
A General Model for Minimizing Age of
Information at Network Edge

Chengzhang Li, Shaoran Li, and Y. Thomas Hou
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract—Recently, a new metric, called Age of Information
(AoI), has become popular to quantify the freshness of infor-
mation collected at network edge. AoI research is still in its
infancy and most prior efforts assume overly simplified models
in their investigation. In this paper, we consider a more general
model for AoI research that is closer to what happens in the
real world. Specifically, we consider general and heterogeneous
sampling behaviors among source nodes, varying sample size,
and multiple data transmission units in each time slot. Under
this much general setting, we develop new theoretical results (in
terms of properties and performance bounds) and a new near-
optimal low-complexity scheduling algorithm. Our results make a
major advance of AoI research in terms of more realistic models.

I. INTRODUCTION

Data collection is a critical component in modern network
systems. In a typical scenario, at the network edge, multi-
ple source nodes for different applications collect samples
of information from the physical environment and forward
the sampled information to the edge server. The collected
information can then be either processed and stored locally
(edge computing) and/or forwarded to the cloud. Since many
applications on the upper layer depend on the timeliness of
the sampled information, it is critical to forward the freshest
sample to the edge as soon as possible.

Recently, the so-called Age of Information (AoI) has been
introduced as a new metric to quantify the freshness of
information [1, 2]. AoI is defined as the elapsed time for a
sample (stored at a particular location, e.g., edge or cloud)
between current time (now) and the time when the sample was
first generated at its source. Due to potentially large number
of source nodes and limited transmission capacity between
source nodes and the base station (BS), not all newly generated
samples can be forwarded to the BS at the same time. As a
result, a scheduling algorithm is needed to allocate the limited
channel resource to the source nodes to minimize AoI for all
source nodes.

There has been active research on minimizing AoI (see, e.g.,
[3–17] and a bibliography on this research in [18]). Most of
the efforts consider very simple models where one sample is
taken at each source node in each time slot (i.e., per time slot
sampling), with one unit of data in each sample, and channel
transmission capacity is one unit of data in each time slot.
Specifically, papers most relevant to this paper include [3–7].
In [3] the authors considered cache updating under the above
simple model. In [4–7] the authors considered the simple
model with unreliable channel (i.e. each transmission has a
probability to fail). In addition, in [5], the authors considered

a throughput constraint. In [6], the authors considered the
influence of CSI knowledge. In [7], the authors considered a
general channel constraint and some heterogeneous sampling
behaviors. Although results from such simple models (in terms
of sampling behavior, sample size, transmission rate) offer
some initial understanding on AoI, the practical applications
from these results are limited.

In this paper, we study AoI in a general setting that is
more relevant to applications in the real world. Specifically,
we consider the following general models. (i) We consider
various sampling behaviors at each source, such as arbitrary
sampling, periodic sampling, and per time slot sampling. Note
that per time slot sampling, the simplest sampling behavior,
is what has been mostly studied in the literature. However,
sampling behaviors such as arbitrary sampling and periodic
sampling (with each source having different sampling period)
are most common in real-world applications and deserve
further investigation. (ii) We allow sample size collected
at each source node to vary, depending on the underlying
application. This is a major generalization of state-of-the-art
where sample sizes from all sources are identical (one unit).
Again, this generalization is absolutely necessary if we want
to have our AoI research to be relevant to applications in
the real world. (iii) We generalize the transmission capacity
with multiple transmission units in each time slot. This is also
a generalization of state-of-the-art where there is only one
transmission unit.

The main contributions of this paper are the following:
• We study AoI with a much more general model than those

used in the state-of-the-art in terms of sampling behavior
at the source nodes, sample size collected from each
source, and transmission capacity. Such generalizations
offer much better characterization of source heterogeneity
and transmission behavior in the real world. As a result,
findings based on this general model not only have more
significance from theoretical perspective, but also have
greater impacts on applications in the real world.

• Under this general model, it is much more challenging
to design an AoI minimization scheduler, due to a much
larger search space than those considered in the litera-
ture. As a first step, we develop two properties for an
optimal scheduling solution. We show these properties
help reduce the search space for the optimal and near-
optimal solution. They also serve as a guideline for
developing optimal AoI scheduling algorithms for other
AoI problems in the general setting.

Cloud

Base Station

Wireless Channel

Source Nodes

Fig. 1. System Model: N nodes collect information and forward it to a BS.

• In the reduced search space, we further develop theo-
retical lower bounds for AoI under different sampling
behaviors (arbitrary, periodic and per time slot). These
lower bounds serve as performance benchmarks to assess
the quality of a scheduling algorithm under different
sampling behaviors.

• We design a low-complexity scheduling algorithm that is
applicable to all three sampling behaviors. Through theo-
retical analysis, we find that our algorithm can guarantee
a factor of 3 from the objective value. Through simulation
study, we find that our scheduling algorithm is near-
optimal when there is no synchronization in sampling
among the sources.

II. SYSTEM MODEL

Consider a network consisting of N source nodes and one
BS as shown in Fig. 1. Each source node samples information
from its environment and attempts to transmit it to the BS.
For uplink data transmission, time is equally divided into
time slots and each time slot can accommodate a number
of data transmission units. Denote M as the number of data
transmission units per time slot over the uplink bandwidth.
Then, in each time slot, the BS is capable of allocating the
M transmission units to a single or multiple source nodes
for uplink data transmission. For simplicity, with respect to
each source node, we assume each transmission unit carries
the same amount of information over all time slots.1

At each source node, information is collected (or generated)
at a specific sampling rate at this source. Denote Li (in number
of transmission units) as the amount of information in each
sample for source node i. A wide range of sampling behavior
are possible among the N sources, such as:
• Arbitrary Sampling. Each node perform its own

sampling (either following a random or deterministic
pattern) and is independent of other sources. This sam-
pling behavior is the most general among all sampling
behaviors.

