
P1: Binaya Dash

November 21, 2008 14:2 AU6420 AU6420˙C015

Chapter 15

Analytical Models
for Multihop Cognitive
Radio Networks

Yi Shi and Y. Thomas Hou

Contents
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
15.2 Analytical Models at Multiple Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

15.2.1 Modeling of Available Spectrum Allocation . . . . . . . . . . . . . . 386
15.2.2 Modeling of Power Control and Scheduling . . . . . . . . . . . . . 388
15.2.3 Flow Routing and Link Capacity Model . . . . . . . . . . . . . . . . . . 392

15.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
15.3.1 Case A: Subband Division and Allocation Problem. . . . . . 394
15.3.2 Case B: Power Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 398

15.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

15.1 Introduction
A cognitive radio (CR) is a frequency-agile data communication device with
a rich control and monitoring (spectrum sensing) interface [11]. It capitalizes
on advances in signal processing and radio technology, as well as recent
changes in spectrum policy. A CR node constantly senses the spectrum
to detect any change in white space; its frequency-agile radio module is
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capable of reconfiguring RF and switching to newly-selected frequency
bands. A CR can be programmed to tune to a wide spectrum range and
operate on any frequency band in the range.

The need for CR functionality is indeed compelling, as it affects many
important wireless communications applications, including public safety,
military, and wireless applications for the general public. Since its concep-
tual inception, there has been growing interest in the research community
to develop cognitive radio platforms. As research in CR continues to in-
tensify, it is expected that future truly CR networks will ultimately have
the processing power and flexibility needed to support spectrum sensing,
flexible waveform configuration, spectrum negotiation in dynamic envi-
ronments, and many other functions. Also, it is not hard to foresee that CR
will eventually play a pivotal role in multihop wireless networking, such
as mesh and ad hoc networks, which are currently mostly based on 802.11
technology. Under CR-enabled wireless networks, each node individually
detects the white bands at its particular location, and the spectrum that can
be used for communication can be different from node to node. It is not
unusual to find that although each node may have some white bands to
access, there still may not exist a common frequency band shared by all
the nodes in the network.

To better understand the unique challenges associated with a CR-
enabled wireless network, we compare it with multichannel multiradio
(MC-MR) wireless networks (e.g., [1,7,14]), which have been an area of ac-
tive research in recent years. First, an MC-MR platform employs traditional
hardware-based radio technology (i.e., channel coding, modulation, etc.
are all implemented in hardware). Thus, each radio can only operate on a
single channel at a time and there is no switching of channels on a per-
packet basis. The number of concurrent channels that can be used at a wire-
less node is limited by the number of hardware-based radios. In contrast,
the radio technology in CR is software-based; a CR is capable of switching
frequency bands on a per-packet basis and over a wide range of spectrum.
As a result, the number of concurrent frequency bands that can be shared by
a single CR is typically much larger than what can be supported by MC-MR.
Second, due to the nature of hardware-based radio technology in MC-MR,
a common assumption in MC-MR is that there is a set of common channels
available for every node in the network; each channel typically has the same
bandwidth. Such an assumption may not hold for CR networks, in which
each node may have a different set of frequency bands, each of potentially
unequal size. A CR node is capable of working on a set of “heterogeneous”
channels that are scattered across widely separated slices of the frequency
spectrum with different bandwidths. An even more profound advance in CR
technology is that there is no requirement that a CR needs to select contigu-
ous frequencies/channels for transmission/reception—the radio can send
packets over noncontiguous frequency bands. These important differences
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between MC-MR and CR warrant that the algorithm design for a CR network
be substantially more complex than that under MC-MR. In some sense, an
MC-MR-based wireless network can be considered as a special (simple)
case of a CR-based wireless network. Thus, algorithms designed for a CR
network can be tailored to address MC-MR networks while the converse is
not true.

Due to the unique characteristics associated with CR networks, problems
for CR networks are expected to be much more challenging and interesting.
As a first step toward studying CR networks systematically, it is important
to develop analytical models. Such models should capture characteristics
of CR across multiple layers, such as power control, scheduling, and rout-
ing. Performance objectives should correlate with spectrum usage and its
occupancy in space, which are unique to CR networks. The goal of this
chapter is to present a unified mathematical model for the physical (i.e.,
power control), link (i.e., scheduling), and network (i.e., routing) layers in
a multihop cognitive radio network environment.

