
FeCo: Boosting Intrusion Detection Capability in
IoT Networks via Contrastive Learning

Ning Wang, Yimin Chen, Yang Hu, Wenjing Lou, Y. Thomas Hou

Virginia Polytechnic Institute and State University, VA, USA

Abstract—Over the last decade, Internet of Things (IoT) has
permeated our daily life with a broad range of applications.
However, a lack of sufficient security features in IoT devices
renders IoT ecosystems vulnerable to various network intrusion
attacks, potentially causing severe damage. Previous works have
explored using machine learning to build anomaly detection
models for defending against such attacks. In this paper, we
propose FeCo, a federated-contrastive-learning framework that
coordinates in-network IoT devices to jointly learn intrusion
detection models. FeCo utilizes federated learning to alleviate
users’ privacy concerns as participating devices only submit
their model parameters rather than local data. Compared to
previous works, we develop a novel representation learning
method based on contrastive learning that is able to learn a more
accurate model for the benign class. FeCo significantly improves
the intrusion detection accuracy compared to previous works.
Besides, we implement a two-step feature selection scheme to
avoid overfitting and reduce computation time. Through extensive
experiments on the NSL-KDD dataset, we demonstrate that FeCo
achieves as high as 8% accuracy improvement compared to
the state-of-the-art and is robust to non-IID data. Evaluations
on convergence, computation overhead, and scalability further
confirm the suitability of FeCo for IoT intrusion detection.

I. INTRODUCTION

The last decade has seen an exponential growth of the In-
ternet of Things (IoT) devices. Having achieved the milestone
of 12 billion connected devices in 2020, it is estimated that by
2025 there will be more than 30.9 billion IoT devices in the
market1. IoT starts a new paradigm where billions of smart
devices with embedded computational capability and Internet
connectivity can automatically work with minimal human
intervention. Due to low cost and versatility, IoT devices
are being used in almost all sectors: healthcare, smart cities,
agriculture, and transportation, to name a few [1]–[3].

However, such a pervasiveness also increases the risk of
data breaches and cyberattacks. In the past decade, we have
seen increased attacks involving IoT devices and IoT systems.
Many of the IoT devices have limited on-device resources such
as computing power and memory, which limits the amount
and types of security mechanisms that can be implemented
in them. Many IoT manufactures are not security-savvy. In a
rush to roll out new products, very often only minimal security
features are included, not to mention providing ongoing sup-
port or software security updates. The default configuration
of an IoT device usually remains in place if no one makes

1https://www.statista.com/statistics/1101442/iot-number-of-connected-
devices-worldwide/

the effort to change it [4]. One notable attack on IoT is
Mirai [5] which overwhelmed several high-profile targets with
massive distributed denial-of-service (DDoS) attacks in late
2016. More than half a million devices were infected in a
few months. Security patching is one possible remedy to
the security issues. However, many devices lack appropriate
facilities for automated security updates, or there may be
significant delays until device manufacturers provide them.
Considering that IoT devices typically connect to the Internet
through a local gateway, a more practical and effective idea
to secure IoT devices and systems is to implement an IDS
in the local gateway. An IDS continuously monitors incoming
data streams generated by diverse sources and analyzes them
to detect cyber threats.

Ideally, a network IDS device should be placed at a data
concentration point in the network for best performance. For
instance, most often an IDS device is deployed behind the
firewall at the gateway of an edge network. For an IDS in
an IoT network, there are two main placement strategies:
distributed and centralized. In a distributed placement [6],
[7], a local gateway or edge router independently manages
its own IDS for the local network. Due to the scarcity of local
data, distributed IDS may suffer low accuracy. On the other
hand, the rising concern of privacy poses great challenges
to a centralized placement [8], [9]. Legal restrictions (e.g.,
HIPAA2) actually prohibit collecting and storing certain types
of user data to a central server. In our pursuit to design an
efficient, accurate, yet privacy-conscious IDS for IoT network,
we resort to the Federated Learning (FL) framework [10]–
[12]. FL enables local gateways to cooperatively contribute to
the training of a global model by providing their local model
parameter to a central server. Through an iterative learning
process, the global model achieves good generalization by
learning knowledge from a large number of IoT devices. How-
ever, due to device heterogeneity (in terms of communication
protocols and co-existing technologies), the pattern of normal
network traffic varies dramatically among different types of
IoT devices. Learning a universal model across all different
device types may render the IDS useless. To address this
problem, we choose the device-type-specific design [4] that
builds an IDS model for each type of IoT devices, which tends
to provide more accurate models.

In general, there exist two main approaches for intrusion de-

2https://www.hhs.gov/hipaa/index.html

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 1409

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

69
26

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

tection: anomaly-based Intrusion Detection System (IDS) and
signature-based IDS [13]–[16]. An anomaly-based IDS learns
a model that represents the normal behavior and generates an
alarm when the deviation of an incoming instance from the
normal behavior surpasses a security threshold. A signature-
based IDS detects intrusions by comparing incoming traffic
with the saved signatures in a database of known attacks. Due
to the nature of their design, signature-based IDSs are not able
to detect zero-day attacks. We focus on anomaly-based IDS
in this paper due to its superior capability of detecting novel
attacks. With the great success of machine learning in pattern
recognition, utilizing machine learning in anomaly-based IDSs
is a significant trend in the last two decades. In the machine-
learning-based IDSs, it is critical to learn a normal profile.
While being able to detect novel attacks, the machine-learning-
based IDSs also suffer from the high false-positive rate (FPR)
compared to the signature-based IDSs. A false positive occurs
when an incoming benign traffic instance deviates from the
learned profile and is misclassified as malicious. Due to the
large variability of normal network traffic, it has been a real
challenge for the machine-learning-based IDSs to find stable
notions of normality for such normal traffic.

Extracting the common properties of benign variations
precisely and effectively is a key step in learning a stable
normal profile. This paper proposes a new way to achieve
this— employing contrastive learning [17]–[19] to transform
an original traffic instance into a new representation. Specifi-
cally, we build a feed-forward artificial neural network (ANN)
that takes an original traffic instance as input and outputs a new
representation. Our goal is to learn a new feature space where
the benign representations lie in a small cluster while attack
representations stay far from the benign cluster so that the
differentiation of the two can be made easier. By minimizing
the volume of a hyper-sphere that encloses the representations
of the normal data, we can train an ANN model that is able
to extract the common properties of benign variations more
precisely, which leads to improved robustness of the normal
profile and significantly reduced FPR. Furthermore, in order
to reduce the computation overhead, we build a lightweight
ANN with only two hidden layers for resource-constrained
IoT devices.

Finally, we build FeCo, a Federated-Contrastive-learning
framework, by incorporating FL into the contrastive-learning-
based IDS to achieve accurate detection and preserve data
privacy simultaneously. In the FeCo design, each local gateway
manages a local IDS model and all gateways cooperatively
work with a central server to boost local detection perfor-
mance. To avoid the overfitting of an IDS model to irrelevant
features, we propose a two-step feature selection scheme for
pre-processing the input data. We remove less significant
features and only retain essential information for detection.
We extensively evaluate FeCo using a network traffic dataset
(i.e., NSL-KDD dataset [20]) to demonstrate the effectiveness
of FeCo in detecting intrusions. Our contributions are summa-
rized as follows:

• We propose a novel method for building the “norm” in

an anomaly-based IDS by learning new representations
for network traffic based on contrastive learning. With
the proposed new method, the learned representations of
benign inputs lie only in a small cluster, enabling FeCo
to extract a stable template for benign inputs. Extensive
evaluation results show that representation learning in
FeCo significantly boosts its detection accuracy compared
to previous works.

