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ABSTRACT
5G New Radio (NR) is designed to operate under a broad
range of frequency spectrum and to support new applications
with extremely low latency. To support its diverse operating
conditions, a set of different OFDM numerologies has been
defined in the standards body. Under this numerology, it
is necessary to perform scheduling with a time resolution
of ∼100 µs. This requirement poses a new challenge that
does not exist in LTE and cannot be supported by any exist-
ing LTE schedulers. In this paper, we present the design of
GPF – a GPU-based proportional fair (PF) scheduler that can
meet the ∼100 µs time requirement. The key ideas include
decomposing the scheduling problem into a large number of
small and independent sub-problems and selecting a subset
of sub-problems from the most promising search space to
fit into a GPU platform. By implementing GPF on an off-
the-shelf Nvidia Quadro P6000 GPU, we show that GPF is
able to achieve near-optimal performance while meeting the
∼100 µs time requirement. GPF represents the first successful
design of a GPU-based PF scheduler that can meet the new
time requirement in 5G NR.

CCS CONCEPTS
• Networks→Mobile Networks;

KEYWORDS
5G NR, optimization, real-time, GPU, resource scheduling.

1 INTRODUCTION
As the next-generation cellular communication technology,
5G New Radio (NR) aims to cover a wide range of service
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cases, including broadband human-oriented communications,
time-sensitive applications with ultra-low latency, and mas-
sive connectivity for Internet of Things [4]. With its broad
range of operating frequencies from sub-GHz to 100 GHz
[8, 9], the channel coherence time for NR varies greatly.1
Compared to LTE, which typically operates on bands lower
than 3 GHz [15] and with a coherence time over 1 ms, NR
is likely to operate on higher frequency range (e.g., 3 to 6
GHz), with much shorter coherence time (e.g., ∼200s µs).
Further, from application’s perspective, 5G NR is expected
to support applications with ultra-low latency [12] (e.g., aug-
mented/virtual reality [16, 17], autonomous vehicles [18]),
which may require millisecond or even sub-millisecond scale
delay or response time.
With such diverse service cases and channel conditions,

the air interface design of NR must be much more flexible
and scalable than that of LTE [1]. To address such needs, a
number of different OFDM numerologies are defined for NR
[6], allowing a wide range of frequency and time granulari-
ties for data transmission (see Table 1). Instead of a single
transmission time interval (TTI) setting of 1 ms as for LTE,
NR allows 4 numerologies (0, 1, 2, 3) for data transmission
[10],2 with TTI varying from 1 ms to 125 µs [5]. In particular,
numerology 3 allows NR to cope with extremely short coher-
ence time and to meet the stringent requirement in ultra-low
latency applications, where the scheduling resolution is ∼100
µs.
But the new ∼100 µs time requirement also poses a new

technical challenge to the design of an NR scheduler. To con-
cretize our discussion, we use the most popular proportional-
fair (PF) scheduling as an example [25–28]. Within each
scheduling time interval (i.e., a TTI), a PF scheduler needs to
decide how to allocate frequency-time resource blocks (RBs)
to users and determine modulation and coding scheme (MCS)
for each user. The objective of a PF scheduler is to maximize
the sum of logarithmic (long-term) average data rates of all
users. An important constraint is that each user can only
use one MCS (from a set of allowed MCSs) across all RBs

1 A widely-used definition of coherence time is given by Tc = 9/16π fm,
where fm = v/λ is the maximum Doppler shift, v is the user speed and λ
is the carrier wave length [19]. For instance, with v = 120 km/h, on 6 GHz
spectrum we have Tc ≈ 260 µs.
2Numerology 4 is used for control signaling.

https://doi.org/10.1145/3241539.3241552


that are allocated to her. This problem is found to be NP-
hard [26–28] and has been widely studied in the literature.
Although some of the existing PF schedulers could offer a
scheduling solution on a much larger time scale, none of
them can offer a solution close to 100 µs. In [25], Kwan et al.
formulated the PF scheduling problem as an integer linear
programing (ILP) and proposed to solve it using branch-
and-bound technique, which has exponential computational
complexity. Some polynomial-time PF schedulers that were
designed using efficient heuristics can be found in [26–28].
We will examine computational complexity and, more im-
portantly, real-time computational time of these schedulers
in Section 4. A common feature of these PF schedulers (de-
signed for LTE) is that they are all of sequential designs and
need to go through a large number of iterations to determine
a solution. Although they may meet the scheduling time
requirement for LTE (1 ms), none of them comes close to
meet the new ∼100 µs time requirement for 5G NR.

In this paper, we present a novel design of a PF scheduler
using off-the-shelf GPU to achieve ∼100 µs scheduling reso-
lution. We call our design “GPF”, which is the abbreviation of
GPU-based PF scheduler. Key ideas of GPF are: (i) to decom-
pose the original scheduling problem into a large number of
small and independent sub-problems with similar structure,
where each sub-problem can be solved within very few num-
ber of iterations; (ii) to identify the promising search space
through intensification and select a subset of sub-problems
to fit into the processing cores of a GPU platform through
random sampling. The contributions in this work can be
summarized as follows:

• This paper presents the first design of a PF scheduler
for 5G NR that can meet ∼100 µs time requirement.
This design can support NR numerology 0 to 3, which
are to be used for data transmission. This is also the
first scheduler design (for cellular networks) that ex-
ploits GPU platform. In particular, our design only uses
a commercial off-the-shelf GPU platform and does not
require any expensive custom-designed hardware.

• Our GPU-based design is based on a decomposition
of the original optimization problem into a large num-
ber of sub-problems through enumerating MCS assign-
ments for all users. We show that for each sub-problem
(with a given MCS assignment), the optimal RB alloca-
tion problem can be solved exactly and efficiently.

• To reduce the number of sub-problems and fit them
into a GPU, we identify the most promising search
space among all sub-problems by using an intensifica-
tion technique. We select a subset of sub-problems in
the promising search space through a simple random
sampling. We show that such an approach can find a
near-optimal (if not optimal) solution.

• We implement GPF on an off-the-shelf Nvidia Quadro
P6000 GPU using the CUDA programming model. By
optimizing the operations performed on the processing
cores of the given GPU, minimizing memory access
time on the GPU based on differences in memory types
and locations, and reducing iterative operations by
exploiting techniques such as parallel reduction, etc.,
we are able to achieve overall GPF’s scheduling time
to ∼100 µs for a user population size of up to 100 for
an NR macro-cell.

• We conduct extensive experiments to investigate the
performance of GPF and compare it with three rep-
resentative PF schedulers (designed for LTE). Experi-
mental results show that GPF can achieve near-optimal
performance (per PF criterion) in ∼100 µs while the
other schedulers require significantly more time (rang-
ing from many times to several orders of magnitude)
and none of them comes close to meet the 100 µs time
requirement.

• By breaking down the time performance between data
movement (host to/from GPU) and computation in
GPU, we show that between 50% to 70% (depending
on user population size) of the overall time is spent
on data movement while less than half of the time
is spent on GPU computation. This suggests that our
GPF scheduler can achieve even better performance
(e.g., < 50 µs) if a customized GPU system (e.g., with
enhanced bus interconnection such as the NVLink [46],
or integrated host-GPU architecture [47–49]) is used
for 5G NR base stations (BSs).

