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ABSTRACT

An important performance consideration for wireless sensor net-
worksisthe amount of information collected by all the nodesin the
network over the course of network lifetime. Since the objective of
maximizing the sum of rates of al the nodes in the network can
lead to a severe bias in rate allocation among the nodes, we advo-
cate the use of lexicographical max-mifLMM) rate allocation for
the nodes. To calculate the LMM rate allocation vector, we develop
a polynomial-time algorithm by exploiting the parametric analysis
(PA) technique from linear programming (LP), which we call serial
LP with Parametric AnalysigSLP-PA). We show that the SLP-PA
can be also employed to address the so-called LMM node lifetime
problem much more efficiently than an existing technique proposed
in the literature. More important, we show that there exists an ele-
gant duality relationship between the LMM rate allocation problem
and the LMM node lifetime problem. Therefore, it is sufficient to
solve any one of the two problems and important insights can be
obtained by inferring duality results for the other problem.
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1. INTRODUCTION

Wireless sensor networks consist of battery-powered nodes that
are endowed with amultitude of sensing modalitiesincluding multi-
media (e.g.,video, audio) and scalar data (e.g.,temperature, pres-
sure, light, magnetometer, infrared). Although there have been
significant improvements in processor design and computing, ad-
vances in battery technology still lag behind, making energy re-
source considerations the fundamental challengein wireless sensor
networks. As a consequence, there have been active research ef-
forts on exploring performance limits of wireless sensor networks.
These performance limitsinclude, among others, network capacity
(see eg., [12]) and network lifetime(see e.g., [7, 8]). Network ca-
pacity typicaly refers to the maximum amount of bit volume that
can be successfully delivered to the base-station (“sink node”) by
all the nodes in the network, while network lifetime refers to the
maximum time limit that nodes in the network remain alive until
one or more nodes drain up their energy.

In this paper, we consider an important overarching problem that
encompasses both performance metrics. In particular, we study the
network capacity problem under a given network lifetime require-
ment. Specifically, for awireless sensor network where each node
isprovisioned with aninitial energy, if all nodes arerequired to live
up to a certain lifetime criterion, what is the maximum amount of
bit volume that can be generated by the entire network? At first
glance, it appears desirable to maximize the sum of rates from all
the nodes in the network, subject to the condition that each node
can meet the network lifetime requirement. Mathematically, this
problem can be formulated as a linear programming (L P) problem
(see Section 2.2) within which the objective function is defined as
the sum of rates over al the nodes in the network and the con-
straints are: (1) flow balanceis preserved at each node, and (2) the
energy constraint at each node can be met for the given network
lifetime requirement. However, the solution to this problem shows
(see Section 5) that although the network capacity (i.e., the sum of
bit rates over al nodes) is maximized, there exists a severe biasin
the rate allocation among the nodes. In particular, those nodes that
consume the least amount of power on their data path toward the
base-station will be allocated with much more bit rates than other
nodes in the network. Consequently, the data collection behavior
for the entire network only favors certain nodes that have this prop-
erty, while other nodes will be unfavorably penalized with much
smaller bit rates.

The fairness issue associated with the network capacity maxi-
mization objective calls for a careful consideration in the rate a-
location among the nodes. In this paper, we investigate the rate



allocation problem in an energy-constrained sensor network for a
given network lifetime requirement. Our objective isto achieve a
certain measure of optimality in the rate allocation that takes into
account both fairness and bit rate maximization. We advocate to
use of the so-called Lexicographic Max-Mi(LMM) criterion [14],
which maximizes the bit rates for all the nodes until one or more
nodes reach their energy limit for the given network lifetime re-
quirement. At first level, the smallest rate among al the nodes is
maximized. We continue to maximize the second level of smallest
rate and so forth. The LMM rate alocation criterion is appealing
since it addresses both fairness and efficiency (i.e., bit rate maxi-
mization) in an energy-constrained network.

A naive approach to the LMM rate allocation problem would
be to apply a max-min-like iterative procedure. Under this naive
approach, successive LPs are employed to calculate the maximum
rate at each level based on the available energy for the remaining
nodes, until al nodes use up their energy. We call this naive ap-
proach “serial LP” (SLP). We show that, although SLP appearsin-
tuitive, unfortunately it gives an incorrect solution. To understand
how this could happen, we must understand a fundamental differ-
ence between the LMM rate allocation problem described here and
the classical max-min rate alocation in [3]. Under the LMM rate
allocation problem, the rate allocation problem is implicitly cou-
pled with a flow routing problem, while under the classical max-
min rate allocation, there is no routing problem involved since the
routesfor al flowsarefixed. Asit turnsout, for theLMM rate alo-

cation problem, any iterative rate allocation approach that requires

energy reservation at each iteration is incorredthis is because,
unlike max-min, which addresses only the rate alocation problem
with fixed routes and yields a unique solution at each iteration, for
the LMM rate alocation problem, starting from the first iteration,
there usually exist non-uniqueflow routing solutions correspond-
ing to the same rate allocation at each level. Consequently, each
of these flow routing solutions will yield differentavailable energy
levels on the remaining nodes for future iterations and so forth,
leading to a different rate allocation vector, which usually does not
coincide with the optimal LMM rate all ocation vector.

In this paper, we devel op an efficient polynomial-time algorithm
to solve the LMM rate allocation problem. We exploit the so-called
parametric analysigPA) technique [2] at each rate level to deter-
mine the minimum set of nodes that must deplete their energy. We
call this approach serial LP with PA(SLP-PA). In most cases when
the problem is non-degenerate, the SLP-PA algorithm is extremely
efficient and only requires quadratic time complexity in determin-
ing the minimum node set for each rate level. Even for the rare
case when the problem is degenerate, the SLP-PA algorithm is till
much more efficient than the slack variable (SV)-based approach
proposed in [6], due to fewer number of LPs involved at each rate
level.

We also extend the PA technique for the LMM rate allocation
problem to address the so-called maximum node lifetime curve
problem in [6], which we call LMM node lifetime problem. We
show that the SLP-PA approach is much more efficient than the
slack variable (SV)-based approach described in [6]. More impor-
tantly, we show that there exists a smple and elegant duality rela-
tionship between the LMM rate alocation problem and the LMM
node lifetime problem. Asaresult, it is sufficient to solve only one
of these two problems and important insights can be obtained by
inferring duality results for the other problem.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the network and energy model, and formulate
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Figure 1: Reference architecture for two-tiered wireless sensor
networks.

the LMM rate allocation problem. Section 3 presents our SLP-PA
algorithm to the LMM rate allocation problem. In Section 4, we
introduce the LMM node lifetime problem and apply the SLP-PA
algorithm to solve it. We also show how the LMM rate alloca-
tion problem and the LMM node lifetime problem are linked by a
duality relationship. Numerical results are presented in Section 5.
Section 6 reviews related work and Section 7 concludes this paper.