• We propose a two-step feature selection scheme to reduce
the risk of overfitting. Our feature selection scheme
exploits feature correlation and importance and extracts
only the essential information for intrusion detection.
Such a scheme also helps reduce computation complexity
as a result of smaller input dimensionality, making FeCo
more suitable for resource-constrained IoT devices.

• We extensively evaluate FeCo using the NSL-KDD
dataset and compare it with 11 baselines. The results
demonstrate the effectiveness of contrastive-learning-
based IDS, showing an 8% accuracy improvement over
the state-of-the-art. For zero-day attacks (i.e., attacks
unseen by the training dataset), FeCo achieves a recall
8% to 42% higher than other baselines. FeCo is robust
to non-IID (Independent and Identically Distributed) data
by showing consistent accuracy in different data distri-
butions. We also investigate FeCo on the convergence
performance, scalability, and overhead to show that it is
suitable for IoT systems.

II. RELATED WORK

We focus on anomaly-based IDSs in this paper. The key
component of a general anomaly-based IDS is a model that can
represent the legitimate traffic. In what follows, we review the
anomaly-based IDSs with a focus on the IDSs in the domain
of IoT.

IDS placement is an important design choice in IoT systems
compared to computer networks. There exist three IDS place-
ment strategies: distributed IDS placement [6], [7], centralized
IDS placement [8], and hybrid IDS placement [9]. Recently,
with the advances of Federated Learning (FL) [10], FL-based
IDSs [4], [21], [22] are becoming increasingly popular. FL
allows a distributed placement to have a better generalization
performance as it takes advantage of diverse sets of training
data from a large number of IoT devices FL also provides
better privacy-preservation in IDSs compared to centralized
placement. Nguyen et al. [4] are the first to employ FL in
anomaly-based IDSs. In their design, a local gateway uses its
local data to train the model and submits the model parameters
to the cloud server. The cloud server then aggregates these
local models into a global model. Since then, multiple works
(e.g., [21] [22]) have explored the use of FL framework
to enable decentralized edge devices to learn an anomaly
detection model using only on-device data at each edge device.

In the area of anomaly-based IDSs, machine learning mech-
anisms have been extensively researched in the literature.
The most popular strategy for detecting attacks is to monitor
a network’s activity and report potential abnormal events:

1410
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

deviations from profiles of normality previously learned from
benign traffic [4], [23]–[25]. Du et al. [24] proposed DeepLog
that utilizes Long Short-Term Memory to model a system log
as a natural language sequence. DeepLog automatically learns
log patterns from normal execution and detects anomalies
when log patterns deviate from the learned pattern. Mirsky
et al. [25] proposed to utilize an ensemble of autoencoders
to differentiate between normal and abnormal traffic patterns.
The autoencoder reconstructs an input and computes the recon-
struction error in terms of root mean squared errors (RMSE).
An alarm is generated when RMSE value exceeds a threshold.
Nguyen et al. [4] modeled network packets as symbols in a
language enabling the use of Gated Recurrent Units (GRU))
for anomaly detection. Specifically, the GRU model estimates
a probability of the next symbol, and an alarm is raised if the
occurrence probabilities of a sufficient number of packets fall
below a detection threshold.

Besides the mechanisms discussed above, some other IDSs
directly learn a binary classifier for detecting intrusions. Pa-
jouh et al. [26] proposed a TDTC that utilizes two tires of
classification to improve detect rate. TDTC first uses the Naive
Bayes classifier to identify anomalous behavior. Then a K-
Nearest Neighbor model is used to further detect anomalies
from those instances that are classified as normal by the Naive
Bayes model. Rathore et al. [27] proposed an ESFCM method
that integrates a Fuzzy C-Means with the Extreme Learning
Machine (ELM) classifier to achieve efficient attack detection
in IoT. Wang et al. [28] exploited the performance of an
intrusion detection classifier against evasive intrusions. More
machine-learning-based IDSs are discussed in survey papers
[29], [30].

III. SYSTEM MODEL AND THREAT MODEL

We assume an IoT network with multiple types of IoT
devices (e.g., IP camera, smart light) connected via a local
gateway. As shown in Fig. 1, we focus on the device-type-
specific IDS design. For each type of device, a number of
gateways cooperatively learn an IDS model through an FL
framework. An FL system involves two main components:
local gateways (i.e., clients) and a model aggregator, which
we describe below.

A local gateway G is a client of the FL system and manages
IDSs for detecting compromised IoT devices in the local
network. G may manage multiple IDSs if there are multiple
device types present in the local network. G can choose
whether or not to participate in the learning process based
on its computation capability, which results in two operation
modes: learning mode and consumer mode. G in learning mode
is a client of the FL system, while G in consumer mode only
request an IDS model from a central server. In the rest of
the paper, the default mode for G is learning mode. G is also
responsible for identifying the type of devices when a new IoT
device joins the local network. Such device-type-identification
techniques were well studied in [31]–[33]. We assume G to
have access to the network traffic of the IoT devices in the
local network, which is the same as [4], [25].

Local Network 1
Type 1

Type 2

IDS 2IDS 1 IDS 1 IDS 2

Aggregator 1 Aggregator 2

…

…

Local Network 2 Local Network 3 …

Gateway

WiFi or Ethernet

Model Parameters

… …

/

Fig. 1: The system design of our device-type-specific IDS–FeCo.
Local gateways cooperatively train an IDS model for each type of
IoT devices through FL. The detail of the IDS shown as a blue icon
in this figure is depicted in Fig. 3.

A model aggregator A is responsible for aggregating the
parameter updates of an IDS model from Gs and sending the
up-to-date IDS model to Gs. Typically, A would be run by a
service provider such as Amazon, Google, Microsoft, etc.

The FL process between A and G can be explained as
follows. In the beginning, A randomly initializes a global
model Θ. In each training round, A selects a subset of clients
and distributes the current global model Θ to the selected
clients. Each selected client initializes its local IDS model θ
by Θ and continues training the model with its local data.
In the proposed FeCo system, the local training is based on
a contrastive learning algorithm (see Sec. IV). After several
local training epochs, G uploads its model weights θi to A.
At the end of each round, A aggregates local models received
from Gs following an aggregation rule such as FedSGD and
FedAvg [10]. At the end of a FL task, A outputs the final
global model.

Threat Model: IoT devices are easy targets of many
network-based intrusions, such as unauthorized access, ad-
dress spoofing, false data injection, disruption of network
connectivity. Once compromised, they tend to be exploited
to launch attacks to other network components or services. In
this paper, our goal is to detect malicious network traffic for
either purposes.

IV. FECO DESIGN

A. Workflow of IDS

The workflow of the proposed FeCo is shown in Fig. 2
which provides an overall view of its operations. For model
training, (1) a local gateway G requests initial IDS model
parameters according to the types of IoT devices and initializes
its IDS model with the received parameters; (2) G then
extracts significant features from the raw traffic data and (3)
feeds the extracted features into the IDS model; G further
trains the local IDS model using the contrastive learning algo-
rithm and (4) uploads the model parameter update to model
aggregator A. Steps 1 - 4 repeat until the global model
converges. For intrusion detection, (5) G uses the local IDS
to detect intrusions while monitoring the network traffic of

1411
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

✓✓
✓

✓
✓ ✓

✗ ✗

✗ ✗ ✗

✗ ✗ ✗

✗ ✗

Aggregator
Decision
Making

Feature Selection Module

ɠ

ɡ

ɢ

ɣ
<latexit sha1_base64="RBBP4QYU7/2QeJsdMn/EJPtd2Gg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqCcpePFYwX5AG8pmu2nXbjZhdyKU0P/gxYMiXv0/3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrB5wk3I/oUIlQMIpWavVwxJH2yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVTRiBs/m187JWdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ62QgNGcoJ5ZQpoW9lbAR1ZShDahkQ/CWX14lrVrVu6zW7i8q9Zs8jiKcwCmcgwdXUIc7aEATGDzCM7zCmxM7L86787FoLTj5zDH8gfP5A6UNjys=</latexit>