In the literature, there have been a number of studies
applying GPUs to networking [29–31] and signal process-
ing for wireless communications [32–34]. The authors of
[29] proposed PacketShader, which is a GPU-based software
router that utilizes parallelism in packet processing for boost-
ing network throughput. The work in [30] applied GPU to
network traffic indexing and is able to achieve an indexing
throughput over one million records per second. In [31], the
authors designed a packet classifier that is optimized for
GPU’s memory hierarchy and massive number of cores. All
these works focus on network packet processing, which is
fundamentally different from the resource scheduling prob-
lem that we consider in this paper. Authors of [32] proposed a
parallel soft-output MIMO detector for GPU implementation.
In [33], the authors designed GPU-based decoders for LDPC
codes. The work in [34] addressed the implementation of a
fully parallelized LTE Turbo decoder on GPU. These studies
address baseband signal processing and their approaches can-
not be applied in solving a complex scheduling optimization
problem, which is the focus of this paper.
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Figure 1: A frame structure of NR.

The rest of the paper is organized as follows. We provide
a primer of NR air interface in Section 2. In Section 3, we for-
mulate the classical PF scheduling problem in the context of
NR frame structure. In Section 4, we highlight the challenge
in designing a scheduler to meet the ∼100 µs time require-
ment. In Section 5, we present our design ideas of GPF. The
detailed implementation of GPF on an Nvidia Quadro P6000
GPU is given in Section 6. In Section 7, we conduct experi-
mental study to validate the performance of GPF. Section 8
concludes the paper.

2 A PRIMER ON NR AIR INTERFACE
To meet diverse operating requirements, NR employs a much
more flexible and scalable air interface than LTE [1]. A frame
structure of NR is illustrated in Fig. 1. In the frequency do-
main, NR still employs OFDM and the bandwidth of an oper-
ating carrier is divided into a number of sub-carriers (SCs). In
the time domain, each frame has 10 ms duration and consists
of 10 sub-frames (SFs), each with 1 ms duration. An SF may
consist of one or multiple time slots. The number of time
slots in an SF is defined by OFDM numerologies [6]. Table 1
shows the SC spacing, number of time slots per SF, duration
of each time slot and suitable frequency bands under each
numerology. Since the number of OFDM symbols per slot is
fixed to 14 in NR under different SC spacing [6], the duration
of a time slot becomes shorter when SC spacing increases.
Since numerology 4 is only used for control signaling [10],
we will focus our discussion on numerology 0-3 (for data
transmission) in this paper.
At the BS, each scheduling time interval (or scheduling

resolution) is called transmission time interval (TTI), and its
duration varies from several OFDM symbols (a mini-slot),
one slot, to multiple slots. The choice of TTI depends on
service and operational requirements [4]. In the frequency
domain, the scheduling resolution is one RB, which consists
of 12 consecutive SCs grouped together. Within each TTI, the
base station (BS) needs to decide how to allocate (schedule)
all the RBs for the next TTI to different users. Thus the
channel coherence time should span at least two TTIs.

Although one RB within a TTI is allocated to a single user,
a user may be allocated with multiple RBs. The next question
is what modulation and coding scheme (MCS) to use for each

Table 1: OFDM numerologies in NR [2, 6].

Numerology
SC

Spacing Slots/SF
Slot

Duration
Suitable
Bands

0 15 kHz 1 1000 µs ≤ 6 GHz
1 30 kHz 2 500 µs ≤ 6 GHz
2 60 kHz 4 250 µs ≤ 6 GHz

3 120 kHz 8 125 µs ≤ 6 GHz or
≥ 24 GHz

4 240 kHz 16 62.5 µs ≥ 24 GHz

user. For 5G NR, 29 MCSs are available [7], each represent-
ing a combination of modulation and coding techniques.3
For a user allocated with multiple RBs, the BS must use the
same MCS across all RBs allocated to this user [7].4 This
requirement is the same for LTE [14]. One reason is that
using different MCSs on RBs cannot provide a significant
performance gain, but results in additional signaling over-
head [20]. For each user, the choice of MCS for its allocated
RBs depends on channel conditions. A scheduling decision
within each TTI entails joint RB allocation to users and MCS
assignment for each user.

3 A FORMULATION OF THE PF
SCHEDULING PROBLEM

In this section, we present a formulation of the classical PF
scheduling problem under the NR frame structure. Table 2
gives notation that we use in this paper.

3.1 Modeling and Formulation
Consider a 5G NR BS and a set U of users under its service.
For scheduling at the BS, we focus on the downlink (DL) di-
rection (data transmissions from BS to all users) and assume
a full-buffer model, i.e., there is always data backlogged at the
BS for each user. DenoteW as the total bandwidth of the DL
channel. Under OFDM, radio resource on this channel is or-
ganized as a two-dimensional frequency-time resource grid.
In the frequency domain, the channel bandwidth is divided
into a set B of RBs, each with bandwidthW0 =W /|B|. Due
to frequency-selective channel fading, channel condition for
a user varies across different RBs. For the same RB, channel
conditions from the BS to different users also vary, due to
the differences in their geographical locations. In the time
domain, we have consecutive TTIs, each with a duration T0.
Scheduling at the BS must be completed within the current
TTI (before the start of the next TTI).
3More precisely, 31 MCSs are defined, with 2 of them being reserved, leaving
29 MCSs available [7].
4In this paper, we consider one codeword per user. The analysis can be
extended to cases where a user has two codewords by configuring the same
MCS for both codewords.



Table 2: Notation

Symbol Definition
B The set of RBs
I The number of sub-problems solved by a thread block
K The total number of sub-problems solved in each TTI
M The set of MCSs
Nc The window size in number of TTIs used for PF scheduling
qbu (t ) The highest level of MCS that user u ’s channel can support

on RB b in TTI t
qmax
u The highest level of MCS that user u ’s channel can support

among all RBs
Qd
u The set of d MCS levels near qmax

u (inclusive)
Qd The Cartesian of sets Qd

1 , Qd
2 , · · · , Qd

|U|
rm The per RB achievable data rate with MCSm
rb,mu (t ) The instantaneous achievable data rate of user u on RB b

with MCSm in TTI t
Ru (t ) The aggregate achievable data rate of user u in TTI t
R̃u The long-term average data rate of user u
R̃u (t ) The exponentially smoothed average data rate of user u up

to TTI t
T0 The duration of a TTI
U The set of users
W Total DL channel bandwidth
W0 =W / |B |, bandwidth of an RB
xbu (t ) Abinary variable indicatingwhether or not RBb is allocated

to user u in TTI t
ymu (t ) A binary variable indicating whether or not MCSm is used

for user u in TTI t
zb,mu (t ) An RLT variable in OPT-R

Denote xbu (t) ∈ {0, 1} as a binary variable indicating
whether or not RB b ∈ B is allocated to user u ∈ U in
TTI t , i.e.,

xbu (t) =
{ 1, if RB b is allocated to user u in TTI t ,

0, otherwise. (1)

Since each RB can be allocated to at most one user, we have:∑
u ∈U

xbu (t) ≤ 1, (b ∈ B). (2)

At the BS, there is a setM of MCSs that can be used by the
transmitter for each useru ∈ U in TTI t . When multiple RBs
are allocated to the same user, then the same MCS, denoted
bym (m ∈ M), must be used across all these RBs. Denote
ymu (t) ∈ {0, 1} as a binary variable indicating whether or not
MCSm ∈ M is used by the BS for user u ∈ U in TTI t , i.e.,

ymu (t) =
{ 1, if MCSm is used for user u in TTI t ,

0, otherwise. (3)

Since only one MCS from M can be used by the BS for all
RBs allocated to a user u ∈ U at t , we have:∑

m∈M
ymu (t) ≤ 1, (u ∈ U). (4)
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Figure 2: Spectral efficiencies corresponding to differ-
ent levels of MCS. Data are from Table 5.1.3.1-1 in [7],
with MCS levels 17 and 18 exchanged.