2. SYSTEM MODELING AND PROBLEM
FORMULATION

We consider a two-tiered architecture for wireless sensor net-
works. The two-tiered network architecture is motivated by recent
advances idistributed source codingpSC) [9, 15, 17], which is
capable of removing redundancy in information collected among
neighboring sensors without inter-sensor communications. Fig-
ures 1(a) and (b) show thphysicalandhierarchical network topol-
ogy for such a network, respectively. There are three types of nodes
in the network, namelymicro-sensor node@VSNs), aggregation
and forwarding node$AFNSs), and ease-statio{BS). The MSNs
can be application-specific sensor nodeg(temperature sensor
nodes (TSNs), pressure sensor nodes (PSNs), and video sensor
nodes (VSNs)) and they constitute the lower tier of the network.
They are deployed in groups (or clusters) at strategic locations for



surveillance or monitoring applications. The MSNs are small and routing topologies can be formed by adjusting the power level of
low-cost. The objective of an MSN is very simple: Once trig- each AFN’s transmitter.

gered by an eveng(g.,detection of motion or biological/chemical The power dissipation at a receiver can be modeled as [18]:
agents), it starts to capture live informationd.,video), which it N _
sends directly to the local AFN. (@) =p->_ fris @)

For each cluster of MSNs, there is one AFN, which is different ki

from an MSN in terms of physical properties and functions. The where}’, _; fii (in b/s) is the rate of the received data stream at
primary functions of an AFN are: (1data aggregation(or “fu- AFN i. A typical value for the parameteris 50 nJ/b [10].
sion”) for data flows from the local cluster of MSNs, and {@)- .
warding (or relaying) the aggregated information to the next hop 22 TheLMM RateAllocation F_)rObIem
AFN (toward the base-station). For data fusion, an AFN analyzes %?Lore we formulate th_tte LMI\glrate(al_l&clzlaé!on”probltem,”|et Ut_S re)-
the content of each data streaeny( video) it receives, fromwhich ~ VISILIN€ maximum capacity problem (with ‘bias" in rate allocation
. - . that was described in Section 1. For a network WNttAFNs, sup-
It composes a complete scene by exploiting the correlation amongpnse that the rate of AFMis g;, and that the initial energy at this
each individual data stream from the MSNs. An AFN also serves as node is given by; (i = 1,2, - - - , N). For a given network lifetime
arelay node for other AFNSs to carry traffic toward the base-station. requirementl” (i.e., each AFN must remain alive for at least time
Although an AFN is expected to be provisioned with much more durationT), the maximum information capacity that the network
energy than an MSN, it also consumes energy at a substantiallycan collect can be formulated as the following linear programming
higher rate (due to wireless communication over large distances).(LP)-
Consequently, an AFN has a limited lifetime. Upon depletion of , . N

. axCap: Max) ; i
energy at an AFN, we expect that theveragefor the particular 3T, a 2i=19
area under surveillance is lost, despite the fact that some of the

MSNs within the cluster may still have remaining enetgy. Jip + Z Jir = Z fmi = gi (I<i<N) @4
The third component in the two-tiered architecture is the base- kit m#i

station. The base-station is, essentially, ik node for data Z pfmiT+Z cirfirT+cipfiT <e; (1<i<N) (5)

streams from all the AFNSs in the network. In this investigation, we — m#i k#i

assume that there is sufficient energy resource available at the base- fir, fi >0 (1<i,k<N,k#q)

station and thus there is no energy constraint at the base-station. In ]
summary, the main functions of the lower tier MSNs are data ac- Wherefix and fip are data rates transmitted from ARNo AFN
quisition and compression while the upper-tier AFNs are used for ¥ @nd from AFNi to the base-statioi, respectively. The set of

data fusion and relaying information to the base-station. constraints in (4) are the flow balance equations: they state that,
] the total bit rate transmitted by AFNis equal to the total bit rate
2.1 Power Consumption Model received by AFN; from other AFNSs, plus the bit rate generated lo-
For AFN i, we assume that the aggregated bit rate collected by Cally at AFNi (g;). The set of constraints in () are the energy con-
its local MSNsafter data fusion isg;, i = 1, 2, --- ,N. These straints: they state that, for a given network lifetime requirerfignt

collected local bit streams must be routed toward the base-station (€ €nergy required in communications (i.e., in transmitting and re-
Our objective is to maximize the values according to the LMM  Ceiving all these data) cannot exceed the initial energy provisioning
criterion (see Definition 1 below) under a given network lifetime |€vel. _ )
requirement. Note thatf.:, fix, fir, andg; are variables and that is a con-

For an AFN, energy consumption due to wireless communica- Stant (representing a given network lifetime requirement). MaxCap
tion (i.e., receiving and transmitting) has been considered the dom- is a standard LP formulation that can be solved by a polynomial al-
inant factor in power consumption [1]. The power dissipation at a gorithm [2]. Unfortunately, as we shall see in the numerical results

radio transmitter can be modeled as: (Section 5), the solution to this MaxCap problem lends itself into
pieliy k) = cig - fir 1) an extreme bias toward AFNs whose (_jata paths consume the least
amount of power toward the base-station. Consequently, although
wherep, (i, k) is the power dissipated at AFNvhen it is transmit- the network capacity is maximized over the network lifetiffie
ting to nodek, f;. is the rate transmitted from AFNo nodek, c; the corresponding bit rate allocation among the AFNs (i.e.gthe
is the power consumption cost of radio lik k) and is given by values) onlyfavors those AFNs that have this property, while other
i =a+B-dl @) AFNs are uffavorably allocated with much smaller (even close to

0) bit rates. As a result, the effectiveness of the network in per-
wherea is adistance-independerbnstant termg is a coefficient forming information collection or surveillance could be severely

term associated with thdistance-dependererm, d;. is the dis- compromised.
tance between these two nodes, amds the path loss index, with To address this fairness issue, we advocate the so-daienb-
2 < m < 4[18]. Typical values for these parameters are= 50 graphic max-min(LMM) rate allocation strategy [14] in this pa-

nd/b and3 = 0.0013 pJ/bin?* (for m = 4) [10].3 Since the power per, which has some similarity to the max-min rate allocation in
level of an AFN’s transmitter can be used to control the distance data networks [3}f. Under LMM rate allocation, we start with the
coverage of an AFN (see, e.g., [16, 19, 21)), different network flow objective ofmaximizingthe bit rate forall the nodes until one or
more nodes reach their energy constraint capacities for the given
multi-hop routing among the MSNs may not be necessary. ' network lifetime requirement. Given that the first level of the small-

2\We assume that each MSN can only forward information to its est rate allocated among the nodes is maximized, we continue to

local AFN for processingd.g.,video fusion). ‘However, there is significant difference between max-min and
3In this paper, we user = 4 in all of our numerical results. LMM, which we will discuss shortly.

