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ABSTRACT
An important performance consideration for wireless sensor net-
works is the amount of information collected by all the nodes in the
network over the course of network lifetime. Since the objective of
maximizing the sum of rates of all the nodes in the network can
lead to a severe bias in rate allocation among the nodes, we advo-
cate the use of lexicographical max-min(LMM) rate allocation for
the nodes. To calculate the LMM rate allocation vector, we develop
a polynomial-time algorithm by exploiting the parametric analysis
(PA) technique from linear programming (LP), which we call serial
LP with Parametric Analysis(SLP-PA). We show that the SLP-PA
can be also employed to address the so-called LMM node lifetime
problem much more efficiently than an existing technique proposed
in the literature. More important, we show that there exists an ele-
gant duality relationship between the LMM rate allocation problem
and the LMM node lifetime problem. Therefore, it is sufficient to
solve any one of the two problems and important insights can be
obtained by inferring duality results for the other problem.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Algorithms, Performance, Theory

Keywords
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1. INTRODUCTION
Wireless sensor networks consist of battery-powered nodes that

are endowed with a multitude of sensing modalities including multi-
media (e.g.,video, audio) and scalar data (e.g.,temperature, pres-
sure, light, magnetometer, infrared). Although there have been
significant improvements in processor design and computing, ad-
vances in battery technology still lag behind, making energy re-
source considerations the fundamental challenge in wireless sensor
networks. As a consequence, there have been active research ef-
forts on exploring performance limits of wireless sensor networks.
These performance limits include, among others, network capacity
(see e.g., [12]) and network lifetime(see e.g., [7, 8]). Network ca-
pacity typically refers to the maximum amount of bit volume that
can be successfully delivered to the base-station (“sink node”) by
all the nodes in the network, while network lifetime refers to the
maximum time limit that nodes in the network remain alive until
one or more nodes drain up their energy.

In this paper, we consider an important overarching problem that
encompasses both performance metrics. In particular, we study the
network capacity problem under a given network lifetime require-
ment. Specifically, for a wireless sensor network where each node
is provisioned with an initial energy, if all nodes are required to live
up to a certain lifetime criterion, what is the maximum amount of
bit volume that can be generated by the entire network? At first
glance, it appears desirable to maximize the sum of rates from all
the nodes in the network, subject to the condition that each node
can meet the network lifetime requirement. Mathematically, this
problem can be formulated as a linear programming (LP) problem
(see Section 2.2) within which the objective function is defined as
the sum of rates over all the nodes in the network and the con-
straints are: (1) flow balance is preserved at each node, and (2) the
energy constraint at each node can be met for the given network
lifetime requirement. However, the solution to this problem shows
(see Section 5) that although the network capacity (i.e., the sum of
bit rates over all nodes) is maximized, there exists a severe bias in
the rate allocation among the nodes. In particular, those nodes that
consume the least amount of power on their data path toward the
base-station will be allocated with much more bit rates than other
nodes in the network. Consequently, the data collection behavior
for the entire network only favors certain nodes that have this prop-
erty, while other nodes will be unfavorably penalized with much
smaller bit rates.

The fairness issue associated with the network capacity maxi-
mization objective calls for a careful consideration in the rate al-
location among the nodes. In this paper, we investigate the rate
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allocation problem in an energy-constrained sensor network for a
given network lifetime requirement. Our objective is to achieve a
certain measure of optimality in the rate allocation that takes into
account both fairness and bit rate maximization. We advocate to
use of the so-called Lexicographic Max-Min(LMM) criterion [14],
which maximizes the bit rates for all the nodes until one or more
nodes reach their energy limit for the given network lifetime re-
quirement. At first level, the smallest rate among all the nodes is
maximized. We continue to maximize the second level of smallest
rate and so forth. The LMM rate allocation criterion is appealing
since it addresses both fairness and efficiency (i.e., bit rate maxi-
mization) in an energy-constrained network.

A naive approach to the LMM rate allocation problem would
be to apply a max-min-like iterative procedure. Under this naive
approach, successive LPs are employed to calculate the maximum
rate at each level based on the available energy for the remaining
nodes, until all nodes use up their energy. We call this naive ap-
proach “serial LP” (SLP). We show that, although SLP appears in-
tuitive, unfortunately it gives an incorrect solution. To understand
how this could happen, we must understand a fundamental differ-
ence between the LMM rate allocation problem described here and
the classical max-min rate allocation in [3]. Under the LMM rate
allocation problem, the rate allocation problem is implicitly cou-
pled with a flow routing problem, while under the classical max-
min rate allocation, there is no routing problem involved since the
routes for all flows are fixed. As it turns out, for the LMM rate allo-
cation problem, any iterative rate allocation approach that requires
energy reservation at each iteration is incorrect.This is because,
unlike max-min, which addresses only the rate allocation problem
with fixed routes and yields a unique solution at each iteration, for
the LMM rate allocation problem, starting from the first iteration,
there usually exist non-uniqueflow routing solutions correspond-
ing to the same rate allocation at each level. Consequently, each
of these flow routing solutions will yield differentavailable energy
levels on the remaining nodes for future iterations and so forth,
leading to a different rate allocation vector, which usually does not
coincide with the optimal LMM rate allocation vector.

In this paper, we develop an efficient polynomial-time algorithm
to solve the LMM rate allocation problem. We exploit the so-called
parametric analysis(PA) technique [2] at each rate level to deter-
mine the minimum set of nodes that must deplete their energy. We
call this approach serial LP with PA(SLP-PA). In most cases when
the problem is non-degenerate, the SLP-PA algorithm is extremely
efficient and only requires quadratic time complexity in determin-
ing the minimum node set for each rate level. Even for the rare
case when the problem is degenerate, the SLP-PA algorithm is still
much more efficient than the slack variable (SV)-based approach
proposed in [6], due to fewer number of LPs involved at each rate
level.

We also extend the PA technique for the LMM rate allocation
problem to address the so-called maximum node lifetime curve
problem in [6], which we call LMM node lifetime problem. We
show that the SLP-PA approach is much more efficient than the
slack variable (SV)-based approach described in [6]. More impor-
tantly, we show that there exists a simple and elegant duality rela-
tionship between the LMM rate allocation problem and the LMM
node lifetime problem. As a result, it is sufficient to solve only one
of these two problems and important insights can be obtained by
inferring duality results for the other problem.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the network and energy model, and formulate
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Figure 1: Reference architecture for two-tiered wireless sensor
networks.

the LMM rate allocation problem. Section 3 presents our SLP-PA
algorithm to the LMM rate allocation problem. In Section 4, we
introduce the LMM node lifetime problem and apply the SLP-PA
algorithm to solve it. We also show how the LMM rate alloca-
tion problem and the LMM node lifetime problem are linked by a
duality relationship. Numerical results are presented in Section 5.
Section 6 reviews related work and Section 7 concludes this paper.

