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12.1 INTRODUCTION

From a wireless networking perspective, cognitive radio (CR) offers a whole new
set of research problems in algorithm design and protocol implementation. To
appreciate such opportunity, we compare CR with a closely related wireless net-
working technology called multi-channel multi-radio (MC-MR), which has also
been under intensive research in recent years (see e.g., [534-538] and the refer-
ences therein). First, MC-MR employs traditional hardware-based radio technology
and hence each radio can operate on only a single channel at a time and there is no
switching of channels on a per-packet basis. Therefore, the number of concurrent
channels that can be used at a wireless node is limited by the number of radios. In
contrast, the radio technology in a CR is software based; a software radio is capable
of switching frequency bands on a per-packet basis. As a result, the number of
concurrent frequency bands that can be used by a CR is typically much larger than
that which can be supported by MC-MR. Second, a common assumption for MC-MR
is that a set of “common channels” is available at every node in the network; each
channel typically has the same bandwidth. Such assumption is hardly true for CR
networks, in which each node may have a different set of available frequency bands,
each of which may be of unequal size. A CR node is capable of working on a set
of “heterogeneous” channels that are scattered over widely separated slices of the
frequency spectrum with different bandwidths. An even more profound advance
in CR technology is that CR can work on noncontiguous channels for transmis-
sion/reception. These important differences between MC-MR and CR warrant that
algorithm design for future CR networks is substantially more complex than that
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Table 12.1 Mechanism Considered in This Chapter at Each Layer
in the Protocol Stack

Network layer Multipath multihop flow routing

Link layer Frequency scheduling
Physical layer Per-node-based power control

activating multiple frequency bands on a link can increase the transmission rate on
this link, it also produces interference to other nodes on the same band. Therefore,
we need an optimal scheduling such that all transmission rates on all nodes can
be maximized. At the network layer, we allow flow splitting and multihop routing
to achieve the best performance. When we determine flow rates on each link,
we need to consider the following two constraints. The first constraint is flow
balance; that is, at each node (except the source and destination nodes) the total
incoming data rates should be equal to the total outgoing data rates. The second
constraint is link capacity constraint; that is, the total flow rates on each link can-
not be more than the achievable capacity under power control and scheduling,
We develop mathematical models for these complex relationships among power
control, scheduling, and routing. These models are general and can be used for
many related cross-layer problems for multihop CR networks.

As a case study, we apply our models to a specific cross-layer optimization
problem. We consider how to maximize throughput capacity for CR networks. We
assume there are multiple user communication sessions (source-destination pairs),
each with a minimum rate requirement. We aim to maximize a common scaling
factor of these minimum rate requirements via joint optimization of power control,
scheduling, and routing. By applying our mathematical models, we formulate this
problem as a mixed integer nonlinear program (MINLP). Although this problem is
difficult to solve, we show how to develop a centralized solution to this complex
optimization problem based on the so-called branch-and-bound (BB) framework
and reformulation-linearization technique (RLT) [540]. The basic idea of branch
and bound is divide and conquer. We apply this solution procedure on several
network instances and show its efficacy.

We organize this chapter as follows. In Section 12.2, we present mathematical
models for power control, scheduling, and routing. In Section 12.3, as a case
study, we study the throughput maximization problem and give a solution based
on the branch-and-bound framework. In Section 12.4, we present some numerical
results for the proposed solution procedure. Section 12.5 concludes this chapter.
Section 12.6 offers some problems as a review for this chapter.

12.2 MATHEMATICAL MODELS AT MULTIPLE LAYERS

We consider a CR-based ad hoc network with a set

the set of available frequency bands M; depends on its location and may not be
identical to the available frequency bands at other nodes. We assume that the
bandwidth of each frequency band (channel) is W. Denote by M the set of all
frequency bands present in the network; that is, M = | J,cpr M;. Denote My =
MN M;, which is the set of frequency bands that is common on both nodes 7
and j and thus can be used for transmission between these two nodes. In the rest

of nodes NV. For anode i € NV,
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of this section, we give mathematical models characterizing the interrelationships
among different layers. Table 12.2 lists all notation in this chapter.

12.2.1 Scheduling and Power Control

In 2 multihop CR network, it is likely that there are multiple simultaneous transmis-
sions in the network. On the same band, simultaneous transmission and reception
are prohibited, as the transmission overwhelms the reception (also known as self-
interference). For such self-interference, we must schedule transmission/reception
either on different frequency bands or in different time slots. Also, within the net-
work, transmissions at some nodes may interfere with other nonintended receiving
nodes if they are on the same band and close to each other. Therefore, it is neces-
sary to schedule the interfering transmission/reception either on a different band
or in a different time slot.

Scheduling for transmission at each node in the network can be done either in
the time domain or the frequency domain. In this chapter, we consider scheduling
in the frequency domain in the form of assigning frequency bands (channels).
Concurrent transmissions within the same channel are allowed as long as the
interference level is acceptable.

Denote

x;” gl 1 if node 'i transmits data to node j on band m azn
v 0 otherwise.

To simplify the model, we assume that node 7 cannot use a band m € M; for
transmitting different data to multiple nodes or for receiving different data from
multiple nodes; that is,

Z x;}l <1 12.2)
JET

Y =l a2.3)
keI

where 7, is the set of nodes to which node 7 can transmit (and receive) on band
m in the network. Further, due to self-interference, node 7 cannot use it for both

transmission and reception; that is,

Xy + g < 1,k € T/",j # k). (12.4)
Combining Equations (12.2), (12.3), and (12.4), we have
Yooam+ Y A=t az.5)
ke'];m je']'im

Figure 12.1 illustrates the scheduling constraint, where node i is receiving from
node % and transmitting to nodes j and b. Then, by Equation (12.5), node i needs
to use three different bands for these transmissions/receptions.

