
MANDA: On Adversarial Example Detection for
Network Intrusion Detection System

Ning Wang, Yimin Chen, Yang Hu, Wenjing Lou, Y. Thomas Hou

Virginia Polytechnic Institute and State University, VA, USA

Abstract—With the rapid advancement in machine learning
(ML), ML-based Intrusion Detection Systems (IDSs) are widely
deployed to protect networks from various attacks. Yet one of the
biggest challenges is that ML-based IDSs suffer from adversarial
example (AE) attacks. By applying small perturbations (e.g.
slightly increasing packet inter-arrival time) to the intrusion
traffic, an AE attack can flip the prediction of a well-trained
IDS. We address this challenge by proposing MANDA, a MANifold
and Decision boundary-based AE detection system. Through
analyzing AE attacks, we notice that 1) an AE tends to be close
to its original manifold (i.e., the cluster of samples in its original
class) regardless which class it is misclassified into; and 2) AEs
tend to be close to the decision boundary so as to minimize the
perturbation scale. Based on the two observations, we design
MANDA for accurate AE detection by exploiting inconsistency
between manifold evaluation and IDS model inference and
evaluating model uncertainty on small perturbations. We evaluate
MANDA on NSL-KDD under three state-of-the-art AE attacks.
Our experimental results show that MANDA achieves as high as
98.41% true-positive rate with 5% false-positive rate and can be
applied to other problem spaces such as image recognition.

I. INTRODUCTION

The increasing scale and complexity of modern networks
and the tremendous amount of applications running on them
render communication and networking systems highly vulner-
able to various intrusion attacks. Intrusion detection system
(IDS) plays a significant role in safeguarding networks from
intrusion attacks [1]. There are mainly two types of IDS:
signature-based detection [2] and anomaly-based detection [3].
Signature-based detection schemes work by extracting the traf-
fic signature and comparing to those in a pre-built knowledge
base. As a result, they are only effective in detecting known
attacks but cannot detect attacks outside the knowledge base.
Anomaly-based detection aims to detect deviations from an
established norm traffic model. With the advancement in ML
in recently year, ML techniques are increasingly used to train
the “norm” model that represents the normal benign traffic and
then to evaluate the credibility of incoming traffic. Considering
intrusion attacks are ever evolving in these days, ML-based
methods are showing much greater potential as they require
only a little or no prior knowledge to work on emerging novel
attacks.

ML technologies have seen great success in domains such
as computer vision and natural language processing [4]–[6].
While applying to network intrusion detection, state-of-the-
art IDSs usually implement advanced neural networks (e.g.,
LSTM) and learning schemes (e.g., meta-learning and active

learning). An important security attack that is common to
almost all machine learning models is the adversarial example
(AE) attack [7], [8]. In such an attack, the adversary is able
to craft a sample, often by applying small perturbations, and
have a well-trained model output an arbitrary label other than
its true label with a high probability. For IDS, an attacker can
launch AE attacks to significantly increase false-positive rate
and false-negative rate, rendering the IDS practically useless.

AE attacks have become more and more sophisticated that
AE attacks on ML-based IDSs are becoming a real threat to
network security. Lin et al. [9] leveraged a generative adversar-
ial network (GAN) to transform original malicious traffic into
adversarial traffic to fool the IDS. Wu et al. [10] employed
deep reinforcement learning (DRL) to generate adversarial
traffic flows to deceive the detection model automatically and
adaptively. Rigaki et al. [11] utilized a GAN to adapt the
Command and Control (C2) channel of malicious traffic to
mimic the traffic of a legitimate application (e.g. the Facebook
chat network traffic), and therefore evaded the IDS. Shu et al.
[12] employed active learning and GAN to launch AE attacks
on ML-based IDS, demonstrating the capability to compromise
an IDS using only limited prior knowledge. The above attacks
[9]–[13] confirm that AEs are inevitably turning into a huge
threat to ML-based IDSs.

To defend against AE attacks, one can generally take two
routes: 1) improving the robustness of an IDS model against
adversarial perturbations, or 2) developing an auxiliary AE
detector to reject suspicious inputs [14] before going into
the IDS. Defense schemes in the first category [15], [16]
usually need to customize the IDS models to every AE attack
encountered. Considering many novel AE attacks are yet to
come, we opt to design an effective AE detector as the defense,
i.e., the second route.

In this paper, we propose MANDA, a MANifold and Decision
boundary-based AE detection scheme for ML-based IDS.
The benign or malicious traffic events usually reside in a
low-dimensional manifold (i.e., a cluster) embedded in the
ambient feature space. The goal of ML-based IDS is to learn a
decision boundary that discriminates malicious network traffic
from benign network traffic. To explain our intuitions behind
MANDA clearly, we use an AE generated from a malicious
network event for illustration. The AE fools the IDS model
(i.e., evades the IDS) by traversing the decision boundary of
IDS model. To preserve the malicious property of an intrusion
traffic, the crafted AE should be inside or at least close to

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

978-1-6654-0325-2/21/$31.00 ©2021 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
1

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-0
32

5-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
42

98
1.

20
21

.9
48

88
74

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

the malicious manifold. Therefore, although the IDS model
classifies the AE as benign, a manifold detector is highly
likely to discriminate it into the manifold of malicious samples.
This motivates us to use such an inconsistency to detect AE.
Also, considering that AEs are usually closer to the decision
boundary of IDS model than normal samples, it is expected
that when added small noise, the classification result of the
AE is more likely to change than that of a clean sample. This
motivates us to use such change of IDS classification results
to detect AE.

The contributions of our paper are summarized as follows:
• We systematically investigate practical AE attacks and

defenses of recent ML-based IDSs. To the best of our
knowledge, we are the first to investigate AE attacks for
IDS in problem space rather than in feature space, and
also the first to propose an effective AE detection scheme
to defend against such attacks.

• We propose MANDA, a novel MANifold and Decision
boundary-based AE detection scheme for ML-based IDS.
MANDA is designed by exploiting unique features we
observe while trying to categorizing AE attacks from the
viewpoint of machine learning model and data manifold.
Based on our AE categorization, MANDA combines two
building blocks (i.e., Manifold and DB) together to
achieve effective AE detection regardless of which AE
attack is used.

• Our experimental results show that MANDA achieves
98.41% true-positive rate (TPR) with a fixed 5% false-
positive rate (FPR) under CW attack, the most pow-
erful AE attack, and over 0.97 AUC-ROC under three
frequently-used attacks (FGSM attack, BIM attack, and
CW attack) on the NSL-KDD dataset. We also demon-
strate that MANDA outperforms Artifact [17], a state-
of-the-art solution on AE detector, on both IDS task and
image classification task.