For user u ∈ U and RB b ∈ B, the achievable data rate for
this RB can be determined by Fig. 2. In this figure,M = |M|
is the maximum number of MCSs allowed in the standard.
It represents the most efficient MCS under the best chan-
nel condition and thus corresponds to the maximum data
rate. For example, for MCSs in 5G NR,M can be 29 and the
corresponding data rate per RB is 5.5547W0 [7]. Under best
channel condition, any m ≤ M can be supported on this
RB for transmission. When channel condition is less than
perfect, things become a bit complicated. Denote qbu (t) as
the highest level of MCS that can be supported by user u’s
channel on RB b in TTI t . qbu (t) is determined by the the
channel quality indicator (CQI) that is in the feedback report
by user u at TTI t − 1. Since M is the maximum value for
qbu (t), we have qbu (t) ≤ M . For a given qbu (t), any MCS level
from {1, 2, · · · ,qbu (t)} can be supported by user u’s channel
on RB b in TTI t . On the other hand, if qbu (t) < M and the
BS chooses a MCS levelm > qbu (t) for user u (i.e., beyond
the highest MCS level on RB b), then the achievable data
rate of user u on RB b drops to zero, due to severe bit error
[25, 28]. Denote rb,mu (t) as user u’s instantaneous achievable
data rate on RB b with MCSm in TTI t . Then we have

rb,mu (t) =
{
rm , Ifm ≤ qbu (t),
0, Ifm > qbu (t).

(5)

Recall that for user u ∈ U, the BS must use the same
MCS mode m ∈ M across all RBs allocated to this user.
As an example (shown in Fig. 2), suppose there are k RBs
(denoted by b1, b2, · · · , bk ) allocated to user u. Without loss
of generality, suppose qb1

u (t) < qb2
u (t) < · · · < qbku (t) ≤ M .

Then there is a trade-off between the chosen MCS m and
the subset of RBs that contribute nonzero data rates. That
is, ifm1 ≤ qb1

u (t), then all RBs will contribute data rate rm1 ;
if qb1

u (t) < · · · < qbiu (t) = m2 < qbi+1
u (t) < · · · < qbku (t), then

only RBs bi , bi+1, · · · , bk will contribute data rate rm2 .



Let Ru (t) denote the aggregate achievable data rate of user
u in TTI t . Under a given scheduling decision (consisting of
RB allocation as specified in (1) and MCS assignment in (3)),
Ru (t) can be computed as follows:

Ru (t) =
∑
b ∈B

xbu (t)
∑
m∈M

ymu (t)rb,mu (t). (6)

3.2 PF Objective Function
We now describe the formulation of the PF objective function.
Let R̃u denote the long-term average data rate of user u
(averaged over a sufficiently long time period). A widely-
used objective function for PF is

∑
u ∈U log R̃u [23, 26]. It

represents a trade-off between total throughput and fairness
among users. To maximize the PF objective when scheduling
for each TTI t , a common approach is to maximize the metric∑

u ∈U

Ru (t)
R̃u (t − 1)

(7)

during TTI (t − 1) and use the outcome of the decision vari-
ables for scheduling TTI t [23, 24, 26, 27], where Ru (t) is the
scheduled data rate to user u for TTI t (which can be calcu-
lated in (6)) and R̃u (t − 1) is user u’s exponentially smoothed
average data rate up to TTI (t − 1) over a window size of Nc
TTIs, and is updated as:

R̃u (t − 1) = Nc − 1
Nc

R̃u (t − 2) + 1
Nc

Ru (t − 1) . (8)

It has been shown that such real-time (per TTI) scheduling
algorithm can approach optimal PF objective value asymp-
totically when Nc → ∞ [23].

In this paper, we adopt this widely-used PF objective func-
tion for our scheduler. Putting (6) into (7), we have:∑

u ∈U

Ru (t)
R̃u (t − 1)

=
∑
u ∈U

∑
b ∈B

∑
m∈M

rb,mu (t)
R̃u (t − 1)

xbu (t)ymu (t). (9)

In (9), rb,mu (t) and R̃u (t − 1) are input parameters and xbu (t)
and ymu (t) are decision variables.

3.3 Problem Formulation
Based on the above discussions, the PF scheduling optimiza-
tion problem for TTI t can be formulated as:

OPT-PF

maximize
∑
u ∈U

∑
b ∈B

∑
m∈M

rb,mu (t)
R̃u (t − 1)

xbu (t)ymu (t)

subject to RB allocation constraints: (2),
MCS assignment constraints: (4),
xbu (t) ∈ {0, 1}, (u ∈ U,b ∈ B.)
ymu (t) ∈ {0, 1}. (u ∈ U,m ∈ M .)

In OPT-PF, rb,mu (t) is a constant for a given u ∈ U, b ∈ B,
m ∈ M and qbu (t). Recall that qbu (t) is a constant and de-
termined by the CQI in user u’s feedback report at TTI
(t − 1), which we assume is available by the design of an
NR cellular network. R̃u (t − 1) is also a constant as it is cal-
culated in TTI (t − 1) based on R̃u (t − 2) (available at TTI
(t − 1)) and Ru (t − 1) (the outcome of the scheduling deci-
sion at TTI (t − 2). The only variables here are xbu (t) and
ymu (t) (u ∈ U, b ∈ B, m ∈ M), which are binary integer
variables. Since we have product terms xbu (t) · ymu (t) (nonlin-
ear) in the objective function, we employ the Reformulation-
Linearization Technique (RLT) [35, 36] to linearize the prob-
lem.
To do this, define zb,mu (t) = xbu (t) · ymu (t) (u ∈ U,b ∈

B,m ∈ M). Since both xbu (t) and ymu (t) are binary variables,
zb,mu (t) is also a binary variable and must satisfy the follow-
ing RLT constraints:

zb,mu (t) ≤ xbu (t), (u ∈ U,b ∈ B,m ∈ M), (10)

zb,mu (t) ≤ ymu (t), (u ∈ U,b ∈ B,m ∈ M). (11)
By replacing xbu (t) · ymu (t) with zb,mu (t) and adding RLT con-
straints, we have the following reformulation for OPT-PF,
which we denote by OPT-R:

OPT-R

maximize
∑
u ∈U

∑
b ∈B

∑
m∈M

rb,mu (t)
R̃u (t − 1)

zb,mu (t)

subject to RB allocation constraints: (2),
MCS assignment constraints: (4),
RLT constraints: (10), (11),
xbu (t) ∈ {0, 1}, (u ∈ U,b ∈ B)
ymu (t) ∈ {0, 1}, (u ∈ U,m ∈ M)
zb,mu (t) ∈ {0, 1}. (u ∈ U,b ∈ B,m ∈ M)

OPT-R is an ILP since all variables are binary and all con-
straints are linear. Commercial optimizers such as the IBM
CPLEX [41] can be employed to obtain optimal solution to
OPT-R (optimal to OPT-PF as well), which will be used as a
performance benchmark for the scheduler design. Note that
ILP is NP-hard in general and is consistent to the fact that
the PF scheduling problem is NP-hard [26–28].