✓
<latexit sha1_base64="UNAEs1l6vo7Tr70xr5BI8Xm4HhA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqCcpePFYoa2FNpTNdtOu3WTD7kQoof/BiwdFvPp/vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbaNSzXiLKal0J6CGSxHzFgqUvJNoTqNA8odgfDvzH564NkLFTZwk3I/oMBahYBSt1O41Rxxpv1xxq+4cZJV4OalAjka//NUbKJZGPEYmqTFdz03Qz6hGwSSflnqp4QllYzrkXUtjGnHjZ/Nrp+TMKgMSKm0rRjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZiJMUecwWi8JUElRk9joZCM0ZyokllGlhbyVsRDVlaAMq2RC85ZdXSbtW9S6rtfuLSv0mj6MIJ3AK5+DBFdThDhrQAgaP8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwB0DY8L</latexit>

⇥

ɤ

Global Model
Local Model

<latexit sha1_base64="RBBP4QYU7/2QeJsdMn/EJPtd2Gg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqCcpePFYwX5AG8pmu2nXbjZhdyKU0P/gxYMiXv0/3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrB5wk3I/oUIlQMIpWavVwxJH2yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVTRiBs/m187JWdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ62QgNGcoJ5ZQpoW9lbAR1ZShDahkQ/CWX14lrVrVu6zW7i8q9Zs8jiKcwCmcgwdXUIc7aEATGDzCM7zCmxM7L86787FoLTj5zDH8gfP5A6UNjys=</latexit>

✓

<latexit sha1_base64="UNAEs1l6vo7Tr70xr5BI8Xm4HhA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqCcpePFYoa2FNpTNdtOu3WTD7kQoof/BiwdFvPp/vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbaNSzXiLKal0J6CGSxHzFgqUvJNoTqNA8odgfDvzH564NkLFTZwk3I/oMBahYBSt1O41Rxxpv1xxq+4cZJV4OalAjka//NUbKJZGPEYmqTFdz03Qz6hGwSSflnqp4QllYzrkXUtjGnHjZ/Nrp+TMKgMSKm0rRjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZiJMUecwWi8JUElRk9joZCM0ZyokllGlhbyVsRDVlaAMq2RC85ZdXSbtW9S6rtfuLSv0mj6MIJ3AK5+DBFdThDhrQAgaP8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwB0DY8L</latexit>

⇥

Contrastive-learning-based IDSFederated Aggregation

Fig. 2: The workflow of FeCo.

IoT devices. We can see from Fig. 2 that there are three
important components in FeCo including Feature Selection,
Contrastive-learning-based IDS, and Federated Aggregation.
We will introduce the three components in detail respectively
in the rest of this section.

B. Feature Selection

In FeCo, We choose to perform feature selection to remove
features that are explicitly demonstrated irrelevant to intrusion
detection. We propose a two-step feature selection scheme
to select essential features for IDS. By removing redundant
features, we simplify the model architecture and reduce the
training time as well.

1) Redundant Feature Removal: Not all the statistical at-
tributes contain unique information of an individual traffic
flow. For example, a feature with zero variance exhibits a
constant value in the dataset, and thus it contains no useful
information for intrusion detection. Therefore, we first remove
the zero-variance features. Furthermore, a feature vector may
contain redundant information if there exist multiple highly
correlated features. If we use all the highly correlated features
for model training, it is likely to cause overfitting because
there exists an implicit emphasis on these correlated features.
To reduce the risk of overfitting, we use the Spearman rank
correlation coefficient [34] to quantify the correlations among
the numerical features and then keep only one feature for each
set of highly correlated features.

2) Feature Importance Ranking: In FeCo, we propose
feature importance ranking to rank the importance of features.
We employ different methods to measure the importance
of categorical features (e.g., the protocol type and service
type) and numerical features (e.g., source bytes) since they
contribute to the final prediction differently. Specifically, we
utilize mutual information (MI) between a feature and the
output label to measure the importance of a categorical feature.
A zero MI implies that the output label is independent of
the target feature. The MI ranges from zero to one, and a
higher MI means a higher significance. For numerical features,
we employ analysis of variance (ANOVA) to evaluate feature
importance. In ANOVA, the observed values of a feature are
divided into two groups that are attributable to different values
of the label. ANOVA measures whether or not the target

feature is statistically different in these two groups. In practice,
the ANOVA score is the ratio of the variance between the
two groups to the variance within the same group. A larger
ANOVA score means higher importance.

The analysis of the proposed feature selection methods and
the impact of such data preprocessing on the performance of
FeCo are evaluated and reported in Section V-C.

C. Contrastive-learning-based IDS

Contrastive-learning-based IDS is the building block of
FeCo. It is deployed for the training process at each G.
Contrastive learning is first proposed to improve recognition
accuracy in the computer vision field. Our goal of deploying
contrastive learning is to trains a model that produces similar
representations for all normal traffic instances and make the
intrusion representations far from normal representations. We
build a binary IDS model and formally introduce Contrastive-
learning-based IDS below.

We assume each record in the training dataset consists of
two fields: input feature vector xi ∈ Rd and output label
yi ∈ {0, 1} where 0 indicates a normal traffic flow and 1
indicates an intrusion. The goal of the contrastive learning
algorithm is to learn a new representation (rather than a label)
for each input instance. Specifically, contrastive learning trains
an ANN model that takes xi ∈ Rd as input and outputs a new
representation zi ∈ Ro. The ANN model can be represented
by a function fθ : Rd → Ro where θ denotes the model
parameters. The ANN model of FeCo consists of four layers:
the input layer, two hidden layers, and finally the output layer.
The corresponding size of each layer is d, 128, 256, and o,
respectively. The default value for o is 128.

For convenience, we use vi = fθ(xi) to denote the output
of a benign input xi and ui = fθ(xi) to denote the output
of an intrusion input xi. We assume the dataset contains N
normal traffic flows and M intrusion traffic flows. For each
pair of normal inputs, we can obtain representation vi and
representation vj . Our goal is to maximize the similarity
between vi and vj and minimize the similarity between vi

and um|m∈[M] (we define [M] := {1, 2, ...,M}). To achieve
this goal, we define a loss function Lij :

Lij = −log
exp(vT

i vj/τ)

exp(vT
i vj/τ) +

∑M
m=1 exp(v

T
i um/τ)

, (1)

where τ ∈ [0, 1] denotes a temperature parameter, and
exp(vT

i vj/τ)

exp(vT
i vj/τ)+

∑M
m=1 exp(vT

i um/τ)
represents the likelihood that

vi is close to vj . Lij , the loss function, is the negative
logarithm of the likelihood function. Similarly, we can obtain
Lji. The overall loss function of the pair vi and vj is the
summation of Lij and Lji. We then sum up the loss functions
for all pairs of normal vectors and obtain a loss function L:

L =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

Lij + Lji. (2)

We use a stochastic gradient descent (SGD) optimizer to
minimize the loss function L. By minimizing the loss function,