• Periodic Sampling. Source node i performs sampling
at every Ti time slots. The sampling intervals (Ti’s) are

1The general case considering channel diversity in time and frequency
domains will be explored in our future research.

generally different among different source nodes. This
sampling behavior is likely the most prevailing sampling
behavior among real-world applications.

• Per Time Slot Sampling. Each source node samples
information in every time slot. This is the special case
for periodic sampling with Ti = 1 for every node i. It is
a model used by most works in AoI research (see, e.g.,
[3, 5, 6]). Although simple, this model may not be an
accurate characterization of real world sampling behavior
as each source node usually samples at different rate, due
to difference in applications.

When the BS allocates transmission units to a source node,
the source node will always transmit its freshest sample (the
most recently generated sample). Recall each sample from
each node i consists of Li units of information. Due to the
size of Li, it may take multiple time slots to complete the
transmission of this sample. Only after all Li units of the
sample from source i are transmitted to the BS, we say the BS
has received this sample. Once the transmission of a sample
begins, the remaining unfinished units from this sample must
be transmitted (over multiple time slots if needed) before any
new sample is considered (even if the new sample is fresher
than the one currently under transmission).

The BS maintains the sample that it has most recently
received from each source node and considers it the freshest
information that it possesses from that source. Again, a sample
from a source is not considered received until the sample (con-
sisting of multiple units) is received in its entirety (possibly
requiring multiple time slots). Upon receiving a sample from
source i completely, the BS replaces the previous sample from
source i with this newly received sample.

III. AOI MODELING AND PROBLEM STATEMENT

At each source node i, denote U s
i (t) as the generation time

of the most recent sample at time slot t. Denote As
i(t) as the

AoI at source node i at time slot t. We have

As
i(t) = t− U s

i (t). (1)

Note that As
i(t) is a zigzag-like function with a slope of 1

between sampling intervals and is reset to 0 in each time slot
when a new sample is generated. Clearly, 0 ≤ As

i(t) < Ti in
the periodic sampling case.

At the BS, it maintains the most recent (complete) sample
that it has received from each of the N source nodes. Note
that this sample maintained at the BS from source node i may
be different from (older than) the freshest sample currently
at source node i. Denote UB

i (t) as the generation time of the
sample from source node i that is currently maintained by the
BS at time slot t. Denote AB

i (t) as the AoI for this sample at
the BS at time slot t. Then we have

AB
i (t) = t− UB

i (t). (2)

Since UB
i (t) ≤ U s

i (t), we have AB
i (t) ≥ As

i(t), i.e., the AoI
for source node i as perceived (maintained) by the BS is older
(larger) than or equal to that at the source node, which is
intuitive. Note that AB

i (t) is also a zigzag-like function with a

𝑡𝑖(𝑘) 𝑏𝑖(𝑘) 𝑒𝑖(𝑘)

Sample 𝑘 is
generated
at node 𝑖

Sample 𝑘′𝑠
transmission

begins

Sample 𝑘′𝑠
transmission

ends

𝐴𝑖
𝑠(𝑡)

𝐴𝑖
𝐵(𝑡)

0

Sample (𝑘 + 1)
is generated

at node 𝑖

𝑡𝑖(𝑘 + 1)

𝑏𝑖(𝑘) − 𝑡(𝑘) 0 𝑒𝑖(𝑘) − 𝑡𝑖(𝑘 + 1)

𝑡𝑖(𝑘) − 𝑡𝑖(𝑘 − 1) 𝑏𝑖(𝑘) − 𝑡𝑖(𝑘 − 1)

𝑡
𝑒𝑖 𝑘 + 1

𝑈𝑖
𝑠(𝑡)

𝑈𝑖
𝐵(𝑡) 𝑡𝑖(𝑘 − 1)

𝑡𝑖(𝑘) 𝑡𝑖(𝑘) 𝑡𝑖(𝑘 + 1) 𝑡𝑖(𝑘 + 1) 𝑡𝑖(𝑘 + 1)

𝑒𝑖 𝑘 − 𝑡𝑖 𝑘 + 1 + 1

𝑡𝑖(𝑘 − 1) 𝑡𝑖(𝑘 − 1) 𝑡𝑖(𝑘 − 1) 𝑡𝑖(𝑘)

𝑒𝑖(𝑘) − 𝑡𝑖(𝑘 − 1) 𝑒𝑖 𝑘 − 𝑡𝑖 𝑘 + 1𝑡𝑖(𝑘 + 1) − 𝑡𝑖(𝑘 − 1)

𝑡

Fig. 2. An example showing the evolution of U s
i (t) and As

i(t) at source node
i versus UB

i (t) and AB
i (t) at the BS during different time instances.

slope of 1 between time instances when a sample is received
and is reset at the end of each time slot when a new sample
is completely received at the BS.

We now make a connection between AB
i (t) and As

i(t). From
source node i, for the k-th sample that is actually selected
for transmission,2 denote its beginning (starting) transmission
time slot as bi(k), and ending (finishing) transmission time
slot as ei(k), where ei(k) ≥ bi(k). Since this k-th sample is
selected for transmission at time bi(k), it must be the freshest
sample at source node i at that time, with a generation time
of U s

i

(
bi(k)

)
. After this k-th sample is completely sent to the

BS at the end of time slot ei(k), in the beginning of the next
time slot (ei(k) + 1), we have

UB
i (ei(k) + 1) = U s

i

(
bi(k)

)
.

From (2) and (1), we have

AB
i (ei(k) + 1) = ei(k) + 1− UB

i (ei(k) + 1)

= ei(k) + 1− U s
i (bi(k))

= ei(k) + 1−
(
bi(k)−As

i

(
bi(k)

))
= As

i

(
bi(k)

)
+ ei(k)− bi(k) + 1.