!Due to the small distance between an MSN and its local AFN
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maximize the second level of rate for the remaining nodes that still
have available energy, and so forth. More formally, denote

[ri, 2, -+, rn] @s the sorted version (i.ey, < rs < --- < rpy)

of the rate vectog = [g1, g2, - -, gn], With g; corresponding to
the rate of node. We then have the following definition for an
LMM rate allocation.

DEFINITION 1. (LMM-optimal Rate Allocation)
For a given network lifetime requiremefft, a sorted rate vector
r =[ri,rs, - ,rn]yields an LMM-optimal rate allocation if and
only if for any other sorted rate allocation vectde= [y, 72, -+ , n]
with7; < 7y < ... < fp, thereexists &, 1 < k < N, such that
ri=r;forl <i<k-—1andry > 7.

Based on the LMM-optimal definition, we can calculate the first
level optimal rate\; = r; easily through the following LP.

Max A
s.t.
fiB+Zfik*mei*/\1:0 (1<i<N)
ki mi
> ol fmi+ > cinTfie+eisTfip <ei (1<i<N)
m#i ki

firs fir >0 (1<i,k<N,k#1)

Although the first level bottleneck rate is easy to obtain, cal-
culating the subsequent bottleneck rates are quite challenging. As
discussed in Section 1, a naive approach that applies an iterative
LP procedure to calculate the desired rate allocations is incorrect.
This is because there is a fundamental difference in the nature of
the LMM rate allocation problem described here and the classical
max-min rate allocation problem in [3]. The LMM rate allocation
problem implicitly couplesa flow routing problem (i.e., a determi-
nation of thef;;, andf; s for the entire network), while the classical
max-min rate allocation explicitly assumes that the routes for all
the flows are givera priori and fixed. Moreover, for the LMM rate
allocation problem, starting from the first iteration, there usually
existnon-uniqueflow routing solutions corresponding to the same
maximum rate level. Consequently, each of these flow routing so-
lutions, once chosen, will yieldifferentremaining energy levels
on the nodes for future iterations and so forth, leading to a different
rate vector, which usually does not coincide with the LMM-optimal
rate vector. Therefore, any iterative rate allocation algorithm that
requires energy reservation among the nodes during each iteration
is unlikely to give a correct LMM rate allocation (see Section 5
for numerical example). In the next section, we present an effi-
cient (polynomial time) algorithm to solve the LMM rate allocation
problem correctly without requiring any energy reservation during
each iteration.

3. ASERIAL LP ALGORITHM BASED ON
PARAMETRIC ANALYSIS

3.1 Problem Formulation

To solve the LMM rate allocation problem, we first perform the
following problem formulation. Table 1 lists the notation used in
this paper. Suppose that the sorted rate vectefr:, r2, - - - , rn]
withr; < ry < --- < ry is LMM-optimal. To keep track of
distinctrates, we remove all repetitive elements in this vector and
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Table 1: Notation

General Notation to the LMM-Rate and LMM-Lifetime problen

NS

N The total number of AFNs in the network
e; The initial energy at AFN
p The power consumption coefficient for receiving dgta
Cik The power consumption coefficient for transmitting|
(ore;g) | data from AFN: to AFN k (or the base-statios)
n The number of distinct elements in the sorted
LMM-optimal rate/lifetime vector
S The minimum set of nodes that reach their energy
constraint limits at-th level
S; The set of all possible AFNs that may reach their
energy constraint limits atth level, S; C S;
Vi The total volume from AFN to AFN &
(orV;B) | (or the base-statiofs)
ik The rate from AFN; to AFN &
(or f;B) | (or the base-statiof3)
T The optimal solution to LMM-Rate/LMM-Lifetime
w The optimal solution to dual problem of LMM-Rate
or LMM-Lifetime
b The right-hand-side (RHS) of LMM-Rate
or LMM-Lifetime
I; A column vector having a singleelement
corresponding to nodein Eq. (10) or Eq. (15) and
0 for all other elements
The columns corresponding to the basic variables |n
LMM-Rate/LMM-Lifetime
Z The columns corresponding to the non-basic variables
in LMM-Rate/LMM-Lifetime
cB The parameters in objective function corresponding
to the basic variables of LMM-Rate/LMM-Lifetime
cz The parameters in objective function corresponding
to the non-basic variables of LMM-Rate
or LMM-Lifetime
TR Part of optimal solution corresponding to the basic
variables of LMM-Rate/LMM-Lifetime
Tz Part of optimal solution corresponding to the
non-basic variables of LMM-Rate/LMM-Lifetime
Symbols used for the LMM-Rate problem
T The network lifetime requirement
gi The local bit rate collected at AFN
r; Thei-th element in the sorted LMM-optimal rate
vector, wherer; <7y < --- <71y
i The:-th rate level in the sorted LMM-optimal rate
vector, i.e Ai(=r1) < Ao < - < Ap(=7TN)
0; =\; —\i_1, the difference betweek; and\;_;
Symbols used for the LMM-Lifetime problem
gi The rate requirement at AFN
t; The node lifetime at AFN
i Thei-th element in the sorted LMM-optimal
lifetime vector, wheren, < m < --- < 7p
i The-th drop point in the sorted LMM-optimal
lifetime vector, i.e.p (=r1) <pe <+ <pn(=rN)
G =pu; — pi-1, the difference betweem; and ;1




rewrite it as[A1, Az, --+, Ax] such thath; < A2 < - < Ap,
where\1 = r1, A\, = rn, andn < N. For each\;, denoteS;,
i =1, 2, ---, n, as the corresponding set of nodes that use up
their energy at this rate. Clearly,”_, |Si| = |S| = N, whereS
denotes the set of alV nodes. The key to the LMM rate alloca-
tion problem is to find the correct valugs, Xz, --- , A, and the
corresponding sef, S», -- -, Sy, respectively.

To formulate this problem into an iterative form, we define=
0 andSp = 0. Furthermore, denot® = \; — \;_;. Starting with
I =11 <1< n),we have an iterative optimization problem as
follows.

Max §;
s.t.
fip + Zfik - Z fmi =01 = X1 (i ¢ Uy Sh) (6)
kti mi
fip+Y fik =Y fmi=X (i €UpiSn) (7)
ki mi

ZPTfmi +Zcikaik +ciT fir<e; (i ¢ Uy Sn) (8)

mi [y

Zprmi+ZCikaik +ciT fip=e; (i€ Uil Sh) (9)

mi ki

Note that forl = 1, the constraints (7) and (9) do not exist. For
2 < I < n, constraints (7) and (9) are for those nodes that have al-
ready reached their LMM rate allocation during the previbusl
iterations. In particular, the set of constraints in (7) say that the

sum of in-coming and local data rates are equal to the out-going

data rates for each node with its LMM-optimal ratg 1 < h < L.