1412
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

<latexit sha1_base64="a9+Clow42iBG/Kz3M2JTm657WDk=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKqCcpePFYwX5gG8pmO2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzaHJYxnrTsAMSKGgiQIldBINLAoktIPx7cxvP4E2IlYPOEnAj9hQiVBwhlZ6DPtZD0eAbNovV9yqOwddJV5OKiRHo1/+6g1inkagkEtmTNdzE/QzplFwCdNSLzWQMD5mQ+haqlgExs/mF0/pmVUGNIy1LYV0rv6eyFhkzCQKbGfEcGSWvZn4n9dNMbz2M6GSFEHxxaIwlRRjOnufDoQGjnJiCeNa2FspHzHNONqQSjYEb/nlVdKqVb3Lau3+olK/yeMokhNySs6JR65IndyRBmkSThR5Jq/kzTHOi/PufCxaC04+c0z+wPn8AefPkRA=</latexit>

f✓
<latexit sha1_base64="a9+Clow42iBG/Kz3M2JTm657WDk=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKqCcpePFYwX5gG8pmO2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzaHJYxnrTsAMSKGgiQIldBINLAoktIPx7cxvP4E2IlYPOEnAj9hQiVBwhlZ6DPtZD0eAbNovV9yqOwddJV5OKiRHo1/+6g1inkagkEtmTNdzE/QzplFwCdNSLzWQMD5mQ+haqlgExs/mF0/pmVUGNIy1LYV0rv6eyFhkzCQKbGfEcGSWvZn4n9dNMbz2M6GSFEHxxaIwlRRjOnufDoQGjnJiCeNa2FspHzHNONqQSjYEb/nlVdKqVb3Lau3+olK/yeMokhNySs6JR65IndyRBmkSThR5Jq/kzTHOi/PufCxaC04+c0z+wPn8AefPkRA=</latexit>

f✓
<latexit sha1_base64="a9+Clow42iBG/Kz3M2JTm657WDk=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKqCcpePFYwX5gG8pmO2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzaHJYxnrTsAMSKGgiQIldBINLAoktIPx7cxvP4E2IlYPOEnAj9hQiVBwhlZ6DPtZD0eAbNovV9yqOwddJV5OKiRHo1/+6g1inkagkEtmTNdzE/QzplFwCdNSLzWQMD5mQ+haqlgExs/mF0/pmVUGNIy1LYV0rv6eyFhkzCQKbGfEcGSWvZn4n9dNMbz2M6GSFEHxxaIwlRRjOnufDoQGjnJiCeNa2FspHzHNONqQSjYEb/nlVdKqVb3Lau3+olK/yeMokhNySs6JR65IndyRBmkSThR5Jq/kzTHOi/PufCxaC04+c0z+wPn8AefPkRA=</latexit>

f✓
<latexit sha1_base64="a9+Clow42iBG/Kz3M2JTm657WDk=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKqCcpePFYwX5gG8pmO2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzaHJYxnrTsAMSKGgiQIldBINLAoktIPx7cxvP4E2IlYPOEnAj9hQiVBwhlZ6DPtZD0eAbNovV9yqOwddJV5OKiRHo1/+6g1inkagkEtmTNdzE/QzplFwCdNSLzWQMD5mQ+haqlgExs/mF0/pmVUGNIy1LYV0rv6eyFhkzCQKbGfEcGSWvZn4n9dNMbz2M6GSFEHxxaIwlRRjOnufDoQGjnJiCeNa2FspHzHNONqQSjYEb/nlVdKqVb3Lau3+olK/yeMokhNySs6JR65IndyRBmkSThR5Jq/kzTHOi/PufCxaC04+c0z+wPn8AefPkRA=</latexit>

f✓

<latexit sha1_base64="YDXjcbFpmrROPts61kh5NxEEi3c=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmaFuAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsSzo2J</latexit>z <latexit sha1_base64="YDXjcbFpmrROPts61kh5NxEEi3c=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmaFuAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsSzo2J</latexit>z <latexit sha1_base64="YDXjcbFpmrROPts61kh5NxEEi3c=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmaFuAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsSzo2J</latexit>z<latexit sha1_base64="YDXjcbFpmrROPts61kh5NxEEi3c=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmaFuAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsSzo2J</latexit>z

<latexit sha1_base64="OfQIAI3TBScPT7xFFNmHZx+PzZg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmbFsAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsPxo2H</latexit>x <latexit sha1_base64="OfQIAI3TBScPT7xFFNmHZx+PzZg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmbFsAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsPxo2H</latexit>x <latexit sha1_base64="OfQIAI3TBScPT7xFFNmHZx+PzZg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmbFsAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsPxo2H</latexit>x <latexit sha1_base64="OfQIAI3TBScPT7xFFNmHZx+PzZg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmbFsAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsPxo2H</latexit>x

Benign Traffic Flows Intrusions

attract

repelrepelrepel
repel

?

<latexit sha1_base64="+PVXO6nGyx9oulBVbszG/DWDg1k=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWy2m3bpZhN2J0IN/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnC/YgOlQgFo2ildi+gOnua9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2e9kIDRnKCeWUKaFvZWwEdWUoU2oZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AGpTI/K</latexit>

z̄
<latexit sha1_base64="YDXjcbFpmrROPts61kh5NxEEi3c=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmaFuAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsSzo2J</latexit>zBenign

Average
Similarity

<latexit sha1_base64="a9+Clow42iBG/Kz3M2JTm657WDk=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKqCcpePFYwX5gG8pmO2mXbjZhdyKU0H/hxYMiXv033vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzaHJYxnrTsAMSKGgiQIldBINLAoktIPx7cxvP4E2IlYPOEnAj9hQiVBwhlZ6DPtZD0eAbNovV9yqOwddJV5OKiRHo1/+6g1inkagkEtmTNdzE/QzplFwCdNSLzWQMD5mQ+haqlgExs/mF0/pmVUGNIy1LYV0rv6eyFhkzCQKbGfEcGSWvZn4n9dNMbz2M6GSFEHxxaIwlRRjOnufDoQGjnJiCeNa2FspHzHNONqQSjYEb/nlVdKqVb3Lau3+olK/yeMokhNySs6JR65IndyRBmkSThR5Jq/kzTHOi/PufCxaC04+c0z+wPn8AefPkRA=</latexit>

f✓
<latexit sha1_base64="OfQIAI3TBScPT7xFFNmHZx+PzZg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY8BQTwmYB6QLGF20puMmZ1dZmbFsAS8e/GgiFc/yZt/4+Rx0GhBQ1HVTXdXkAiujet+ObmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUf+gVS27ZnYH8Jd6ClGCBWq/42e3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNSfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL/8lzUrZOy9X6mel6vXjPI48HMExnIIHF1CFG6hBAxggPMELvDp3zrPz5rzPW3POIsJD+AXn4xsPxo2H</latexit>x

Decision

Testing Traffic Flow

Training Phase Testing Phase

Share Weights

Fig. 3: The training process and testing process of the contrastive-learning-based IDS.

we can achieve the goal of maximizing the similarity among
normal representations and minimizing the similarity between
normal representations and intrusion representations.

We intuitively interpret the learning process in Fig. 3 as
well. We can see that the normal zs (i.e., vi) attracts each other
while they repel intrusion zs (i.e., uj) in the training process.
After several iterations, we can learn a model fθ that outputs a
new representation for each input instance. In the new feature
space, the representations of benign traffic flows are expected
to fall into a compact cluster, while those of intrusion traffic
flows are far from such a cluster. In the testing phase, we
collect the representations of benign traffic flows and use the
average value of the normalized representations as the normal
template z̄:

z̄ =
1∑

i 1(yi = 0)

∑
i

(1(yi = 0)
fθ(xi)

∥fθ(xi)∥2
), (3)

where 1(.) is the indicator function, and 1(yi = 0) equals 1
if yi = 0, ∥.∥2 denotes the L2-norm function and fθ(xi)

∥fθ(xi)∥2

represents a normalized representation. After obtaining the
normal template z̄, we utilize the cosine similarity estimator to
measure the similarity S(xtest

j) between an upcoming traffic
flow xtest

j and the normal template:

S(xtest
j) =

z̄T fθ(x
test
j)

∥z̄∥ × ∥fθ(xtest
j)∥

. (4)

The similarity score S(xtest
j) ranges from 0 to 1. We need a

threshold score 0 ≤ ρ ≤ 1 for determining whether xtest
j is

an anomaly or not. In our paper, we obtain the threshold ρ by
calculating the statistics of the scores of benign training data.
Particularly, we first sort the scores of benign data in ascending
order and obtain the sorted sequence S = [S1, S2, ..., SN].
Then we select the p-th percentile of S as the threshold ρ. In
FeCo, we first calculated the index r of the score to select:

r =
⌊ p

100
∗N

⌋
, (5)

where ⌊.⌋ denotes the round down function, and 0 ≤ p ≤ 100
represents a percentage number. We obtain ρ = Sr which is
the r-th entry of S. We can manually select a value for p. We
should select a small value for p (e.g., p = 5) as a larger p
leads to a higher FPR. The final decision ŷj is made by

ŷj = 1(S(xtest
j) < ρ). (6)

An input instance is predicted as an intrusion if its similarity
score is smaller than threshold ρ.