Therefore, over all t, we have

AB
i (t+ 1) =

{
As

i

(
bi(k)

)
+ ei(k)− bi(k) + 1, if t = ei(k),

AB
i (t) + 1, otherwise.

(3)
An example of AoI evolution is given in Fig. 2.

Based on (3), the long-term average of source node i’s AoI
at the BS can be written as:

ĀB
i = lim

T→∞

1

T

T∑
t=1

AB
i (t). (4)

Denote wi as the weight of source node i’s information,
which can be used to reflect the priority of node i. Then the
AoI over all source nodes at the BS can be written as

ĀB =

N∑
i=1

wiĀ
B
i . (5)

Since there are only M data units available for transmission
in each time slot, a scheduling algorithm is needed to decide

2Recall that not every sample generated at source node i will be transmitted
to the BS.

how to allocate the M data units to a subset of source nodes
in each time slot. Denote X(t) as the scheduling decision
for time slot t, where X(t) is an N × 1 vector with its i-th
element xi(t) being the number of data units that is allocated
to user i at time slot t. Since each transmission data unit can
be allocated to at most one source node, we have

N∑
i=1

xi(t) ≤M. (6)

Clearly, each different scheduling algorithm will yield a
very different performance of ĀB in (5). Our goal is to find
an optimal scheduling algorithm so that ĀB is minimized.

Based on (4), minimizing ĀB
i requires the design of a

scheduling algorithm over an infinite number of time slots,
which makes the search space for X(t) infinite. To address
this problem, we show, in the next section, how to reduce the
search space for an optimal scheduling solution.

IV. PROPERTIES FOR AN OPTIMAL SCHEDULING
ALGORITHM

Given that an optimal solution to our scheduling problem
may not be unique, an efficient approach to reduce the search
space is to find some properties associated with a particular
optimal scheduling solution. Based on these properties, it
becomes more tractable to find an optimal solution or design
a near optimal solution.

A. An Order-based Scheduling

At each time slot t, it’s intuitive to perform an order-based
scheduling, that is, to assign an order for all source nodes and
allocate data transmission units to the source node currently
with the highest order before allocating to the source node
with the second highest order and so forth. The order can be
designed based on As

i(t), AB
i (t), wi and Li for each source

node.
The following lemma states that for each time slot t,

there exists an optimal order-based scheduling algorithm that
minimizes ĀB.

Lemma 1 Under arbitrary sampling, there exists an order-
based scheduling algorithm that achieves the optimal objec-
tive.

A Proof Sketch Suppose X∗(t) is an optimal scheduling
algorithm that minimizes ĀB. For any time slot t, suppose
the scheduled transmission samples are from source nodes
i1, i2, · · · , iP with ending time slots e1, e2, · · · , eP such that
t ≤ e1 ≤ e2 ≤ · · · ≤ eP . Denote S as the set of trans-
mission units that are allocated to source nodes i1, i2, · · · , iP
to complete their current samples from time t (inclusive)
under X∗(t). We define the order of those source nodes
as i1 > i2 > · · · > iP . Based on this order, we can re-
allocate the transmission units in S as follows. We first allocate
transmission units to finish i1’s sample in its entirety and then
move to i2, and so on. By doing this, the ending time slot
of each node will not increase and thus the new ĀB is either
equal or smaller than the previous objective. Since the previous

objective is optimal, then only equality is possible and such
order-based scheduling is optimal.

Using this property, we only need to find or design an order-
based scheduling algorithm. This property allows us to work in
a much smaller search space. Also note that since this property
is for arbitrary sampling, it applies to periodic and per time
slot sampling policies as well.

B. Cyclic Transmission
Another property that we want to explore is whether an

optimal scheduling algorithm exhibits a cyclic (periodic) trans-
mission pattern, i.e., with the same scheduling decision for
every, say Tc, time slots. It appears that such property is hard
to establish under arbitrary sampling policy. So we will focus
on periodic sampling policy, which also includes per-time slot
sampling policy.

More formally, we say a scheduling algorithm is cyclic if
it repeats its scheduling decision for a fixed number of time
slots. Denote Xc(t) as a cyclic scheduling algorithm and Tc
as its cycle (in number of time slots). Then there exists a t0
such that for any t > t0, we have

Xc(t) = Xc(t+ Tc).

The following lemma states the existence of such an optimal
cyclic scheduler under periodic sampling policy.

Lemma 2 When each source is sampled periodically (even
with different periods), there exists a cyclic scheduling algo-
rithm that achieves optimal objective.

A Proof Sketch We first define the state of the network in
a time slot as the complete information of current AoI at
the source nodes, current AoI at the BS, and number of
remaining transmission units that are still needed for each
source node. Each state has a corresponding weighted-sum AoI
at the BS. We can prove that there exists an optimal scheduling
algorithm X∗(t) (with objective Ā∗) that only visits a subset
of states, and the corresponding weighted-sum AoI at the BS
for each state in the subset is smaller than a finite upper
bound. Therefore, there are only a finite number of possible
AoI values at the BS for states in the subset. Since the number
of possible combinations of other components in a state is also
finite, the number of states in the subset is finite. As time goes
to infinity, there must be a state that appears infinite times. We
then divide the time domain into infinite number of segments
based on the appearance of this state, with this state appearing
in the first time slot of each segment. Obviously, there must
be a segment with average AoI at the BS smaller than or equal
to Ā∗. Since X∗(t) is optimal, only equality is possible. Then
we can construct an optimal cyclic scheduling algorithm by
repeating the states within this segment.

Since Lemma 2 applies to periodic sampling policy, it also
applies to per time slot sampling policy.