The set of constraints in (9) say that for these nodes that have al-

ready reached their LMM-optimal rate, the total energy consumed
for communications has reached their initial energy provisioning

Z PVimi + Z cirVik +ciBVip < e; (i ¢ ng_zll Sh)

mi kti
Z PVmi + Zcik‘/ik +cigVie =¢€; (i€ U2;11 Sh)
mi kti

Vi, Vi >0 (1<i, k<N, k#4)

The above LP formulation can be rewritten in the fdvhax cz,
st. Az = bandz > 0, the dual problem for which isin wb, st.
wA > ¢ with w being unrestricted in sign [2]. Both can be solved
by standard LP techniques (e.g., [2]). Although a solution to the
LMM-Rate problem gives the optimal solution férat iterationl,
it remains to determine thainimumset of nodes corresponding to
this d;, which is the key difficulty in the LMM rate allocation prob-
lem. In the rest of this section, we exploit the parametric analysis
technique [2] to determine the minimum node set at each rate.

3.2 Minimum Node Set Deter mination

DenoteS; (5; # 0) the set of nodes for which the constraints
(8) arebindingat thel-th iteration for the LMM-Rate problen.g.,
Sy include all the nodes that achieegualityin (8) at iteration.
Although it is certain that at least one of the nodesifelong to
S; (the minimum node set for rate), for other nodes iy}, it may
still be possible to further increase their rates under alternative flow
routing solutions. In other words, ;| = 1, then we must have
S = S:l; otherwise, we must determine th@nimumnode setS;
(S; C S;) that achieves the LMM-optimal rate allocation.

We find that the so-callgglarametric analysigPA) technique [2]
is a powerful technique to address this problem. The main idea of
PA is to investigate how an infinitesimal perturbation on some com-
ponents of the LMM-Rate problem can affect the objective func-
tion. In particular, considering a small increase on the right-hand-
side (RHS) of (10)i.e.,changingb; to b; + ¢;, wheree; > 0, node

1 belongs to the minimum node s§tif and only if 66? (0) < 0.

That is, node belongs to the minimum node sitif and only if a

at these nodes. On the other hand, the constraints in (6) and (8)small increase in nodés rate (in terms of total volume generated

are for the remaining nodes that have not yet reached their LM
optimal rate. Specifically, the set of constraints in (6) state that,

M- at noded) leads to alecreasen the objective function.

I
To compareZL

5L (0) with 0, we apply an important duality re-

for these nodes that have not yet reached their energy constrainsults from LP theory. If: andw are the respective optimal solution
levels, the sum of in-coming and local data rates are equal to theto the primal and dual problems, then based on the parametric du-

out-going data rates. Note that the objective function is to maxi-
mize the additional raté for these nodes. Furthermore, for these

nodes, the set of constrains in (8) state that the total energy con-
sumed for communications should be upper bounded by the initial

energy provisioning.

To facilitate our later discussion on duality results in Section 4,
we further re-formulate above LP. In particular, we multiply both
sides of (6) and (7) b{" (which is a constant representing a given
network lifetime requirement) and denotég = figT, Vir =
fitT, Vini = fmiT. Intuitively, V. and V;p represent the bit
volume that is transferred from nodeo k and from node to B,
respectively, during lifetim@'. We obtain the following problem
formulation.

LMM-Rate: Max d;
s.t.
ViB+Z Vik—z Vmi—0T=XN1T (i ¢ U2;11 Sr) (10)
k#i m#i
Vi + > Vik— > Vi =T (i €U, Sn)
ki m#i
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ality property [2], we have

ot , . 0F(cx)
Oe; (0) = 0ob;

Recall that these; can be easily obtained at the same time when
we solve the primal LP problem. Note that by the nature of the
problem, we havev; < 0 for an optimal dual solution. Therefore,

if we find thatw; < 0, then we can determine immediately that

node: must belong to the minimum node s&t On the other

hand, if we find thatw; = 0, it is not clear whethel‘%(o) is
strictly negative of and further analysis is thus needed.

For each nodéwith w; = 0, we must perform a complete PA to
see whether a perturbation (i.e., tiny increase) on the RHS of (10)
will result in any change in the objective function. If there is no
change, then we can determine that ned®es not belong to the
minimum node sef;; otherwise, node belongs toS;. Assume
that the optimal solution i&x5, zz), wherexs andz z denote the
set of basic and non-basic variablésand Z denote the columns
corresponding to the basic and non-basic variablesindcz de-
note the objective function coefficient vectors for the basic and non-

(bl) < wy .

(11)



basic variables; ang denotes the objective value. Then we have
the corresponding canonical equations as follows

kB,
B™'b.

g+ (B2 — cb)az
B + (B_IZ)mz

If bis replaced by + €; I;, where the column vectds has a single
1 element corresponding to noden the set of constraints (10)
while all the other elements afe then the only change due to
this perturbation is thaB~'b will be replaced byB~"' (b + ¢1;).

Consequently, the objective value for the current basis becomes

csB7H(b + e I;). Aslong asB~'(b + «1;) is nonnegative, the
current basis remains optimal. Denéte= B~'b, B; ' = B™'I,,
and leté; be an upper bound fas; such that the current basis re-
mains optimal. We have

J

. b —1
Ai: Bz <0 .
6 mj‘n{ 57 }

If & > 0, the optimal objective value varies according@—* (b+
e:I;) for 0 < e < &. Sincew = c5B~! andw; = 0, we have
csB'I; = w; = 0. Thus, the objective value wiliot change for
e; € (0,¢;], and consequently, the rate for nodean be increased
beyond the current; value. That is, nodédoes not belong to the
minimum node ses$;.

For most problems in practice, the above procedure is sufficient
to determine whether or not nodéselongs to the minimum node
setS; for all i € S;. Butin the rare event whekg = 0, the prob-
lem is degenerate. To develop a polynomial-time algorithm, denote
W, as the set of all nodes witly; < 0 andU; as the set of all
nodes withw; = 0 andé; = 0. Then we solve the following LP to
maximize the slack variables (SV) for nodedin

(12)

MSV: Max3 .. €i
s.t.
Vis+ Y Vik =Y Vi —eT =X\T (i €U
ki m£i
Vie + ZVik - Z Vini = MT (i€ ng;llsh)
kti m£i
Vie + ZVik - Z Vini = NT (¢ U ng;ll Sh)
kti m£i
Z PVmi + Z citVik +cipVib =e; (i€ UlUWlUZ;Ilsh)
m£i kti
Z PVimi + Z cirVie + cisVip <e; (i QU;UW[UZ;IIS;Z)
m£i kti

Vik, Vi, 6 >0 (1 <4,k < N,k #1)

If the optimal objective function i8, then we conclude that no node
in U; can have a positive;. That is, these nodes should all belong
to S; and we haves; = W; + U;. On the other hand, if the optimal
objective function is positive, then some nodes U; must have

LEMMA 1. (TheMinimum Node Set isUnique.)
The minimum node set for each rate level under the LMM-optimal
rate allocation is unique.