2. SYSTEM MODELING AND PROBLEM
FORMULATION

We consider a two-tiered architecture for wireless sensor net-
works. The two-tiered network architecture is motivated by recent
advances indistributed source coding(DSC) [9, 15, 17], which is
capable of removing redundancy in information collected among
neighboring sensors without inter-sensor communications. Fig-
ures 1(a) and (b) show thephysicalandhierarchicalnetwork topol-
ogy for such a network, respectively. There are three types of nodes
in the network, namely,micro-sensor nodes(MSNs),aggregation
and forwarding nodes(AFNs), and abase-station(BS). The MSNs
can be application-specific sensor nodes (e.g.,temperature sensor
nodes (TSNs), pressure sensor nodes (PSNs), and video sensor
nodes (VSNs)) and they constitute the lower tier of the network.
They are deployed in groups (or clusters) at strategic locations for
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surveillance or monitoring applications. The MSNs are small and
low-cost. The objective of an MSN is very simple: Once trig-
gered by an event (e.g.,detection of motion or biological/chemical
agents), it starts to capture live information (e.g.,video), which it
sends directly to the local AFN.1

For each cluster of MSNs, there is one AFN, which is different
from an MSN in terms of physical properties and functions. The
primary functions of an AFN are: (1)data aggregation(or “fu-
sion”) for data flows from the local cluster of MSNs, and (2)for-
warding (or relaying) the aggregated information to the next hop
AFN (toward the base-station). For data fusion, an AFN analyzes
the content of each data stream (e.g.,video) it receives, from which
it composes a complete scene by exploiting the correlation among
each individual data stream from the MSNs. An AFN also serves as
a relay node for other AFNs to carry traffic toward the base-station.
Although an AFN is expected to be provisioned with much more
energy than an MSN, it also consumes energy at a substantially
higher rate (due to wireless communication over large distances).
Consequently, an AFN has a limited lifetime. Upon depletion of
energy at an AFN, we expect that thecoveragefor the particular
area under surveillance is lost, despite the fact that some of the
MSNs within the cluster may still have remaining energy.2

The third component in the two-tiered architecture is the base-
station. The base-station is, essentially, thesink node for data
streams from all the AFNs in the network. In this investigation, we
assume that there is sufficient energy resource available at the base-
station and thus there is no energy constraint at the base-station. In
summary, the main functions of the lower tier MSNs are data ac-
quisition and compression while the upper-tier AFNs are used for
data fusion and relaying information to the base-station.

2.1 Power Consumption Model
For AFN i, we assume that the aggregated bit rate collected by

its local MSNsafter data fusion isgi, i = 1; 2; � � � ; N . These
collected local bit streams must be routed toward the base-station.
Our objective is to maximize thegi values according to the LMM
criterion (see Definition 1 below) under a given network lifetime
requirement.

For an AFN, energy consumption due to wireless communica-
tion (i.e.,receiving and transmitting) has been considered the dom-
inant factor in power consumption [1]. The power dissipation at a
radio transmitter can be modeled as:

pt(i; k) = cik � fik ; (1)

wherept(i; k) is the power dissipated at AFNi when it is transmit-
ting to nodek, fik is the rate transmitted from AFNi to nodek, cik
is the power consumption cost of radio link(i; k) and is given by

cik = �+ � � dmik ; (2)

where� is adistance-independentconstant term,� is a coefficient
term associated with thedistance-dependentterm, dik is the dis-
tance between these two nodes, andm is the path loss index, with
2 � m � 4 [18]. Typical values for these parameters are� = 50
nJ/b and� = 0:0013 pJ/b/m4 (for m = 4) [10].3 Since the power
level of an AFN’s transmitter can be used to control the distance
coverage of an AFN (see, e.g., [16, 19, 21]), different network flow
1Due to the small distance between an MSN and its local AFN,
multi-hop routing among the MSNs may not be necessary.
2We assume that each MSN can only forward information to its
local AFN for processing (e.g.,video fusion).
3In this paper, we usem = 4 in all of our numerical results.

routing topologies can be formed by adjusting the power level of
each AFN’s transmitter.

The power dissipation at a receiver can be modeled as [18]:

pr(i) = � �
X

k 6=i

fki ; (3)

where
P

k 6=i fki (in b/s) is the rate of the received data stream at
AFN i. A typical value for the parameter� is 50 nJ/b [10].

2.2 The LMM Rate Allocation Problem
Before we formulate the LMM rate allocation problem, let us re-

visit the maximum capacity problem (with “bias” in rate allocation)
that was described in Section 1. For a network withN AFNs, sup-
pose that the rate of AFNi is gi, and that the initial energy at this
node is given byei (i = 1; 2; � � � ; N ). For a given network lifetime
requirementT (i.e., each AFN must remain alive for at least time
durationT ), the maximum information capacity that the network
can collect can be formulated as the following linear programming
(LP).

MaxCap: Max
PN

i=1 gi
s.t.

fiB +
X

k 6=i

fik �
X

m6=i

fmi = gi (1 � i � N) (4)

X

m6=i

�fmiT+
X

k 6=i

cikfikT+ciBfiBT �ei (1 � i � N) (5)

fik; fiB � 0 (1� i; k�N;k 6= i)

wherefik andfiB are data rates transmitted from AFNi to AFN
k and from AFNi to the base-stationB, respectively. The set of
constraints in (4) are the flow balance equations: they state that,
the total bit rate transmitted by AFNi is equal to the total bit rate
received by AFNi from other AFNs, plus the bit rate generated lo-
cally at AFNi (gi). The set of constraints in (5) are the energy con-
straints: they state that, for a given network lifetime requirementT ,
the energy required in communications (i.e., in transmitting and re-
ceiving all these data) cannot exceed the initial energy provisioning
level.

Note thatfmi, fik, fiB , andgi are variables and thatT is a con-
stant (representing a given network lifetime requirement). MaxCap
is a standard LP formulation that can be solved by a polynomial al-
gorithm [2]. Unfortunately, as we shall see in the numerical results
(Section 5), the solution to this MaxCap problem lends itself into
an extreme bias toward AFNs whose data paths consume the least
amount of power toward the base-station. Consequently, although
the network capacity is maximized over the network lifetimeT ,
the corresponding bit rate allocation among the AFNs (i.e., thegi
values) onlyfavors those AFNs that have this property, while other
AFNs are unfavorably allocated with much smaller (even close to
0) bit rates. As a result, the effectiveness of the network in per-
forming information collection or surveillance could be severely
compromised.

To address this fairness issue, we advocate the so-calledlexico-
graphic max-min(LMM) rate allocation strategy [14] in this pa-
per, which has some similarity to the max-min rate allocation in
data networks [3].4 Under LMM rate allocation, we start with the
objective ofmaximizingthe bit rate forall the nodes until one or
more nodes reach their energy constraint capacities for the given
network lifetime requirement. Given that the first level of the small-
est rate allocated among the nodes is maximized, we continue to
4However, there is significant difference between max-min and
LMM, which we will discuss shortly.
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maximize the second level of rate for the remaining nodes that still
have available energy, and so forth. More formally, denoter =
[r1; r2; � � � ; rN ] as the sorted version (i.e.,r1 � r2 � � � � � rN )
of the rate vectorg = [g1; g2; � � � ; gN ], with gi corresponding to
the rate of nodei. We then have the following definition for an
LMM rate allocation.