C. Complexity Analysis
Under arbitrary sampling, Lemma 1 helps reduce the search

space. If sampling is periodic, the search space can be further

reduced by Lemma 2. However, even under periodic sampling,
the reduced search space for an optimal scheduling algorithm
is still infinite since Tc can be any number. Therefore, we
have to pursue an efficient heuristic algorithm to achieve near-
optimal performance.

V. PERFORMANCE BOUNDS

Before we design a scheduling algorithm, we first develop
some lower bounds for our objective function under different
cases. These results are not only important to serve as a
performance benchmark to assess the scheduling algorithm
that we will develop (in Section VI), they are also of significant
theoretical value on their own as they generalize a number of
results (developed for special or simple cases) in the literature.

We will develop lower bounds of our objective function,
denoted as α(∗,∗) for the following four cases: (i) per time
slot sampling under finite link capacity: α(PTS,M), (ii) arbitrary
sampling under infinite link capacity: α(ARB,∞), (iii) arbitrary
sampling under finite link capacity: α(ARB,M), and (iv) peri-
odic sampling under finite link capacity: α(PRD,M).

A. The Case of Per Time Slot Sampling Under Finite Link
Capacity

In this case, each source node takes a sample at every time
slot, i.e., Ti = 1 and As

i(t) = 0 for all i. Here the AoI at the
BS is purely limited by the link capacity, M . In the literature
(see, e.g., [3, 5]), lower bounds for the same objective function
have been developed for the simple case where M = 1 and
Li = 1 for each source node i. Our development here is for
a general value of M ≥ 1 and different values of Li for each
different user, which is what happens in practice.

Since per time slot sampling is a special case of periodic
sampling, by Lemma 2, there exists an optimal cyclic algo-
rithm X∗c (t) with a cycle Tc. Denote Ni as the number of
fully transmitted samples from node i over a cycle of Tc time
slots. In a cycle, the number of transmission units allocated
among the source nodes cannot be more than the total number
of available transmission units. We have

N∑
i=1

NiLi ≤M · Tc. (7)

Define ri as the transmission rate for source node i, i.e.,

ri =
Ni

Tc
. (8)

Under per time slot sampling, since at most one sample from
each source node can be sent to the BS, we have

0 < ri ≤ 1. (9)

Intuitively, ri shows the percentage of a sample from source
node i that can be transmitted in a time slot.

Dividing (7) by Tc and using (8), we have

N∑
i=1

riLi ≤M. (10)

…
1 𝑁𝑖𝑁𝑖 − 12 3

𝜏𝑖1 𝜏𝑖2 𝜏𝑖(𝑁𝑖−1)

Wrap Around

𝜏𝑖𝑁𝑖

𝑁𝑖 samples in a cycle of 𝑇𝑐 time slots

Fig. 3. A cycle with Ni samples. Each sample has its time interval since the
last sample. The first interval is formed by connecting two partial intervals in
the beginning and end of this cycle.

For source node i, it has Ni samples transmitted in a cycle.
Consider the time interval between two successive transmitted
samples. Then we have (Ni−1) intervals. By wrapping around
a transmission cycle and viewing it cyclically (see Fig. 3), the
time from the beginning of the cycle until the first transmitted
sample and the time from the Ni-th transmitted sample to the
end of the cycle together can be considered as the interval time
for the first transmitted sample. We have, therefore, a total of
Ni intervals for source node i in Tc. Denote these Ni intervals
as τi1, τi2, ...τiNi (see Fig. 3), we have

Ni∑
j=1

τij = Tc.

Since it takes at least one time slot to transmit a sample
from source node i to the BS, AB

i (t) ≥ 1. Then, during time
interval τij , the sum of AoI at the BS (for source node i) is
at least

1 + 2 + ...+ τij =
τ2ij + τij

2
.

So in a cycle with Tc time slots, a lower bound for ĀB
i can

be found by taking time average (over Tc time slots) of ĀB
i (t)

for Ni time intervals. We have

ĀB
i ≥

1

Tc

Ni∑
j=1

τ2ij + τij

2
=

1

Tc

Ni∑
j=1

τ2ij
2

+
1

2
. (11)

Applying the Cauchy-Schwarz inequality, we have

Ni

Ni∑
j=1

τ2ij ≥ (

Ni∑
j=1

τij)
2 = T 2

c . (12)

Applying (12) to (11) we have

ĀB
i ≥

Tc
2Ni

+
1

2
or ĀB

i ≥
1

2ri
+

1

2
.

Based on (5), we have

ĀB ≥
N∑
i=1

wi(
1

ri
+

1

2
). (13)

To find a lower bound for ĀB, we can use a lower bound for∑N
i=1 wi(

1
2ri

+ 1
2), which means we need to find the minimum

of
∑N

i=1
wi

ri
. We have the following optimization problem:

min
ri

N∑
i=1

wi

ri

s.t. Constraints (9) and (10)

(14)

The above optimization problem is convex and can be easily
solved. In the optimal solution, there are K nodes (0 ≤ K ≤
N) with their r∗i = 1 and the remaining N −K nodes with
their r∗i < 1. Without loss of generality, we assume r∗i = 1
for i ≤ K and r∗i < 1 for i > K. Define

MK = M −
K∑
i=1

Li. (15)

In solving the convex optimization, the KKT conditions
require, for i ≤ K,√

wi

Li
≥
∑N

j=K+1

√
wjLj

MK
, (16)

and for i > K, r∗i is given as:

r∗i =
MK

√
wi

Li∑N
j=K+1

√
wjLj

< 1. (17)

With the optimal solution to (14), a lower bound of ĀB,
denoted by α(PTS,M), is given by

α(PTS,M) =

N∑
i=1

wi(
1

2r∗i
+

1

2
)

=
1

2MK
(

N∑
i=K+1

√
wiLi)

2 +
1

2

N∑
i=K+1

wi +

K∑
i=1

wi.