The remainder of the paper is organized as follows. Section
II summarizes the related work. Section III introduces the
system model and threat model. In Section IV, we elaborate the
proposed AE detection scheme. We then present and compare
the experimental results in Section V. Conclusion are drawn
in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we review the previous work most related
to our paper including recent intrusion attacks on IDS and
adversarial examples in deep learning. To the best of our
knowledge, no prior work focuses on defense mechanisms
against AE attacks on IDS.

A. Network Intrusion Attacks

Recently the information technology infrastructures includ-
ing the Internet, telecommunication networks, computer sys-
tems, and embedded industrial processors, are subject to
various network intrusion attacks [18]. A network probing
attack searches for network vulnerabilities by scanning the
connections (e.g., port scanning) of the network in order to

launch further attacks. Another type of network intrusion
attacks, the advanced persistent threat (APT) attacks [19],
is powerful in a different way since the attack relies on
coordinated human executions rather than running automated
code. In an APT attack, continuous monitoring and interaction
are conducted persistently to a target entity until the objectives
are achieved. Different from APT attacks, a distributed denial
of service (DDoS) attack tries to disrupt network operation
by exhausting network resources but usually with no further
goals. A recent prominent example of a DDoS attack is the
Mirai botnet, which took down hundreds of websites including
Twitter, Netflix, Reddit, and GitHub for several hours in
October 2016. Today, Mirai mutations are generated daily and
they can continue to proliferate and inflict real damage to
networks [20].

The recent development in machine learning has enabled
new and powerful ML-based IDSs. At the same time, the rapid
progress in adversarial machine learning brought out a novel
network intrusion attack, i.e. adversarial example attack, to
screw up a ML-based IDS. Lin et al. [9] proposed IDSGAN
which leverages a GAN to transform original malicious traffic
into adversarial traffic instances so as to mislead the IDS to
classify it as benign. Xu et al. [13] proposed a general method
to automatically find evasive variants for a target classifier.
Their method first uses genetic programming techniques to
manipulate a malicious sample and then obtains its variant
that preserves malicious behavior but is classified as benign
by the classifier. They demonstrated its effectiveness in two
popular PDF malware classifiers. Apruzzese et al. [21] studied
realistic adversarial example attacks performed on IDS with
a focus on identifying botnet traffic by ML classifiers. Their
results highlight the effectiveness of adversarial examples on
all botnet detection classifiers they explored. Wu et al. [10]
employed deep reinforcement learning (DRL) to generate
adversarial traffic flows to deceive a target detection model
automatically. In this attack, the reinforcement learning agent
updates the adversarial samples based on the feedback from
the target model, which is able to adapt to the change of the
temporal and spatial features of the traffic flows. Rigaki et al.
[11] utilized a GAN to modify the Command and Control (C2)
channel of malicious traffic so as to mimic that of a legitimate
application (e.g. Facebook traffic) and evade detection. Shu
et al. [12] employed active learning and GAN to launch the
adversarial example attack on a ML-based IDS and showed
great capability to attack an IDS using only limited prior
knowledge. In sum, it is clear that AE attacks are posing real
threat to today’s ML-based IDS considering the cost is ultra
low and AE attacks themselves are constantly evolving.

B. Adversarial Example

Adversarial example (AE) has become one of the most
important research topic of machine learning in the past few
years. It was first proposed in [7] that the classification result
of a machine learning model on an arbitrary input sam-
ple could change dramatically by just applying intentionally
crafted imperceptible perturbations. Such a perturbed sample

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

is called an AE. Research on AE involves two main directions:
how to generate AEs (i.e., AE attacks) and how to deal with
AEs (i.e., AE defenses).

AE attacks. Multiple ways to modify a sample into an AE
have been proposed which lead to multiple AE attacks. Many
AE generation methods compute the gradient of the model’s
loss with respect to the input. To lead to a misclassification,
the fast gradient sign method (FGSM) moves the current
input image along the direction that maximizes the loss. Basic
iterative method (BIM) extends FGSM to an iterative scheme
by applying multiple times of gradient sign with small steps.
The Jacobian-based saliency map attack (JSMA) seeks the
top features that contribute to misclassification when applying
a fixed distortion and only perturbs the selected pixels until
a misclassification is arrived. Carlini and Wagner proposed
optimization-based attacks to find a successful AE with the
smallest distortion. Among all known AE attacks, FGSM,
JSMA, and CW are the most referenced ones.

AE detection. Most defenses for AE attacks are specifically
designed for image input in computer vision research. For
example, image processing techniques such as reducing color
depth [22], [23], reducing image size [24], [25], increasing
resolution [26], and rotation or shifting [27] have been devel-
oped to detect AEs. Apparently, those methods are designed
for images, they are either not applicable or not effective when
applying to network traffic-based IDS.

Detection schemes based on statistical testing are not limited
to image input and thus can be applied for IDS. Gener-
ally, the hypothesis of these AE detectors is that statistical
characteristics of AEs and clean data are different and thus
distinguishable. Grosse et al. [28] applied the kernel-based
two-sample test to distinguish AEs from clean data. Song et
al. [29] leveraged generative models to decide whether an input
sample was drawn from the same distribution of clean data.
Zheng et al. [30] used a Gaussian Mixture Model (GMM)
to approximate the hidden layer distribution so as to reject
samples with hidden states lying in the low density regions
of the distribution. Feinman et al. [17] employed kernel-
based density estimation to detect AEs. The drawback of the
scheme in [17], [28] is that it requires sufficient AEs to build
the detector, similar to defense schemes based on adversarial
training [31], [32].

To the best of our knowledge, we are the first to design AE
detection schemes for ML-based IDS. We compare our scheme
to one of the state-of-the-art statistical testing schemes [17] in
IDS and also show its applicability for tasks with image input.

III. SYSTEM MODEL AND THREAT MODEL

This paper proposes a novel AE detector for ML-based IDS.
We first describe our system model and threat model in this
section.

A. Notations

First let us clarify two types of ‘detection’ tasks in our
paper. The first is ‘intrusion detection’ which is our target
application scenario. In this paper, we consider an intrusion

detection system, in short IDS, that relies on machine learning
techniques to detect abnormal/malicious network events. In the
remaining part, we refer to the classification model of an IDS
(shown in Fig. 1) as the IDS model, of which the purpose
is to decide whether an input sample of network events is
an intrusion or not. The second is ‘AE detection’ which is
our research goal. An IDS model is subject to AE attacks.
The proposed AE detector, i.e. MANDA, is placed in front
of the intrusion detection module so as to detect and reject
adversarial examples before they are fed into the IDS model.
So the purpose of the AE detector is to decide whether an
input sample is an AE or not. With the clarification, positive
and negative samples of the two, i.e., IDS model and MANDA,
can be defined as follows.