DEFINITION 1. (LMM-optimal Rate Allocation)
For a given network lifetime requirementT , a sorted rate vector
r = [r1; r2; � � � ; rN ] yields an LMM-optimal rate allocation if and
only if for any other sorted rate allocation vectorr̂ = [r̂1; r̂2; � � � ; r̂N ]
with r̂1 � r̂2 � � � � � r̂N , there exists ak, 1 � k � N , such that
ri = r̂i for 1 � i � k � 1 andrk > r̂k.

Based on the LMM-optimal definition, we can calculate the first
level optimal rate�1 = r1 easily through the following LP.

Max �1
s.t.

fiB +
X

k 6=i

fik �
X

m6=i

fmi � �1 = 0 (1 � i � N)

X

m6=i

�Tfmi+
X

k 6=i

cikTfik+ciBTfiB�ei (1 � i � N)

fik; fiB � 0 (1� i; k�N;k 6= i)

Although the first level bottleneck rate�1 is easy to obtain, cal-
culating the subsequent bottleneck rates are quite challenging. As
discussed in Section 1, a naive approach that applies an iterative
LP procedure to calculate the desired rate allocations is incorrect.
This is because there is a fundamental difference in the nature of
the LMM rate allocation problem described here and the classical
max-min rate allocation problem in [3]. The LMM rate allocation
problem implicitlycouplesa flow routing problem (i.e., a determi-
nation of thefik andfiB for the entire network), while the classical
max-min rate allocation explicitly assumes that the routes for all
the flows are givena priori and fixed. Moreover, for the LMM rate
allocation problem, starting from the first iteration, there usually
existnon-uniqueflow routing solutions corresponding to the same
maximum rate level. Consequently, each of these flow routing so-
lutions, once chosen, will yielddifferent remaining energy levels
on the nodes for future iterations and so forth, leading to a different
rate vector, which usually does not coincide with the LMM-optimal
rate vector. Therefore, any iterative rate allocation algorithm that
requires energy reservation among the nodes during each iteration
is unlikely to give a correct LMM rate allocation (see Section 5
for numerical example). In the next section, we present an effi-
cient (polynomial time) algorithm to solve the LMM rate allocation
problem correctly without requiring any energy reservation during
each iteration.

3. A SERIAL LP ALGORITHM BASED ON
PARAMETRIC ANALYSIS

3.1 Problem Formulation
To solve the LMM rate allocation problem, we first perform the

following problem formulation. Table 1 lists the notation used in
this paper. Suppose that the sorted rate vectorr = [r1; r2; � � � ; rN ]
with r1 � r2 � � � � � rN is LMM-optimal. To keep track of
distinct rates, we remove all repetitive elements in this vector and

Table 1: Notation

General Notation to the LMM-Rate and LMM-Lifetime problems
N The total number of AFNs in the network
ei The initial energy at AFNi
� The power consumption coefficient for receiving data
cik The power consumption coefficient for transmitting

(or ciB ) data from AFNi to AFN k (or the base-stationB)
n The number of distinct elements in the sorted

LMM-optimal rate/lifetime vector
Si The minimum set of nodes that reach their energy

constraint limits ati-th level
Ŝi The set of all possible AFNs that may reach their

energy constraint limits ati-th level,Si � Ŝi
Vik The total volume from AFNi to AFN k

(or ViB ) (or the base-stationB)
fik The rate from AFNi to AFN k

(or fiB) (or the base-stationB)
x The optimal solution to LMM-Rate/LMM-Lifetime
w The optimal solution to dual problem of LMM-Rate

or LMM-Lifetime
b The right-hand-side (RHS) of LMM-Rate

or LMM-Lifetime
Ii A column vector having a single1 element

corresponding to nodei in Eq. (10) or Eq. (15) and
0 for all other elements

B The columns corresponding to the basic variables in
LMM-Rate/LMM-Lifetime

Z The columns corresponding to the non-basic variables
in LMM-Rate/LMM-Lifetime

cB The parameters in objective function corresponding
to the basic variables of LMM-Rate/LMM-Lifetime

cZ The parameters in objective function corresponding
to the non-basic variables of LMM-Rate
or LMM-Lifetime

xB Part of optimal solution corresponding to the basic
variables of LMM-Rate/LMM-Lifetime

xZ Part of optimal solution corresponding to the
non-basic variables of LMM-Rate/LMM-Lifetime
Symbols used for the LMM-Rate problem

T The network lifetime requirement
gi The local bit rate collected at AFNi
ri Thei-th element in the sorted LMM-optimal rate

vector, wherer1 � r2 � � � � � rN
�i Thei-th rate level in the sorted LMM-optimal rate

vector, i.e.,�1(= r1) < �2 < � � � < �n(= rN )
Æi =�i��i�1 , the difference between�i and�i�1

Symbols used for the LMM-Lifetime problem
gi The rate requirement at AFNi
ti The node lifetime at AFNi
�i Thei-th element in the sorted LMM-optimal

lifetime vector, where�1 � �2 � � � � � �N
�i Thei-th drop point in the sorted LMM-optimal

lifetime vector, i.e.,�1(=r1)<�2< � � �<�n(=rN )
�i =�i��i�1 , the difference between�i and�i�1
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rewrite it as[�1; �2; � � � ; �n] such that�1 < �2 < � � � < �n,
where�1 = r1, �n = rN , andn � N . For each�i, denoteSi,
i = 1; 2; � � � ; n, as the corresponding set of nodes that use up
their energy at this rate. Clearly,

Pn
i=1 jSij = jSj = N , whereS

denotes the set of allN nodes. The key to the LMM rate alloca-
tion problem is to find the correct values�1; �2; � � � ; �n and the
corresponding setS1; S2; � � � ; Sn, respectively.

To formulate this problem into an iterative form, we define�0 =
0 andS0 = ;. Furthermore, denoteÆl = �l � �l�1. Starting with
l = 1 (1 � l � n), we have an iterative optimization problem as
follows.

Max Æl
s.t.

fiB +
X
k 6=i

fik �
X
m6=i

fmi � Æl = �l�1 (i 62
Sl�1
h=0 Sh) (6)

fiB +
X
k 6=i

fik �
X
m6=i

fmi = �h (i 2
Sl�1
h=1 Sh) (7)

X
m6=i

�Tfmi+
X
k 6=i

cikTfik+ciBTfiB�ei (i 62
Sl�1
h=0 Sh) (8)

X
m 6=i

�Tfmi+
X
k 6=i

cikTfik+ciBTfiB=ei (i 2
Sl�1
h=1 Sh) (9)

fik; fiB � 0 (1� i; k�N;k 6= i)

Note that forl = 1, the constraints (7) and (9) do not exist. For
2 � l � n, constraints (7) and (9) are for those nodes that have al-
ready reached their LMM rate allocation during the previousl� 1
iterations. In particular, the set of constraints in (7) say that the
sum of in-coming and local data rates are equal to the out-going
data rates for each node with its LMM-optimal rate�h, 1 � h < l.
The set of constraints in (9) say that for these nodes that have al-
ready reached their LMM-optimal rate, the total energy consumed
for communications has reached their initial energy provisioning
at these nodes. On the other hand, the constraints in (6) and (8)
are for the remaining nodes that have not yet reached their LMM-
optimal rate. Specifically, the set of constraints in (6) state that,
for these nodes that have not yet reached their energy constraint
levels, the sum of in-coming and local data rates are equal to the
out-going data rates. Note that the objective function is to maxi-
mize the additional rateÆl for these nodes. Furthermore, for these
nodes, the set of constrains in (8) state that the total energy con-
sumed for communications should be upper bounded by the initial
energy provisioning.