4 THE REAL-TIME CHALLENGE
Although it is possible to design an algorithm to find a near-
optimal solution to OPT-R, it remains an open problem to
find a near-optimal solution in real-time. By real-time, we
mean that one needs to find a scheduling solution for TTI t
during TTI (t − 1). For 5G NR, we are talking about on the
order of ∼100 µs for a TTI, which is much shorter than a



scheduling time interval under 4G LTE. This requirement
comes from the fact that the shortest slot duration allowed
for data transmission in NR is 125 µs under numerology
3 (refer to Sec. 2). To the best of our knowledge, none of
existing scheduling algorithms can solve the PF scheduling
problem within a time interval of ∼100 µs. As such, this is
the first design that breaks this technical barrier.

To design a∼100 µs PF scheduler for 5G NR, it is important
to first understand why existing LTE schedulers are unable to
meet such time requirement. PF schedulers designed for LTE
can be classified into two categories: 1) metric-based schemes
(typically implemented in industry-grade schedulers) that
only address RB allocation [21, 22], and 2) polynomial-time
approximation algorithms that address both RB allocation
and MCS assignment [26–28].
Basically, simple metric-based schedulers such as those

surveyed in [21, 22] allocate RBs to users in each TTI by com-
paring per-usermetrics (e.g., the ratio between instantaneous
rate and past average rate) on each RB. These schedulers do
not address the assignment of MCS. In a BS, an independent
adaptive modulation and coding (AMC) module is in charge
of assigning MCS for each user [20]. Therefore, metric-based
schedulers cannot be used to solve problem OPT-PF. From
optimization’s perspective, such a decoupled approach can-
not achieve near-optimal performance and will result in a
loss of spectral efficiency.

In the literature, there have been a number of polynomial-
time heuristics designed for LTE PF scheduling. A common
feature of these algorithms is that they are all of sequential
designs. Their executions involve a large number of itera-
tions. In this paper, we select several state-of-the-art LTE
PF schedulers for performance comparison, including al-
gorithms Alg1 and Alg2 from [26], the Unified Scheduling
algorithm from [27], and the Greedy algorithm from [28].
Specifically, Alg1 and Alg2 first determine the RB allocation
without considering constraints of single MCS per user, and
then fix conflicts of multiple MCSs per user by selecting the
best MCS for each user given the RB allocation. The compu-
tational complexity of Alg1 and Alg2 is O(|U||B||M|). The
Unified Scheduling algorithm selects user with its associated
MCS and adjusts RB allocation iteratively, until a maximum
number of K̄ users are scheduled in a TTI. It has a complexity
ofO(K̄ |U||B||M|). The Greedy algorithm employs a similar
iterative design and can support scheduling over multiple
carriers. It does not restrict the number of scheduled users
per TTI and thus has a complexity of O(|U|2 |B| |M|) for
scheduling on a single carrier.

Alg1 andAlg2 are the fastest among these sequential sched-
ulers. Consider a practical NR cell with 100 users, 100 RBs,
and 29 levels of MCS. The number of iterations that Alg1
and Alg2 need to go through is roughly 2.9 × 105. Our im-
plementation of Alg1 on a desktop computer with an Intel

Xeon E5-2687W v4 CPU (3.0 GHz) shows that the computa-
tional time of Alg1 is beyond 800 µs (see Sec. 7 for additional
experimental results).

The reason why existing PF schedulers cannot meet ∼100
µs time requirement is that they are sequential algorithms
involving a large number of iterations (as shown above).
Although the use of additional CPU cores may help (by uti-
lizing instruction-level parallelism, e.g., pipelining [40]), the
potential reduction in computational time remains unclear.

5 A DESIGN OF A REAL-TIME
SCHEDULER ON GPU PLATFORM

5.1 Basic Idea and Roadmap
The basic idea in our design is to decompose the original prob-
lemOPT-PF into a large number ofmutually independent and
small sub-problems, with the solution to each sub-problem
being a feasible solution to the original problem. Thenwe can
determine the output scheduling solution through solving
sub-problems in parallel and finding the sub-problem solu-
tion that achieves the maximum objective value. We propose
to employ GPU to solve these sub-problems, as a GPU typi-
cally consists of a large number (1000s) of processing cores
and is highly optimized for massive parallel computation.

To make this idea work, we need to address the following
two questions.

• (i) How to decompose the original problem so that the
obtained sub-problems are independent and can be
solved in parallel in real-time (within ∼100 µs)?

• (ii) How to fit the large number of sub-problems into
a given GPU platform?

The first question is directly tied to the time complexity
of our scheduler. To meet the time requirement of ∼100 µs,
each sub-problem must be solved in 10s of µs while all sub-
problems are solved concurrently in parallel. Therefore, it is
important that each sub-problem is small in size and requires
very few (sequential) iterations to find a solution. Also, it is
desirable that all sub-problems have the same structure and
require the same number of iterations to find their solutions.
We address the first question in Section 5.2.

The second question is to address the space limitation of
a GPU platform. If a GPU had an infinite number of cores,
then we can solve all sub-problems in parallel and there is
no issue. Unfortunately, any GPU has a limited number of
cores. Although such number is large for a modern GPU (e.g.,
3840 CUDA cores in an Nvdia Quadro P6000 GPU), it is still
much smaller than the total number of sub-problems. So we
have to select a subset of sub-problems from a promising
search space that has a high probability to produce optimal
or near-optimal solutions and fit them into the given GPU
cores. We address this question in Section 5.3.



In our design of GPF, we do not exploit channel correla-
tions in either time or frequency domains. This is to ensure
that GPF works in any (worst) operating conditions under
5G NR.

5.2 Decomposition
There exist a number of decomposition techniques for opti-
mization problems, with each designed for a specific purpose.
For example, in branch-and-bound method, a tree-based
decomposition is used to break a problem into two sub-
problems so as to intensify the search in a smaller search
space [37]. In dynamic programming method, decomposi-
tion results in sub-problems that still require to be solved
recursively [38]. These decompositions cannot be readily
parallelized and implemented on GPU.

Our proposed decomposition aims to produce a large num-
ber of independent sub-problems with the same structure.
Further, each sub-problem is small and simple enough so
that GPU cores can complete their computations under 100
µs. In other words, our decomposition is tailored toward
GPU architecture (massive number of cores, lower clock fre-
quency per core, very few number of computations for each
sub-problem). Such a decomposition can be done by fixing a
subset of decision variables via enumerating all possibilities.
Then for each sub-problem, we only need to determine the
optimal solution to the remaining subset of variables.

To see how this can be done for our optimization problem,
consider OPT-PF, i.e., the original problem formulation with
two sets of variables xbu and ymu , u ∈ U, b ∈ B,m ∈ M. For
the ease of exposition, we omit the TTI index t . Recall that
variables xbu ’s are for RB allocation (i.e., assigning each RB
to a user) while ymu ’s are for MCS assignment (i.e., choosing
one MCS from M for each user). So we can decompose
either along x-variable or y-variable. If we decompose along
x , then we would have |U| |B | sub-problems (since there
are |U| ways to assign each RB and we have a total of |B|
RBs). On the other hand, if we decompose along y, then we
would have |M| |U | sub-problems (since there are |M| ways
to assign MCS for a user and we have a total of |U| users).
In this paper, we choose to decompose along y, considering
that the “intensification” technique that we propose to use in
Section 5.3 works naturally for such sub-problem structure.
Under a given y-variable assignment ymu = Ym

u , u ∈ U,
m ∈ M, where Ym

u ’s are binary constants and satisfy con-
straint (4), i.e.,

∑
m∈M Ym

u = 1, u ∈ U, OPT-PF degenerates
into the following sub-problem:

OPT(Y)

maximize
∑
u ∈U

∑
b ∈B

∑
m∈M

rb,mu

R̃u
Ym
u · xbu

subject to RB allocation constraints: (1), (2)

In the objective function, for
∑
m∈M

rb,mu

R̃u
Ym
u , only one

term in the summation is nonzero, due to the MCS con-
straint (4) on Ym

u . Denote them for this nonzero Ym
u bym∗

u .