For IDS model
• The input to the IDS is a sequence of network packets.

Let us call it a network event. An malicious input
then refers to a network event that is generated by a
malicious attack, such as a DDoS attack or a Botnet
traffic. Ideally the IDS will classify a malicious input
as positive, otherwise a false negative will occur which
means a malicious input has evaded the detection. The
synonyms for “malicious input” include “malicious data”,
“malicious traffic”, or simply “intrusion”.

• We use benign traffic to denote network events
generated from normal network applications. Ideally the
IDS will classify all benign traffic as negative samples.
Sometimes ‘benign traffic’ are also referred to as ‘benign
data’ , ‘benign input’, or ‘normal traffic’.

For MANDA
• The input to the MANDA system is also sequences

of network packets, i.e. network events. We use
adversarial examples (AEs) to refer to the inputs
that have been intentionally crafted to fool the IDS model,
i.e. either to evade the IDS detection or to create false
positives. The goal of the MANDA is to classify those AEs
correctly. We also use ‘adversarial input’ or ’adversarial
sample’ to refer to an AE.

• We use clean example to refer to the network traffic
instances without adversarial perturbations. The MANDA
system is expected to classify a clean example as neg-
ative. A clean example can be either a malicious traffic
instance or a benign traffic instance. We also use ‘clean
input’ or ‘clean sample’ to refer to it.

One thing to emphasize is that an AE can be an input
crafted from a malicious input and classified as ’benign’ or
one crafted from a benign input and classified as ’malicious’.
For illustration purpose, we always stick to the former case
across the paper. In experiments, we explore both cases.

B. System Model

A typical architecture of a ML-based IDS is shown in Fig. 1.
Usually, IDS is a passive infrastructure which rarely interferes
with the network traffic under monitoring. An IDS sniffs the
internal interface of the firewall in a read-only mode and

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

IDS Management

Internet Trusted NetworkFirewall

IDS

Monitor

Training Detection

Model

IDS

Feature Extractor

Fig. 1: System model of ML-based IDS.

sends alerts to an IDS management server via a read-and-write
network interface [33], [34]. As Fig. 1 shows, a ML-based IDS
is composed of the following modules [3]:
• Network Traffic Monitor keeps tracking the on-

going network traffic of a communication and networking
system.

• Feature Extractor processes the raw traffic data as
feature vectors in a pre-defined form.

• Training Phase. In the training phase, an ML
model is trained with both benign and malicious traffic
instances. We refer to the ML model as IDS model.

• Detection Phase. In the detection phase, processed
runtime traffic instances are fed into the learned model.
An alert will be generated if an input instance is classified
as positive by IDS model.

C. Threat Model

In this paper, we focus on AE attacks in which an attacker
aims to mislead the IDS model by slightly modifying its
traffic flow, e.g., enlarging or shortening the length of payload
slightly as shown in Fig. 2. The goal of the attacker is to let
the IDS model to either misclassify a malicious traffic instance
as benign (i.e., increase FN) or misclassify a benign one as
malicious (i.e., increase FP). In either case, successful AE
attacks may render the IDS model less effective or practically
useless. Depending on the prior knowledge known to the
attacker, there are three types of attacks to ML-based systems:
white-box attack, gray-box attack, and black-box attack.
• An white-box adversarial attacker knows

both the architecture and weights of the IDS model.
• An gray-box adversarial attacker knows

the IDS model architecture but not the weights. She
is able to query the model while trying to reduce the
number of queries to avoid being suspicious.

• An black-box adversarial attacker has no
information about the architecture and weights of the IDS
model. She is able to query the model while trying to
reduce the number of queries to avoid being suspicious.

In this paper, we consider white-box attack to the IDS
system, which is the most powerful one among the three types
from the attacker’s perspective. This will allow attackers to
craft adversarial network instances in the most effective and
stealthy manner in order to defeat the IDS system. However,
we assume that the attacker has no knowledge of our proposed

Monitor

Detection

Model

IDS

Feature
Extractor

Adversarial
Examples

make wrong
decision

Fig. 2: Attack model of adversarial example generating attacks.

AE detection method. The general AE generation process can
be summarized as follows. Let F be a m-class classifier with
model parameter θ. The model maps the input (x ∈ Rn) to the
output (y ∈ Rm), i.e., y = F(θ, x). Note that y[i], i = 1, ·,m
denotes the probability that x belongs to i-th class, and
y[1]+...+y[m] = 1. The predicted label of x, c(x), is the class
with the largest y[i], i.e., c(x) = argmax y. The objective of
AE generation is to search for x′ = x+ η (η denotes a small
perturbation) such that c(x′) 6= c(x). Assume J(θ, x) is the
loss function of F(θ) on an input x. Despite that there are
quite a few AE attacks in the literature, we choose four most
representative and effective attacks to address in this paper. In
what follows we provide a brief review of the four attacks and
highlight the techniques used in each of them.

1) FGSM: Goodfellow et al. [8] proposed a fast gradient sign
method (FGSM) to generate AEs. Specifically, an attacker
computes the gradient of y with respect to x. It then
moves the current x along the direction that maximizes
J(θ, x, y). The generated AE can be written as:

x′ = x+ εsign∇xJ(θ, x).
2) BIM: Kurakin et al. [35] proposed a basic iterative

method (BIM) which is an extension of FGSM. This
attack applies fast gradient sign multiple times with small
steps and clips the pixel value of intermediate results of
each step to ensure that the generated AE is in the ε-
neighborhood of the original input. ε is a global parameter
to bound the distance between x and its AE.

x
′

0 = x

x
′

i = clipx,ε(x
′

i−1 + αsign∇xJ(θ, x
′

i−1)), i ≥ 1.

3) JSMA: In [36], Papernot et al. proposed jacobian-based
saliency map attack (JSMA), which applies iterative com-
putation to seek features which contribute more for mis-
classification in each step. For an input x, the prediction
confidence on j-th class is denoted by fj(x). To generated
an AE for a target class t, the applied perturbation needs
to satisfy two requirements simultaneously: a) ft(x)
increases and b) fj(x),∀j 6= t decreases. The adversarial
saliency map (for i-th feature) is defined as:

S(x, t)[i] =

{
0, if ∂ft(x)

∂xi
< 0 or

∑
j 6=t

∂fj(x)
∂xi

> 0
∂ft(x)
∂xi
|
∑
j 6=t

∂fj(x)
∂xi

> 0|, otherwise.