(18)

In the special case of M = 1 and Li = 1, we have K = 0
and MK = 0. Therefore,

r∗i =

√
wi∑N

j=1

√
wj

(1 ≤ i ≤ N) , (19)

and the lower bound

α(PTS,1) =
1

2
(

N∑
i=1

√
wi)

2 +
1

2

N∑
i=1

wi , (20)

which are the main results reported in [3].

B. The Case of Arbitrary Sampling Under Infinite link Capac-
ity

In this case the link capacity is infinite, i.e., M →∞. Here
the BS can update information for all nodes in every time slot.
ĀB is purely limited by the source sampling, As

i(t).
We define the average AoI at the source node i as

Ās
i = lim

T→∞

1

T

T∑
t=1

As
i(t). (21)

From the evolution of AoI (3), under infinite link capacity, we
have

AB
i (t) = As

i(t− 1) + 1, for t > 0.

So in this case ĀB equals to

α(ARB,∞) =

N∑
i=1

lim
T→∞

1

T

T∑
t=1

wi(A
s
i(t) + 1) =

N∑
i=1

wi(Ā
s
i + 1).

(22)
This means the average AoI at the BS side is the average AoI
at the source side plus 1. Here “1” is the transport delay of
the network, meaning that the fresh information at the source
needs one time slot to be sent to the BS. Note that under
infinite link capacity, α(ARB,∞) is actually a constant rather
than a theoretical bound.

It appears that none of the existing works considered the
limitation of source sampling. α(ARB,∞) reveals an important
fact that infinitely increasing link capacity cannot decrease ĀB

to 0. Instead, ĀB will converge to α(ARB,∞).

C. The Case of Arbitrary Sampling Under Finite Link Capac-
ity

In Section V-A and V-B, we have already derived two lower
bounds, α(PTS,M) and α(ARB,∞), respectively from the limita-
tion of link capacity and source sampling. In the general case
of arbitrary sampling and finite link capacity, both α(PTS,M)

and α(ARB,∞) will apply and we can choose the tighter of the
two as the lower bound. That is,

α(ARB,M) = max(α(PTS,M), α(ARB,∞)). (23)

In the previous works (see, e.g., [3, 5]), the authors did not
consider the impact of source sampling when developing a
lower bound. Thus, under arbitrary sampling and finite link
capacity where source sampling is the major limiting for ĀB

(e.g., when M is relatively large), α(PTS,M) (a generalization of
the lower bounds in [3, 5]) can be much looser than α(ARB,M)

developed in this paper.

D. The Case of Periodic Sampling Under Finite Link Capacity

Under the periodic sampling case (under finite link capac-
ity), we use a new relaxation technique to develop a tighter
lower bound, α(PRD,M).

By Lemma 2, there exists an optimal cyclic algorithm X∗c (t)
with a cycle Tc. It’s easy to see Tc should be a multiple number
of each node’s sampling cycle, Ti. Just as in Section V-A,
denote Ni as the number of fully transmitted samples from
source node i over a cycle. Eq. (7) still holds. Other than the
transmission rate ri, for the periodic sampling case, we define
pi as the transmission percentage for source node i, i.e.,

pi =
NiTi
Tc

. (24)

Intuitively, pi represents the percentage of fully transmitted
samples over all generated samples in a cycle of Tc time slots.
Clearly, we have

0 < pi ≤ 1. (25)

Dividing (7) by Tc and using (24), we have
N∑
i=1

piLi

Ti
≤M. (26)

Under periodic sampling we can also find Ni time intervals
for each source node i in one cycle, τi1, τi2, ...τiNi

, as we did
in Section V-A. To obtain a lower bound of ĀB, we assume
that transmission of each sample can be finished in one time
slot. Consider the following problem: If Ni is given, when
should these Ni transmissions occur in order to minimize ĀB

in a cycle? Under the optimal strategy (to achieve the smallest
ĀB), transmission of a sample should occur in the time slot
immediately following the time instance when the sample is
taken. Further, under the optimal transmission strategy, the
lengths of transmission intervals should be similar. That is, the
difference between any two transmission intervals is at most
one Ti. Otherwise, we can use the average of their intervals
for transmission and obtain a smaller ĀB.

Therefore, if we define Hi = b 1
pi
c (where b·c is the floor

function), to minimize ĀB in one cycle, each transmission
interval τij should be equal to either HiTi or (Hi + 1)Ti.
Suppose in one cycle, there are n1 intervals with length HiTi
and n2 intervals with length (Hi + 1)Ti. We have{

n1 + n2 = Ni

n1HiTi + n2(Hi + 1)Ti = Tc.
(27)

Solving n1 and n2, we have{
n1 = (Hi + 1)Ni − Tc

Ti

n2 = Tc

Ti
−HiNi.

(28)

Since (11) still holds in this case, we can substitute (28)
into (11) and we have

ĀB
i ≥

((
(Hi + 1)Ni −

Tc
Ti

)
(HiTi)

2

+ (
Tc
Ti
− uiNi)

(
(Hi + 1)Ti

)2) 1

2Tc
+

1

2

=
Ti
2

(2Hi + 1− (H2
i +Hi)pi) +

1

2

=
Ti
2
f(pi) +

1

2
,

where f(pi) is defined by

f(pi) = 2[
1

pi
] + 1−

(
[

1

pi
]2 + [

1

pi
]
)
pi. (29)

To find a lower bound for ĀB, we can use a lower bound
for

∑N
i=1 wi(

Ti

2 f(pi) + 1
2), which means we need to find

the minimum of
∑N

i=1 wiTif(pi). We have the following
optimization problem:

min
pi

N∑
i=1

wiTif(pi)

s.t. Constraints (25) and (26)

(30)

Note that f(pi) can be considered as a piece-wise linear
function. So the optimization problem (30) can be reformu-
lated to a linear programming problem, which can be easily

solved. We omit the details for solving (30) due to paper length
limitation.