In a nutshell, the complete PA procedure to determine whether a
nodei € S; belongs to the minimum node s6t can be summa-
rized as follows.

ALGORITHM 1. (Minimum Node Set Deter mination with PA)
1. Initialize sets¥; = 0 andU; = 0.
. For each nodé € 3,

(@) Ifw; <0, thenW; = W; U {l}

(b) Otherwise (i.e.w; = 0), computeh = B~'b, B =
B™'I;, andé¢; according to (12).
If &, =0, thenU;, = U, + {l}

. IfU; = 0, thenS; = W; and stop;
else set up the MSV problem and solve it.

N

. Ifthe optimal objective value in MSV(sthenS; = W;+U;
and stop; else remove all nodéwith ¢; > 0 from the sel;
and go to Step 3.

3.3 Optimal Flow Routing for LMM Rate
Allocation
Once we solve the LMM rate allocation problem, the correspond-
ing optimal flow routing can be easily obtained by dividing the total
bit volume on each link1(;;, or V;g) by T, i.e.,

fir = ‘;l, , (13)
fir = V}B ; (14)

whereT is the given network lifetime requirement. Although the
LMM-optimal rate allocation is unique, it is important to note that
the corresponding optimal flow routing solutiomigtunique. This

is because upon the completion of the LMM rate allocation prob-
lem (i.e., upon findindgAi, A2, - -+, A,]), there usually exist non-
unique bit volume solutionsf{;, andV; s values) corresponding to
the same LMM-optimal rate allocation. This result is summarized
in the following lemma.

LEMMA 2. The optimal flow routing solution corresponding
to the LMM rate allocation may not be unique.

3.4 Complexity Analysis

We now analyze the complexity of the SLP-PA algorithm in solv-
ing the LMM rate allocation problem. First we consider the com-
plexity of finding each node’s rate and the total bit volume transmit-
ted along each link. At each stage, we solve an LP problem, both
its primal and dual have a complexity 6f(n4*L) [2], wheren
is the number of constraints or variables in the problem, whichever

positive ¢; values and these nodes therefore do not belong to theis larger, andL is the number of binary bits required to store the
minimum node seB;. Consequently, we can remove these nodes data. Since the number of variable€I§N?) and is larger than the
from U;. If U; # 0, we move on to solve another MSV. This number of constraints (which &(XV)), the complexity of solving
procedure will terminate when the optimal objective function value the LP isO(N®L). After solving an LP at each stage, we need to
is0orU; = 0. determine whether or not a node that just reached its energy bind-
To ensure that MSV determinate the minimum node set correctly, ing constraint belongs to the minimum node set for this stage. Note
we need the following lemma. The proof is give in [11]. thatw andb = B~'b can be readily obtained when we solve the

72



primal LP problem. To determine whether a node, &ayelongs -+ < 7y is LMM-optimal if and only if for any other sorted node
to the minimum node set, we examing. If w; < 0, then node lifetime vector[71, 72, -+ ,7v] With 71 < 7» < --- < 7w, there

i belongs to the minimum node set and the complexit@{g). existsak,1 < k < N, suchthat; = 7;forl1 <i <k —1and

On the other hand, ifv; = 0, we need to further examine whether 7, > 7.

¢; > 0 ornot. Based on (12), the computation fois O(N). So at

each stage, the complexity in PA for each nod@{sV). The total Solution. It should be clear that, under the LMM-optimal node
complexity of PA at each stage for the node set is 1“51“5 O(N) lifetime objective, we musiaximizethe time until a set of nodes

or O(N - N) = O(N?). Thus, the complexity at each stage is Use up their energy (which is also calledrap pointin [6]) while
()(NGL) + ()(Nz) = ()(NGL)_ As there are at mosV stages, minimizingthe number of nodes that drain up their energy at each

the overall complexity i@(]\ﬂL)_ drop point. We now s_how that the SLP-PA z_algorithm dgveloped for
We now analyze the complexity for the degenerate case. Uponthe LMM rate allocation problem can be directly applied to solve
the completion of Step 2 in Algorithm 1, we dend” = U. theSLMM nofhe Efet'me problem]. <o e <
. ©) _ . uppose thafri, 72, --- , vjwith 7 < 72 < --- < 78 IS
§|nce(0;/ve need to sglve at mqs, 6 Sif LPs, th7e complexity LMM-optimal. To keep track ofdistinct node lifetimes (or drop
is U™ = 81| - O(N”L) or O(N N L) = 02(N L). Hence, points) in this vector, we remove all repetitive elements in the vec-
the complexity at each stage@{N"L) + O(N”) + O(N'L) = tor and rewrite it agua, g2, - - , pn] SUCh tha < pa < -+ <
O(N"L). Since there are at moai stages, the overall complexity [in, Wherepuy = 71, pn = 7, andn < N. Corresponding to
. 8 ns il n ’ = .
isO(N"L). o ) . these drop points, denofg, S, --- , S, as the sets of nodes that
The complexity in finding the optimal flow routing is bounded by 44in up their energy at drop poins, iz, - - , jun, respectively.

the number of radio links in the network, which@ N*). Hence Then|[Sy| + |Sa| + -+ + |[Su| = |S| = N, whereS denotes
T 7 2 7 n ’
the overall complexity i€)(N L) + O(N") = O(N'"L) for the the set of allvV AFNs in the network. The problem is to find the

8 2\ 8 . .
non-degenerate case adN"L) + O(N”) = O(N"L) forthe | mm-optimal values ofjui, e, -+ , un and the corresponding
degenerate case. Under either case, the computational complexméetss1 Sy - . 8
. . 5 ) ) ) n-
is polynomial: Similar to the LMM rate allocation problem, the LMM node life-

time problem can be formulated as an iterative optimization prob-

4. EXTENSIONTOLMM NODELIFETIME lem as follows. Denotgw = 0, So = 6, and(; = py — pu—1.
PROBLEM AND DUALITY THEOREM Starting froml = 1, we solve the following LP iteratively.