4) CW attack In [37], Carlini and Wagner introduced
optimization-based attacks for generating AEs. Three
distance metrics – L0, L2, and L∞ distance – are used to
evaluate the distortion of an AE from its original input.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

The AE generation process is formulated as:

min ‖x′−x‖+c ·max{max{fi(x′) : i 6= t}−ft(x′),−κ}
subject to x′ ∈ [0, 1]n

In most cases, CW attack outperforms the other three
methods in terms of effectiveness and distortion.

IV. THE MANDA SYSTEM

In this section, we present the design of MANDA, the
proposed AE detector for ML-based IDS, and explain the
rationale behind each design choice. The valid input to an
IDS system is real network traffic flows in the problem-space.
Therefore, the generated AE should also lie in the same
problem-space of IDS. We adapt existing feature-space AE
generation algorithms to problem-space algorithms in order
to generate AEs that can map back to valid real network
events. The key insight for detecting AEs is to identify the
discrepancy between true benign samples and AEs. Such
an intuition motivates us to investigate AE’s position to the
decision-boundary of the IDS model and its position in the
traffic manifolds formed by training samples.

A. Problem-Space AE Attack for IDS

In this section, we demonstrate how we generate AEs for
IDS in problem-space. The problem space of an IDS is all
possible traffic instances in the form of sequences of network
packets while its feature space is all possible feature vectors in
the form of numerical entry representing packet length, packet
inter-arrival time, etc. Prior AE generation algorithms [35]–
[37] are for image inputs where the problem space and feature
space are the same, i.e. a vector of pixels. The problem-space
AE attacks specifically on network flow-based IDS have not
been investigated yet. Our work is to fill this gap.

It takes two steps to generate an AE in problem-space.
First, we generate a feature-space AE x′ from a clean input
x. Second, we design a mapping function to project x′ back
to problem-space and obtain the ultimate problem-space AE
z′. The corresponding representation of x in problem-space is
denoted by z.

Traditional inverse feature-mapping techniques are not ad-
equate to project a feature-space instance to problem-space
because the mapping itself is neither invertible nor differen-
tiable in our problem context. Our approach is to force the
mapping to be differentiable by nullifying the perturbations on
non-differentiable features. Specifically, x′, the crafted feature-
space AE, is composed of two parts: {x′

diff , x
′

non−diff}. We
force that x

′

non−diff = xnon−diff . From this we go straight to
letting z

′

non−diff = znon−diff . After getting rid of x
′

non−diff ,
we backpropagate the gradient of F(xdiff) from x to z such
that z’s change in problem-space follows negative gradient. In
IDS, non-differentiable features are categorical features like
‘protocol type’, ‘service type’, and so on. We also conjecture
that nullification of such non-differentiable features helps to
maintain intrinsic properties of the clean data. Obviously, an
AE attack still fails if its AEs fool the IDS model but do not
maintain intrinsic properties of the clean data.

Compared to feature-space AE generation, we need to
include the following restrictions for problem-space AE gen-
eration.

‖x′ − x‖2 ≤ ε,
‖x′[i]− x[i]‖ ≤ p ∗Ri, if i ∈ Sdiff ,
x′[i] = x[i], if i ∈ Snon−diff ,

where x′ is an AE generated from x. x[i] denotes x’s i-
th feature and Ri denotes its range. ε denotes the maximum
perturbation applied on x′. Sdiff corresponds to the set of
differentiable features and p the maximum change ratio on
Sdiff . Only the differentiable features are eligible to modify.

B. Properties of AE

First let’s talk about manifold learning for better un-
derstanding of our AE categorization scheme. The assumption
of manifold learning is that input data reside on or close to
a low-dimensional manifold embedded in the ambient space
[38]. For example, a plane is the manifold revealed by a
group of three-dimensional data if these data points lie in a
plane (a flat, 2-dimensional surface). Manifold learning refers
to the process of automatically learning the geometric and
topological properties of a given manifold [39]. Most manifold
learning methods focus on data representation as in [40]–
[42]. Let M be a manifold model. Formally, we refer to the
inference on an input x as ‘manifold evaluation’, denoted by
M(x). Similar to machine learning, the output of manifold
evaluation is also a vector showing the probabilities of x
locating in each sub-manifold (i.e., each class).

Let’s look back to AE for IDS again. The IDS model, F ,
maps an input sample x to a confidence vector y ∈ {p0, p1}.
The final predicted class is c(x) = argmaxF(x). c(x) =
1 indicates that x is classified as malicious while c(x) = 0
indicates that x is classified as benign. Assume c(x) = 1 (the
true label of x is also 1) and x′ = x+ η is an AE generated
from x. The goal of AE attack is c(x′) = 0. We assume that
x′ needs to keep the essential property of its true class, i.e.,
’malicious’. This translates to that although x′ is closer to
’benign’ class in the eye of the IDS model, it does not totally
comply with the property of ’benign’ class. Otherwise, x′ is
not an AE rather a new instance of ’benign’ class.

Assuming that AE needs to keep the essential property of
its true class (which is confirmed by our experimental results),
successful AEs can be categorized into two cases. Again, we
use an AE given by c(x) = 1 and c(x′) = 0 for illustration
purpose, i.e., x is a malicious sample and x′ is recognized
as a benign sample. Notice that we also consider AEs with
c(x) = 0 and c(x′) = 1 in our experiments.
• Case A: x′ is close to the manifold of the ‘malicious’

class but far from the manifold of the ‘benign’ class. This
occurs frequently when malicious and benign manifold
are fully separable from each other.

• Case B: x′ is close to both manifolds. This happens
when both manifolds are close to each other, or even
overlapping (i.e., cannot separate from each other per-
fectly).

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

x

x0
x x0

Classifier Boundary Manifold of Positive Class
Manifold of Negative ClassAdversarial Direction AE

Clean Data

(1) Case A (2) Case B

Fig. 3: The illustration of AEs in the 2-D view.

Fig. 3 illustrates Case A and Case B for two-dimensional
data. In practice, the dimension of a manifold depends on the
dimension and distribution of input samples. It is noted that the
two cases (i.e., Case A and Case B) are not non-coexistent.
They may exist for the same IDS model at different segments
of the decision boundary.

Note that if x′ is far away from the manifold of ’malicious’
class and close to that of ’benign’ class, x′ is not a successful
AE because x′ breaks the above assumption of AE needs to
keep the essential property of its true class. The same happens
to the case that x′ is far away from both manifolds.