With the optimal solution to (30) (denoted by p∗i for all i),
a lower bound of ĀB, denoted by α(PRD,M), is given by

α(PRD,M) =

N∑
i=1

wi(
Ti
2
f(p∗i) +

1

2
). (31)

In the above derivation for α(PRD,M), we consider the
impacts of both link capacity and source sampling. With
consideration of the fact that f(pi) ≥ 1/pi and f(pi) ≥ 1,
we can find α(PRD,M) is always tighter than both α(PTS,M)

and α(ARB,∞). Therefore, α(PRD,M) is always tighter than the
lower bound for arbitrary sampling, α(ARB,M).

VI. JUVENTAS: A NEAR-OPTIMAL SCHEDULING
ALGORITHM

In this section, we propose a low-complexity scheduling
algorithm, code named Juventas3, in the reduced search space
derived in Section IV.

For source node i, suppose transmission of a sample begins
at t1 and ends at t2 (t2 ≥ t1). Then, at time slot (t2 + 1),
based on (3), we have

AB
i (t2 + 1) = As

i(t1) + t2 − t1 + 1. (32)

On the other hand, if during the same time interval [t1, t2],
source node i is not scheduled for any transmission, then based
on (3), we have

AB
i (t2 + 1) = AB

i (t1) + t2 − t1 + 1. (33)

Note that AB
i (t2 +1) in (33) is greater than AB

i (t2 +1) in (32)
if the sample does not complete its transmission by time t2.
So the benefit of completing transmission of this sample by
t2 (in terms of decrease of AB

i (t2 + 1)) is the difference on
the RHS in (33) and (32), i.e.,

AB
i (t1)−As

i(t1).

Note that this decrease of AB
i (t) after t2 is dependent on AoI

difference between the BS and source node i at t1. So the
amount of age decrease at the BS w.r.t. source node i when a
sample completes its transmission has already been determined
by AoI status at an earlier time slot, i.e., the time slot when
the sample starts its transmission.

Suppose the transmission of a sample at source node i starts
at time slot t. Denote ∆i(t) as the AoI outage which is given
by

∆i(t) = AB
i (t)−As

i(t). (34)

At each time slot t, we will use ∆i(t) to make a scheduling
decision to transmit new samples.4 The motivation is intuitive:
serving the node with largest ∆i(t) will offer the greatest
relieve in reducing its AoI at the BS. However, ∆i(t) alone is

3Juventas is the ancient Roman goddess for youth and rejuvenation.
4For a sample that is not finishedin the previous time slot, Juventas will

use as many transmission units as needed in the current time slot to complete
it (before allocating transmission units to start new samples), as shown in
Fig. 4.

Juventas Algorithm
1: For each time slot t, do the following:
2: Complete transmission of the un-completed sample from

the previous time slot (if there is any).
3: Among all other source nodes, find node i with the

largest
√
wi/Li ·∆i(t).

4: If Li is less than or equal to the number of remaining
transmission units, complete transmission of this sample.
Go to Step 3.

5: If Li is greater than the number of remaining transmis-
sion units, transmit this sample incompletely with all
remaining transmission units.

Fig. 4. Key steps of Juventas algorithm.

not sufficient to be the scheduling metric. Both the weight wi

and packet size Li must also be taken into considerations, as
shown in (5). Therefore, we propose to use

√
wi/Li · ∆i(t)

as the scheduling metric. The source node with the largest
value of

√
wi/Li∆i(t) will be selected for transmission and

the BS will allocate as many transmission units as available to
transmit this sample before considering others.5 The key steps
of Juventas are shown in Fig. 4.

Note that by design, Juventas is an order-based scheduling
algorithm. It can also be shown that Juventas is a cyclic
algorithm when sampling is periodic. We omit its proof due
to paper length limitation.

The following theorem offers a performance guarantee of
Juventas (with a factor 3) when Li ≤M .6

Theorem 1 Under arbitrary sampling, if Li ≤ M for each
source node i, ĀB under Juventas scheduling algorithm is
upper bounded by

ĀB ≤ 3Ā∗ +

N∑
i=1

wi (35)

where Ā∗ is the optimal objective at the BS.

A Proof Sketch First, we show an interesting property about
∆i(t). Denote yi(t) as a binary indicator on whether or not
source node i starts to transmit a sample at time slot t. For
each source node i, when T → ∞, the sum of AoI increase
and AoI decrease at the BS balances out, and we can prove

lim
T→∞

1

T

T∑
t=1

yi(t)∆i(t) = 1. (36)

For Li ≤ M , under Juventas, each sample will finish its
transmission within no more than 2 time slots. We define

5Our idea is corroborated by the scheduling algorithm in [3] under per time
slot scheduling with Li and M = 1. The authors developed a near-optimal
scheduling algorithm that allocates transmission rate in proportional to

√
wi.

Incidentally, Juventas performs better than this scheduling algorithm even in
the same simple case with M = 1, Li = 1 and per time slot sampling. This
is because we make scheduling decision in each time slot while the one in
[3] makes global scheduling decision at t = 0.