Then the objective function becomes
∑
u ∈U

∑
b ∈B

rb,m
∗
u

u

R̃u
·

xbu . By interchanging the two summation orders, we have∑
u ∈U

∑
b ∈B

rb,m
∗
u

u

R̃u
·xbu =

∑
b ∈B

∑
u ∈U

rb,m
∗
u

u

R̃u
·xbu . OPT(Y) now

becomes:

maximize
∑
b ∈B

∑
u ∈U

r
b,m∗

u
u

R̃u
xbu

subject to RB allocation constraints: (1), (2)

For a given b ∈ B, there is only one term in the inner summa-
tion

∑
u ∈U

rb,m
∗
u

u

R̃u
xbu that can be nonzero, due to the RB alloca-

tion constraint (2). So
∑
u ∈U

rb,m
∗
u

u

R̃u
xbu is maximized when the

xbu corresponding to the largest rb,m
∗
u

u

R̃u
across all users is set

to 1 while others are set to 0. Physically, this means that the
optimal RB allocation (under a given y-variable assignment)
is achieved when each RB is allocated to a user that achieves
the largest instantaneous rate normalized by its average rate.
We have just shown how to solve each sub-problem in-

volving x-variable (RB allocation) under a given y-variable
(MCS) assignment. The computational complexity of each
sub-problem is |B| |U|, if we solve it sequentially. Note that
the sub-problem structure also allows us to perform optimal
RB allocation in parallel for all RBs. In this case, the time
complexity of a sub-problem can be reduced to |U| iterations
that are used to search for the most suitable user for each
RB (refer to Sec. 6).

5.3 Selection of Sub-Problems
After problem decomposition by enumerating all possible set-
tings of y-variable, we have a total of |M| |U | sub-problems.
This is too large to fit into the processing cores of a GPU. In
this step, we will select a subset of K sub-problems through
intensification and sampling and only search for the best
solution among these K sub-problems, where the value K
depends on the number of GPU cores that we have.
Intensification The first step in our selection of sub-
problems is based on the intensification and diversification
techniques from optimization (see, e.g., [39]). The basic idea
is to break up the search space into promising and less
promising subspaces in terms of finding optimal solution
and devote search efforts mostly on the promising subspace
(intensification). Even though there is a small probability that
the optimal solution may lie in the less promising subspace,
we can still be assured of getting high quality near-optimal
solutions in the promising subspace. So the first question to
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Figure 3: Percentage of optimal solutions found in Qd as a function of d under different user population sizes.

address is: what is the promising search subspace (among all
possible y-variable settings) for optimal solution?
Recall that each user has |M| levels of MCS to choose

from, with a higher level of MCS offering greater achievable
data rate but also requiring a better channel quality. Recall
for each RB b ∈ B, qbu is the highest level of MCS that can be
supported by user u’s channel. Since qbu differs for different
b ∈ B, let’s denote qmax

u = maxb ∈B qbu as the highest level of
MCS that user u’s channel can support among all RBs. Then
for each useru ∈ U, it is safe to remove all MCS assignments
withm > qmax

u (since such MCS assignments will have zero
data rate for user u on all RBs) and we would not lose the
optimal solution.
Among the remaining MCS settings for user u, i.e., {1,

2, · · · , qmax
u }, it is intuitive that the search space with MCS

settings close to qmax
u is the most promising subspace for user

u. To validate this idea, we conduct a numerical experiment
using the CPLEX solver to solve OPT-R (not in real time) and
examine the probability of success in finding the optimal
solution as a function of the number of MCS levels near qmax

u
(inclusive) for each user u ∈ U. Specifically, denote

Qd
u = {m | max{1,qmax

u − d + 1} ≤ m ≤ qmax
u } ⊂ M (12)

as the set of d MCS levels near qmax
u (inclusive), where d ∈ N∗

denotes the number of descending MCS levels from qmax
u . For

example, when d = 1, we have Q1
u = {m |m = qmax

u } for user
u, meaning that user u will only choose its highest allowed
MCS level qmax

u ; when d = 2, we have Q2
u = {m |qmax

u − 1 ≤
m ≤ qmax

u } for user u, meaning that user u’s MCS can be
chosen between qmax

u − 1 and qmax
u . Across all |U| users, we

define
Qd = Qd

1 × · · · × Qd
|U | ⊂ M |U | (13)

as the Cartesian of sets Qd
1 , Qd

2 , · · · , Qd
|U | . Clearly, Q

d con-
tains MCS assignment vectors for all users where the MCS
assigned for each user u is within its corresponding set Qd

u .
In our experiment, we consider a BS with 100 RBs and

a number of users ranging from 25, 50, 75, and 100. A set
of 29 MCSs (see Fig. 2) can be used for each user. For a
given number of users, we run experiments for 100 TTIs
(t = 1, 2, · · · , 100) with Nc = 100. For generality, we consider

the scenario where there is no correlation in frequency, i.e.,
channel conditions (qbu ’s) vary independently across RBs for
each user. Detailed experimental settings can be found in
Section 7. Fig. 3 shows the percentage of optimal solutions
in Qd as a function of d under different user population
sizes. For example, when |U| = 25, 93% optimal solutions
are within Q6; when |U| = 75, 96% optimal solutions are
within Q3.

Now we turn the table around and are interested in what
d we should choose to meet a target probability of success
in finding the optimal solution. Then Fig. 3 suggests that for
a given success probability (say 90%), the value of d required
to achieve this success probability decreases with the user
population size (d = 6 for |U| = 25, d = 3 for |U| =50
and 75, and d = 2 for |U| = 100). This is intuitive, as for
the same number of RBs, the greater the number of users
we have, the fewer the number of RBs to be allocated to
each user, leading to the need of fewer levels of MCS for
selection. More importantly, Fig. 3 shows that for a target
success probability (90%), we only need to set d to a small
number and a corresponding small search space Qd would
be sufficient to achieve this probability.
For a target success probability, the optimal setting of d

depends not only on the user population size |U| but also
on users’ channel conditions. For instance, as shown in Sec.
7.3, when there are frequency correlations among RBs, the
optimal d may change. In a practical NR cell, optimal d under
each user population size |U| should be set adaptively in
an online manner to keep up with the changing channel
conditions. Specifically, the BS frequently computes optimal
solution to OPT-R based on users’ CQI reports, and records
the smallest d that contains the optimal solution along with
the |U| at that time. Such computation can be done only for
selected TTIs and there is no strict real-time requirement.
Optimal values of d under different |U|’s are re-calculated
periodically based on recorded results through the statistical
approach described above, and are maintained in a lookup
table stored in the BS’s memory. During run-time, the BS
sets d adaptively based on the number of active users in the
cell by simply looking up the table.
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Figure 4: CDFs of gaps (in percentage) between objectives of sub-problem solutions and the optimum.

Sampling After the intensification step, the number of
sub-problems is still too large to fit into the processing cores
of a GPU. For example, with Q2 and 100 users, we have
2100 sub-problems. In the second step, we employ random
sampling based on certain probability distribution to select
K sub-problems.