C. MANDA

Here we introduce our AE detection scheme, MANDA, which
is based on the above AE categorization. Assume that the
IDS model has high classification rate on clean data since
it makes much less sense to discuss detecting AEs already
misclassified by the IDS model. Obviously, a clean input
needs to traverse the decision boundary of the IDS model
to be an AE. As mentioned in Section I, MANDA consists of
two components denoted by Manifold and DB, respectively.
Manifold combines both x’s classification and manifold
evaluation results together to detect AEs. If the two outputs of
x are inconsistent, x is very likely to be an AE. DB explores
whether an input x is near the decision boundary of the IDS
model to detect AE. Specifically, if we add small Gaussian
noise to x and the corresponding y (thus c(x)) changes
frequently, x is very likely to be an AE. We want to emphasize
that both Manifold and DB can be used as stand-alone AE
detection scheme while MANDA combines them together for
better performance.

1) Manifold: For Case A in Fig. 3, an AE lies in or
near the manifold of ’malicious’ class but far from ’benign’
class. Meanwhile, the output label from the IDS model on the
AE is ’benign’ class. Therefore, results of the IDS model and
manifold evaluation on the same input are inconsistent. On
the contrary, results for a clean input tends to be consistent.
Intuitively, we can use the inconsistency between the IDS
model and manifold evaluation as a criterion for AE detection.

In order to capture the data manifold for positive and nega-
tive class, we employ a transductive learning model proposed
by Zhou et al. in [43]. The learning method explores the
intrinsic structure revealed collectively by a group of labeled

Algorithm 1 Score Computed for Criterion 1 & 2

Input: input x ∈ Rn, IDS model F(θ), learned manifold M
Output: score1, score2

1: p←M(x) # Confidence vector of manifold evaluation
2: q ← F(θ, x) # Classifier output
3: score1 ← ‖p‖+ ‖q‖ − ‖p+ q‖ # Criterion 1
4: for i = 0 to N do
5: xi = x+N (0, σ2)
6: pi ← F(θ, xi)
7: end for
8: score2 ← 1

N

∑N
i=1 ‖pi‖ −

1
N

∥∥∥∑N
i=1 pi

∥∥∥ # Criterion 2
9: return score1, score2

and unlabeled data points. It guarantees both local consistency
and global consistency of known data points. This means
that (1) nearby points are likely to have the same label;
and (2) points on the same structure (typically referred to as
a manifold) are likely to have the same label. The learned
manifold evaluation model is sufficiently smooth with regards
to intrinsic data structure. We use this learning method to
obtain the manifold for each class in this paper.
Detection Criterion 1 We conclude an input as an AE if
an inconsistency occurs between manifold evaluation and IDS
model.

For implementation, we first compute score1 by combining
results from manifold evaluation and the IDS model as shown
in Algorithm 1. Next, we compare score1 to an optimal
threshold to decide whether an input sample is an AE or not.
See Algorithm 2.

2) DB: Different from Case A, the two manifolds of
’malicious’ and ’benign’ class are not fully separable in
Case B. Here we have the following proposition:

PROPOSITION 1: In IDS, if
(i) the two manifolds of ’malicious’ and ’benign’ classes

are not fully separable but most instances are still
distinguishable;

(ii) IDS classifier F is with optimized accuracy;
(iii) x is a clean malicious input and x′ is x’s corresponding

AE, i.e., c(x)=1, x′=x+ η, c(x′)=0; and
(iv) x′ keeps the essential property of ’malicious’ class.

Then, x′ is very close to the decision boundary of F with high
probability.

For Case B in Fig. 3, an AE should be very sensitive to
small perturbations. Based on Proposition 1, we use whether
an input is close to the decision boundary as a secondary
criterion for AE detection. Note that this criterion can falsely
conclude a clean input close to boundary as an AE. Due to the
curse of dimensionality very few clean inputs that are correctly
classified are close to the boundary [44]. Our experimental
results also verify such a hypothesis.
DB needs to evaluate whether an input is a near-boundary

example in high-dimensional space. We achieve this goal
by evaluating the uncertainty of IDS model output when an
input is applied with small additive perturbation. For a near-
boundary example, such a small perturbation may cause it to

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Manifold

Input: input x ∈ Rn, model parameters θ, threshold τ
Output: isAdversarial ∈ {False, True}

1: score1, score2 ← Score-Compute(x, θ, τ) # Algorithm 1
2: if (score1 > τ1) then
3: isAdversarial← True
4: end if
5: return isAdversarial

traverse the decision boundary. Consequently, the predictions
of IDS model become very unstable when an input is applied
with perturbations. Conversely, a small perturbation on an
input away from the boundary will hardly lead to such a
change. We compute model uncertainty on an input with
additive Gaussian perturbation N (0, σ2) in Algorithm 1. For
an input x, the uncertainty of output from IDS model is
evaluated as the variance of the confidence vector F(xi) of
xi = x+N (0, σ2), (i ∈ N, i ≤ N):

score2 =
1

N

N∑
i=1

‖F(θ, xi)‖ −
1

N

∥∥∥∥∥
N∑
i=1

F(θ, xi)

∥∥∥∥∥ .
Similar to Manifold, DB uses an optimal threshold for
score2 to decide whether x is an AE or not. Due to space
limit, we do not include the pseudocode of DB here.

Detection Criterion 2 We conclude an input with high model
uncertainty on small perturbations as an AE.

3) MANDA (Manifold+DB): To combine Manifold
and DB together for AE detection, MANDA first obtains
[score1, score2] of each x in training set from them. Denote
x’s label in training set as label(x). Next, MANDA transforms
each [x, label(x)] into [score1, score2, label(x)] and obtains
a new training set. Finally, MANDA trains a logistic regression
model on the new dataset and uses it for AE detection.
Algorithm 3 details the whole process of MANDA.

V. EXPERIMENTAL RESULTS

A. Datasets

1) NSL-KDD: We use the internet traffic dataset, NSL-
KDD [45] (also used in AE attacks in IDS [9], but [9] dose not
consider problem-space validity), for our evaluation. In NSL-
KDD, each sample contains four groups of entries including
Intrinsic Characteristics, Content Characteristics, Time-based
Characteristics, and Host-based Characteristics. There are four
categories of intrusion: DoS, Probing, Remote-to-Local (R2L),
and User-to-Root (U2R) of which each contains more attack
sub-categories. There are 24 sub-categories of attacks in the
training set and 38 sub-categories of attacks are in test set
(i.e., 14 sub-categories of attacks are unseen in the training
set). There are 125,973 training records and 22,544 testing
records. In our experiments, we only show the evaluations on
an IDS model for discriminating DoS attacks from normal
traffic since the results for the other three attacks are similar.
The total number of entries for each record is 41 (in problem-
space) which are further processed into 121 numerical features
as an input-space (feature-space) vector.