6The condition Li ≤M can be easily justified in the real world where the
sample taken from a source node (e.g., sensor) is almost always smaller than
the cellular transmission rate in a TTI (M).

dc
il(t), dp

il(t) and dn
il(t) as binary variables indicating whether

the l-th unit from node i starts its transmission, finishes its
previous transmission or isn’t transmitting in time slot t. From
(15), we have

N∑
i=K+1

Li∑
l=1

(dc
il(t) + dp

il(t)) ≥MK , for t > 0. (37)

For each node i, considering (36), we can prove

lim
T→∞

1

T

T∑
t=1

Li∑
l=1

(
dc
il(t)∆i(t) + dp

il(t)∆i(t− 1)
)

= Li. (38)

For each node 1 ≤ i ≤ N , we define

si(t) = AB
i (t+ 1)−As

i(t− 2)− 3. (39)

By the design of Juventas, we can prove that for any i, j, l, t,

dc
jl(t)

√
wj

Lj
∆j(t) ≥ dc

jl(t)

√
wi

Li
si(t), (40)

and

dp
jl(t)

√
wj

Lj
∆j(t− 1) ≥ dp

jl(t)

√
wi

Li
si(t). (41)

Combining (40) and (41) at each time slot t for each node
i, we can prove

si(t) ≤

N∑
j=K+1

√
wj

Lj

Lj∑
l=1

(
dc
jl(t)∆j(t) + dp

jl(t)∆j(t− 1)
)

√
wi

Li

N∑
j=K+1

Lj∑
l=1

(
dc
jl(t) + dp

jl(t)
) .

(42)
Combining (42) with (37) and (38), we can prove

ĀB
i ≤ Ās

i + 3 +

√
Li

wi

∑N
j=K+1

√
wjLj

MK
. (43)

Considering (5), (16) and (43), we can prove

ĀB ≤ 1

MK
(

N∑
i=K+1

√
wiLi)

2 +

N∑
i=K+1

wi(Ā
s
i + 3)

+

K∑
i=1

wi(Ā
s
i + 4) = 2α(PTS,M) + α(ARB,∞) +

N∑
i=1

wi

≤ 3α(ARB,M) +

N∑
i=1

wi ≤ 3Ā∗ +

N∑
i=1

wi.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of Juventas. In
our simulation, we assume periodic sampling (including per
time slot sampling) at each node. For the source nodes, we
assume they can be classified into 10 groups, with each group
containing the same number of source nodes. The weight,
sampling rate, and sample size for the source nodes within the
same group are identical but differ from those in a different
group. The weight of each source node is normalized w.r..t∑N

i=1 wi before each simulation.7 For each simulation, we

TABLE I
SIMULATION PARAMETERS

Type 1 2 3 4 5 6 7 8 9 10
wi 6 33 25 39 36 46 35 17 35 10
Li 1 15 11 10 19 13 13 18 17 12
Ti 10 12 45 2 25 9 49 36 26 24
M 50
N 100

20 40 60 80 100

Link Capacity (M)

0

10

20

30
Juventas

(PRD,M)

Fig. 5. ĀB for varying M

0 10 20 30 40

Sampling Period (T)

0

5

10

15

20

25
Juventas

(PRD,M)

Fig. 6. ĀB for varying T

terminate when the BS has received at least 100 samples from
each source node. Then we calculate ĀB.

(i) With the parameter settings wi, Li, Ti, N given in Table I
(all units normalized), Fig. 5 shows the objective value, ĀB by
Juventas, as a function of increasing link capacity M . We see
that ĀB decreases monotonically as M increase. Also shown in
this figure is the lower bound for periodic sampling α(PRD,M)

that we derived in (31). Clearly, we see that Juventas can
achieve near-optimal performance.

(ii) With the parameter settings wi, Li, M , N given in
Table I, Fig. 6 shows the objective value, ĀB, as a function of
increasing sampling cycle T , which is the same for all source
nodes. The lower bound α(PRD,M) is also shown in this figure.
We find that Juventas can achieve near-optimal performance.
Note that f(pi) in (29) is a piecewise function so α(PRD,M)

doesn’t increase monotonically as T increases.
(iii) With the parameter settings wi, Ti, M , N given in

Table I, Fig. 7 shows the objective value, ĀB, as a function
of increasing sample size L. Here, all source nodes have the
same sample size L. We see that ĀB by Juventas increases
monotonically as L increases. The lower bound α(PRD,M) is
also shown in this figure, and we see that Juventas can achieve
near-optimal performance.

(iv) With the parameter settings wi, Li, Ti, M given in
Table I, Fig. 8 shows the objective value, ĀB, as a function
of increasing number of source nodes N . We see that ĀB for
Juventas increases monotonically as N increases. The lower
bound α(PRD,M) is also shown in this figure, and we see that
Juventas can achieve near-optimal performance.

Finally, we explore the impact of synchronization in sam-
pling on the performance of Juventas. If two source nodes
have the same sampling cycle Ti and the same initial state,
As

i(0), we say they are synchronized. In all the simulations
in (i) to (iv), the source nodes are not synchronized, either
with different sampling rates or different initial states. We now

7Note that we vary the value N in some of the experiments.

0 10 20 30

Sample Size (L)

0

10

20

30 Juventas

(PRD,M)

Fig. 7. ĀB for varying L

20 40 60 80 100

Number of Source Nodes (N)

0

5

10

15

20

25

Juventas

(PRD,M)

Fig. 8. ĀB for varying N

20 40 60 80 100

Link Capacity (M)

0

10

20

30
Juventas-asyn

Juventas-sync

(PRD,M)

Fig. 9. Weak Synchronization

0 10 20 30 40

Sampling Cycle (T)

0

10

20

30
Juventas-asyn

Juventas-sync

(PRD,M)

Fig. 10. Strong Synchronization

study the impact of synchronization. In the first scenario, we
consider synchronization only within each type of nodes (weak
synchronization). In the second scenario, we consider synchro-
nization among all source nodes (strong synchronization).