12.2 Mathematical Models at Multiple Layers 3z

Table 12.2 Notation Used in This Chapter

The set of nodes in the network

M; The set of available bands at node i € A/

M The set of frequency bands in the network, A = Yien Mi T

M, The set of available bands on link / — j, M= M\ M;

w Bandwidth of a frequency band

L The set of active user communication sessions in the network =

s(h,d(/)  Source and destination nodes of session / € £

r(l Minimum rate requirement of session /

K Rate scaling factor for all sessions o
Prnax The maximum transmission power at a transmitter SR
n Ambient Gaussian noise density i
&j Propagation gain from node  to node J = :
@ The minimum required SINR

i The set of nodes that node cah transmit to (and réégi‘ve from) on b;m;i m

T The set of nodes that node / can ‘transmit to (and receive from) ’17 = T”"
l'].’” The set of nodes that may produce interference on band m at node J =
x,]’." Binary indicator to mark whether or not band m is used by link i — j

fi(h Data rate attributed to session / on link i—J ok
Q The number of transmission power levels at a transmitter %l
q,fj" The transmission power level from node / to node j on band m

tm The transmission power level at node / on band m M=y i

. : jeti dj

sj The SINR from node / to node Jjon band m = i
I3 A small positive constant reflecting the desired accuracy ]
Q, The set of all possible values of (x,q) in problem z R
LB;,UB;  The lower and upper bounds of problem z

Vs The solution obtained by local search for problem z G
LB, UB The minimum lower and upper bounds among all problems o
Ve A (1 — &) optimal solution i
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FIGURE 12.1

An example of scheduling constraint at node i. Each transmission/receiption at node i needs a
different band.

Now we consider power control and its relationship with scheduling. At each
CR node, the node’s transmission power on each band is bounded by Pp,y. Since
the interference from this link to other links depends on transmission power, it
is necessary to determine the optimal transmission power for each node on each
band.

For power control, it is reasonable to assume that the transmission power at a

node is limited to a finite number of discrete levels between 0 and Py,y. To model

this discrete power control mathematically, we introduce an integer parameter
Q that represents the total number of power levels to which a transmitter can
be adjusted; that is, 0, {Pmax, &Pmax - - -» Pmax. Denote g € {0,1,2,...,0} the
integer power level. Clearly, when node 7 does not transmit data to node j on band
m, q;}' is 0. Under the maximum allowed transmission power level Q, we have

& =Q ifa=1
%] =0 otherwise.

With joint consideration of x;;’ and q;j”, this relationship can be rewritten as
qj < Qx7. 12.6)

As discussed earlier, concurrent transmissions by different nodes on the same
band are allowed as long as the interference level is kept under control. Under
the physical model [269], a transmission is successful if and only if the SINR at
the receiving node exceeds a certain threshold, say a. We now formulate this
constraint. For a transmission from node 7 to node j on band m, when there is
interference from concurrent transmissions on the same band, the SINR at node j
(denoted as s;;’) is

qm
m 8if %Pmax
S, =
/) ksl f b, o
W+ Tl Eh?’fi’” 8y % Prax
844y

W kL] ~b#i] ’
% + Zke/\/ Zhe'];m gquz}a
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FIGURE 12.2

Three simultaneous transmissions on the same frequency band. At receiving node 2

trans‘mlssions from nodes 3 and 5 are considered interference, as node 2 is not the intended
receiver for these transmissions.

where 7 is the ambient Gaussian noise density and 8y is the propagation gain from
node 7 to node j. As an example, suppose three transmissions, 1 — 2, 3 — 4
and 5 — 6, are on band m at the same time (see Figure 12.2). At node 2, there is,
interference from nodes 3 and 5. Therefore, the SINR at node 2 is ’

on = 812975
W :
e +831934 +8519%

To get a more compact constraint, note that, when there is a transmission from
node 7 to node j on band 2, we have x;j” = 1. Then, by Equation (12.5), x}7 = 0 for

keT™andx}} =0fork € T/”. H i e
2 - Hence, by Equation (12.6), = AR
Then we have ! ! a (120, g =0 and Oy =

84y

m
Sq—

nwo ki f ’
Poas T LeN LoeT 8k,
Denote z}* = Zbeq;m Ty, We have

$udy azn
Wi ki, . -
P + Cient @413

Note that this SINR computation also holds when
no transmission from node 7 to node J on band m.

Recall that, under the physical model, a transmission from node i to node j on
band m is successful if and only if the SINR at node j exceeds a threshold o; that is
sZ’ 2 a. This is the necessary and sufficient condition for successful transmission’

m
Si/=

qZ’ = 0; that is, when there is .
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under the physical model. Then, by Equation (12.1), we have

. 1 if s:;‘ >a
i .
0 otherwise.
This can be written into the following compact inequality:

s:;’?_ax;;’.

12.2.2 Routing

In an ad hoc network, consider a set of £ active user communication (unicast)
sessions. Denote by s(7) and d(J) the source and destination nodes of session / € L
and r(I) the minimum rate requirement (in bits/second) of session /. To route these
flows from their respective source nodes to destination nodes, it is necessary to
employ multihop due to the limited transmission range of a node. Further, to have
more flexibility, it is desirable to allow flow splitting and multipath routing. That
is, the data flow from a source can be split into subflows and each subflow can
traverse different paths to the flow’s destination. This is because a single path is
overly restrictive and may not yield an optimal solution. In routing constraints, we
need to ensure that flow balance holds at each node (except source and destination
nodes).

In the case study in Section 12.3, we consider how to maximize a rate scaling
factor K for all session rates. That is, for each session I € L, r(I)K amount of data
rate is to be sent from s(Z) to d(l). In this context, the routing constraints can be
modeled as follows.

Denote by f;(/) the data rate on link (7,7) attributed to session I, where
ieN,jeTi=Umem, T/" If node i is the source node of session /—that is,
i = s())—then flow balance at node 7 must hold. That is,

> fy® =rK. 12.8)
JjeT;

If node 7 is an intermediate relay node for session /—that is, ¢ # s(!) and i *
d(l)—then

J#s) Rd(l)
Y HO= Y ful. 2.9
jeTy keT;

If node 7 is the destination node of session /—that is, i = d(/)—then

D Jei)) = (K. (12.10)
keT;
It can be easily verified that, once Equations (12.8) and (12.9) are satisfied, Equa-
tion (12.10) is also satisfied. As a result, it is sufficient to list only Equations (12.8)
and (12.9) in the formulation.
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FIGURE 12.3

Multipath routing for a session / with s(/y = 1 and d(/) = 6.