To facilitate our later discussion on duality results in Section 4,
we further re-formulate above LP. In particular, we multiply both
sides of (6) and (7) byT (which is a constant representing a given
network lifetime requirement) and denoteViB = fiBT , Vik =
fikT , Vmi = fmiT . Intuitively, Vik andViB represent the bit
volume that is transferred from nodei to k and from nodei to B,
respectively, during lifetimeT . We obtain the following problem
formulation.

LMM-Rate: Max Æl
s.t.

ViB+
X
k 6=i

Vik�
X
m6=i

Vmi�ÆlT =�l�1T (i 62
Sl�1
h=1 Sh) (10)

ViB +
X
k 6=i

Vik �
X
m6=i

Vmi = �hT (i 2
Sl�1
h=1 Sh)

X
m6=i

�Vmi +
X
k 6=i

cikVik + ciBViB � ei (i 62
Sl�1
h=1 Sh)

X
m6=i

�Vmi +
X
k 6=i

cikVik + ciBViB = ei (i 2
Sl�1
h=1 Sh)

Vik; ViB � 0 (1� i; k�N;k 6= i)

The above LP formulation can be rewritten in the formMax cx,
s.t. Ax = b andx � 0, the dual problem for which isMin wb, s.t.
wA � c with w being unrestricted in sign [2]. Both can be solved
by standard LP techniques (e.g., [2]). Although a solution to the
LMM-Rate problem gives the optimal solution forÆl at iterationl,
it remains to determine theminimumset of nodes corresponding to
thisÆl, which is the key difficulty in the LMM rate allocation prob-
lem. In the rest of this section, we exploit the parametric analysis
technique [2] to determine the minimum node set at each rate.

3.2 Minimum Node Set Determination
DenoteŜl (Ŝl 6= ;) the set of nodes for which the constraints

(8) arebindingat thel-th iteration for the LMM-Rate problem,i.e.,
Ŝl include all the nodes that achieveequality in (8) at iterationl.
Although it is certain that at least one of the nodes inŜl belong to
Sl (the minimum node set for rate�l), for other nodes in̂Sl, it may
still be possible to further increase their rates under alternative flow
routing solutions. In other words, ifjŜlj = 1, then we must have
Sl = Ŝl; otherwise, we must determine theminimumnode setSl
(Sl � Ŝl) that achieves the LMM-optimal rate allocation.

We find that the so-calledparametric analysis(PA) technique [2]
is a powerful technique to address this problem. The main idea of
PA is to investigate how an infinitesimal perturbation on some com-
ponents of the LMM-Rate problem can affect the objective func-
tion. In particular, considering a small increase on the right-hand-
side (RHS) of (10),i.e.,changingbi to bi + �i, where�i > 0, node

i belongs to the minimum node setSl if and only if @
+Æl
@�i

(0) < 0.
That is, nodei belongs to the minimum node setSl if and only if a
small increase in nodei’s rate (in terms of total volume generated
at nodei) leads to adecreasein the objective function.

To compare@
+Æl
@�i

(0) with 0, we apply an important duality re-
sults from LP theory. Ifx andw are the respective optimal solution
to the primal and dual problems, then based on the parametric du-
ality property [2], we have

@+Æl

@�i
(0) =

@+(cx)

@bi
(bi) � wi : (11)

Recall that thesewi can be easily obtained at the same time when
we solve the primal LP problem. Note that by the nature of the
problem, we havewi � 0 for an optimal dual solution. Therefore,
if we find thatwi < 0, then we can determine immediately that
node i must belong to the minimum node setSl. On the other

hand, if we find thatwi = 0, it is not clear whether@
+Æl
@�i

(0) is
strictly negative or0 and further analysis is thus needed.

For each nodei with wi = 0, we must perform a complete PA to
see whether a perturbation (i.e., tiny increase) on the RHS of (10)
will result in any change in the objective function. If there is no
change, then we can determine that nodei does not belong to the
minimum node setSl; otherwise, nodei belongs toSl. Assume
that the optimal solution is(xB; xZ), wherexB andxZ denote the
set of basic and non-basic variables;B andZ denote the columns
corresponding to the basic and non-basic variables.cB andcZ de-
note the objective function coefficient vectors for the basic and non-
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basic variables; andq denotes the objective value. Then we have
the corresponding canonical equations as follows

q + (ctBB
�1Z � ctZ )xZ = ctBB

�1b ;

xB + (B�1Z)xZ = B�1b :

If b is replaced byb+ �iIi, where the column vectorIi has a single
1 element corresponding to nodei in the set of constraints (10)
while all the other elements are0, then the only change due to
this perturbation is thatB�1b will be replaced byB�1(b + �iIi).
Consequently, the objective value for the current basis becomes
ctBB

�1(b + �iIi). As long asB�1(b + �iIi) is nonnegative, the
current basis remains optimal. Denote�b = B�1b, B�1i = B�1Ii,
and let�̂i be an upper bound for�i such that the current basis re-
mains optimal. We have

�̂i = min
j

(
�bj

�B�1ij
: B�1ij < 0

)
: (12)

If �̂i > 0, the optimal objective value varies according toctBB
�1(b+

�iIi) for 0 < �i � �̂i. Sincew = ctBB
�1 andwi = 0, we have

ctBB
�1Ii = wi = 0. Thus, the objective value willnot change for

�i 2 (0; �̂i], and consequently, the rate for nodei can be increased
beyond the current�l value. That is, nodei does not belong to the
minimum node setSl.

For most problems in practice, the above procedure is sufficient
to determine whether or not nodei belongs to the minimum node
setSl for all i 2 Ŝl. But in the rare event wherê�i = 0, the prob-
lem is degenerate. To develop a polynomial-time algorithm, denote
Wl as the set of all nodes withwi < 0 andUl as the set of all
nodes withwi = 0 and�̂i = 0. Then we solve the following LP to
maximize the slack variables (SV) for nodes inUl.

MSV: Max
P

i2Ul
�i

s.t.