Fig. 9 shows the results under weak synchronization (with
the same parameter settings as in Fig. 5). We see that the
objective ĀB under weak synchronization is slightly larger
than that under no synchronization. Fig. 10 shows the results
under strong synchronization (with the same parameter set-
tings as in Fig. 6). We see that the objective ĀB under strong
synchronization is considerably larger than that under no
synchronization. Based on the results in Fig. 9 and Fig. 10, we
conclude that synchronization is harmful to AoI performance
and should be avoided or minimized when we initialize the
source nodes.

VIII. CONCLUSIONS

Minimizing AoI is an important objective in data collection.
However, most of existing research on minimizing the AoI is
based on overly simplified models that are quite far from real
world applications. In this paper, we addressed this important
issue by generalizing three key aspects in AoI research: sam-
pling behavior, sample size, and transmission capacity. Under
the general setting, we developed two interesting properties to
reduce the search space and derived tight lower bounds for
an optimal solution. Further, we developed Juventas, a low-
complexity scheduling algorithm that was shown to offer near-
optimal performance when there is no synchronization among
the source nodes and have a guaranteed performance (within
a factor of 3).

ACKNOWLEDGMENT

This research was supported in part by NSF Grant CNS-
1617634.

REFERENCES

[1] S. Kaul, M. Gruteser, V. Rai and J. Kenney, “Minimizing Age
of Information in Vehicular Networks,” in Proc. IEEE SECON,
pp. 350–358, Salt Lake City, UT, USA, June 27–30, 2011.

[2] S. Kaul, R. Yates and M. Gruteser, “Real-Time Status: How
Often Should One Update?” in Proc. IEEE INFOCOM,
pp. 2731–2735, Orlando, FL, USA, Mar. 25–30, 2012.

[3] R. Yates, P. Ciblat, A. Yener and M. Wigger, “Age-Optimal
Constrained Cache Updating,” in Proc. IEEE ISIT, pp. 141–
145, Archen, Germany, June 25–30, 2017.

[4] I. Kadota, E. Uysal-Biyikoglu, R. Singh and E. Modiano,
“Minimizing the Age of Information in Broadcast Wireless
Networks,” in Proc. Allerton Conference, pp. 844–851, Mon-
ticello, IL, USA, Sept. 27–30, 2016.

[5] I. Kadota, A. Sinha and E. Modiano, “Optimizing Age of Infor-
mation in Wireless Networks with Throughput Constraints,” in
Proc. IEEE INFOCOM, pp. 1844–1852, Honolulu, HI, USA,
Apr. 16–18, 2018.

[6] R. Talak, S. Karaman and E. Modiano, “Optimizing Age of
Information in Wireless Networks with Perfect Channel State
Information,” in Proc. WiOpt, pp. 1–8, Shanghai, China, May
7–11, 2018.

[7] R. Talak, S. Karaman and E. Modiano, “Optimizing Informa-
tion Freshness in Wireless Networks under General Interfer-
ence Constraints,” in Proc. ACM MobiHoc, pp. 61–70, Los
Angeles, CA, USA, June 26–29, 2018.

[8] Y. Hsu, E. Modiano, and L. Duan, “Age of Information: Design
and Analysis of Optimal Scheduling Algorithms,” in Proc.
IEEE ISIT, pp. 561–565, Archen, Germany, June 25–30, 2017.

[9] S.K. Kaul and R.D. Yates, “Status Updates over Unreliable
Multiaccess Channels,” in Proc. IEEE ISIT, pp. 331–335,
Archen, Germany, June 25–30, 2017.

[10] R.D. Yates, “Lazy Is Timely: Status Updates by an Energy
Harvesting Source,” in Proc. IEEE ISIT, pp. 3008–3012, Hong
Kong, China, June 14–19, 2015.

[11] B.T. Bacinoglu, E.T. Ceran and E. Elif Uysal-Biyikoglu, “Age
of Information under Energy Replenishment Constraints,” in
Proc. Information Theory and Applications Workshop, pp. 25–
31, San Diago, CA, USA, Feb. 1–6, 2015.

[12] A. Kosta, N. Pappas, A. Ephremides and V. Angelakis, “Age
and Value of Information: Non-Linear Age Case,” in Proc.
IEEE ISIT, pp. 326–330, Archen, Germany, June 25–30, 2017.

[13] A.M. Bedewy, Y. Sun and N.B. Shroff, “Age-Optimal Infor-
mation Updates in Multihop Networks,” in Proc. IEEE ISIT,
pp. 576–580, Archen, Germany, June 25–30, 2017.

[14] Y. Sun, E. Uysal-Biyikoglu, R.D. Yates, C.E. Koksal and N.B.
Shroff, “Update or Wait: How to Keep Your Data Fresh,” IEEE
Trans. on Information Theory, vol. 63, issue 11, pp. 7492–
7508, Nov. 2017.

[15] A.M. Bedewy, Y. Sun and N.B. Shroff, “Optimizing
Data Freshness, Throughput, and Delay in Multi-Server
Information-Update Systems,” in Proc. IEEE ISIT, pp. 2569–
2573, Barcelona, Spain, July 10–15, 2016.

[16] C. Joo and A. Eryilmaz, “Wireless Scheduling for Information
Freshness and Synchrony: Drift-based Design and Heavy-
Traffic Analysis,” in Proc. WiOpt, pp. 1–8, Paris, France, May
15–19, 2017.

[17] N. Lu, B. Ji and B. Li, “Age-based Scheduling: Improving
Data Freshness for Wireless Real-Time Traffic,” in Proc. ACM
MobiHoc, pp. 191–200, Los Angeles, CA, USA, June 26–29,
2018.

[18] Y. Sun, “A Collection of Recent Papers on the Age of Informa-
tion,” http://www.auburn.edu/\%7eyzs0078/ [Online; accessed
on 2018-10-20].