An example of multipath routing for a session  is shown in Figure 12.3, where
node 1 is the source and node 6 is the destination. At the source node 1, we have

Ji2(D) =r(HK. 12.11)

At intermediate relay node 2, the data received from node 1 are split into two flows,
and we have

J23(0) + o4 (D) = f12(D). 12.12)

At intermediate relay node 3, the data received from node 2 are sent to node 5,
and we have

J35) = f23(D). (12.13)

Similarly, we have the following constraints at nodes 4 and 5:

Ji6() = f240), (12.14)
Ss6(D) = f35(). (12.15)

At destination 6, we have
J46(D) + fs6() = r(DK. (12.16)

Note that, by taking the sum of the left and right sides in Equations (12.11),
(12.12), (12.13), (12.14), and (12.15), we have

J1200 + 23D + 24D + 35D + f56(D + f56(D)
=r(OK +fi2() + f23() + fo4) + f35 D).
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After cancelation of common terms on both sides, we have

Ji6(D) + f56(D) = r(DK,

which is precisely Equation (12.16). Therefore, it is not necessary to include
the flow constraint at destination nodes (i.e., Equation (12.10)) once we have
Equation (12.8) at source nodes and Equation (12.9) at relay nodes. .

In addition to these flow constraints at each node ¢ € A for session ! € L, tl:ne
aggregated flow rates on each radio link cannot exceed that link’s capacity. That is,
on a link / — j, we must have

SO}, AWD -
Y. D= ). Wiog(+s. az.17
lel ) meng

The constraint in Equation (12.17) illustrates the coupling relationship among flow
routing (via f (1)), power control (embedded in sg‘), and scheduling (embedded
i M

in sy ).

12.3 A CASE STUDY: THE THROUGHPUT MAXIMIZATION
PROBLEM

As a case study, we study the throughput maximization problem for a multihop
CR network. We consider multihop, multipath routing to transmit data from ea}ch
source to their corresponding destination. We show how to maximize a rate sc'almg
factor K for all active sessions. That is, for each active session / € £, what is the
maximum K we can have while 7(/)K amount of data rate can be transmitted from

s(l) to d(l)?

12.3.1 Problem Formulation

By applying the mathematical models in Section 12.2 and putting together all fhe
constraints for scheduling, power control, and flow routing, we have the following
mathematical formulation:

Max K (12.18)
st. Do+ Y A<l (eNmeM)
ieT,” 1€
af — O <0 (ieN,meM;,jeT™)
(12.19)
Yo -'=0 GeN,meM;) 1220
T

12.3 A Case Study: The Throughput Maximization Problem

wQ ki
. s;}l‘f' ngjtzzs;jn_gqu;/n=0 (GeN,me MyjeT™ (12.2D)
Pmax
keN
axy s <0 ((eN,me Muje T (1222
S()AS,d)#i

. - > Wwiog,(1 +s7) <0 ((eN,jeTp
lel meMy

Y O -rOK=0 (ecl,i=sw)
JeT
J#s() k#d(l)

D fH0- D feu®=0 (eL,ieN,i#s@),d)
€Ty €Ty

xg €{0,1}, g €{0,1,2,--. QLS5 20 (e N,meM,,jeT™
K.fiy) 20 (eLlieN,i#d0),jeT,j#s0),

where Q,n, W, a, Pmax, &y, and r(Il) are all constants and K. ,x};’,q;j”,t;",sg’, and
Jy(D) are all optimization variables. This formulation is a mixed-integer nonlinear
program, which is NP-hard in general [541].

12.3.2 Solution Overview

For the complex MINLP problem, we employ the so-called branch-and-bound
framework [542] to develop a solution. Under branch and bound, we aim to
provide a (1 — ¢) optimal solution, where ¢ is a small positive constant reflecting
our desired accuracy in the final solution.

Initially, branch and bound analyzes the value sets for each partition variable;
that is, all discrete variables and all variables in a nonlinear term. For our problem,
these variables include all %77, g%, ™, and s;j variables. The value sets for each
partition variable are x,’;’ € {0, lf, q}}‘ €{0,1,2,...,0}, " € {0, 1,2,...,0}, and
s77 € [0, 84Pmax/ nW). By using some relaxation techniques—that is, replacing a
discrete variable by a continuous variable and replacing a nonlinear constraint by
several linear constraints—branch and bound obtains a linear relaxation for the
original problem based on the value sets for each partition variable. The solution
to this relaxed problem provides an upper bound (UB) to the objective function.
As we shall show shortly, this critical step is made possible by the convex hull
relaxation for nonlinear discrete terms. We call the approximation errors caused
by relaxation relaxation errors. Due to these relaxation errors, the solution to the
relaxed problem usually is infeasible to the original problem. To obtain a feasible
solution to the original problem, branch and bound uses a local search algorithm
and the relaxation solution as the starting point. The obtained feasible solution
provides a lower bound (LB) for the objective function (see Figure 12.4(a) for an
example). If the obtained lower and upper bounds are close to each other within

34
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12.3 A Case Study: The Throughput Maximization Problem

a factor of e—that is, LB > (1 — £)UB—then the current feasible solution is (1—¢)
optimal and we are done.