D. Federated Aggregation
We build FeCo by incorporating the contrastive-learning-

based IDS into the federated learning framework. In that
case, each client participates in the FL process by providing
its model parameter update. We utilize the FedAVG [10]
algorithm to aggregate the updates from multiple clients. In
time step t, the model aggregator A computes the global model
parameter Θt by:

Θt = Θt−1 +
∑
i

ci ∗ (θi −Θt−1), (7)

where θi is the local model parameters at client i and ci is a
weight coefficient. In our paper, ci based on the size of local
training dataset at client i. Particularly, we define ci as the
ratio of the size of the local training dataset at client i to the
number of total training samples at all selected clients.

V. EXPERIMENTAL RESULTS

A. Datasets and Experiment Settings
We implement FeCo in the PyTorch platform [35]. We ran

all the experiments on a server equipped with an Intel Core
i7-8700K CPU 3.70GHz×12, a GeForce RTX 2080 Ti GPU,
and Ubuntu 18.04.3 LTS. We experiment with FeCo using the
network traffic dataset, NSL-KDD. The NSL-KDD dataset is
widely used for IoT scenarios [27], [29], [36] due to lack of
dedicated datasets in IoT.

The NSL-KDD dataset [20] includes benign traffic and four
categories of intrusions, i.e., DoS, Probing, Remote-to-Local
(R2L), and User-to-Root (U2R). Each category of intrusion
contains several sub-classes as shown in TABLE I. The whole
dataset includes a training set and a testing set, and the
training set contains 125,973 records while the test set 22,544
records. Note that some intrusion sub-classes exist only in
the testing set, i.e., they are unseen in the training set (e.g.,
mscan, sqlattack), which makes it possible to evaluate FeCo
against zero-day attacks. Each record consists of 41 attributes
extracted from a traffic flow and a label indicating its category
(i.e., Normal, DoS, Probing, R2L, or U2R). In practice, it
is easy to extract attributes from network packets by using
existing packet analyzers (e.g., WireShark3).

3https://www.wireshark.org/

1413
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Classes of Intrusions and sub-classes in the NSL-KDD Dataset.

DoS (10) Probe (6) R2L (16) U2R (7)
Attacks in both

Training & Testing Set
back, land, Neptune, pod,

smurf, teardrop
ipsweep, nmap,
portsweep, satan

ftp write, guesspasswd, imap,
multihop, phf, warezmaster

bufferoverflow, loadmodule,
perl, rootkit

Attacks only in Testing Set apache2, mailbomb,
processtable, udpstorm mscan, saint

httptunnel, named, sendmail,
snmpgetattack, snmpguess, xlock,

xsnoop, worm
ps, sqlattack, xterm

Attacks only in Training Set spy, warezclient

Some papers [37], [38] reported detection accuracy as high
as 99% on the NSL-KDD dataset. However, these works
introduce a new splitting on the dataset. They either combine
the training set and testing set into one then randomly split
it into two sets for training and testing, or directly split
the training set into two sets. Such arrangements can only
demonstrate the effectiveness of IDS models in detecting
known intrusions but not unseen intrusions. In this paper, we
train our IDS model with the training set and evaluate it using
the testing set to explicitly show its performance in detecting
unseen intrusions.

Other default settings of FeCo are shown as follows. In
order to better simulate the distributed characteristics of a real
FL system, we choose 50 clients which is relatively larger than
10 and 15 used in [4], [21]. We generate data for clients by
splitting the whole dataset. Therefore, the number of clients
and the size of local data would be inversely proportional to
each other. By using different splitting strategies, we obtain
both IID data and non-IID data (See Sec. V-E for detail). For
data preprocessing, we first use our feature selection scheme
to remove 10 attributes from the 41 attributes. Then we use the
one-hot encoding method to map the remaining 31 attributes
into 112 input features. The size of the input layer and the
output layer of the ANN model in FeCo are d = 112 and
o=128, respectively. The machine learning baselines used for
comparison are imported from scikit-learn [39]. In FeCo, each
client uses an SGD optimizer with a learning rate of 0.001 for
local training. The clients perform four epochs of local training
before sending its model parameters to A in each FL round.
We set the number of total FL rounds as 15.

B. Evaluation Metrics
For a binary detection problem, there are four important

terms: True Positive (TP) means correctly detected as an
intrusion; False Positive (FP) means incorrectly detected as
an intrusion; True Negative (TN) means correctly detected
as benign; False Negative (FN) means incorrectly detected
as benign. We use N∗ to represent the number of ∗ ∈
{TP, TN, FP, FN}. We compute five evaluation metrics: ac-
curacy A = NTP+NTN

NTP+NFP+NTN+NFN
, recall R = NTP

NTP+NFN
,

precision P = NTP

NTP+NFP
, F1 score F = 2×P×R

P+R , and False
Positive Rate (FPR) fpr = NFP

NFP+NTN
. We also provide the

receiver operating characteristics (ROC) curve by plotting R
against FPR at various threshold settings. The AUC score is
defined as the area under the ROC curve.

C. Feature Selection
Here we show the process of our two-step feature selection

scheme using NSL-KDD as an example.

We first remove the zero-variance feature (i.e.,
‘num outbound cmds’) from the dataset. Then we evaluate
the feature correlation and show the heat map of the
correlation matrix in Fig. 4(a). We further perform hierarchy
clustering on the computed correlations among features,
shown in Fig. 4(b). Focusing on the height at which any
two objects are joined together, we can see the height of the
link that joins ‘feature 0’ and ‘feature 23’ is the smallest,
indicating that the two features are the most correlated. We
can further obtain the second most correlated feature pair and
the third most correlated feature pair. We randomly remove
one feature from the three feature pairs as removing these
features does not degrade the detection performance.

Second, we evaluate importance scores for all features. We
show the ranking of MI scores and ANOVA scores in Fig. 4(c).
The MI score of Feature 32, 33, 36 (i.e., ‘land’, ‘root shell’,
‘is host login’) is zero, implying that they are irrelevant to
intrusion detection. Therefore, we remove the three features.
Note that the ANOVA scores are shown on a logarithmic
scale as the scores vary dramatically among different features.
Unlike MI scores, ANOVA scores have no zero entries. We
start with removing the features with the lowest ANOVA score.
We vary the number K of features to remove. Intuitively,
useful information may be discarded if K is too large, while
redundant information may result in overfitting if K is too
small. We tune K ∈ {0, 1, 2, 3, 4} to show the impact of K on
detection accuracy. Fig. 5(a) shows the performance of FeCo
with different K. We can see that both accuracy and the F1
score increase with K ≤ 3, implying that removing features
with low significance could boost the detection performance.
We select K = 3 as the accuracy peaks at K = 3.