In this section, we present two important extensions for our re- | pm-Lifetime:  Max G
sults in Section 3. First, we show that our SLP-PA algorithm can st -
be used to solve the maximum node lifetime curve problem in [6],
which we define as the LMM node lifetime problem. We show that  V;» +ZV““ - vai —Ggi=pm-19; (€U Sn) (15)
the SLP-PA algorithm is a much more efficient approach than the k#i m#i
one proposed in [6]. Second, we show that there exists an elegant . - o _ . -1
duality relationship between the LMM rate allocation problem and Vi + Z Vi Z Vimi = pngi (i € Up=o )
the LMM node lifetime problem. Consequently, important results ki mtd
and insights can be drawn by simply solving one of the two prob- > pVius + Y cinVik + cinVis < e (i & Uy Sn)

lems. mAi ki
. . . . -1
4.1 TheLMM-optimal Node Lifetime > pVimi+ > caVik+esVis =ei (i € Up_y Sh)
Problem and Solution ma#é kit , .
The LMM node lifetime problem considers the following sce- Vie, Vie, 1 20 (1<4, k<N, k#1)
nario. For a network withV: AFNs, with a given local bit rate; Comparing the LMM-Lifetime problem here to the LMM-Rate
(fixed) and initial energy; for AFN 4, = 1,2,---, N, how can problem that we studied in Section 3.1, we find that they are exactly

we maximize the network lifetime fall AFNs in the network? In of the same form. The only differences are that under the LMM-
other words, the LMM node lifetime problem not only considers | jfetime problem, the local bit rateg are constants and the node
how to maximize the network lifetime until the first AFN runs out  jifetimes; are variables (subject to optimization), while under the

of energy, but also the time for all the AFNs in the network. LMM-Rate problem, they; are variables (subject to optimization)
~ More formally, for each AFN;, denote the corresponding life-  and the node lifetimes are all identicdl), i = 1,2, - , N. Since
time ast;, ¢ = 1, 2, --- , N. Note thatg; are fixed here, while; the mathematical formulation for the two problems are identical,

are the optimization variables, which are different from the LMM  \ye can apply the SLP-PA algorithm to solve the LMM node life-
rate allocation problem that we studied in the last section. Denote time problem as well.

[r1,72,---,7n] as thesortedsequence of the values in nonde- The only issue that we need to be concerned about is the optimal
creasing order. Then LMM-optimal node lifetime can be defined fiow routing solution corresponding to the LMM-optimal lifetime
as follows. vector. The optimal flow routing solution here is not as simple as
. o that for the LMM rate allocation problem, which merely involves a
DEFINITION 2. (LMM-optimal Node L ifetime) simple division (see Eqs. (13) and (14)). We refer readers to [11]
A sorted node lifetime vectqry, 2, -, 7v] with 7 < 7 < for anO(N*) algorithm to obtain an optimal flow routing solution

5Note that our analysis here give a loose upper bound for time com-forthe LMM-pptimaI Ii_fetime vector. S_imilar toLemma 2, thg opti-
plexity. In practice, the actual running time for LP implementation mal flow routing solution corresponding to the LMM node lifetime
is much faster than its upper bound. problem may not be unique.
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Complexity Comparison. In [6], Brown et al. studied the LMM
node lifetime problem under the so-called “maximum node life-
time curve” problem. They also made an important contribution
by developing the first procedure to solve this problem correctly.
A key step in their procedure is the userafiltiple independent
LP calculations to determine the minimum node set at each drop
point, which we callserial LP with slack variable analysiSLP-
SV). Although this approach solves the LMM node lifetime prob-
lem correctly, its computational complexity (potentially exponen-
tial) remains an issue to be resolved.
On the other hand, the SLP-PA algorithm developed in this paper
is strictl lynomial and i m ionally more efficient than th ) o .
B e e neon . O & aven e fetme equremet ol odes urder ro
we take a closer look on the computational complexity of the SLP- lemPr and a given IOC"’_" bit rath for_aII hodes under prob_lem
SV approach in [6]. First, SLP-SV needs to keep track of eatth Pr, we have the foII_owmg relationship between the sqlutl_ons to
flow along its route from the source node toward the base-station.the LMM rate allocation problerPr and the LMM node lifetime
Such a flow-based (or more precisely, sub-flow based) approachprOblemPL‘ .
could make the size of the LP coefficient matrix exponential, which () Suppqse that we ha\_/e solved problé?); gnd obtained the
leads to an exponential-time algorithm f2]. LMM-optimal rate allocatiory; fc_>r e_ach node (i = _1, 2,---,N).
Second, even if a link-based LP formulation such as ours is adopte-rdﬂIen undefPz, the LMM node lifetime; for node: is
in [6], the computational efficiency of the SV-based approach is still ;T
worse than the SLP-PA algorithm. This is because at each stage, ti = R
the SV-based approach must solve sevadilitional LPs (up to . .
1S; — Si|) to determineS;, which is in contrast to the simpler A  (ii) Suppose that we have solved problé?p and obtained the
under the SLP-PA algorithm(Q(N?)). Even for the degenerate LMM-optimal node lifetime; for each noda (i = 1,2, V).
case, the number of additional LPs under the SLP-PA algorithm is 1"€n under, the LMM rate allocatiory; for nodei is
at most|U,(°) — Si|,7 which is still no more thahS; — S;|. tiR
Finally, we discuss a hybrid link-flow approach mentioned in [6]. 9i="7
In this approach, link-based formulations are used for sub-flows.
This leads to a much fewer number of variables than those for the ~Table 2 shows the duality relationship between solutions to prob-
flow-based approach. But this approach still requires sub-flow ac- lemsPr andPr..
counting and results in an order of magnitude more constraints thanProof. We prove (i) and (ii) in Theorem 1 separately.
the link-based approach in SLP-PA. Although this approach solves (i) We organize our proof into two parts. First, we show thare
the LMM node lifetime problem in polynomial-time(g.,by using feasible node lifetimes in terms of flow balance and energy con-
interior point methods [2]), the overall complexity is still orders of = straints on each node(i = 1,2, --- , N). Then we show that it is
magnitude higher than that under the SLP-PA algorithm. Further- indeed the LMM-optimal node lifetime.
more, the burden of solving additional LPs to determine whether a Feasibility. Since we have obtained the solution to probl&p,

Table 2: Duality relationship between LMM rate allocation
problem Pr and LMM node lifetime problem Py..

LMM rate allocation Pr) | LMM node lifetime (Pr.)
g; (optimization variable) g; = R (constant)
t; = T (constant) t; (optimization variable)
Total bit volume at AFNi: g; - T =t; - R

THEOREM 1. (Duality Theorem)

(16)

. 17)

node belongs to the minimum node set still remains. we have one feasible flow routing solution for sending bit streams
) gi,i=1,2,---, N, tothe base-station. Under probléPa, the bit
4.2 Duality Theorem volumes ¥;; andV;p values) must meet the following equalities

In this section, we present an elegant and powerful result show- Under the LMM-optimal rate allocation:
ing that there is an underlying duality relationship between the

LMM rate allocation problem and the LMM node lifetime problem. Vip + Z Vie = Z Vi = giT,