If the relaxation errors for nonlinear terms are not small, then the gap between
the upper bound UB and the lower bound LB could be large. To close this gap, we
must have a tighter linear relaxation; that is, with smaller relaxation errors. This
could be achieved by further narrowing down the value sets of partition variables.
Specifically, branch and bound selects a partition variable with the maximum
relaxation error and divides its value set into two sets by its value in the relaxation
solution. Then the original Problem 1 is divided into two new Problems 2 and 3 (see
Figure 12.4(b)). Again, branch and bound performs relaxation and local search on
these two new problems. Now we have upper bounds UB, and UB3 for Problems
2 and 3, respectively. We also have feasible solutions that provide lower bounds
LB; and LB; for Problems 2 and 3, respectively. Since the relaxations in Problems
2 and 3 are both tighter than in Problem 1, we have max{UB,, UB3} < UB; and
max{LBz, LB3} > LB;. For a maximization problem, the upper bound of the original
problem is updated from UB = UBy to UB = max{UB;, UB3). Also, the best feasible
solution to the original problem is the solution with a larger LB;. Then the lower
bound of the original problem is updated from LB = LB; to LB = max{LB,, LB3}.
As a result, we now have a smaller gap between UB and LB. Then we either have a
(1—é&)-optimal solution Gf LB > (1—¢) UB), or choose a problem with the maximum
upper bound (Problem 3 in Figure 12.4(b)), and perform partition on this problem.

An important property of branch and bound is that we may remove some
problems from further consideration before we solve it completely. During the
iteration process for branch and bound, if we find a Problem z with LB > (1—¢)UB,,
then we conclude that this problem cannot provide much improvement on LB, see
Problem 4 in Figure 12.4(c). That is, further branching on this problem will not yield
much improvement so we can remove this problem from further consideration.

It has been shown that, under very general conditions, a branch-and-bound
solution procedure always converges [540]. Although the worst-case complexity of
such a procedure is exponential, the actual running time, based on our experience,
is reasonably fast if all partition variables are discrete variables (e.g., the problem
considered in our case study).

Figure 12.5 shows the general framework of the branch-and-bound procedure.
Note that the key components in the branch-and-bound framework are problem
specific and must be carefully designed to make it work. These include (1) how
to obtain a linear relaxation, (2) how to perform a local search, and (3) how to
choose a varijable for partition. The details of these components are presented in
Sections 12.3.3, 12.3.4, and 12.3.5, respectively.

12.3.3 Linear Relaxation

During each iteration of the branch-and-bound procedure, we need a linear relax-

ation technique to obtain an upper bound on the objective function (see line 5 in
Figure 12.5).

34
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Branch-and-Bound Procedure 4‘
1. Initialization:
2. Let the initial best solution ¢ = € and the initial lower bound LB = —00.
3. Determine initial value set for each partition variable.
4. Let the initial problem list include only the original problem, denoted as Problem 1.
5. Build a linear relaxation and obtain the relaxation solution 1[71 .
6. The objective value of Y1 is an upper bound UBy to Problem 1.
7. TIteration:
8. Select Problem z that has the maximal UBz among all problems in the problem list.
9. Update upper bound UB = UBz.
10. Find a feasible solution ¥ from 1/3, via a local search algorithm and denote its objective
value as LBz.
11. If Bz > LB) {
12. Update Y = ¥z and LB = LB;.
13. If LB > (1 — £)UB, we stop with the (1 — £) optimal solution Ve.
14. Otherwise, remove all Problems 2/ with LB > (1 — ¢)UB,/ from the problem list. }
15. Select a variable with the maximum relaxation error and divide its value set into two sets
by its value in 1}2.
16. Create two new Problems z1 and 22 based on these two sets.
17. Remove Problem z from the problem list.
18. Obtain UB, and UB, for Problems z1 and z via their linear relaxations.
19. IfLB < (1 — §)UBz, add Problem z; into the problem list.
20. If LB < (1 — £)UB,2, add Problem 23 into the problem list.
21. If the problem list is empty, we stop witha (1 —¢€) optimal solution Ye.
22. Otherwise, go to the next iteration.
FIGURE 12.5

Pseudocode for the branch-and-bound solution procedure.

For the polynomial term t;"s;]’,’ in the problem formulation, we can apply a
method called reformulation-linearization technique [540]. For a nonlinear term
ty'sy> We introduce a new variable uZ‘k; replace t;:’s:}’ with uf}'k; and add RLT
constraints on these variables. Suppose £’ and s?}‘ are bounded by (7)1 < <
v and (s;;’) L < s;;‘ < (s;}')y, respectively. Hence, we have [t — el [sZ’ -
(sy)el = 0, e — @) - 1s)Ho — syl = 0, (v — 5 - [SZ' = (sl =2 0,
and (v — 11" [(sZ’)U - s,j] > 0. From these relationships and substituting
“% = t,’e”s;;’, we have the following RLT constraints for u:]'.’k:

EML S+ STt — v < (GRITRC)2

My s+ P i — e = DU - L
@S+ ot~ = EGHL- SPUs
Wy S+ Sy -1 — e < Gy - o

For the log term, we propose to employ three tangential supports as an approxi-
mation (see Figure 12.6). These three tangential segments form a convex hull linear
relaxation. We first analyze the bounds for 1 + s;;’. Then, we introduce a variable

XL

TR m e Y

X Xy

FIGURE 12.6

A convex hull for y = In x to obtain its li
= tain its linear relaxation, wh i
upper bounds and segment IV defines a lower bound.’ e1e segments 1l and i define

¢} = 1In i

x,{ Z. <(L+ s{!"l’l)isafl:ld c<?n51der how to get a linear relaxation for ¥ = Inx over
Wh;re S_;g H(l;e.nts g nction can be bounded by four segments (or a convex hulD
e T ogments , 10, an(} III are tangential supports and segment IV is the ch d’
(oee (xlg] ! ) ). I}:l particular, three tangent segments are at (x;, In xr), (B ln(;)Sr’)
location,for tﬁc, winer‘e B = lxr-xy - (Inxy — Inxg)]/(xy — xr) is the l’loriyzont'li
the stament i f)o ' t intersects extended tangent segments I and III: segment IV ‘is

at joins points (xz, Inx;z) and (xy, 1 ’

o 1o v, Inxy). The convex regi

y the four segments can be described by the following four linear cog;llsotrrlaidrft?led

XLy —x<xr(nx; — 1),
B-y—x<pBnp-1,
Xy -y —x <xy(nxy — 1),

(v —x0)y + (Inxg — lnxy)x > xy - nxg — xz - Inxy

Asaresult, th - ;

Dcnoté x ‘ilm:'; gglsy 13101:111131 (log) term can also be relaxed into linear constraints
gt s the vectors for variables x7?, g™, 1, and s e