Algorithm 3 MANDA

Input: θ, xtest ∈ Rn, training data X,Yadv

Output: isAdversarial ∈ {False, True}
1: if training then
2: S1,S2 ← Score-Compute(X, θ, τ) # Algorithm 1
3: model← LogistcRegression(S1,S2,Yadv)
4: else
5: score1, score2 ← Score-Compute(xtest, θ, τ)
6: isAdversarial← model(score1, score2)
7: end if
8: return isAdversarial

2) MNIST: We also evaluate our approach on an image
dataset, MNIST [46], to demonstrate its applicability. The
images in MNIST are handwritten digits from 0 to 9. The
corresponding digit of an image is used as its label. Each class
has 6,000 training samples and 1,000 test samples. Therefore,
the whole MNIST dataset has 60,000 training samples and
10,000 test samples. All the images have the same size of
28× 28 and are in grey-level.

B. Experiment Settings

We implemented the problem-space attacks and MANDA in
TensorFlow. We ran all the experiments on a server equipped
with an Intel Core i7-8700K CPU 3.70GHz×12, a GeForce
RTX 2080 Ti GPU, and Ubuntu 18.04.3 LTS. The IDS model
is a muti-layer perceptron (MLP) composed of one input
layer, one hidden layer with 50 neurons and one output layer.
For completeness, we also implemented other models for
IDS including Logistic Regression (LGR), K-Nearest Neigh-
bors (KNN), Naive Bayes classifier for multivariate Bernoulli
(BNB), Decision Tree Classifier (DTC) and Support Vector
Machine (SVM) from scikit-learn library [47]. We implement
four AE attacks including FGSM, BIM, CW (the L2-norm
version) and JSMA (cf. Section III-C) and adapt the first three
to problem-space of IDS. In each experiment, we generate
AEs on the test samples that are correctly classified by the IDS
model. Note here that we do not generate AEs for misclassified
test samples. Next, we combine the successful AEs and
the same number of clean data points (randomly selected)
together as a mixed dataset, on which we run all detection
algorithms. The benchmark for comparison is Artifact
[17], the same as in [14], [44]. Artifact is proposed by
Feinman et al. in [17] and becomes one of the state-of-the-
art AE detection scheme. Different from MANDA, Artifact
uses kernel density estimation (KDE) and Bayesian neural
network uncertainty as two criteria to detect AEs.

On MNIST dataset, we use a convolutional neural network
(CNN) rather than the above MLP as the target model for AE
attacks. The CNN model comprises 4 convolutional layers with
ReLU activation, followed by 2 fully-connected layers.

C. Evaluation Metrics

We compute True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) of AE detection as
evaluation metrics defined as follows.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

Perturbation FGSM BIM CW
restriction (%) Acc (%) L2 Acc (%) L2 Acc (%) L2

0 90.64 0 90.64 0 90.64 0
1.0 84.48 1.40 83.84 1.54 77.02 1.08
2.5 71.10 1.51 64.05 1.58 52.61 1.45
5.0 64.27 1.58 59.48 1.58 42.68 1.58
7.5 60.09 1.67 55.95 1.62 37.47 1.68

10.0 56.63 1.79 52.79 1.67 34.51 1.67
None 2.42 2.57 0.08 1.53 0.00 0.96

aPerturbation is only applied to a subset of features.

TABLE I: IDS model accuracy under AE attacks with different perturbations

0.0 2.5 5.0 7.5 10.0
Perturbation (%)

30

50

70

90

Ac
c

(%
)

FGSM
BIM
CW

Fig. 4: IDS model accuracy from TABLE I

• TP: a test sample is an AE and detected as an AE.
• FP: a test sample is a clean sample but detected as an

AE.
• TN: a test sample is a clean sample and detected as clean.
• FN: a test sample is an AE but detected as clean.

Then we have TPR = TP
TP+FN ,FPR = FP

TN+FP . The receiver
operating characteristics (ROC) curve is created by plotting
the TPR against the FPR at various threshold settings. The
AUC-ROC score is defined as the area under the ROC curve,
and we use AUC to denote it in the following.

D. Results of IDS

1) AE Attacks in Problem-Space: We show the classifica-
tion accuracy of the IDS model under FGSM, BIM and CW
attack in Table I. We draw two main conclusions from the
experimental results. First, the larger perturbation AE attacks
use (i.e., p), the more powerful AE attacks are, and hence the
less accurate the targeted IDS model becomes. Recall that p is
the maximum change ratio on each feature of the modifiable
feature set Sdiff (in Section IV-A). Table I shows that model
accuracy drops from 90.64% with p = 0 to 34.51% with
p = 10% under CW attack (the strongest attack investigated).
Second, the success attack rate of feature-space attack (i.e., the
last row in Table I) is higher than that of problem-space attack
(i.e., any row other than the last in Table I) because the latter
faces more restrictions in generating AEs (See Section IV-A).
Yet problem-space AE attacks can still result in very low
accuracy of targeted IDS model with larger p. In what follows,
we stick to p = 5% and explore the detection performance of
our proposed approach under AE attacks.

It is known that AEs generated from one target model
can transfer to other models. Table II shows the results of
our problem-space AEs generated from MLP model and then
applied to models including LGR, KNN, BNB, SVM and
DTC. The significantly decreased accuracy confirms that our
problem-space AE generation scheme maintains the capability
of AE to transfer to different models.

TABLE II: IDS model accuracy under AE attacks

Models Acc Acc (%) after attack
(%) FGSM BIM CW Overall

LGR 89 15 70 52 45
KNN 91 33 38 51 40
BNB 87 84 86 26 65
SVM 89 22 26 25 24
DTC 84 79 79 73 77

2) Detection Performance: Here we show the results of our
AE detection schemes including Manifold, DB, and MANDA.

First, we show ROC curves of detecting FGSM, BIM, and
CW attacks in Fig. 5. We can see that Manifold and MANDA
achieve similar ROC results which outperform both DB and
Artifact. Such results inspire us that most AEs can be
successfully detected by the inconsistency between IDS model
and manifold model. We further compute the AUC and TPR
(with a fixed FPR) in Table III to better show the detection
performance. From the table, we can see that the best AUC
score under FGSM attack is achieved by Manifold. For BIM
attack and CW attack, MANDA outperforms the other detection
methods with 0.9726 and 0.9851 AUC, respectively. We also
show TPR under 5% FPR and 15% FPR in Table III. Our
Manifold achieves the best TPR under FGSM attack with
either 5% FPR or 15% FPR, while MANDA outperforms the
other methods under CW attack with either 5% FPR or 15%
FPR. For the BIM attack, Manifold achieves the highest
TPR with 5% FPR, while MANDA works best with 15% FPR.

In sum, Manifold and MANDA achieve excellent AE
detection performance for IDS models: they achieve both high
AUC score and TPR. As pointed out in Section IV-C, our DB
detection method is to detect those AEs which are not close to
either manifold and Manifold thus fails to detect. Therefore,
MANDA is able to detect more AEs while at the risk of more
false positive samples. Manifold, DB, and MANDA are able
to detect an AE in around 0.26 millisecond, rendering them
great candidates for fast online detection.