ViB +
X
k 6=i

Vik �
X
m 6=i

Vmi � �iT = �lT (i 2 Ul)

ViB +
X
k 6=i

Vik �
X
m6=i

Vmi = �hT (i 2
Sl�1
h=1Sh)

ViB +
X
k 6=i

Vik �
X
m6=i

Vmi = �lT (i 62 Ul
Sl�1
h=1 Sh)

X
m 6=i

�Vmi +
X
k 6=i

cikVik + ciBViB = ei (i2Ul
S
Wl

Sl�1
h=1Sh)

X
m 6=i

�Vmi +
X
k 6=i

cikVik + ciBViB � ei (i 62Ul
S
Wl

Sl�1
h=1Sh)

Vik; ViB; �i � 0 (1 � i; k � N; k 6= i)

If the optimal objective function is0, then we conclude that no node
in Ul can have a positive�i. That is, these nodes should all belong
toSl and we haveSl = Wl+Ul. On the other hand, if the optimal
objective function is positive, then some nodesi 2 Ul must have
positive �i values and these nodes therefore do not belong to the
minimum node setSl. Consequently, we can remove these nodes
from Ul. If Ul 6= ;, we move on to solve another MSV. This
procedure will terminate when the optimal objective function value
is 0 orUl = ;.

To ensure that MSV determinate the minimum node set correctly,
we need the following lemma. The proof is give in [11].

LEMMA 1. (The Minimum Node Set is Unique.)
The minimum node set for each rate level under the LMM-optimal

rate allocation is unique.

In a nutshell, the complete PA procedure to determine whether a
nodei 2 Ŝl belongs to the minimum node setSl can be summa-
rized as follows.

ALGORITHM 1. (Minimum Node Set Determination with PA)

1. Initialize setsWl = ; andUl = ;.

2. For each nodei 2 Ŝl,

(a) If wi < 0, thenWl = Wl [ fig.

(b) Otherwise (i.e.,wi = 0), compute�b = B�1b, B�1i =
B�1Ii, and�̂i according to (12).
If �̂i = 0, thenUl = Ul + fig.

3. If Ul = ;, thenSl = Wl and stop;
else set up the MSV problem and solve it.

4. If the optimal objective value in MSV is0, thenSl = Wl+Ul
and stop; else remove all nodesi with �i > 0 from the setUl
and go to Step 3.

3.3 Optimal Flow Routing for LMM Rate
Allocation

Once we solve the LMM rate allocation problem, the correspond-
ing optimal flow routing can be easily obtained by dividing the total
bit volume on each link (Vik or ViB) by T , i.e.,

fik =
Vik

T
; (13)

fiB =
ViB

T
; (14)

whereT is the given network lifetime requirement. Although the
LMM-optimal rate allocation is unique, it is important to note that
the corresponding optimal flow routing solution isnotunique. This
is because upon the completion of the LMM rate allocation prob-
lem (i.e., upon finding[�1; �2; � � � ; �n]), there usually exist non-
unique bit volume solutions (Vik andViB values) corresponding to
the same LMM-optimal rate allocation. This result is summarized
in the following lemma.

LEMMA 2. The optimal flow routing solution corresponding
to the LMM rate allocation may not be unique.

3.4 Complexity Analysis
We now analyze the complexity of the SLP-PA algorithm in solv-

ing the LMM rate allocation problem. First we consider the com-
plexity of finding each node’s rate and the total bit volume transmit-
ted along each link. At each stage, we solve an LP problem, both
its primal and dual have a complexity ofO(nA

3L) [2], wherenA
is the number of constraints or variables in the problem, whichever
is larger, andL is the number of binary bits required to store the
data. Since the number of variables isO(N2) and is larger than the
number of constraints (which isO(N)), the complexity of solving
the LP isO(N6L). After solving an LP at each stage, we need to
determine whether or not a node that just reached its energy bind-
ing constraint belongs to the minimum node set for this stage. Note
thatw and b̂ = B�1b can be readily obtained when we solve the
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primal LP problem. To determine whether a node, sayi, belongs
to the minimum node set, we examinewi. If wi < 0, then node
i belongs to the minimum node set and the complexity isO(1).
On the other hand, ifwi = 0, we need to further examine whether
�̂i > 0 or not. Based on (12), the computation for�̂i isO(N). So at
each stage, the complexity in PA for each node isO(N). The total
complexity of PA at each stage for the node set is thusjŜlj �O(N)
or O(N � N) = O(N2). Thus, the complexity at each stage is
O(N6L) + O(N2) = O(N6L). As there are at mostN stages,
the overall complexity isO(N7L).

We now analyze the complexity for the degenerate case. Upon
the completion of Step 2 in Algorithm 1, we denoteU(0)

l = Ul.

Since we need to solve at mostjU(0)
l � Slj LPs, the complexity

is jU (0)
l � Slj � O(N6L) or O(N � N6L) = O(N7L). Hence,

the complexity at each stage isO(N6L) + O(N2) + O(N7L) =
O(N7L). Since there are at mostN stages, the overall complexity
isO(N8L).

The complexity in finding the optimal flow routing is bounded by
the number of radio links in the network, which isO(N2). Hence
the overall complexity isO(N7L) + O(N2) = O(N7L) for the
non-degenerate case andO(N8L) + O(N2) = O(N8L) for the
degenerate case. Under either case, the computational complexity
is polynomial.5

4. EXTENSION TO LMM NODE LIFETIME
PROBLEM AND DUALITY THEOREM

In this section, we present two important extensions for our re-
sults in Section 3. First, we show that our SLP-PA algorithm can
be used to solve the maximum node lifetime curve problem in [6],
which we define as the LMM node lifetime problem. We show that
the SLP-PA algorithm is a much more efficient approach than the
one proposed in [6]. Second, we show that there exists an elegant
duality relationship between the LMM rate allocation problem and
the LMM node lifetime problem. Consequently, important results
and insights can be drawn by simply solving one of the two prob-
lems.

4.1 The LMM-optimal Node Lifetime
Problem and Solution

The LMM node lifetime problem considers the following sce-
nario. For a network withN AFNs, with a given local bit rategi
(fixed) and initial energyei for AFN i, i = 1; 2; � � � ; N , how can
we maximize the network lifetime forall AFNs in the network? In
other words, the LMM node lifetime problem not only considers
how to maximize the network lifetime until the first AFN runs out
of energy, but also the time for all the AFNs in the network.

More formally, for each AFNi, denote the corresponding life-
time asti, i = 1; 2; � � � ; N . Note thatgi are fixed here, whileti
are the optimization variables, which are different from the LMM
rate allocation problem that we studied in the last section. Denote
[�1; �2; � � � ; �N ] as thesortedsequence of theti values in nonde-
creasing order. Then LMM-optimal node lifetime can be defined
as follows.

DEFINITION 2. (LMM-optimal Node Lifetime)
A sorted node lifetime vector[�1; �2; � � � ; �N ] with �1 � �2 �

5Note that our analysis here give a loose upper bound for time com-
plexity. In practice, the actual running time for LP implementation
is much faster than its upper bound.

� � � � �N is LMM-optimal if and only if for any other sorted node
lifetime vector[�̂1; �̂2; � � � ; �̂N ] with �̂1 � �̂2 � � � � � �̂N , there
exists ak, 1 � k � N , such that�i = �̂i for 1 � i � k � 1 and
�k > �̂k.

Solution. It should be clear that, under the LMM-optimal node
lifetime objective, we mustmaximizethe time until a set of nodes
use up their energy (which is also called adrop point in [6]) while
minimizingthe number of nodes that drain up their energy at each
drop point. We now show that the SLP-PA algorithm developed for
the LMM rate allocation problem can be directly applied to solve
the LMM node lifetime problem.