We have the following linear relaxation for Proble g, 81 and sy, respectively.

m 2
Max K
subj
ject to ngf+ Z:x;»jnsl (teN,me M,
€T eI

4 — QX! <0
Yoay-t=o0

JETm

(feN,meMijeT™ (12.23)
FeN,me My)
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k#i]
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77WQsZ,’+ ngju%—quQ;':O GeN,meM;jeT/™)
keN

Ppax

(G eN,meMyjeT k#£4))
GeN,meMyjeT™)

RLT constraints for u:;'k

m
a,j—s,jso

s()#) A #i W
ro.m . . T
Y m0- Y 5 <0 GeNjeD)
lel mGng

m
Convex hull constraints for c;}' feN,meMsjeTi)

S fy®—rOK =0 (e Li=s0)
71T,
i#s(D) k#d(l)
#Zsj fiO= Y ful)=0  (eLieN,i#s®).dD)
jeT; i€Ty N ‘
cfj",u;;'kzo GkeN,me MyjeT/" k#1.))
K. fyh) =0 (el,ieN,i#dl),jeTij#sD)
(X, qa t, S) € Qz,

m m
where ; is defined as Q; = {(X,q,t,8) : (&)1 < & < (), (Gy)r fs 1;1,, 0_<s-
@Do, G < 1 < (o, (5 < s < (o), which is the set o a(s}z)
sibjle values of (X, q,t,s) in Problem z, where (xi/ ), (xij Yu, (gq ) Ll, (gij l))i;,m ,jl f;
and (s;;‘)y are constant bounds. For example, Q; for the original Proble

gtszax
(%,q,t89):0<xy <1,0<qy <Q0=<"<Q.0 <sp <=yt

12.3.4 Local Search Algorithm

A linear relaxation for a Problem z as discussed in Equation ‘(12.23) §3n be solvee(:
in polynomial time. Denote the relaxation solution as .y//.z, which prov1l 2es1 381)1 gsgto
bound to Problem z but may not be feasible to the 01:1g1nal pr?blem ( h ue to
relaxation errors. We now show how to obtain a feasible solution ¥, to the origi

problem based on relaxed solution @z (see line 10 in Figure 12.5).

To obtain a feasible solution, we need to determine the integer valu;skfloﬁ
and q in solution ¥, such that Equations (12.5), ("112‘.19), and (12.222‘)11 (: V.aluc
other variables are based on X, q. Initially, eacl.l qy is set to the sm: es1 e
(q:;') 1 in its value set and x;}’ is fixed to 0 or 1 if 1:15 value set has only o}rlle ceac o
0 or 1, respectively. Based on these values of gy, we can compute the cap

KL gt ink 7 . The
Y memy W 1082 [1 + giqly | (TWQ/Prax + e nr 81tk )] for each link 7 — f

DA AD#L 3 ’
requirement on a link i — j is Z;;)Zéj s fi(D). Thus, we Cfm coinp\;;er f;,je
the ratio between the capacity and the requirement. The objective value

_.

12.3 A Case Study: The Throughput Maximization Problem
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Local Search Algorithm
1. Initialization:
2 Set q;;‘ = (ql',J’,’ )z and x;;‘ as 0 or 1 if its value set only has one element 0 or 1, respectively.
3. Compute the requirement Z;g;:# A fg ).
4. Iteration:
5. Compute capacity 3, A1 4, Wlogy ( 1+ glyq,j";# 7 ) and the ratio ky
4 WO/ Prax+ L% ot Bt

between the capacity and the requirement for each link 7 — 7
6. Suppose link £ — j has the smallest ky. Try to increase its capacity as follows.
7. Ifq;;‘ can be increased on an already used band {
8
9

Suppose band m has the largest é;/" among these bands.
Increase q;;‘ under the constraints of g7 < (q;;’ )u and the corresponding ky < 1. }

10. else, if q;j" can be increased on an available but currently unused band {
11. Suppose band m has the largest é;;’ among these bands.
12, Increase q;;’ under the constraints of q:j” < (qZ‘)U and the corresponding ki < 1.
13. Setxg,"=l,x:Z=0f0rbe’1},h¢j,xz;=0forke’Z§.)
14. else the iteration terminates.
FIGURE 12.7

Pseudocode of a local search algorithm to find a feasible solution.

current x and q is K - min{ky : i € N.,j € T3}. Therefore, we aim to increase the
minimum k. For the link with the smallest k;;, we try to increase some q:.}’ under
the constraint of q;j” < (q};’)u. When we cannot further increase the smallest &y,
we are done. The details of this local search algorithm are shown in Figure 12.7.

'12.3.5 Selection of Partition Variables

If the relaxation error for a Problem z is not small, the gap between its lower
and upper bounds may be large. To obtain a small gap, we generate two new
subproblems z; and 2; from Problem 2. We hope that these two new problems
will have smaller relaxation errors. Then the bounds for them can be tighter than
the bounds for 2. Therefore, we identify a variable based on its relaxation error in
line 15, Figure 12.5.

Note that the choice of a partition variable affects the convergence speed. Here,
the candidate variables for partitioning are based on their impacts on the objective
value, variables in x are more significant than variables in q. Hence, we should
first select one of x variables as the branch variable. In particular, for the relaxation
solution 1/, the relaxation error of a discrete variable x;;’ is min [&Z’, 1 —&;j” }, where

% is the value of variable x7/ in solution V2. We choose an x7 with the maximum
relaxation error among all x variables and set its value to {0} and {1} in Problems z,
and 23, respectively. Since the value set for this x;j” has only one element, this xt’}’

can be replaced by a constant in the new problem. As a result, some constraints
may also be removed.
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It should be noted that we may pose more limitations on other variables based
on the new value set of x;j" That is, if x:;’ is 0, then we have g} = 0 based on
Equation (12.19). Ifx;}' is 1, then we have xJ;, =0 forb € T;, b # f and xj; = O for
k € T; based on Equation (12.5).