E. Results on MNIST

We also apply MANDA to the MNIST dataset to evaluate
their performance. The results below imply that the proposed
approach can be used for other application scenario as well.
When dealing with image input, we add a feature extractor
to convert an low-level image input (i.e., a pixel vector) into
a high-level feature vector for dimensionality reduction. The
details are as follows.

1) Feature Extraction: The feature extractor is a convolu-
tional auto-encoder comprising three convolutional layers with
32, 64, 64 filters as the encoder and three convolutional layers
with 64, 64, 32 filters as the decoder. We first train the auto-
encoder model and then include only the trained encoder into
the main image classification model for MNIST. Comparing
with the original input size of 28×28, the extracted high-level
features are in a smaller size of 64× 1.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

FGSM attack

Manifold (Ours, AUC=0.9792)
DB (Ours, AUC=0.8471)
MANDA (Ours, AUC=0.9765)
Artifact (AUC=0.8984)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

BIM attack

Manifold (Ours, AUC=0.9714)
DB (Ours, AUC=0.9340)
MANDA (Ours, AUC=0.9726)
Artifact (AUC=0.9023)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

CW attack

Manifold (Ours, AUC=0.9805)
DB (Ours, AUC=0.9439)
MANDA (Ours, AUC=0.9851)
Artifact (AUC=0.9123)

Fig. 5: ROC curve of AE detection methods under FGSM, BIM and CW attacks on NSL-KDD.

TABLE III: AE Detection Performance on IDS

Detection Method
FGSM BIM CW

TPR(%) AUC-ROC TPR(%) AUC-ROC TPR(%) AUC-ROCFPR=5% FPR=15% FPR=5% FPR=15% FPR=5% FPR=15%
Manifold (Ours) 94.04 100.00 0.9792 98.41 99.98 0.9714 98.38 100.00 0.9805

DB (Ours) 17.27 53.57 0.8471 27.91 98.62 0.9340 71.00 97.91 0.9439
MANDA (Ours) 92.88 99.89 0.9765 98.04 100.00 0.9726 95.93 100.00 0.9851
Artifact [17] 12.60 96.63 0.8984 14.78 96.31 0.9023 28.07 97.66 0.9123

0.0 0.1 0.2 0.3 0.4 0.5 0.6
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

FGSM attack

Manifold (Ours, AUC=0.9755)
DB (Ours, AUC=0.9235)
MANDA (Ours, AUC=0.9731)
Artifact (AUC=0.9054)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

BIM attack

Manifold (Ours, AUC=0.9718)
DB (Ours, AUC=0.9645)
MANDA (Ours, AUC=0.9735)
Artifact (AUC=0.9525)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

CW attack

Manifold (Ours, AUC=0.9691)
DB (Ours, AUC=0.9685)
MANDA (Ours, AUC=0.9741)
Artifact (AUC=0.9230)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

JSMA attack

Manifold (Ours, AUC=0.9703)
DB (Ours, AUC=0.9536)
MANDA (Ours, AUC=0.9667)
Artifact (AUC=0.9606)

Fig. 6: ROC curve of AE detection methods under FGSM, BIM, CW, and JSMA attacks on the MNIST dataset.

2) Detection Performance: We show the results of AE
detection of the main model under FGSM, BIM, JSMA and
CW attacks in Fig. 6. With a fixed 5% FPR, MANDA achieves
0.89, 0.94, 0.90, and 0.99 TPR under FGSM, BIM, JSMA, and
CW attack, respectively. Compared to Artifact, MANDA im-
proves TPR under FGSM, BIM, JSMA, and CW attack by 0.36,
0.19, 0.10, and 0.31, respectively. Such results confirm that
MANDA is effective not only for network intrusion detection
but also for other application scenarios. We will continue to
explore more application scenarios in the future work.

F. Discussion

For intrusion detection, an intrusion event is usually a mali-
cious activity accessing a network component (e.g. gateway) in
the form of a sequence of Internet packets. The problem-space
adversarial examples generated in this paper are not directly
the sequences of attacking packets yet. Our goal here is to
understand the strategies and limits to which an attacker can
reshape the attack traffic in order to evade the detection (i.e.,
changes to high-level features such as packet inter-arrival time,
protocol type, etc.). This would provide important guidance for
ultimate adversarial example generation at packet sequence
level. We perceive that the module to generate packets that
lead to the desired high-level features is a parallel research
topic and hence is not the focus of our study here.

VI. CONCLUSION

In this paper, we examine three recent AE attacks against
ML-based IDSs. The results confirm that the problem-space
AE attacks are an effective disruption to the IDSs as it allows
malicious events to escape with high probability. We identify
common features of successful AEs, and based on which
we design an effective and accurate AE detector, MANDA.
The MANDA system takes on a novel design that exploits
inconsistency between manifold evaluation and IDS model
inference and evaluates model uncertainty on small pertur-
bations to differentiate AEs from clean network traffic. Our
evaluation of MANDA using the NSL-KDD dataset shows that
MANDA outperforms the state-of-the-art statistical test model
(i.e., Artifact) by achieving higher AUC score and higher
true-positive rate with 5% false-positive rate. MANDA also
performs well when evaluating using the MNIST dataset which
implies that the detector may be applied to other domains, e.g.
the computer vision area.

VII. ACKNOWLEDGMENT

This work was supported in part by the Office of Naval
Research under grant N00014-19-1-2621, the National Sci-
ence Foundation under grants CNS-1837519, and the Virginia
Commonwealth Cyber Initiative (CCI).

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] H.-J. Liao, C.-H. R. Lin, et al., “Intrusion detection system: A compre-
hensive review,” Journal of Network and Computer Applications, vol. 36,
no. 1, pp. 16–24, 2013.

[2] J. McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by
lincoln laboratory,” ACM Trans. on Information and System Security
(TISSEC), vol. 3, no. 4, pp. 262–294, 2000.

[3] P. Garcia-Teodoro, J. Diaz-Verdejo, et al., “Anomaly-based network
intrusion detection: Techniques, systems and challenges,” computers &
security, vol. 28, no. 1-2, pp. 18–28, 2009.

[4] M. Ren, A. Pokrovsky, et al., “Sbnet: Sparse blocks network for
fast inference,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition(CVPR), pp. 8711–8720, 2018.

[5] W. Xiong, L. Wu, et al., “The microsoft 2017 conversational speech
recognition system,” in IEEE int. conf. on acoustics, speech and signal
processing (ICASSP), pp. 5934–5938, IEEE, 2018.