D. Performance of FeCo

We first investigate the performance of FeCo under the cen-
tralized setting to focus on evaluating our contrastive-learning-
based IDS. We evaluate the impacts of global aggregation of
FL in next part. We compare the performance of FeCo to both
state-of-the-art IDSs [26], [27], [36] and some other widely-
used machine learning baselines including support vector ma-
chine (SVM), variational autoencoder (VAE), isolation forest
(IsoForest), multilayer perceptron (MLP), logistic regression
(LGR), Bernoulli naive Bayes (BNB), K-nearest neighbors
(KNN), and decision tree classifier (DTC).

As shown in Sec. IV-C, the threshold for intrusion detection
is computed by manually selecting the quantile number p.
Fig. 5(b) shows the performance of FeCo with different p
value. We can see that the recall increases with p and the
FPR also increases as expected. The accuracy and F1 score

1414
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

9 17 10 13 22 25 27 0 23 12 21 5 28 35 1 14 6 29 4 31 20 16 34 8 11 24 36 3 7 19 26 15 32 33 30 2 18

9171013222527023122152835114629431201634811243637192615323330218 0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a)

9 17 10 13 22 25 27 0 23 12 21 5 28 35 1 14 6 29 4 31 20 16 34 8 11 24 36 3 7 19 26 15 32 33 30 2 18

0

1

2

3

4

5

6

7

8

0: srv_rerror_rate
1: diff_srv_rate
2: srv_diff_host_rate
3: num_file_creations
4: duration
5: dst_host_srv_count
6: dst_host_same_src_port_rate
7: num_shells
8: num_access_files
9: dst_host_srv_serror_rate
10: serror_rate
11: num_root
12: dst_host_srv_rerror_rate
13: dst_host_serror_rate
14: dst_host_diff_srv_rate
15: wrong_fragment
16: hot
17: srv_serror_rate
18: count
19: num_failed_logins
20: num_compromised
21: dst_host_rerror_rate
22: dst_bytes
23: rerror_rate
24: su_attempted
25: same_srv_rate
26: urgent
27: src_bytes
28: dst_host_count
29: dst_host_srv_diff_host_rate
30: srv_count
31: dst_host_same_srv_rate
32: land
33: is_host_login
34: is_guest_login
35: logged_in
36: root_shell
37: protocol_type
38: service
39: flag

(b)

32 36 33 34 37 35 39 38
(Categorical) feature index

0.0

0.2

0.4

0.6

M
I s

co
re

20 11 22 24 26 27 3 5 8 21 7 31 19 30 12 0 18 15 16 4 2 29 28 1 6 14 25 9 13

(Numerical) feature index

102

104

AN
OV

A
sc

or
e

(c)

Fig. 4: (a) The heat map of the Spearman correlations. (b) The dendrogram of the correlation clustering. (c) The ranking of MI scores and
ANOVA scores for categorical features and numerical features, respectively.

TABLE II: Performance (%) of FeCo in Centralized Setting.

Method Accuracy Recall Precision F1 score FPR
FeCo (ours) 89.55 86.80 94.39 90.44 6.82
ESFCM [27] 80.69 80.72 80.85 80.45 -
Two-Tier [36] - 82.00 - - 5.43

TDTC [26] - 84.86 - - 4.86
VAE 81.77 73.71 92.78 82.15 7.58

IsoForest 79.54 69.35 92.90 79.42 7.00
MLP 79.65 66.41 96.85 78.80 2.85
SVM 77.26 64.65 93.35 76.40 6.09
LGR 75.83 66.05 88.59 75.68 11.24
BNB 77.63 63.27 96.12 76.31 3.38
KNN 77.58 62.39 97.23 76.01 2.35
DTC 77.36 64.01 94.44 76.30 4.98

first increase dramatically with the increase of p then decrease
slowly. Given such results, it is intuitive that one can select
the value for p based on the desired FPR. We should select a
small p if we desire a low FPR. Ideally, FPR should be very
close to the value of p/100 if the learned model generalized
well on the testing set. In practice, we set p = 5, and get
FPR = 6.8% in the testing set. This discrepancy may be due
to novel attacks in the testing set. However, we believe that
the small gap between FPR = 6.8% and 5/100 confirms that
FPR would approximate the value of p/100.

We show the detection performance of FeCo and other
baselines in TABLE II. We set p = 5 to obtain these results.
FeCo achieves detection accuracy as high as 89.55%. From
TABLE II we can see that FeCo outperforms other methods
by achieving both the highest recall and the highest accuracy.
Note that some entries of TABLE II are missing because
they were not provided in the references. To demonstrate
FeCo’s capability in detecting zero-day attacks, we split the
testing attacks into known attacks and novel attacks (i.e.,
attacks unseen in the training data). We present the recall
of FeCo for novel testing attacks in TABLE III. We can see
FeCo achieves a recall 8% to 42% higher than other machine
learning baselines. SVM, BNB, KNN, DTC, and MLP achieve
less than 50% recall, which indicates they are not suitable for
detecting zero-attacks.

Among all the methods shown in TABLE II, FeCo, IsoFor-
est, and VAE share a similar detection strategy that detects
intrusions by learning a model to characterized benign traffic.

TABLE III: Recall (%) of FeCo for Novel Testing Attacks.

FeCo VAE IsoForest MLP SVM LGR BNB KNN DTC
78.45 70.08 61.94 48.43 35.60 52.24 59.84 42.72 49.73

These methods compute a score for inputs using the learned
model. The output labels are predicted by comparing the
scores to a threshold. Consequently, a different threshold
would lead to different detection accuracy. We plot the ROC
curves of the three methods in Fig. 5(c). Each point in one
curve corresponds to the recall and FPR under one specific
threshold. We can see that FeCo achieves the highest recall
under the same FPR compare to IsoForest and VAE. Obvi-
ously, FeCo outperforms the other two methods in terms of
AUC score as well.

To better understand the performance of FeCo, we further
look into the recall of FeCo for each category of intrusion
attacks (i.e., DoS, Probing, R2L, and U2R). Intuitively, for
one attack category, the recall means the proportion of records
detected as intrusions, i.e., labelled with ‘1’.Formally, the
recall of each attack category i ∈ {1, 2, 3, 4} (1 for ‘DoS’,
2 for ‘Probe’, 3 for ‘U2R’, and 4 for ‘R2L’) is defined as

R(i) =

∑
j 1

(
ŷj=1 & ymulti

j = i
)

ymulti
j = i

, (8)

where ŷj denotes the prediction of FeCo on the j-th data
record, and it takes a value of either 0 or 1 as FeCo is a binary
IDS. Note that we have true labels of whether a testing record
is ‘Normal’ or ‘Intrusion’ (i.e., yj ∈ {0, 1}) and whether a
testing record is ‘Normal’, ‘DoS’, ‘Probe’, ‘U2R’, or ‘R2L’
(i.e., ymulti

j ∈ {0, 1, 2, 3, 4}).
In TABLE IV, we show the confusion matrix including the

attack-specific recall. Here we omit the recall of ‘Normal’ as
normal traffic is not an attack. From TABLE IV, we can see
that FeCo achieves higher recall on both DoS attack and Probe
attack, while the detection rate on R2L is as low as 0.51. To
the best of our knowledge, all works with evaluations on the
NSL-KDD dataset show a low detection performance on R2L
as well [26], [36]. There are two possible reasons behind the
low detection rate on R2L: 1) the number of training instances
belonging to R2L attack is as small as 995, and 2) there are

1415
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4
K

0.75

0.80

0.85

0.90

0.95

1.00
Accuracy
F1 score

(a)

0 1 2 3 4 5 6 7 8 9 10
p

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy
F1 score
Recall
FPR

(b)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

ConIDS (AUC= 0.95)
VAE (AUC= 0.87)
isoForest (AUC= 0.93)

(c)

DoS Probe R2L U2R All Data
Train Data

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

(d)

Fig. 5: FeCo performance under the centralized setting. (a) The accuracy and F1 scores of FeCo with different number of removed features
K. (b) Accuracy, F1 score, recall, and FPR of FeCo with different percentage value p. (c) ROC curves of FeCo, VAE, and IsoForest. (d)
Accuracy of FeCo with training data containing only one attack (DoS, Probe, R2L, or U2R).

many new attacks in the testing set that do not exist in the
training set as shown in TABLE I.