The foundation of our analytical model is built upon the so-called in-
terference modeling. There are two popular approaches to model interfer-
ence in wireless networks, namely, the physical model and the protocol
model. Under the physical model (see, e.g., [3,5,6,8,10]), a transmission
is considered successful if and only if the signal-to-interference-and-noise
ratio (SINR) exceeds a certain threshold, where the interference includes
all other concurrent transmissions. Since the calculation of a link’s capacity
involves not only the transmission power on this link, but also the trans-
mission power on interference links, it is difficult to develop a tractable
optimal solution whenever link capacity is involved. Another approach to
model interference is called the protocol model [10], whereby a transmis-
sion is considered successful if and only if the receiving node is in the
transmission range of the corresponding transmission node and is out of
the interference range of all other transmission nodes. This model is easy
to understand and facilitates the building of tractable models. It has been
used successfully to address various hard problems in wireless networks
(see, e.g., [1,4,13–15,19]); results from these efforts have already offered
many important insights. In this chapter, we will follow the protocol model
in our analytical modeling.

We organize this chapter as follows. In Section 15.2, we present an an-
alytical model for a multihop CR network at multiple layers. Within this
section, we start in Section 15.2.1 with the modeling problem of spectrum
band division and allocation, which is unique to CR networks. Then in
Section 15.2.2, based on the protocol interference model, we develop an
analytical model in the form of a set of constraints for power control and
scheduling. Finally, in Section 15.2.3, we present models for flow routing
and link capacity. To show the application of the mathematical models in
Section 15.2, we apply these models to solving some real problems for
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multihop CR networks in Section 15.3. We first present a new objective
function called the bandwidth footprint product (BFP), which uniquely
characterizes the spectrum and space occupancy for a node in a CR net-
work. Using this objective function, we study two specific problems in a
multihop CR network. In Section 15.3.1, we study the subband division and
allocation problem under fixed transmission power (i.e., no power control).
The goal is to explore how the different-sized available bandwidth in the
network should be optimally divided and allocated among the nodes. In
Section 15.3.2, we study the power control problem when all the subbands
are identical (i.e., fixed channel bandwidth). The goal there is to explore
how to optimally adjust the power level for each node in the network so
that the total BFP is minimized. The results from these two case studies
not only validate the practical utility of the analytical models, but also help
gain some theoretical understanding of a multihop CR network.

15.2 Analytical Models at Multiple Layers
We consider an ad hoc network consisting of a set of N nodes. Among
these nodes, there is a set of L unicast communication sessions. Denote
s(l) and d(l) the source and destination nodes of session l ∈ L, and r(l)
the rate requirement (in b/s) of session l . Table 15.1 lists all notation used
in this chapter.

15.2.1 Modeling of Available Spectrum Allocation

This part of mathematical modeling is unique to CR networks and does not
exist in MC-MR networks. In a multihop CR network, the available spectrum
bands at one node may be different from those at another node in the net-
work. Given a set of available frequency bands at a node, the sizes (or band-
widths) of each band may differ drastically. For example, among the least-
utilized spectrum bands found in [17], the bandwidth between [1240, 1300]
MHz (allocated to amateur radio) is 60 MHz, while the bandwidth between
[1525, 1710] MHz (allocated to mobile satellites, GPS systems, and meteo-
rological applications) is 185 MHz. Such large differences in bandwidths
among the available bands suggests the need for further division of the
larger bands into smaller subbands for more flexible and efficient frequency
allocation. Since equal subband division of the available spectrum band is
likely to yield suboptimal performance, an unequal division is desirable.