Suppose that[�1; �2; � � � ; �N ] with �1 � �2 � � � � � �N is
LMM-optimal. To keep track ofdistinct node lifetimes (or drop
points) in this vector, we remove all repetitive elements in the vec-
tor and rewrite it as[�1; �2; � � � ; �n] such that�1 < �2 < � � � <
�n, where�1 = �1, �n = �N , andn � N . Corresponding to
these drop points, denoteS1; S2; � � � ; Sn as the sets of nodes that
drain up their energy at drop points�1; �2; � � � ; �n, respectively.
Then jS1j + jS2j + � � � + jSnj = jSj = N , whereS denotes
the set of allN AFNs in the network. The problem is to find the
LMM-optimal values of�1; �2; � � � ; �n and the corresponding
setsS1; S2; � � � ; Sn.

Similar to the LMM rate allocation problem, the LMM node life-
time problem can be formulated as an iterative optimization prob-
lem as follows. Denote�0 = 0, S0 = ;, and�l = �l � �l�1.
Starting froml = 1, we solve the following LP iteratively.

LMM-Lifetime: Max �l
s.t.

ViB+
X
k 6=i

Vik�
X
m6=i

Vmi��lgi=�l�1gi (i 62
Sl�1
h=0 Sh) (15)

ViB +
X
k 6=i

Vik �
X
m6=i

Vmi = �hgi (i 2
Sl�1
h=0 Sh)

X
m6=i

�Vmi +
X
k 6=i

cikVik + ciBViB � ei (i 62
Sl�1
h=0 Sh)

X
m6=i

�Vmi +
X
k 6=i

cikVik + ciBViB = ei (i 2
Sl�1
h=0 Sh)

Vik; ViB; �l � 0 (1� i; k�N;k 6= i)

Comparing the LMM-Lifetime problem here to the LMM-Rate
problem that we studied in Section 3.1, we find that they are exactly
of the same form. The only differences are that under the LMM-
Lifetime problem, the local bit ratesgi are constants and the node
lifetimes�i are variables (subject to optimization), while under the
LMM-Rate problem, thegi are variables (subject to optimization)
and the node lifetimes are all identical (T ), i = 1; 2; � � � ; N . Since
the mathematical formulation for the two problems are identical,
we can apply the SLP-PA algorithm to solve the LMM node life-
time problem as well.

The only issue that we need to be concerned about is the optimal
flow routing solution corresponding to the LMM-optimal lifetime
vector. The optimal flow routing solution here is not as simple as
that for the LMM rate allocation problem, which merely involves a
simple division (see Eqs. (13) and (14)). We refer readers to [11]
for anO(N4) algorithm to obtain an optimal flow routing solution
for the LMM-optimal lifetime vector. Similar to Lemma 2, the opti-
mal flow routing solution corresponding to the LMM node lifetime
problem may not be unique.
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Complexity Comparison. In [6], Brown et al. studied the LMM
node lifetime problem under the so-called “maximum node life-
time curve” problem. They also made an important contribution
by developing the first procedure to solve this problem correctly.
A key step in their procedure is the use ofmultiple independent
LP calculations to determine the minimum node set at each drop
point, which we callserial LP with slack variable analysis(SLP-
SV). Although this approach solves the LMM node lifetime prob-
lem correctly, its computational complexity (potentially exponen-
tial) remains an issue to be resolved.

On the other hand, the SLP-PA algorithm developed in this paper
is strictly polynomial and is computationally more efficient than the
SLP-SV approach. To understand the difference between the two,
we take a closer look on the computational complexity of the SLP-
SV approach in [6]. First, SLP-SV needs to keep track of eachsub-
flow along its route from the source node toward the base-station.
Such a flow-based (or more precisely, sub-flow based) approach
could make the size of the LP coefficient matrix exponential, which
leads to an exponential-time algorithm [2].6

Second, even if a link-based LP formulation such as ours is adopted
in [6], the computational efficiency of the SV-based approach is still
worse than the SLP-PA algorithm. This is because at each stage,
the SV-based approach must solve severaladditional LPs (up to
jŜl � Slj) to determineSl, which is in contrast to the simpler PA
under the SLP-PA algorithm (O(N2)). Even for the degenerate
case, the number of additional LPs under the SLP-PA algorithm is
at mostjU (0)

l � Slj,7 which is still no more thanjŜl � Slj.
Finally, we discuss a hybrid link-flow approach mentioned in [6].

In this approach, link-based formulations are used for sub-flows.
This leads to a much fewer number of variables than those for the
flow-based approach. But this approach still requires sub-flow ac-
counting and results in an order of magnitude more constraints than
the link-based approach in SLP-PA. Although this approach solves
the LMM node lifetime problem in polynomial-time (e.g.,by using
interior point methods [2]), the overall complexity is still orders of
magnitude higher than that under the SLP-PA algorithm. Further-
more, the burden of solving additional LPs to determine whether a
node belongs to the minimum node set still remains.

4.2 Duality Theorem
In this section, we present an elegant and powerful result show-

ing that there is an underlying duality relationship between the
LMM rate allocation problem and the LMM node lifetime problem.
Consequently, the solutions and insights obtained for one problem
can be “mirrored” to the other problem.

To start with, we denotePR as the LMM rate allocation prob-
lem where we haveN AFNs in the network and all nodes have
a common given lifetime requirementT (constant). Denotegi
as the LMM-optimal rate allocation for nodei underPR, i =
1; 2; � � � ; N . Similarly, we denotePL as the LMM node life-
time problem where all nodes have the same local bit rateR (con-
stant). Denoteti as the LMM node lifetime for nodei underPL,
i = 1; 2; � � � ; N . Then the following theorem shows how the so-
lution to one problem can be used to obtain the solution to the other.

6Incidentally, the revised simplex method proposed in [6] is not as
efficient as the polynomial-time algorithm described in [2] and is
itself exponential.
7Recall thatU (0)

l denotesUl upon the completion of Step 2 in Al-
gorithm 1.

Table 2: Duality relationship between LMM rate allocation
problem PR and LMM node lifetime problem PL.