Consequently, the solutions and insights obtained for one problem 1SkSNhi 1smSN.mi

can be “mirrored” to the other problem. Z PVmi + Z cirVik + ciBViB = €5 .
To start with, we denot®r as the LMM rate allocation prob- 1<m<N,m#i 1<k< N, ki

lem where we havéV AFNSs in the network and all nodes have . )

a common given lifetime requiremefft (constant). Denotey; Now replacingg; T by t; 2, we see that theamebit volume so-
as the LMM-optimal rate allocation for nodeunder Pg, i — lution underPr yields a feasible bit volume solution to the node
1,2,---,N. Similarly, we denoteP, as the LMM node life- lifetime problem undefP;,. Consequently, we can obtain the flow

time problem where all nodes have the same local bit Rageon- routing solution to problenP;, under the bit volume solution to
stant). Denotd; as the LMM node lifetime for nodé under?P,, problemP;, [11] and this verifies that;, i = 1,2,---, N, is a
i =1,2,---,N. Then the following theorem shows how the so- f€@sible solution to probler®r..

lution to one problem can be used to obtain the solution to the other, OPtimality. - To prove that the;, i = 1,2,---, N, obtained
via (16) are indeed LMM-optimal for probler®;, we sortg;,

i =1,2,--- | N, under problenPz in non-decreasing order and
,r~]. We also introduce a node indéx=

SIncidentally, the revised simplex method proposed in [6] is not as denote itagri, rs, - --

efficient as the polynomial-time algorithm described in [2] and is [i1, 42, -+ ,in] for [ri, 2, -+, rn]. For examplejs = 7 means
itself exponential. thatrs actually corresponds to the rate of ARMNi.e.,r3 = g7.
"Recall thatl”) denoted; upon the completion of Step 2 in Al- Sincet; is proportional tag; through the relationshipt{ = % -
gorithm 1. gi), listing¢;,4 = 1,2,--- , N, according tal = [i1,i2, - ,in]
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Table 3: Node coordinates for the 10-AFN network.

1 | (zi,y:) (inmeters)[| ¢« | (i, y:) (in meters)
1 (400, -320) 6 (-500, 100)

2 (300, 440) 7 (-400, 0)

3 (-300, -420) 8 (420, 120)

4 (320, -100) 9 (200, 140)

5 (-120, 340) 10 (220, -340)

will also yield asorted(in non-decreasingrder) lifetime list, de-
noted agri, 72, - ,7~]. We now prove thafri, 72, -+ ,7n] iS
indeed LMM-optimal for problenPry,.

Our proof is based on contradiction. Supposefhatrz, - - - , 7n]
is not LMM-optimal for problemP;. Assume that the LMM-
optimal lifetime vector to problerPy, is [71, 72, - - -, 7n] (SOrted

Y (m)

4 xm

&=

Figure 2: Network topology used in the numerical investiga-
tion.

in non-decreasing order) with the corresponding node index being Table 4: Rate allocation under the SLP-PA, SLP, and MaxCap

I = [i1,1%2,--- ,tn]. Then, by Definition 2, there existskasuch

that7; = for1 < j <k —1and7, > 7.
We now claim that ift;, 7 = 1,2,--- , N, is a feasible solution
— LR
is also a feasible solution to probleRy. The proof for this claim
follows identically as above. Using this result, we can obtain a

to problemP;,, theng; obtained viajg;, = AT ,i=1,2,---,N,

corresponding feasible solutidiy, >, - - ,#n] with #; = &
and the node indekfor problemPx. Hence we have; = % =
IR = rifor1 < j < k—lbuti = %2 > DR — gy

That is, [7‘1, T,
contradiction.
(i) The proof for this part is similar to the above proof for (i) and
is thus omitted here. m|
This duality relationship can offer important insights on system
performance issues, in addition to providing solutions to the LMM
rate allocation and the LMM node lifetime problems. For exam-

,rn] is not LMM-optimal and this leads to a

ple, in Section 1, we pointed out the potential bias (fairness) issue

associated with the network capacity maximization objective (i.e.,

sum of rates from all nodes). It is interesting to see that there is
a dual fairness issue under the node lifetime problem. In particu-

lar, the objective of maximizing theumof node lifetimes among

approaches for the 10-AFN Network.

7 (Sorted SLPFA SP MaxCap
Node T AFN T AFN T AFN
Index) || (kbls) (Kbls) (Kbls)

T 01023 | 3 [[01023| 1 | 0.0553| 2
2 01023 | 6 01023 | 2 | 0.0627] 3
3 01023 | 7 |[[01023| 3 | 00646 1
Z 01536 | 5 |[[0.1023| 6 | 0.0658| 6
5 02041 1 01023 7 | 01222 8
5 02041 2 [[04536| 5 | 0.1653 | 10
7 02041 | 4 || 01536 | 8 | 01736] 7
] 02041 | 8 [ 01536 | 10 || 02628 5
9 02041 | O |[06563| 4 | 03513| 4
10 02041 | 10 || 06563 | O | 12398 O

51 SLP-PA AlgorithmtotheLMM Rate
Allocation Problem
We will compare SLP-PA with the naive approach (see Sec-
tion 2.2) that uses a serial LP “blindly” to solve the LMM rate al-
location problem. We call this naive approach Serial LP(SLP). As

all nodes also leads to a bias (or fairness) problem because thisjiscussed in Section 2.2, the naive SLP approach requires energy

objective would onlyfavor those nodes that consume energy at a
small rate. As a result, certain nodes will have much larger life-
times while some other nodes will be penalized with much smaller
lifetimes.

5. NUMERICAL INVESTIGATION

In this section, we use numerical results to illustrate our SLP-PA
algorithm to the LMM rate allocation problem and compare it with

reservation at each stage and will not give the correct final solution
to the LMM rate allocation problem.

Wewill also compare our SLP-PA agorithm with the Maximum-
Capacity (MaxCap) approach (see Section 2.2). As discussed in
the beginning of Section 2.2, the rate allocation under the MaxCap
approach can be extremely biased and favors only those AFNs that
consume the least power along their data paths toward the base-
station.

We assume that the initial energy at each AFN is 50 kJ and that
under the LMM rate alocation problem, the network lifetime re-

other approaches. We also use numerical results to illustrate thequirementis100 days. The power consumption behaviorsfor trans-

duality relationship between the LMM rate allocation problem and
the LMM node lifetime problem.

Due to space limitation, we will show results for a network 6f
AFNs. More results for network of larger size are available in [11].
In this 10-AFN network, the base-stati@his located at the origin
while the locations for thé0 AFNs are randomly generated over a
1000m x 1000m square area (see Fig. 2 and Table 3).
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mission and reception are defined in (1) and (3), respectively.

Table 4 shows the rate alocation for the AFNs under each ap-
proach, which is aso plotted in Fig. 3. The “sorted node index”
corresponds the sorted rates among the AFNSs in non-decreasing
order.