[6] M. Johnson, M. Schuster, et al., “Google’s multilingual neural machine
translation system: Enabling zero-shot translation,” Trans. of the Asso-
ciation for Computational Linguistics, vol. 5, pp. 339–351, 2017.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[9] Z. Lin, Y. Shi, et al., “Idsgan: Generative adversarial networks
for attack generation against intrusion detection,” arXiv preprint
arXiv:1809.02077, 2018.

[10] D. Wu, B. Fang, J. Wang, Q. Liu, and X. Cui, “Evading machine learning
botnet detection models via deep reinforcement learning,” in ICC 2019-
2019 IEEE International Conference on Communications (ICC), pp. 1–
6, IEEE, 2019.

[11] M. Rigaki and S. Garcia, “Bringing a gan to a knife-fight: Adapting
malware communication to avoid detection,” in 2018 IEEE Security and
Privacy Workshops (SPW), pp. 70–75, IEEE, 2018.

[12] D. Shu, N. O. Leslie, C. A. Kamhoua, and C. S. Tucker, “Generative
adversarial attacks against intrusion detection systems using active
learning,” in Proceedings of the 2nd ACM Workshop on Wireless Security
and Machine Learning, pp. 1–6, 2020.

[13] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in
Proceedings of the 2016 network and distributed systems symposium,
vol. 10, 2016.

[14] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proc.10th ACM Workshop on
Artificial Intelligence and Security, pp. 3–14, 2017.

[15] N. Papernot, P. McDaniel, et al., “Practical black-box attacks against
deep learning systems using adversarial examples,” arXiv preprint
arXiv:1602.02697, vol. 1, no. 2, p. 3, 2016.

[16] F. Tramèr, A. Kurakin, et al., “Ensemble adversarial training: Attacks
and defenses,” arXiv preprint arXiv:1705.07204, 2017.

[17] R. Feinman, R. R. Curtin, et al., “Detecting adversarial samples from
artifacts,” arXiv preprint arXiv:1703.00410, 2017.

[18] E. Bou-Harb, M. Debbabi, et al., “Cyber scanning: a comprehensive
survey,” Ieee communications surveys & tutorials, vol. 16, no. 3,
pp. 1496–1519, 2013.

[19] P. Hu, H. Li, et al., “Dynamic defense strategy against advanced
persistent threat with insiders,” in 2015 IEEE Conference on Computer
Communications (INFOCOM), pp. 747–755, IEEE, 2015.

[20] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[21] G. Apruzzese, M. Colajanni, and M. Marchetti, “Evaluating the effec-
tiveness of adversarial attacks against botnet detectors,” in 2019 IEEE
18th International Symposium on Network Computing and Applications
(NCA), pp. 1–8, IEEE, 2019.

[22] W. Xu, D. Evans, et al., “Feature squeezing: Detecting adversarial
examples in deep neural networks,” Proc. Network and Distributed
System Security Symposium, 2018.

[23] B. Liang, H. Li, et al., “Detecting adversarial image examples in
deep neural networks with adaptive noise reduction,” IEEE Trans. on
Dependable and Secure Computing, 2018.

[24] D. Hendrycks and K. Gimpel, “Early methods for detecting adversarial
images,” in Int. Conf. on Learning Representations (ICLR), 2017.

[25] X. Li and F. Li, “Adversarial examples detection in deep networks with
convolutional filter statistics,” in Proc. IEEE Int. Conf. on Computer
Vision (ICCV), pp. 5764–5772, 2017.

[26] A. Mustafa, S. H. Khan, et al., “Image super-resolution as a defense
against adversarial attacks,” IEEE Trans. on Image Processing, vol. 29,
pp. 1711–1724, 2019.

[27] S. Tian, G. Yang, et al., “Detecting adversarial examples through image
transformation,” in 32ed AAAI Conf. on Artificial Intelligence, 2018.

[28] K. Grosse, P. Manoharan, et al., “On the (statistical) detection of
adversarial examples,” arXiv preprint arXiv:1702.06280, 2017.

[29] Y. Song, T. Kim, et al., “Pixeldefend: Leveraging generative models to
understand and defend against adversarial examples,” in Int. Conf. on
Learning Representations (ICLR), 2018.

[30] Z. Zheng and P. Hong, “Robust detection of adversarial attacks by
modeling the intrinsic properties of deep neural networks,” in Advances
in Neural Information Processing Systems, pp. 7913–7922, 2018.

[31] J. H. Metzen, T. Genewein, et al., “On detecting adversarial perturba-
tions,” in Int. Conf. on Learning Representations (ICLR), 2017.

[32] Z. Gong, W. Wang, et al., “Adversarial and clean data are not twins,”
arXiv preprint arXiv:1704.04960, 2017.

[33] J. D. Burton, Cisco security professional’s guide to secure intrusion
detection systems. Syngress Publ., 2003.

[34] E. Conrad, S. Misenar, et al., Eleventh Hour CISSP®: Study Guide.
Syngress, 2016.

[35] A. Kurakin, I. Goodfellow, et al., “Adversarial examples in the physical
world,” in Int. Conf. on Learning Representations (ICLR 17), 2017.

[36] N. Papernot, P. McDaniel, et al., “The limitations of deep learning in
adversarial settings,” in IEEE European Symp. on Security and Privacy
(EuroS&P), pp. 372–387, IEEE, 2016.

[37] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP 17),
pp. 39–57, IEEE, 2017.

[38] T. Lin and H. Zha, “Riemannian manifold learning,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 30, no. 5, pp. 796–809,
2008.

[39] R. Wang and X. Chen, “Manifold discriminant analysis,” in IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pp. 429–436,
IEEE, 2009.

[40] J. B. Tenenbaum, V. De Silva, et al., “A global geometric framework
for nonlinear dimensionality reduction,” science, vol. 290, no. 5500,
pp. 2319–2323, 2000.

[41] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[42] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Advances in neural information
processing systems(NeurIPS), pp. 585–591, 2002.

[43] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Advances in neural information
processing systems, pp. 321–328, 2004.

[44] S. Hu, T. Yu, et al., “A new defense against adversarial images: Turning a
weakness into a strength,” in Advances in Neural Information Processing
Systems (NeurIPS), pp. 1635–1646, 2019.

[45] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in IEEE symp. on computational
intelligence for security and defense applications (CISDA), pp. 1–6,
IEEE, 2009.

[46] Y. LeCun, L. Bottou, et al., “Gradient-based learning applied to docu-
ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[47] F. Pedregosa, G. Varoquaux, et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:08:35 UTC from IEEE Xplore. Restrictions apply.

		2021-07-22T14:10:43-0400
	Preflight Ticket Signature