When none of the x variables can be partitioned Gi.e., all x variables are already
set to 0 or 1), we select one of q variables for partitioning. In particular, for the
relaxation solution nl}z, the relaxation error of a discrete variable qf}‘ is rnin{Ag -
L3 J» layl+1- 47}, where q;;' is the value of variable q;;‘ in solution ¥/. Assuming
the value set of qi in Problem z is {qo,4q1,-.-,4qK}, its value set in Problems 2z
and z, will be {qo,q1,-- -, I_EIZ‘J} and {LE]Z’J +1, l_c};;’] +2,...,9k]}, respectively.
Again, we may pose more limitations on other variables based on the new value
set of q;;‘. In particular, if g7} is 0, then we have x}}' = 0 based on Equation (12.22).
If the new value set of g;; does not include 0, then we have x:;‘ = 1 based on
Equation (12.19).

Note that when all possible partition variables in X and q can no longer be
partitioned (i.e., all values are assigned), the other variables can be solved via a
linear program (LP).

12.4 NUMERICAL RESULTS FOR THE THROUGHPUT
MAXIMIZATION PROBLEM

In this section, we present some aumerical results for the case study in Section 12.3.
The purpose of this effort is to offer quantitative understanding on the joint
optimization at different layers.

12.4.1 Simulation Setting

For ease of exposition, we normalize all units for distance, bandwidth, rate, and
power based on Equation (12.17) with appropriate dimensions. We consider 20-,
30-, and 50-node CR networks with each node randomly located in a 50 x 50
area (see later Figures 12.8, 12.10, and 12.12). We assume there are (M| = 10
frequency bands in the network and each band has a bandwidth of W = 50. At
each CR node, only a subset of these bands is available. For the 20- and 30-node
networks, we assume there are five user communication sessions, with source
node and destination node randomly selected and the minimum rate requirement
of each session randomly generated within [1, 10] (see later Tables 12.4 and 12.6).
For the 50-node network, the number of user communication sessions is 10 (see
later Table 12.8).

We assume that the propagation gain model is g = d 4 and the SINR threshold
is o = 3 [543]. The maximum transmission power at each node is Ppax = 4.8+ 10°
mW. We assume that the number of power control levels is Q = 10.

For our proposed branch-and-bound solution procedure, we s€t € to 0.1, which
guarantees that the obtained solution is 90% optimal.

0 5 10 15 20 25 30 35 40 45 5
FIGURE 12.8

A 20-node network.

12.4.2 Results and Observations
A 20-Node Network

Fonc‘l the 20:nodc' network in Figure 12.8, the location and available bands at each

node are glvefl .m Table 12.3. There are five sessions. The source node, destination

'r;;eet,mazsd t'mx'umum rate requirement of each session are shown in Table 12.4
mission power | i i i -

The transmi power levels on their respective frequency bands in the final

Band 1: q;’s =1, qi6,12 =7

Band 2: g3, =2

Band 3: g3, , = 2

Band 4: g1, =7, 44 1o =2

Band 5: q§1,10 =1

Band 6: ¢85 1o =9

12.4 Numerical Results for the Throughput Maximization Problem  3E
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Table 12.3 Location and Available Frequency Bands at Each Node for a 20-Node Network
1 (0.1,9.9) 1,2,3,4,7,89,10 11 (28.1,256) 1,2,3,4,5,6,7,8,9,10
2 (29.2,31.7) 1,2,3,4,5,7,8,10 12 (32.3,38) 1,8,9,10

3 (3,3L.1) 1,4,56 13 (47.2,2.6) 3,5,10

4 (11.8,40.1) 1,2,3,4,6,9,10 14 (44.7,15) 2,3,6,7,8

5 (15.8,9.7) 1,2,3,56,8,9 15 (44.7,24) 1,2,3,4,5,6,7,8,9,10
6 (16.3,19.5) 3,5,6,89 16 (47.9,43.8) 1,3

7 (0.6,27.4) 1,4,8,9 10 17 (46.4,16.8) 1,7,9

8 (22.6,40.9) 1,2,3,5,7,9,10 18 (11.5,12.2) 2,5,6,10

9 (35.3,10.3) 2,9 19 (28.2,14.8) 4,5,6,7,8,9,10

10 (319,196)  1,2,3,4,5,6,7,8,9,10 20 (2.5,14.5) 1,7,10

Tahle 12.4 Source Node, Destination Node, and Minimum Rate Requirement
of Each Session in the 20-Node Network

16 10 9

1

> 18 3 1
3 12 11 4
P 13 17 3
5 15 6 2

Band 7: gl ;= 1, g1 = 1
Band 8: g%, ,; =3

Band 9: q7,5 = 1, 4396 =3
Band 10: q{g,zo =1

Note that the same frequency band may be used by concurrent transmissions;
for example, both node 7 (to 3) and node 16 (to 12) are transmitting on band
1. To minimize interference, our solution places these concurrent transmissions
sufficiently apart and sets the optimal transmission power less than the maximum.

Figure 12.9 shows the flow routing topology in the final solution. The flow
rates are:

Session 1: f2,10(1) = 103.30, fg,z(l) = 103.30, fll,lO(l) = 15.86, f]z,g(l) =
103.30, fi12.11(1) = 15.86,f16,12(1) =119.16

Session 2: f17(2) = 13.24, f73(2) = 13.24, fi820(2) = 13.24, f20,1(2) = 13.24

Session 3: f12,11(3) = 52.96

50 T T T

(o]

40

(O
s
[N}

0l O3 2

25 11

20

FIGURE 12.9

The flow routing topology in the final solution for the 20-node network.

SCSS?OI‘I 45 f13,14(4) = 39.72,f14,17(4) = 3972
Session 5: fi5,19(5) = 26.48, f19,6(5) = 26.48

We can see that, to maximize the achieved capacity, multipath routing is used (e.g.
for session 1). ’
Under this solution, the achieved data rates for sessions 1 to 5 are

119.16, 13.24, 52.96, 39.72, and 26.48, respectively, and the achieved rate scaling
factor is 13.24.