The probability distribution used for random sampling
can be set based on specific needs. In this work, we employ
a simple uniform distribution as an example. Specifically,
after narrowing down the promising subspace Qd , for each
of the K sub-problems that we choose, we set the MCS for
each user u from Qd

u following a uniform distribution (with
equal probability). This is equivalent to sampling from Qd

with a uniform distribution. This construction (equivalent
to sampling) of K sub-problems can be executed in parallel
on GPU cores (refer to Sec. 6). After the K sub-problems
are constructed, they can be solved in parallel and the best
solution (with the maximum objective value) among them is
chosen as the output scheduling solution for the next TTI.
One question to ask is whether such sampling of K sub-

problems from the promising search subspace can ensure
finding an optimal or near-optimal solution. In the following,
we show that solutions of the K sub-problems (samples) will
almost surely contain at least one near-optimal solution to
OPT-PF (e.g., > 95% of optimum).
The science behind this claim is as follows. Denote a as

the gap (in percentage) of a sample’s objective value from
the optimum. For a target bound for optimality gap ϵ , de-
note p1−ϵ as the probability that a sample is (1 − ϵ)-optimal,
i.e., p1−ϵ = P (a ≤ ϵ). The probability p1−ϵ is the same for
all K samples since they are taken from the same search
subspace independently and following the same uniform
distribution. Denote P1−ϵ as the probability that at least one
sample (among the K samples) is (1 − ϵ)-optimal. Since all
samples are mutually independent, we have:

P1−ϵ = 1 − (1 − p1−ϵ )K . (14)

Therefore, to have P1−ϵ ≥ 99.99%, i.e., with at least 99.99%
probability of having one sample achieving (1 − ϵ)-optimal

among the K samples, we must have

p1−ϵ ≥ 1 −
K√

1 − 99.99%. (15)

As will be discussed in Sec. 6, the Nvidia Quadro P6000 GPU
we use in implementation can solve K = 300 sub-problems
independently in parallel. Thus from (15), we should have
p1−ϵ ≥ 3.02% to ensure P1−ϵ ≥ 99.99%. That is, as long as
each sample has a small probability (≥ 3.02%) of achieving
(1 − ϵ)-optimal, then the probability that at least one sam-
ple (among 300 samples) achieves (1 − ϵ)-optimal is almost
surely (≥ 99.99%).
We now investigate the value of p1−ϵ from our samples

through experiments. The experimental settings are the same
as those for Fig. 3, i.e., |B| = 100, |U| ∈ {25, 50, 75, 100},
and |M| = 29. The parameter d is set to 6, 3, 3, and 2 for
|U| =25, 50, 75, and 100, respectively. We run experiments
for 100 TTIs with Nc = 100. For each TTI, we generate
100 samples from Qd under each |U|, and record gaps (a’s)
of their objective values from the optimum. Thus for each
|U|, we have 10,000 samples (over 100 TTIs), each with a
corresponding a. Cumulative distribution functions (CDFs)
for a ≤ ϵ for different |U|’s are shown in Fig. 4. Coordinates
of each point on these CDFs represent a given ϵ and its
corresponding (empirical) probability P (a ≤ ϵ), i.e., p1−ϵ . To
have p1−ϵ ≥ 3.02%, the value of ϵ must be at least 5.35%,
1.34%, 1.24%, 0.47% for |U| =25, 50, 75, and 100, respectively.
That is, with 99.99% probability, at least one of the K =
300 samples selected in each TTI achieves up to 94.65%-,
98.66%-, 98.76%- and 99.53%-optimal for |U| =25, 50, 75,
and 100, respectively. These experimental results show that
random sampling based on intensification can indeed find
near-optimal solution to problem OPT-PF.

When we construct the K sub-problems through random
sampling, it is possible that we may get some identical sam-
ples. But it is easy to calculate that such probability is ex-
tremely small (as each sample consists of |U| MCS assign-
ments). In fact, even if there are identical samples, it will not
affect much on the final near-optimal performance because
we still have a large number of samples to work with.



6 IMPLEMENTATION
In this section, we describe our implementation of the design
ideas in Section 5 on commercial off-the-shelf GPU platform.

6.1 Why GPU
For the purpose of implementing our proposed solution in the
previous section, there are a number of advantages of GPU
over FPGA and ASIC. From hardware’s perspective, GPU is
much more flexible. By design, GPU is a general-purpose
computing platform optimized for large-scale parallel compu-
tation. It can be used to implement different scheduling algo-
rithms without any change on hardware. In contrast, FPGA is
not optimized for massive parallel computation, while ASIC
is made for a specific algorithm and cannot be changed or
updated after the hardware is made. From software’s perspec-
tive, commercial GPUs (e.g., those from Nvidia) come with
highly programmable tool such as CUDA, which is capable
of programming the behavior of each processing core. On
the other hand, it is much more complicated to program the
same set of functions in FPGA. Finally, in terms of cost and
design cycle, the GPU platform that we use is off-the-shelf,
which is readily available and at low cost (for NR BS). In
contrast, the cost for making an ASIC could be orders of
magnitude higher than GPU and it will take a considerable
amount of time to develop.

6.2 Fitting Sub-Problems into a GPU
We use an off-the-shelf Nvidia Quadro P6000 GPU [42] and
the CUDA programming platform [43]. This GPU consists
of 30 streaming multi-processors (SMs). Each SM consists
of 128 small processing cores (CUDA cores). These cores
are capable of performing concurrent computation tasks
involving arithmetic and logic operations.

Under CUDA, theK sub-problems considered by the sched-
uler per TTI are handled by a grid of thread blocks. An illus-
tration of this implementation is given in Fig. 5. Since our
Nvidia GPU has 30 SMs, we limit each SM to handle one
thread block so as to avoid sequential execution of multiple
thread blocks on an SM. Since the processing of each sub-
problem requires max{|B|, |U|} threads (see Steps 1 and 2
in Fig. 5, more on this later) and a thread block can have a
maximum of 1024 threads, the number of sub-problems that
can be solved by each thread block is

I = min
{⌊

1024
|B|

⌋
,

⌊
1024
|U|

⌋}
, (16)

(refer to Sec. 6.3, Step 2). Thus, the total number of sub-
problems that we can fit into an Nvidia Quadro P6000 GPU
for parallel computation is K = 30 · I . For example, for |B| =
100 RBs and |U| = 100 users, the GPU can solve K = 300
sub-problems in parallel.