To investigate the impact of data distribution, we evaluate
FeCo under the scenario when we only have partial data drawn
from the whole data distribution. In particular, we sample
the data belonging to one attack category (e.g., ‘DoS’) and
the normal data (i.e., ‘Normal’). In other words, each FeCo
model in these experiments is trained from records of only
one attack category and ‘Normal’ class. As a result, the
detection performance of such FeCo models is expected to
be lower than that of FeCo models trained from the whole
NSL-KDD dataset. We evaluate the detection accuracy with
the same testing dataset of NSL-KDD and show the results
in Fig. 5(d). We can see the detection accuracy with partial
data is lower than that with the whole NSL-KDD dataset,
which is as expected. The accuracy of the FeCo model trained
with only ‘R2L’ and ‘Normal’ is as low as 50.8%. This
observation indicates that self-learning may result in extremely
low detection accuracy as the local data may not exhibit the
overall data distribution.

E. Performance of FeCo

Here we focus on the performance of FeCo in the fed-
erated setting. To present a thorough comparison, we have
three different learning frameworks: FL, self-learning, and
centralized learning. In self-learning, the training process is
done at the local device using the local data. Centralized
learning refers to FeCo investigated in Sec. V-D. Further more,
data distribution is one of the biggest factors that impact FL
performance. Therefore, we propose to explore three different
data distributions, including one IID data distribution and two
non-IID data distributions. For the IID data distribution, we
randomly select a subset of each class in the whole training
dataset as the local data of one client. In non-IID-1, we assume
that each client only has n ∈ {1, 2, 3, 4} out of the total
four intrusion attack categories. In non-IID-2, each client has
n = 1 intrusion category. For both non-IID-1 and non-IID-2,
we assume all users have benign data, i.e., data from ‘Normal’
class. non-IID-2 is a special case of non-IID-1 and training
on non-IID-2 is more challenging than other settings due to
fewer attack categories for training. Meanwhile, we use the
same testing data in all settings for fair comparison.

TABLE IV: Detection performance (%) in centralized setting

Prediction Total Recall (%)Normal Intrusion

G
ro

un
d

Tr
ut

h Normal 9049 662 9711 -
DoS 212 7246 7458 97.16

Probe 95 2326 2421 96.08
R2L 1352 1402 2754 50.91
U2R 35 165 200 82.50

We show the detection performance of FeCo with combina-
tions of the three learning types and three data distributions in
TABLE V. In self-learning, the value of evaluation metrics
is shown as an averaged value over all clients. Compared
with self-learning, FL achieves higher accuracy, recall, and
precision regardless of the data distribution. Furthermore, FL
achieves similar detection performance under the three data
distributions, implying that FeCo is able to obtain stable
learning performance with different data distributions. Unlike
FL, the performance of self-learning heavily depends on the
data distribution. We can see that self-learning achieves as low
as 67.66% average accuracy under non-IID-2 data distribution.
One noticeable result is that the detection accuracy of FL is
still lower than the centralized learning. In practice, centralized
learning is difficult to deploy due to privacy concerns. We fur-
ther show the box-plot of self-learning accuracy of 50 clients
in Fig. 6(a) to further accommodate TABLE V (TABLE V
only shows the average accuracy among clients). We can see
that the variance of the accuracy of non-IID-2 is much larger
than those of IID and non-IID-1.

We have another observation when comparing the perfor-
mance of FeCo with different data distributions but the same
learning framework. In the FL setting, the accuracy of FeCo
on non-IID-1 is 86.23% which is higher than the 85.65%
accuracy achieved on IID data. Similar phenomena occur in
self-learning as well. The possible reason behind this is that:
the IID data contain a relatively large number of attack sub-
classes (i.e., 20) within the small local dataset. Therefore, it
becomes difficult to learn a stable representation of benign
instances when contrastive learning iteratively pushes benign
representations away from so many different attacks. On the
contrary, in the non-IID-1 setting, each client possesses only
a subset of attack classes thus a smaller number of attack
sub-classes. Therefore, it is easier to learn a stable normal

1416
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Performance of FeCo in FL, self-learning, and centralized learning frameworks.

Learning Type Data Distribution Accuracy Recall Precision F1 score FPR DoS Probe R2L U2R

FL
IID 85.65 81.15 92.73 86.55 8.41 92.69 98.68 35.00 74.00

non-IID-1 86.23 82.10 92.89 87.16 8.29 93.12 95.67 41.03 72.50
non-IID-2 85.53 77.90 95.93 85.98 4.26 83.33 95.29 36.49 76.50

Self-learning
IID 81.91 74.53 92.21 82.43 8.33 87.66 92.14 24.33 63.07

non-IID-1 82.62 75.69 92.39 83.21 8.23 90.48 87.37 25.63 71.81
non-IID-2 67.66 46.51 93.89 62.21 4.39 54.20 47.22 24.14 59.25

Centralized Learning - 89.55 86.80 94.39 90.44 6.82 97.16 96.08 50.91 82.50

iid non-iid-1 non-iid-2
Data Distribution

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Mean
Median
25%-75%

(a)

0 2 4 6 8 10
Training Round

0.5

1.0

1.5

2.0

2.5

Lo
ss

iid
non-iid-1
non-iid-2

(b)

10 20 30 40 50 60
Number of Clients

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

FL
Self-Learning

(c)

10 20 30 40 50 60
Number of Clients

0

30

60

90

120

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Per-client
Total

(d)

Fig. 6: Evaluations of FeCo. (a) Accuracy distribution of FeCo in self-learning mode. (b) Convergence performance of FeCo in FL mode.
(c) Accuracy of FeCo with different number of clients. The size of per-client data get smaller when the number of clients increases since
the size of total data is the same; (d) Per-client running time and total running time of all clients.

template. The performance of non-IID-2 is worse than IID
possibly because overfitting occurs as the attack categories in
the local data are too limited.

We study the convergence performance of FeCo by plotting
the value of loss through the training process. As shown in
Fig. 6(b), the loss drops sharply at the beginning of the training
process, decreases slowly after certain epochs, and finally stays
stable. We can see that the loss of FeCo reaches the stable
state fast under the three data distributions, implying that FeCo
converges after a small number of learning rounds.

We also explore the scalability of FeCo by varying the
number of clients. We show the accuracy of FeCo with
different number of clients in Fig. 6(c). We can see that the
accuracy of self-learning decreases monotonically with the
increase of the number of clients. This is because that the
size of the local data also decreases with the increase of the
number of clients as they are inversely proportional to each
other. However, the accuracy of FL does not show a decreasing
trend. This observation indicates that FeCo scales well with
the number of clients in the FL mode.

We show the overhead of FeCo in Fig. 6(d). Specifically, we
present the per-client running time and the total running time
of all clients for one FL round. Note that a FL round means
that the selected clients finish training their local models and
upload the model parameters for one time. We evaluate the
running time with the number of clients ranging from 10 to 60.
Note that a larger number of clients means a smaller dataset
at the local client as discussed above. We can see that the per-
client running time decreases with the increase of the number
of clients while the total running time stays approximately the
same. The per-client running time is as low as 1.878 seconds
when the local data contains 2000 records, indicating that
FeCo requires relatively little computation resource. We plan
to implement FeCo in a gateway device in our future work to

demonstrate that FeCo is affordable even in a local gateway
with low computation capacity.