A 30-Node Network

For the 30-.node network in Figure 12.10, the location and available bands at each
node are given in Table 12.5. There are five sessions. The source node, destination
node, and minimum rate requirement of each session are shown in Table 12.6.

The transmission power levels on their respective frequency bands in the final
solution are

12.4 Numerical Results for the Throughput Maximization Problem 3%



356 CHAPTER 12 Cross-layer optimization for multinop networks

Band 1: gy = 1,45, 3 =1
Band 2: g5g 13 =3
Band 3: q?9,29 =9
Band 4: q§3,29 =4
Band 5: q§6’29 =1
Band 6: 4?3,11 =2
Band 7: q36,21 =4
Band 8: ¢ |, =2
Band 9: ‘136,22 =7
Band 11: q{;’m =2
Band 12: g3, = 1
Band 14: qég’ls =1

50 T T

451

40

35¢F

30

25

20

154

10F

0 5 10

FIGURE 12.10

50
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Table 12.5 Location and Available Frequ

(7,0.7)

1,267, 16, 17,

ency Bands at Each Nod

16

3

e for a 30-Node Network

1 (30.3,28.1) 7,8,11, 16,17, 19,
19, 20 20
2 5,4) 3,5,9,12,14,15 17 (32,41.1) 7, 11, 16, 17, 19,
20
3 (6.8,14) 1,2,6,7,8 11, 16, 18 (14.1,33.7) 3,4,5
17,19, 20
4 (15.7,3.3) 1,2,7,16,20 19 (23,46.4) 3,12,15
5 9.5,17) 3,4,5,9,12 20 (30.3,9.3 59
6 (19.4,17.1) 1,2,6,7,8, 16, 19, 21 (17.6,29.2) 1,2,6,7,811, 16,
20 17,19, 20
7 (34.7,14.6) 3,4,5,9,12,14 22 (27.1,27.8) 9,12, 14,15
8 (4.9,25.9) 3,4,12 23 (26.9,45.9) 3, 4,5, 09, 10, 12,
13,14, 15, 17
9 (46.6,42.1) 10, 18 24 (43.3,32.4) 1,2,11,16,17,20
10 (8.3,38.3) 3,4,5,9, 14 25 (45.4,8.2) 3,4,59 12, 14
11 (26.7,11.1) 1,6 7, 8 11, 16, 26 (43.4,35) 3,5,9, 15
17,19, 20
12 (36.4,47.3) 10, 13, 18 27 (41.3,45.1) 1,16, 20
13 (24.3,21.2) 1,2,6,811,19 28 (14.4,30.3) 1,2,6,7,811, 16,
17,20
14 (23.1,0.8) 3,5,9 14 29 (41.6,41.7) 3,4, 509, 10, 12,
14,15, 18
15 (21.4,19.2) 4,9,12,14 30 (25.9,12) 1,2,6,7,8 11, 16,

17,19, 20

A 30-node network.

Table 12.6 Source Node, Destination Node, and Minimum Rate Requirement
n in the 30-Node Network

of Each Sessio

1 16 28 4
2 24 11 7
3 13 1 1
4 19 29 8
B 26 15 1
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.
12.4 Numerical Results for the Throughput Maximization Problen 3

50 — Session 1: S1621(1) = 124-72,ﬁ1,28(1) = 124.72
Session 2: f13,11(2) = 160.58, fi330(2) = 57.68, S1621(2) = 24.22, fi613(2) =
i i 194.04, f17,16(2) = 104.36, f128(2) = 24.22, f416(2) = 113.90,
45 > J2417(2) = 104.36, f2,13(2) = 24.22, f3011(2) = 57.68
i Session 3: J13,30(4) = 31.18,f30,4(3) = 31.18,f4,1(3) =31.18
40t Session 4: fi9,23(4) = 211.19, fi920(4) = 103.33, J23,26(4) = 102.46, f>3 29(4) =
6 108.73, f26,20(4) = 102.46
25| ] Session 5: f22,15(5) = 39.32, f5.22(5) = 39.32
J We can see that, to maximize the achieved capacity, multipath routing is used (e.g.,
30F for session 2).
Under this solution, the achieved data rates for sessions 1 to 5 are 124.72,218.26,
25l g 31.18,314.52,and 39.32, respectively, and the achieved rate scaling factor is 31.18.
] A 50-Node Network
201 For the 50-node network in Figure 12.12, the location and available bands at each
] node are given in Table 12.7. There are 10 sessions. The source node, destination
15F
50 T T T T T T T
10} |
025 (o}
45t o
s+ 1 o o)
a0} ©c 0 o © :
0 4'5 50
0 35t 0 -
FIGURE 12.11 o) (o] o) o
The flow routing topology in the final solution for the 30-node network. 30 o o © o ]
(o)
25 [e} (o] (o] ° o) b
wl OO O O O O
Band 15: q%%% =10 g 0 o o}
Band 16: q%;,” =3.dq3011 =1 15r C}O o © ]
Band 17: q%;,m =7 O P o © O]
Band 19: qég,so =1 10 o 1
Band 20: g5 , = 4
30, (o) (o] o
- > o o
Note that the same frequency band may be used by concurrent transmissions; f.or o
example, both node 4 (to 1) and node 21 (to 28) are transmitting on band 1. Tq min- 0 . . : . . . . . .
imize interference, our solution places these concurrent transmissions sufficiently 0 5 10 15 20 25 30 35 40 45 50
apart and sets the optimal transmission power less than the maximum. FIGURE 12.12

Figure 12.11 shows the flow routing topology in the final solution.