6.3 Tasks and Processing in GPU
To find an optimal or near-optimal solution on GPU, we need
to spend time for three tasks: (i) transfer the input data from
the host (BS) memory to GPU’s global memory; (ii) generate
and solve K = 30 · I sub-problems with 30 thread blocks (one
thread block per SM); (iii) transfer the final solution back to
the host memory. In the rest of this section, we give details
for each task.
Transferring Input Data to GPU Based on our discus-
sion in Sec. 5.3, we only transfer input data associated with
the promising search subspace Qd∗ , where d∗ depends on the
user population size |U| and the target success probability of
finding an optimal solution in Qd∗ . For example, to achieve
0.9 success probability, we should set d∗ = 3 if |U| = 50 and
d∗ = 2 if |U| = 100 (refer to Sec. 5.3). For each user u, only
d∗ MCS levels in Qd∗

u will be considered in the search space.
Note that even if with up to 0.1 probability (if we consider 0.9
success probability) we maymiss the optimal solution in Qd∗ ,
we can still find extremely good near-optimal solutions in
Qd∗ , which is shown in the last section. The input data that
we need to transfer from the host (BS) memory to the GPU
global memory include rb,mu ’s (form ∈ Qd∗

u ,u ∈ U,b ∈ B)
and R̃u ’s (for u ∈ U). For example, with 100 users and 100
RBs, we have d∗ = 2. Then the size of transferred data is
equal to 80 KB for rb,mu ’s plus 0.4 KB for R̃u ’s (with float
data-type).
Generating and Solving K Sub-problems Within each
SM, I (K/30) sub-problems are to be generated and solved
with one thread block. Then the best solution among the I
sub-problems is selected and sent to the GPU global memory.
This is followed by a round of selection of best solution from
the 30 SMs (with a new thread block). Fig. 5 shows the five
steps in our design to complete this task. We describe each
step as follows. Steps 1 to 4 are completed by each of the
30 thread blocks (SMs) in parallel. Step 5 follows after the
completion of Step 4 across all 30 thread blocks and is done
with a new thread block.

• Step 1 (Generating Sub-Problems) Each of the 30
thread blocks needs to first generate I sub-problems,
where I is defined in (16). For each sub-problem, a
MCS level for each user u ∈ U is randomly and uni-
formly chosen from the set Qd∗

u . Doing this in parallel
requires |U| threads for each sub-problem. Thus, to
parallelize this step for all I sub-problems, we need to
use I · |U| ≤ 1024 threads. Threads should be synchro-
nized after this step to ensure that all sub-problems
are successfully generated.

• Step 2 (Solving Sub-Problems) For each of the I sub-
problems (i.e., with y-variable fixed), optimal RB alloca-
tion (x-variable) can be determined by solving OPT(Y)
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Figure 5: Major tasks and steps in our implementation on GPU.

as described in Sec. 5.2. For each sub-problem, the al-
location of each RB b ∈ B to a user is done in parallel
with |B| threads. With I sub-problems per block, we
need I · |B| ≤ 1024 threads for parallelizing this step.5
Each thread needs to have input data for all users for
comparison. Due to the small size of shared memory
in an SM (only 96 KB per SM for Nvidia Quadro P6000
GPU), we cannot store the input data for all |U| users
in an SM’s shared memory (a part of the shared mem-
ory is reserved for other intermediate data). On the
other hand, if we let the thread read out data for each
user separately from the GPU global memory, it will
result in |U| times of access to the global memory. In a
GPU, access to the global memory is much slower than
that to the shared memory in an SM. To address this
problem, we put users in U into several sub-groups
such that the input data for each sub-group of users
can be read out from the global memory in one access
and fit into an SM’s shared memory. This will result
in a major reduction in the number of times that is re-
quired for accessing global memory in this step. Once
we have the input data for the sub-group of users in
the shared memory, we let the thread find the most
suitable user for the given RB within this sub-group.
By performing these operations for each sub-group of
users, a thread will find the optimal RB allocation for

5Since I · |U | ≤ 1024 and I · |B | ≤ 1024, the maximum value that I can
take is min

{⌊
1024
|B|

⌋
,
⌊

1024
|U|

⌋}
, which is what we have in Eq. (16).

the sub-problem. A synchronization of all threads in a
thread block is necessary after this step.

• Step 3 (Calculating Objective Values). Given the opti-
mal RB allocation for each sub-problem in Step 2, we
need to calculate the objective value under the current
solution to each sub-problem. The calculation of objec-
tive value involves summation of |B| terms. To reduce
the number of iterations in completing this summa-
tion, we employ parallel reduction technique [44]. Fig-
ure 6 illustrates this technique. We use |B|/2 threads
in parallel for each sub-problem and it only requires
log2(|B|) iterations to complete the summation of |B|
terms. A key in parallel reduction in shared memory is
tomake sure that threads are readingmemory based on
consecutive addressing. For I sub-problems, we need
I · |B|/2 ≤ 1024 threads for this step. Again, threads
must be synchronized after this step is completed.

• Step 4 (Finding the Best Solution in a Thread Block) At
the end of Step 3, we have I objective values in an
SM corresponding to the I sub-problems. In this step,
we need to find the best solution (with the maximum
objective value) among the I sub-problem solutions.
This is done through comparison, which again can be
realized by parallel reduction. We need I/2 threads
to parallelize this comparison. Once it’s complete, we
write the best solution along with its objective value
into the GPU’s global memory.

• Step 5 (Finding the Best Solution Across All Thread Blocks).
After Steps 1 to 4 are completed by the 30 thread blocks
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(SMs), we have 30 solutions (and their objective values)
stored in the GPU’s global memory, each correspond-
ing to the best solution from its respective thread block.
Then we create a new thread block (with 15 threads)
to find the “ultimate” best from these 30 “intermediate”
best solutions. Again, this step can be done through
parallel reduction.

Transferring Output Solution to Host After we find
the best solution in Step 5, we transfer this solution from the
GPU’s global memory back to the host’s memory.

7 EXPERIMENTAL VALIDATION
7.1 Experiment Platform
Our experiment is done on a Dell desktop computer with
an Intel Xeon E5-2687W v4 CPU (3.0 GHz) and an Nvidia
Quadro P6000 GPU. Data communications between CPU and
GPU go through a PCIe 3.0 X16 slot with default configura-
tion. Implementation on GPU is based on the Nvidia CUDA
(version 9.1) programming platform. For performance com-
parison, we employ IBM CPLEX Optimizer (version 12.7.1)
[41] to find optimal solution to OPT-R.

7.2 Settings
We consider an NR cell with a BS and a number of users. The
user population size |U| is chosen from {25, 50, 75, 100}.6
The number of available RBs is |B| = 100. Assume that a set
of |M| = 29 MCSs shown in Fig. 2 is available to each user.
Numerology 3 (refer to Table 1) of NR is considered, where
the duration of a TTI is 125 µs. The PF parameter Nc is set
to 100 TTIs. The full-buffer traffic model is employed.

For wireless channels, we consider the block-fading chan-
nel model for both frequency and time [45]. User mobility is
6 |U | = 100 covers most typical deployment scenarios considered by 3GPP
(e.g., indoor hotspot, dense urban, rural, etc.) [4].

captured by independent variations of channel conditions
(qbu (t)’s) across TTIs. To model large-scale fading effect, the
highest feasible MCS level across all RBs is higher for users
that are closer to the BS and is lower for cell-edge users.
For frequency-selective fading effect, we first consider the
worst-case scenario where parameters qbu (t)’s across all RBs
are uncorrelated and randomly generated for each user. Such
setting is useful to examine the robustness of GPF under the
extreme operating conditions. Then we consider the scenario
where there is correlation in frequency.

7.3 Results
In addition to the optimal solution obtained by CPLEX, we
also include state-of-the-art PF schedulersAlg1 from [26], the
Unified algorithm from [27], and the Greedy algorithm from
[28] in our performance comparison. We set the maximum
number of scheduled users per TTI to 20 for the Unified
algorithm. To optimize the performance of these algorithms,
we implement them on CPU since they are designed for
sequential execution.