Clearly, among the three rate alocation approaches, only the
rate allocation under SLP-PA meets the LMM-optimal rate allo-
cation definition (see Definition 1) when compared with the rate
allocation under SLP and MaxCap. Specifically, comparing SLP-



o SLP-PA

it sLp

Rate (kb/s)

j,,_k ;5-/*'/

v 9 10

3 Sorted Node Index
Figure3: Rateallocation under the SLP-PA, SLP, and MaxCap
approachesfor a 10-AFN network .

PA with SLP, we have rSLP'PA = SLP SLP'PA = TQSLP,
SLP'HA SLP , and rSLPPA > rSLP comparing SLP-PA
with MaxCap, we have rSLP PA 'IV| axCap'

We also observe, as expected, asevere biasin therate alocation
under the MaxCap approach. In particular, 1o alone accounts for
over 48% of the sum of total rates among all the AFNs. Comparing

the three approaches, we have TSLPHA = rISLP > r'lvl xCap
and rSLP A < TISOLP r'l\ﬂa"cap. In other words, the rate

allocation vector under the SLP-PA agorithm has the smallest rate
difference between the smallest rate (r1) and the largest rate (r10),
i.e, rio — r1, among the three approaches. In addition, although

SLP'PA = rSLP for the first level rate allocation, the minimum
node set for rSLP PA is smaller than the minimum node set for

SLP e, |SSLP I3A| 3< |SISLP| = 5. This confirmsthat the
nalve SLP approach cannot offer the correct solution to the LMM
rate allocation problem.

5.2 Duality Results

We now use numerical results to verify the duality relationship
between the LMM rate alocation problem (Pr) and the LMM
node lifetime problem (P.) (see Section 4.2). Again, we use the
10-AFN network configurationsin Fig. 2. The coordinates for each
AFN under the 10-AFN network are listed in Table 3. We assume
that the initial energy at each AFN is 50 kJ and that the network
lifetime requirement under the LMM rate alocation problem is
T = 100 days. Under Pr, we assume the local bit rate for all
AFNsare R = 0.2 kb/s.

To verify the dudlity relationship (Theorem 1), we perform the
following calculations. First, we solve the LMM rate alocation
problem (Pr) and the LMM node lifetime problem (P.) inde-
pendentlywith the above initial conditions using the SLP-PA algo-
rithm. Consequently, we obtain the LMM-optimal rate allocation
(gi for each AFN 4) under Px and the LMM-optimal node lifetime
(¢; for each AFN 4) under Pr.. Then we compute T - g; and R - t;
separately for each AFN ¢ and examine if they are equal to each
other.

Theresultsfor the LMM-optimal rateallocation (g;,i = 1,2, - - -,

10) and the LMM-optimal node lifetime (¢;,7 = 1,2,--- ,10) for
the 10-AFN network are shown in Table 5. Wefind that T - g; and
R - t; areexactly equal for al AFNS, precisely aswe would expect
under Theorem 1.
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Table5: Numerical resultsverifying the duality relationship T'-
= R-t; between the LM M rate allocation problem (Pr) and
theLMM node lifetime problem (P.) for the 10-AFN network.

AFN | Pz (T =100 days) || Pr. (R = 0.2 Kb/9)
T - gi ti R- ti

1 0. 2941 2941 || 147.07 2941
2 0.2941 2941 || 147.07 2941
3 0.1023 10.23 51.17 10.23
4 0.2941 2941 || 147.07 2941
5 0.1536 15.36 76.79 15.36
6 0.1023 10.23 51.17 10.23
7 0.1023 10.23 51.17 10.23
8 0.2941 2941 || 147.07 2941
9 0.2941 2941 || 147.07 2941
10 0.2941 2941 || 147.07 2941

6. RELATED WORK

Dueto energy constraints in wireless sensor networks, there has
been active research on exploring the performance limits of such
networks. These performance limits include, among others, net-
work capacityand network lifetime Network capacity typically
refers to the maximum amount of bit volume that can be success-
fully delivered to the base-station (“sink node”) by all the nodes
in the network, where network lifetime refers to the maximum time
that the nodes in the network remain alive before one or more nodes
deplete their energy.

The network capacity problem and network lifetime problem
have so far been studied digointly in the literature. For example, in
[12], the problem of how to maximize network capacity via rout-
ing was studied. While, in many other efforts (see, e.g., [4, 5, 8,
13, 22]), the focus was on how to maximize the time until the first
node drains up its energy.

In this paper, we study the important overarching problem that
considers both network capacity and network lifetime. Under the
LMM rate allocation problem, we studied how to maximize rate
alocations for all the nodes in the network under a given network
lifetime requirement. Under the LMM node lifetime problem, we
studied how to maximize the lifetime for all nodes when the lo-
cal bit rate for each node is given a priori. The LMM rate alo-
cation criterion effectively mitigates the unfairness issue when the
objective is to maximize the total bit volume generated by the net-
work. Although the LMM rate alocation is somewhat similar to
the classical max-min strategy [3], there is a fundamental differ-
ence between the two. In particular, the LMM rate allocation prob-
lem implicitly embeds (or couples) a flow routing problem within
rate allocation, while under the classical max-min rate allocation,
there is no routing problem involved since the routes for all flows
arefixed. Dueto this coupling of flow routing and rate allocation, a
solution approach (i.e., SLP-PA) to the LMM rate allocation prob-
lem is much more challenging than that for the classical max-min.

In [20], Srinivasan et al. applied game theory and Nash equi-
librium among the nodes to forward packets such that the total
throughput (capacity) can achieve an optimal operating point sub-
ject to a common lifetime requirement on all nodes. However, the
fairness issue in information collection was not considered. The
most relevant work to ours is by Brown et al. [6], which has been
discussed in detail in Section 4.1.



7. CONCLUSIONS

In this paper, we investigated the important problem of rate alo-
cation for wireless sensor networks under a given network lifetime
reguirement. Since the objective of maximizing the sum of rates
of all nodes can lead to a severe bias in rate allocation among the
nodes, we advocate the use of lexicographical max-mi(LMM)
rate allocation for al nodes in the network. To calculate the LMM-
optimal rate vector, we developed a polynomial-time algorithm by
exploiting the parametric analysigPA) technique from linear pro-
gramming (LP), which we called serial LP with Parametric Analy-
sis (SLP-PA). Furthermore, we showed that the SLP-PA algorithm
can aso be employed to address the maximum node lifetime curve
problem and that the SL P-PA agorithm is much more efficient than
existing techniques. More importantly, we discovered asimply and
elegant duality relationship between the LMM rate allocation prob-
lem and LMM node lifetime problem, which enable us to develop
solutions and insights on both problems by solving any one of the
two problems. Our results in this paper offer some important un-
derstanding on network capacity and network lifetime problems for
energy-constrained wireless sensor networks.

Our efforts in this paper have been centered on developing cen-
tralized theory on the LMM rate allocation problem and its rela-
tionship to the LMM node lifetime problem. This understanding is
essential to further research on distributed implementations, which
are currently underway and the results of which will be reported in

a separate paper.
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