A 50-node network.
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Table 12.7 Location and Available Frequency Bands at Each Node for a 50-Node Network
1 (11.1,21.7) 2,3,4,8,25 26 (25.2,27.2) 10, 14, 20, 24, 26
2 0.1,4) 6,7, 10, 13, 14, 20, 23, 27 (22.5,42.2) 5,9, 12, 16, 18, 27,
24, 26, 28 29, 30
3 (7.2,16.6) 6, 10, 14, 20, 23, 24, 26 28 (30,31.5) 6,13, 24, 26, 28
4 (11,32.2) 6,7, 10, 13, 14, 20, 23, 29 (35,22.1) 6, 10
24,26, 28
5 (16.3,3.6) 10, 13, 14, 20, 23 30 (25.7,6.2) 5,9, 12,17, 18, 22,
27,29, 30
6 (14.5,24.7) 8,11,25 31 (34.1,12.4) 9,12, 16,17,30
7 (149,13.7) 5,9, 12, 16, 17, 18, 22, 32 (26.4,30) 5,9,12, 16, 17, 18,
27,29, 30 22,27, 29,30
8 (19.5,14.9) 7,24,28 33 (14.1,40.7) 1,2,25
9 (26.6,13.4) 1,19,21,25 34 (34.4,46.5) 9,17, 18,30
10 (22.5,29.3) 1,3,4,8,11, 15,19 35 (19,22.5) 1,6, 7, 10, 13, 14,
20, 23, 24, 28
11 (24.6,40.5) 3,8,25 36 (39.9,25.1) 6, 13, 14, 20, 23,
24,26, 28
12 (38.4,13.1) 2,8,11,15 37 (20.3,18.2) 1,2,3,4,8,11, 15,
19,21, 27
13 (4,39 9,12, 16, 22, 27, 29, 30 38 (10,20.5) 6,7, 10, 13, 14, 20,
23, 24, 26, 28
14 (6.1,18.6) 9,12, 16, 17, 18,22, 27, 39 (20.5,21.4) 1,2,3,4,8,11, 15,
30 19,21,25
15 (38.5,22.6) 2,4,11,15,19,21,25 40 (37.1,28.6) 7, 10, 13, 14, 20,
23,24, 26
16 (1.2,24.3) 5,9,12, 17, 22,29, 30 41 (44.1,16.1) 1,15,21
17 (4.9,42.3) 5,27 42 (41.1,6) 9,29
18 (185,1.4) 5,9,12,17, 18,27, 30 43 (43,18.8) 5,9, 12, 16, 18, 22
19 (16.9,29.1) 3,4,10,11, 12, 15 44 (45.4,24.2) 9, 12, 16, 17, 18,
30
20 (33.5,10.4) 7,13, 14, 20,23, 24, 26, 45 (36.2,41.2) 5,9,17,27,29,30
28
21 (25.6,12.8) 6,7,20,23, 24,28 46 (27.5,32.3) 12, 16, 17, 18, 29,
30
22 (45.2,45.5) 2,8,15,19 47 (47.8,13.8) 22,27, 29,30
23 (436,22.7) 1,2,3,4,11,15,19,21 48 (89,148 5,30
24 (10.6,40.5) 4,15,19,21,25 49 (6.8,6.2) 5,9,12, 16, 17,27,
30
25 (18.2,32.7) 9,12,18,22 27 50 (11.7,35.8) 1,2,3,4,8,11, 15,
19,21,25

. B
12.4 Numerical Results for the Throughput Maximization Problem 3¢

Table 12.8 Source Node, Destination Node, and Minimum Rate Requirement
of Each Session in the 50-Node Network
1 . y : ,4 e
2 5 26 7
3 19 20 6
4 33 6 10
5] 37 10 9
6 23 11 2
7 25 46 3
8 42 43 9
9 44 27 8 :
10 47 30 1
50 T T . T . T T
451
40
35F
30
25 "O
20+
15F
10+
5 -
0]
0
0

FIGURE 12.13

The flow routing topology in the final solution for the 50-node network.
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node, and minimum rate requirement of each session are shown in Table 12.8. The
routing topology is shown in Figure 12.13. The detailed transmission power levels
and flow rates in this solution are omitted to conserve space. We can see that it is
necessary to employ multipath routing for sessions 9 and 10. The scaling factor in
the final solution is 13.36.

12.5 CHAPTER SUMMARY

In this chapter, we study cross-layer optimization for multihop CR networks. We
give joint consideration of power control at the physical layer, scheduling at the
link layer, and flow routing at the network layer. We present mathematical mod-
els to characterize the interdependency among power control, scheduling, and
routing. Our models are general and can be applied to many cross-layer opti-
mization problems for multihop CR networks. As a case study, we apply our
models to a throughput maximization problem for a multihop CR network. We
develop a centralized solution procedure for this optimization problem based on
a branch-and-bound framework. Using numerical results, we offer quantitative
understanding on the joint optimization at different layers.

12.6 PROBLEMS
1 Compare CR and MC-MR wireless networks.
2 Discuss the impact of power control on scheduling and flow routing.

3 Consider a CR network where each node uses peak transmission power Prmax
(i.e., no power control).
(a) Formulate the constraints for scheduling and successful transmission.
(b) Comparing solutions with and without power control, which provides
better performance (larger scaling factor)? Explain.

4 Discuss the impact of scheduling on power control and flow routing.
Discuss the impact of flow routing on power control and scheduling.

6 Suppose flow splitting and multipath routing are not allowed.
(@) What are the routing constraints? )
(b) Compare the single-path solutions and the multipath solutions and
explain which achieve better performance.

7 Suppose the objective is to maximize the total data rate utility for all user
sessions, where utility is (/) = Inr(J) for session I. Write down the problem
formulation in this case.

8 The problem considered in this chapter aims to maximize an objective. The
branch-and-bound procedure to solve this problem is shown in Figure 12.5.
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12.6 Problems

or another problem that aims to minimize an objective, can we use the same

branch-and-bound procedure? If n
! ot, how should
to solve a minimization problem? we change the procedure

Why do we need linear relaxation in the branch-and-bound procedure?
Why do we need a local search in the branch-and-bound procedure?

i\;(’tlllleenrv&lrc sel'cct a partition variable, why should we select an variable even
¢laxation error caused by this variable is less than that by a g variable?

After we obtain the values for all x i

‘ and g variables, h
optimal values for other variables? 7 o do we solve the
By a branch-and-bound procedure, can we get an optimal solution for the

problem considered in this chapter? If yes, how should we change the proce-

dure in Figure 12.5? Discuss the
.57 pros and cons to get an opti i
a (1 — &)-optimal solution. # primal solution and

m
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