VI. CONCLUSION

In this paper, we propose FeCo, a machine-learning-based
IDS for IoT networks. FeCo incorporates contrastive learning
into the federated learning framework to support distributed
intrusion detection while preserving user data privacy. More
importantly, FeCo features a novel detection method based
on network traffic representation learning through contrastive
learning. While learning for the network traffic representa-
tion, FeCo tries to maximize the distance between benign
and malicious samples and at the same time minimize the
distance among benign samples. The results are that in the
new feature space consisting of these learned representations,
normal instances lie in a small hyper-sphere. This effectively
enables FeCo to achieve better detection accuracy than other
baselines as FeCo obtains a more stable normal profile of
network traffic. In order to avoid overfitting, we further pro-
pose a two-step feature selection scheme to remove redundant
features before learning. The feature selection scheme also
decreases computation complexity, which makes FeCo more
suitable for resource-constrained IoT devices. Through exten-
sive evaluations on the NSL-KDD dataset, we demonstrate the
high effectiveness of contrastive learning in IDS with an 8%
accuracy improvement over the state-of-the-art. We also in-
vestigate FeCo on its convergence performance, overhead, and
scalability, demonstrating its applicability for IoT networks.

ACKNOWLEDGMENT

This work was supported in part by the Office of Naval
Research under grant N00014-19-1-2621, the National Science
Foundation under grants CNS-1837519 and CNS-1916902,
and the Virginia Commonwealth Cyber Initiative (CCI).

1417
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE internet of things journal, vol. 4, no. 5,
pp. 1125–1142, 2017.

[2] T. Song, R. Li, B. Mei, J. Yu, X. Xing, and X. Cheng, “A privacy
preserving communication protocol for iot applications in smart homes,”
IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1844–1852, 2017.

[3] B. Omoniwa, R. Hussain, M. A. Javed, S. H. Bouk, and S. A. Ma-
lik, “Fog/edge computing-based iot (feciot): Architecture, applications,
and research issues,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4118–4149, 2018.

[4] T. D. Nguyen, S. Marchal, M. Miettinen, et al., “Dı̈ot: A federated
self-learning anomaly detection system for iot,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
pp. 756–767, IEEE, 2019.

[5] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the mirai
botnet,” in 26th {USENIX} security symposium ({USENIX} Security
17), pp. 1093–1110, 2017.

[6] D. Oh, D. Kim, and W. W. Ro, “A malicious pattern detection engine for
embedded security systems in the internet of things,” Sensors, vol. 14,
no. 12, pp. 24188–24211, 2014.

[7] A. Ferdowsi and W. Saad, “Generative adversarial networks for dis-
tributed intrusion detection in the internet of things,” in 2019 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, IEEE,
2019.

[8] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection
in the internet of things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–
2674, 2013.

[9] J. P. Amaral, L. M. Oliveira, J. J. Rodrigues, G. Han, and L. Shu,
“Policy and network-based intrusion detection system for ipv6-enabled
wireless sensor networks,” in 2014 IEEE international conference on
communications (ICC), pp. 1796–1801, IEEE, 2014.

[10] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics (AISTATS 17), pp. 1273–
1282, 2017.

[11] P. Kairouz, H. B. McMahan, B. Avent, et al., “Advances and open
problems in federated learning,” Foundations and Trends® in Machine
Learning, vol. 14, no. 1, 2021.

[12] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pp. 1387–1395, IEEE, 2019.

[13] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, “Passban ids:
An intelligent anomaly-based intrusion detection system for iot edge
devices,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6882–6897,
2020.

[14] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” computers & security, vol. 28, no. 1-2,
pp. 18–28, 2009.

[15] V. Jyothsna, R. Prasad, and K. M. Prasad, “A review of anomaly
based intrusion detection systems,” International Journal of Computer
Applications, vol. 28, no. 7, pp. 26–35, 2011.

[16] O. Kopuklu, J. Zheng, H. Xu, and G. Rigoll, “Driver anomaly detection:
A dataset and contrastive learning approach,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 91–100, 2021.

[17] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3733–3742,
2018.

[18] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XI 16, pp. 776–794,
Springer, 2020.

[19] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola,
“What makes for good views for contrastive learning?,” arXiv preprint
arXiv:2005.10243, 2020.

[20] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE symposium on

computational intelligence for security and defense applications, pp. 1–
6, IEEE, 2009.

[21] Y. Liu, S. Garg, J. Nie, Y. Zhang, Z. Xiong, J. Kang, and M. S.
Hossain, “Deep anomaly detection for time-series data in industrial iot:
a communication-efficient on-device federated learning approach,” IEEE
Internet of Things Journal, vol. 8, no. 8, pp. 6348–6358, 2020.

[22] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha,
and G. Srivastava, “Federated learning-based anomaly detection for iot
security attacks,” IEEE Internet of Things Journal, 2021.

[23] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE symposium on
security and privacy, pp. 305–316, IEEE, 2010.

[24] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 1285–1298, 2017.

[25] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” arXiv
preprint arXiv:1802.09089, 2018.

[26] H. H. Pajouh, G. Dastghaibyfard, and S. Hashemi, “Two-tier network
anomaly detection model: a machine learning approach,” Journal of
Intelligent Information Systems, vol. 48, no. 1, pp. 61–74, 2017.

[27] S. Rathore and J. H. Park, “Semi-supervised learning based distributed
attack detection framework for iot,” Applied Soft Computing, vol. 72,
pp. 79–89, 2018.

[28] N. Wang, Y. Chen, Y. Hu, W. Lou, and Y. T. Hou, “Manda: On
adversarial example detection for network intrusion detection system,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications,
pp. 1–10, IEEE, 2021.

[29] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network intrusion detection for iot security based on learning tech-
niques,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3,
pp. 2671–2701, 2019.

[30] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, “A survey of machine and deep learning methods for
internet of things (iot) security,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 3, pp. 1646–1685, 2020.

[31] S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan,
“Audi: Toward autonomous iot device-type identification using periodic
communication,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1402–1412, 2019.

[32] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis, “Iotfinder:
Efficient large-scale identification of iot devices via passive dns traffic
analysis,” in 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 474–489, IEEE, 2020.

[33] L. Yu, B. Luo, J. Ma, Z. Zhou, and Q. Liu, “You are what you broadcast:
Identification of mobile and iot devices from (public) wifi,” in 29th
{USENIX} Security Symposium ({USENIX} Security 20), pp. 55–72,
2020.

[34] C. Spearman, “The proof and measurement of association between two
things.,” 1961.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[36] H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, and K.-
K. R. Choo, “A two-layer dimension reduction and two-tier classification
model for anomaly-based intrusion detection in iot backbone networks,”
IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2,
pp. 314–323, 2016.

[37] V. Hajisalem and S. Babaie, “A hybrid intrusion detection system based
on abc-afs algorithm for misuse and anomaly detection,” Computer
Networks, vol. 136, pp. 37–50, 2018.

[38] O. Al-Jarrah, A. Siddiqui, M. Elsalamouny, P. D. Yoo, S. Muhaidat, and
K. Kim, “Machine-learning-based feature selection techniques for large-
scale network intrusion detection,” in 2014 IEEE 34th international
conference on distributed computing systems workshops (ICDCSW),
pp. 177–181, IEEE, 2014.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

1418
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 18,2022 at 22:10:07 UTC from IEEE Xplore. Restrictions apply.