We first verify that GPF can meet the time requirement of
∼100 µs, which is the major purpose of this work. We con-
sider the worst-case scenario where there is no frequency
correlation, i.e., qbu (t)’s change independently across RBs.
Based on the results from Sec. 5.3, we set the parameter d∗
for controlling the sampling subspace Qd∗ to 6, 3, 3 and 2 for
|U|=25, 50, 75 and 100, respectively. Results of scheduling
time for 100 consecutive TTIs are shown in Fig. 7. Computa-
tion time of CPLEX is not shown in the figure since it is too
large to fit in the scale of the figure. The average computa-
tion time of CPLEX is 3.20 s, 10.62 s, 18.17 s, and 30.23 s for
|U| =25, 50, 75, and 100, respectively. We can see that under
all |U|’s, the scheduling time of GPF is within 125 µs in most
cases. Specifically, mean values and standard deviations of
scheduling time are 96.16 µs and 16.60 for |U| = 25, 94.93 µs
and 9.36 for |U| = 50, 112.60 µs and 6.47 for |U| = 75, and
116.21 µs and 8.22 for |U| = 100. On the other hand, Alg1,
which is the fastest among the state-of-the-art schedulers
used in comparison, has a mean computation time of 189.7
µs for |U| = 25, 416.6 µs for |U| = 50, 630.8 µs for |U| = 75,
and 855.7 µs for |U| = 100.
In Fig. 7, we notice that there are a few instances where

GPF’s scheduling time is beyond 125 µs. To understand what
the scheduling time may entail, we investigate, through ex-
periments, time spent at different execution stages in GPF,
including transferring data from host to GPU, processing at
GPU, and transferring solution from GPU back to host (refer
to Sec. 6). Mean values and standard deviations of process-
ing time in different stages with different user population
sizes (each for 1000 TTIs) are shown in Table 3. The GPF
computation time corresponds to GPU time overhead entry
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Figure 7: Scheduling time comparison between GPF and state-of-the-art PF schedulers. X axis corresponds to time
(in unit of TTI).
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Figure 8: PF criterion comparison between GPF and state-of-the-art PF schedulers.
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Figure 9: Sum average cell throughput comparison between GPF and state-of-the-art PF schedulers.

in Table 3. We find that the time spent for computing GPF
scheduling solution is much shorter than 100 µs. It is in fact
far below our design objective of 100 µs. On the other hand,
time spent on data transferring between host and GPU takes
a major share of total time overhead. Such data transferring
operations take more than 60% of the total scheduling time.
This is due to our use of off-the-shelf GPU without any cus-
tomized design. Thus we conclude that the bottleneck of GPF
execution time is on the communication between host and
GPU. This overhead can be easily reduced by employing a
(customized) integrated host-GPU system [47–49].

Next, we examine the performance of GPF using conven-
tional metrics for PF schedulers, including: (i) the PF crite-
rion

∑
u ∈U log2(R̃u (t)) (the primary performance objective

of a PF scheduler), and (ii) the sum average cell throughput∑
u ∈U R̃u (t) (representing the spectral efficiency). PF criteria

and sum throughput performance for 100 consecutive TTIs

Table 3: Breakdown of GPF’s execution time con-
sumed in different stages. Data format: (mean (µs),
standard deviation).

|U | = 25 |U | = 50 |U | = 75 |U | = 100
H-to-G (18.88, 4.62) (18.23, 5.69) (26.58, 3.82) (25.27, 7.10)
GPU (26.40, 2.74) (26.83, 3.86) (38.95, 1.46) (48.00, 1.60)

G-to-H (43.27, 11.36) (51.06, 14.26) (50.16, 5.97) (46.85, 10.14)
Total (88.55, 12.50) (96.12, 14.73) (115.70, 7.01) (120.12, 12.34)

are shown in Fig. 8 and Fig. 9, respectively. In these figures,
we take the ratio between the metric (PF or throughput)
achieved by a scheduler and that achieved by optimal solu-
tion from CPLEX. Note that there are instances where the
ratio is greater than one because CPLEX’s solution is optimal
with respect to the per-TTI objective (7), but not the long
term PF criterion that we consider for comparison. Clearly,
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Figure 10: PF criterion comparison between GPF and
state-of-the-art LTE PF scheduler.
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Figure 11: Sum average cell throughput comparison
between GPF and state-of-the-art LTE PF scheduler.

GPF achieves near-optimal performance and is no worse
than all three LTE PF schedulers in all cases. GPF performs
particularly well when the user population size is larger than
or equal to 50.
We have also run experiments for scenarios with fre-

quency correlation, where qbu (t)’s are identical within the
same group of consecutive RBs and change (randomly) for a
different group. Results with coherence bandwidth equal to
2 and 5 RBs (not shown here due to space limitation) indicate
that optimal d’s change with frequency correlations.7 Specif-
ically, when coherence bandwidth covers 2 RBs, optimal d’s
for |U| =25, 50, 75 and 100 are 5, 3, 3 and 2, respectively;
when coherence bandwidth covers 5 RBs, optimal d’s are
4, 3, 3 and 2, respectively. With adjusted settings of d , GPF
achieves similar real-time and near-optimal performance as
those shown in Figs. 7, 8 and 9.

Based on our experimental results, we conclude that GPF is
able to meet NR’s time requirement of∼100 µs for scheduling
while achieving near-optimal performance.

7.4 Why Not Re-use LTE Scheduler
In LTE, the scheduling resolution is 1 ms since the duration
of a TTI is fixed to 1 ms. It means that an LTE scheduler
7A widely-used definition of coherence bandwidth is given by Bc ≈ 1/5στ ,
where στ denotes the root mean square (RMS) delay spread [19]. For in-
stance, following 3GPP’s channel modeling [11], we have mean στ ≈ 90 ns
for the UMa LOS scenario on 6 GHz spectrum, and thus the coherence
bandwidth Bc ≈ 2.22 MHz, which covers 2 RBs under numerology 3.

updates solution every 1 ms. To investigate whether or not
LTE scheduler can be re-used for NR, we conduct an experi-
ment with the following setting. Assume that the coherence
time covers two slot durations under numerology 3 (likely
to occur at high spectrum). We compare two schemes:

• Scheme 1: Update the scheduling solution every 8 slots
(since 1 ms/125 µs = 8) by an LTE scheduler;

• Scheme 2: In each slot (125 µs), use GPF to compute
the solution.8

We adopt Alg1 for the LTE scheduler since it is able to find
solution in 1 ms and is the fastest among the state-of-the-art
PF schedulers (see Fig. 7). Results of two schemes for 100 con-
secutive TTIs under |U| = 25 and 100 are shown in Fig. 10
and Fig. 11. We can see that for both the PF criterion (in log
scale) and the sum average cell throughput, GPF significantly
outperforms Alg1, which means that existing PF schedulers
perform poorly for 5G NR and thus cannot be re-used.

8 CONCLUSIONS
This paper presents the first successful design of a PF sched-
uler that can meet the ∼100 µs time requirement for 5G NR.
Our GPU-based design is based on a novel decomposition
of the original optimization problem into a large number
of small sub-problems (each requiring very few number of
iterations to solve). By employing intensification and ran-
dom sampling techniques, we are able to select a subset of
sub-problems to match a given number of processing cores
in a GPU for independent and parallel processing. We im-
plement our GPF on an off-the-shelf Nvidia Quadro P6000
GPU using the CUDA programming model. Through exten-
sive experiments and comparison study, we show that GPF
can achieve near-optimal performance and meet the ∼100 µs
time requirement while none of existing state-of-the-art PF
schedulers (designed for LTE) can do so. By analyzing time
overhead information from experiments, we find that GPF
has the potential to achieve even better timing performance
if a custom-designed host-GPU system is employed. Our
research opens the door for incorporating GPU computing
into 5G BSs for the next generation cellular networks.
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