LMM rate allocation (PR) LMM node lifetime (PL)
gi (optimization variable) gi = R (constant)

ti = T (constant) ti (optimization variable)
Total bit volume at AFNi: gi � T = ti �R

THEOREM 1. (Duality Theorem)
For a given node lifetime requirementT for all nodes under prob-
lemPR and a given local bit rateR for all nodes under problem
PL, we have the following relationship between the solutions to
the LMM rate allocation problemPR and the LMM node lifetime
problemPL.
(i) Suppose that we have solved problemPR and obtained the
LMM-optimal rate allocationgi for each nodei (i = 1; 2; � � � ; N ).
Then underPL, the LMM node lifetimeti for nodei is

ti =
giT

R
: (16)

(ii) Suppose that we have solved problemPL and obtained the
LMM-optimal node lifetimeti for each nodei (i = 1; 2; � � � ; N ).
Then underPR, the LMM rate allocationgi for nodei is

gi =
tiR

T
: (17)

Table 2 shows the duality relationship between solutions to prob-
lemsPR andPL.
Proof. We prove (i) and (ii) in Theorem 1 separately.
(i) We organize our proof into two parts. First, we show thatti are
feasible node lifetimes in terms of flow balance and energy con-
straints on each nodei (i = 1; 2; � � � ; N ). Then we show that it is
indeed the LMM-optimal node lifetime.
Feasibility. Since we have obtained the solution to problemPR,
we have one feasible flow routing solution for sending bit streams
gi, i = 1; 2; � � � ; N , to the base-station. Under problemPR, the bit
volumes (Vij andViB values) must meet the following equalities
under the LMM-optimal rate allocation:

ViB +
X

1�k�N;k 6=i

Vik �
X

1�m�N;m6=i

Vmi = giT ;

X
1�m�N;m6=i

�Vmi +
X

1�k�N;k 6=i

cikVik + ciBViB = ei :

Now replacinggiT by tiR, we see that thesamebit volume so-
lution underPR yields a feasible bit volume solution to the node
lifetime problem underPL. Consequently, we can obtain the flow
routing solution to problemPL under the bit volume solution to
problemPL [11] and this verifies thatti, i = 1; 2; � � � ; N , is a
feasible solution to problemPL.
Optimality. To prove that theti, i = 1; 2; � � � ; N , obtained
via (16) are indeed LMM-optimal for problemPL, we sortgi,
i = 1; 2; � � � ; N , under problemPR in non-decreasing order and
denote it as[r1; r2; � � � ; rN ]. We also introduce a node indexI =
[i1; i2; � � � ; iN ] for [r1; r2; � � � ; rN ]. For example,i3 = 7 means
thatr3 actually corresponds to the rate of AFN7, i.e.,r3 = g7.

Sinceti is proportional togi through the relationship (ti = T
R
�

gi), listing ti, i = 1; 2; � � � ; N , according toI = [i1; i2; � � � ; iN ]
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Table 3: Node coordinates for the 10-AFN network.

i (xi; yi) (in meters) i (xi; yi) (in meters)
1 (400, -320) 6 (-500, 100)
2 (300, 440) 7 (-400, 0)
3 (-300, -420) 8 (420, 120)
4 (320, -100) 9 (200, 140)
5 (-120, 340) 10 (220, -340)

will also yield asorted(in non-decreasingorder) lifetime list, de-
noted as[�1; �2; � � � ; �N ]. We now prove that[�1; �2; � � � ; �N ] is
indeed LMM-optimal for problemPL.

Our proof is based on contradiction. Suppose that[�1; �2; � � � ; �N ]
is not LMM-optimal for problemPL. Assume that the LMM-
optimal lifetime vector to problemPL is [�̂1; �̂2; � � � ; �̂N ] (sorted
in non-decreasing order) with the corresponding node index being
Î = [̂i1; î2; � � � ; îN ]. Then, by Definition 2, there exists ak such
that �̂j = �j for 1 � j � k � 1 and�̂k > �k.

We now claim that if̂ti, i = 1; 2; � � � ; N , is a feasible solution
to problemPL, thenĝi obtained viâgi =

t̂iR

T
, i = 1; 2; � � � ; N ,

is also a feasible solution to problemPR. The proof for this claim
follows identically as above. Using this result, we can obtain a
corresponding feasible solution[r̂1; r̂2; � � � ; r̂N ] with r̂i = �̂iR

T

and the node index̂I for problemPR. Hence we havêrj =
�̂jR

T
=

�jR

T
= rj for 1 � j � k � 1 but r̂k = �̂kR

T
> �kR

T
= rk.

That is, [r1; r2; � � � ; rN ] is not LMM-optimal and this leads to a
contradiction.

(ii) The proof for this part is similar to the above proof for (i) and
is thus omitted here. 2

This duality relationship can offer important insights on system
performance issues, in addition to providing solutions to the LMM
rate allocation and the LMM node lifetime problems. For exam-
ple, in Section 1, we pointed out the potential bias (fairness) issue
associated with the network capacity maximization objective (i.e.,
sum of rates from all nodes). It is interesting to see that there is
a dual fairness issue under the node lifetime problem. In particu-
lar, the objective of maximizing thesumof node lifetimes among
all nodes also leads to a bias (or fairness) problem because this
objective would onlyfavor those nodes that consume energy at a
small rate. As a result, certain nodes will have much larger life-
times while some other nodes will be penalized with much smaller
lifetimes.

5. NUMERICAL INVESTIGATION
In this section, we use numerical results to illustrate our SLP-PA

algorithm to the LMM rate allocation problem and compare it with
other approaches. We also use numerical results to illustrate the
duality relationship between the LMM rate allocation problem and
the LMM node lifetime problem.

Due to space limitation, we will show results for a network of10
AFNs. More results for network of larger size are available in [11].
In this 10-AFN network, the base-stationB is located at the origin
while the locations for the10 AFNs are randomly generated over a
1000m x 1000m square area (see Fig. 2 and Table 3).

Y (m)

0

500

500

−500

500

X (m)

Figure 2: Network topology used in the numerical investiga-
tion.

Table 4: Rate allocation under the SLP-PA, SLP, and MaxCap
approaches for the 10-AFN Network.

i (Sorted SLP-PA SLP MaxCap
Node ri AFN ri AFN ri AFN
Index) (kb/s) (kb/s) (kb/s)

1 0.1023 3 0.1023 1 0.0553 2
2 0.1023 6 0.1023 2 0.0627 3
3 0.1023 7 0.1023 3 0.0646 1
4 0.1536 5 0.1023 6 0.0658 6
5 0.2941 1 0.1023 7 0.1222 8
6 0.2941 2 0.1536 5 0.1653 10
7 0.2941 4 0.1536 8 0.1736 7
8 0.2941 8 0.1536 10 0.2628 5
9 0.2941 9 0.6563 4 0.3513 4

10 0.2941 10 0.6563 9 1.2398 9

5.1 SLP-PA Algorithm to the LMM Rate
Allocation Problem

We will compare SLP-PA with the naive approach (see Sec-
tion 2.2) that uses a serial LP “blindly” to solve the LMM rate al-
location problem. We call this naive approach Serial LP(SLP). As
discussed in Section 2.2, the naive SLP approach requires energy
reservation at each stage and will not give the correct final solution
to the LMM rate allocation problem.

We will also compare our SLP-PA algorithm with the Maximum-
Capacity(MaxCap) approach (see Section 2.2). As discussed in
the beginning of Section 2.2, the rate allocation under the MaxCap
approach can be extremely biased and favors only those AFNs that
consume the least power along their data paths toward the base-
station.

We assume that the initial energy at each AFN is 50 kJ and that
under the LMM rate allocation problem, the network lifetime re-
quirement is 100 days. The power consumption behaviors for trans-
mission and reception are defined in (1) and (3), respectively.

Table 4 shows the rate allocation for the AFNs under each ap-
proach, which is also plotted in Fig. 3. The “sorted node index”
corresponds the sorted rates among the AFNs in non-decreasing
order.

