12 and a bandwidth Kl∗ = 5:

Scheduler φ
Kl∗ = 5

S T U V W X Y � � � � �
M N O P Q R M N O P Q R
G H I J K L G H I J K L
D E F D E F D E F D E F
A B C A B C A B C A B C

Time slot t 1 2 3 4 5 6 7 8 9 10 11 12
It is easy to verify that φ satisfies d. In Fig. 4 we present the

time evolution of Ai(t) for the sources. For legibility, we only

show Ai(t) for sources A, E, I, X , respectively; Ai(t)’s for
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Fig. 5. The gaps between Kl∗ by Aion and the lower and upper bounds of
K∗, respectively, over 1000 instances when N = 25.

Fig. 6. Average of normalized gaps (Kl∗ −LB)/LB and (UB−Kl∗ )/UB
when N increases from 25 to 300.

the other sources are similar. As described in Section II, we

assume the system is turned on at t = 1 and there is no sample

stored at the BS at t = 1. For source A, at t = 1, since the

BS has not yet received any sample from A, AA(1) = +∞.

At t = 2, AA(2) = 1, as A transmits a packet in time slot 1.

At t = 3, AA(3) = 2 and at t = 4, AA(4) = 3. At t = 5,

AA(5) = 1 again, because in time 4, A transmit a packet to

the BS. Based on φ, we will have the time evolution of Ai(t)
for sources E, I, X respectively.

From Lemma 1, we have 4 ≤ K∗ ≤ 25. So the Kl∗ = 5
we have from Aion is at most 1 unit more than the lower

bound of K∗. This shows that Kl∗ is either optimal or only

one unit away from optimal. In the following set of results, we

further substantiate the performance of Kl∗ against the lower

and upper bounds of K∗ in Lemma 1.

More Results on Kl∗ We show more results for Kl∗ and

compare it to the lower and upper bounds of K∗. For N =
25, we generate 1, 000 instances for AoI constraint vector d.

For each d, each of its elements (di’s) is randomly generated

by following a uniform distribution from [2, 20]. For each of

these 1,000 instances, we use Aion to find a scheduler φ and

compare Kl∗ to the lower and upper bounds of K∗. Fig. 5

shows complete results for the gap between Kl∗ and lower

bound of K∗ (i.e., Kl∗ − LB) and the gap between Kl∗ and

upper bound of K∗ (i.e., UB − Kl∗ ) for all 1,000 instances.

Clearly, in all cases, Kl∗ is either optimal or near-optimal. On

average (over 1,000 instances), the gap between Kl∗ and the

lower bound of K∗ is 0.83 (less than 1 unit of bandwidth).

Varying Number of Sources N Now let’s examine the

performance of Kl∗ by Aion under different N – the number of

sources. We vary N from 25 to 300, with an incremental step

of 5. Again, we generate 1, 000 instances of d’s for each N
and for each instance, we use a uniform distribution between

[2, 20] to generate each di.
When N increases from 25 to 300, it is obvious that the

absolute values for (Kl∗ −LB) and (UB−Kl∗) will increase.

So it makes more sense and fair to examine the normalized

values of these two gaps w.r.t. LB and UB, respectively. In

Fig. 6, we plot the average normalized gaps, i.e., avg.(Kl∗ −
LB)/LB and avg.(UB − Kl∗)/UB over 1,000 instances for

each N . In this figure, we observe that although there is a

small increase of avg.(Kl∗ −LB)/LB when N increases from

25 to 300, the average of this normalized gap w.r.t. LB is

rather steady and is no more than 27%. Given that LB is the

lower bound of K∗, we can expect Kl∗ is even closer to K∗,

which lies between Kl∗ and LB.

VI. SUMMARY AND FUTURE WORK

We study a bandwidth minimization problem with AoI

constraints. It is challenging due to its large search space and

discrete nature of time-slot based scheduling. We develop a

novel fast algorithm called Aion that can always construct a

scheduler to guarantee any given AoI constraint vector d. Our

theoretical performance guarantee of minimizing bandwidth

hinger upon a novel concept called Fractional Consecutively
Divisible (FCD) for the given vector d. Specifically, when d is

FCD, Aion always requires the minimum bandwidth K∗; when

d is not FCD, the bandwidth required by Aion is guaranteed

to be within a small factor of the minimum. The design of

Aion involves many innovative ideas, such as transforming

a mapping problem (from a non-FCD d to a FCD l∗) into a

shortest path problem, an algorithm to reduce the search space

of mapping by exploiting an intrinsic property that relates d
to l∗, and a scaling-based procedure to handle fractional l∗ in

the construction of a discrete time-slot based scheduler. We

validate the performance of Aion through a large number of

simulations and all results confirm our theoretical findings.

The results from this paper lay the foundation for future

research in the important area of bandwidth minimization with

AoI guarantee. Many interesting problems need to be further

explored. For instance, in this paper, we assumed that the

required bandwidth K is in direct proportion to achievable

bit rate. This may not be the case when the channel is fast

fading, where the instantaneous bit rate can vary quickly with

channel conditions. So it would be interesting to explore what

optimal bandwidth is needed to guarantee AoI in a statistical

sense, e.g., in the form of a chance constraint [40], [41].
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