Clearly, among the three rate allocation approaches, only the
rate allocation under SLP-PA meets the LMM-optimal rate allo-
cation definition (see Definition 1) when compared with the rate
allocation under SLP and MaxCap. Specifically, comparing SLP-
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Figure 3: Rate allocation under the SLP-PA, SLP, and MaxCap
approaches for a 10-AFN network .

PA with SLP, we have rSLP-PA
1 = rSLP

1 , rSLP-PA
2 = rSLP

2 ,

rSLP-PA
3 = rSLP

3 , and rSLP-PA
4 > rSLP

4 ; comparing SLP-PA

with MaxCap, we have rSLP-PA
1 > r

MaxCap
1 .

We also observe, as expected, a severe bias in the rate allocation
under the MaxCap approach. In particular, r10 alone accounts for
over 48% of the sum of total rates among all the AFNs. Comparing

the three approaches, we have rSLP-PA
1 = rSLP

1 > r
MaxCap
1

and rSLP-PA
10 < rSLP

10 < r
MaxCap
10 . In other words, the rate

allocation vector under the SLP-PA algorithm has the smallest rate
difference between the smallest rate (r1) and the largest rate (r10),
i.e., r10 � r1, among the three approaches. In addition, although

rSLP-PA
1 = rSLP

1 for the first level rate allocation, the minimum

node set for rSLP-PA
1 is smaller than the minimum node set for

rSLP
1 , i.e., jSSLP-PA

1 j = 3 < jSSLP
1 j = 5. This confirms that the

naive SLP approach cannot offer the correct solution to the LMM
rate allocation problem.

5.2 Duality Results
We now use numerical results to verify the duality relationship

between the LMM rate allocation problem (PR) and the LMM
node lifetime problem (PL) (see Section 4.2). Again, we use the
10-AFN network configurations in Fig. 2. The coordinates for each
AFN under the 10-AFN network are listed in Table 3. We assume
that the initial energy at each AFN is 50 kJ and that the network
lifetime requirement under the LMM rate allocation problem is
T = 100 days. Under PL, we assume the local bit rate for all
AFNs are R = 0:2 kb/s.

To verify the duality relationship (Theorem 1), we perform the
following calculations. First, we solve the LMM rate allocation
problem (PR) and the LMM node lifetime problem (PL) inde-
pendentlywith the above initial conditions using the SLP-PA algo-
rithm. Consequently, we obtain the LMM-optimal rate allocation
(gi for each AFN i) under PR and the LMM-optimal node lifetime
(ti for each AFN i) under PL. Then we compute T � gi and R � ti
separately for each AFN i and examine if they are equal to each
other.

The results for the LMM-optimal rate allocation (gi, i = 1; 2; � � � ;
10) and the LMM-optimal node lifetime (ti, i = 1; 2; � � � ; 10) for
the 10-AFN network are shown in Table 5. We find that T � gi and
R � ti are exactly equal for all AFNs, precisely as we would expect
under Theorem 1.

Table 5: Numerical results verifying the duality relationship T �
gi = R � ti between the LMM rate allocation problem (PR) and
the LMM node lifetime problem (PL) for the 10-AFN network.

AFN PR (T = 100 days) PL (R = 0:2 kb/s)
gi T � gi ti R � ti

1 0.2941 29.41 147.07 29.41
2 0.2941 29.41 147.07 29.41
3 0.1023 10.23 51.17 10.23
4 0.2941 29.41 147.07 29.41
5 0.1536 15.36 76.79 15.36
6 0.1023 10.23 51.17 10.23
7 0.1023 10.23 51.17 10.23
8 0.2941 29.41 147.07 29.41
9 0.2941 29.41 147.07 29.41
10 0.2941 29.41 147.07 29.41

6. RELATED WORK
Due to energy constraints in wireless sensor networks, there has

been active research on exploring the performance limits of such
networks. These performance limits include, among others, net-
work capacityand network lifetime. Network capacity typically
refers to the maximum amount of bit volume that can be success-
fully delivered to the base-station (“sink node” ) by all the nodes
in the network, where network lifetime refers to the maximum time
that the nodes in the network remain alive before one or more nodes
deplete their energy.

The network capacity problem and network lifetime problem
have so far been studied disjointly in the literature. For example, in
[12], the problem of how to maximize network capacity via rout-
ing was studied. While, in many other efforts (see, e.g., [4, 5, 8,
13, 22]), the focus was on how to maximize the time until the first
node drains up its energy.

In this paper, we study the important overarching problem that
considers both network capacity and network lifetime. Under the
LMM rate allocation problem, we studied how to maximize rate
allocations for all the nodes in the network under a given network
lifetime requirement. Under the LMM node lifetime problem, we
studied how to maximize the lifetime for all nodes when the lo-
cal bit rate for each node is given a priori. The LMM rate allo-
cation criterion effectively mitigates the unfairness issue when the
objective is to maximize the total bit volume generated by the net-
work. Although the LMM rate allocation is somewhat similar to
the classical max-min strategy [3], there is a fundamental differ-
ence between the two. In particular, the LMM rate allocation prob-
lem implicitly embeds (or couples) a flow routing problem within
rate allocation, while under the classical max-min rate allocation,
there is no routing problem involved since the routes for all flows
are fixed. Due to this coupling of flow routing and rate allocation, a
solution approach (i.e., SLP-PA) to the LMM rate allocation prob-
lem is much more challenging than that for the classical max-min.

In [20], Srinivasan et al. applied game theory and Nash equi-
librium among the nodes to forward packets such that the total
throughput (capacity) can achieve an optimal operating point sub-
ject to a common lifetime requirement on all nodes. However, the
fairness issue in information collection was not considered. The
most relevant work to ours is by Brown et al. [6], which has been
discussed in detail in Section 4.1.
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7. CONCLUSIONS
In this paper, we investigated the important problem of rate allo-

cation for wireless sensor networks under a given network lifetime
requirement. Since the objective of maximizing the sum of rates
of all nodes can lead to a severe bias in rate allocation among the
nodes, we advocate the use of lexicographical max-min(LMM)
rate allocation for all nodes in the network. To calculate the LMM-
optimal rate vector, we developed a polynomial-time algorithm by
exploiting the parametric analysis(PA) technique from linear pro-
gramming (LP), which we called serial LP with Parametric Analy-
sis (SLP-PA). Furthermore, we showed that the SLP-PA algorithm
can also be employed to address the maximum node lifetime curve
problem and that the SLP-PA algorithm is much more efficient than
existing techniques. More importantly, we discovered a simply and
elegant duality relationship between the LMM rate allocation prob-
lem and LMM node lifetime problem, which enable us to develop
solutions and insights on both problems by solving any one of the
two problems. Our results in this paper offer some important un-
derstanding on network capacity and network lifetime problems for
energy-constrained wireless sensor networks.

Our efforts in this paper have been centered on developing cen-
tralized theory on the LMM rate allocation problem and its rela-
tionship to the LMM node lifetime problem. This understanding is
essential to further research on distributed implementations, which
are currently underway and the results of which will be reported in
a separate paper.
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