More formally, we model the union of the available spectrum among
all the nodes in the network as a set of M unequally sized bands (see
Figure 15.1). M denotes the set of these bands and Mi ⊆ M denotes
the set of available bands at node i ∈ N , which is possibly different from
that at another node, say j ∈ N , i.e., Mi �= M j . For example, at node i,
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Table 15.1 Notation

Symbol Definition

di j Distance between nodes i and j
d(l) Destination node of session l
fi j (l) Data rate that is attributed to session l on link (i, j )
gi j Propagation gain from node i to node j
hm

i j ∈ {0, 1, 2, . . . , H}, the integer power level for qm
i j

H The total number of power levels at a transmitter
Im

j The set of nodes that can use band m and are within the
interference range of node j

K (m) The maximum number for subband division in band m
L The set of active user sessions in the network
Mi The set of available bands at node i ∈ N
M = ⋃

i∈N Mi , the set of available bands in the network
M = |M|, the number of available bands in the network
Mi j = Mi

⋂
M j , the set of available bands on link (i, j )

n Path loss index
N The set of nodes in the network

q(m,k)
i j The transmission power spectral density from node i to node j in

subband (m, k)
Q Maximum transmission power spectral density at a transmitter
QT The minimum threshold of power spectral density to decode a

transmission at a receiver
QI The maximum threshold of power spectral density for interference

to be negligible at a receiver
r (l) Rate of session l ∈ L
RT (q), RI (q) Transmission range and interference range under q, respectively

Rmax
T , Rmax

I Transmission range and interference range under Q, respectively
s(l) Source node of session l
T m

i The set of nodes that can use band m and are within the
transmission range of node i

Ti = ⋃
m∈Mi

T m
i , the set of nodes within the transmission range

of node i
u(m,k) The fraction of bandwidth for the k-th subband in band m
W (m) Bandwidth of band m ∈ M
x(m,k)

i j Binary indicator to mark whether or not subband (m, k) is used
by link (i, j ).

β An antenna-related constant
η Ambient Gaussian noise density

Mi may consist of bands I, III, and V, while at node j , M j may consist of
bands I, IV, and VI. W(m) denotes the bandwidth of band m ∈ M. For more
flexible and efficient bandwidth allocation and to overcome the disparity in
bandwidth size among the spectrum bands, we assume that band m can be
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1

Figure 15.1 A schematic illustrating the concept of bands and subbands in spec-
trum sharing.

further divided into up to K (m) subbands, each of which may be of unequal
bandwidth. u(m,k) denotes the fraction of bandwidth for the k-th subband
in band m. Then we have

K (m)∑
k=1

u(m,k) = 1.

As an example, Figure 15.1 shows M bands in the network and for a
specific band m, it displays a further division into K (m) subbands. Then the
M bands in the network are effectively divided into

∑M
m=1 K (m) subbands,

each of which may be of different size. Note that for a specific optimization
problem, some u(m,k)s can be 0 in the final optimal solution. This suggests
that we will have fewer subbands than K (m) in the optimal solution.

15.2.2 Modeling of Power Control and Scheduling

In this section, we show analytical models for power control and scheduling
for multihop CR networks. We will examine the notion of transmission and
interference ranges in a wireless network, as well as the necessary and
sufficient condition for successful transmission.

Transmission and Interference Ranges. We follow the protocol model
for a wireless network [10], where each transmitting node is associated
with a transmission range and an interference range. Both transmission
and interference ranges directly depend on a node’s transmission power
and propagation gain. For transmission from node i to node j , a widely
used model for power propagation gain gi j is

gi j = βd−n
i j , (15.1)

where β is an antenna-related constant, di j is the physical distance between
nodes i and j , and n is the path loss index. Note that we are considering
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a uniform gain model here and assuming the same gain model on all fre-
quency bands. The case of a nonuniform gain model or a band-dependent
gain behavior can be extended without much technical difficulty.

In this context, we assume a data transmission from node i to node j
is successful only if the received power spectral density at node j exceeds
a threshold, say QT . Suppose node i ’s transmission power spectral density
is q and denote the transmission range of this node as RT (q). Then based
on gi j · q ≥ QT and (15.1), we can calculate the transmission range of this
node as follows:

RT (q) =
(

q

QT

)1/n

. (15.2)

Similarly, we assume that an interference is non-negligible only if it exceeds
a power spectral density threshold, say QI , at a receiver. Denote the inter-
ference range of a node by RI (q). Then following the same reasoning as
in the derivation for the transmission range, we can obtain the interference
range of a node as follows:

RI (q) =
(

q

QI

)1/n

.

Note that since QI < QT , the interference range is greater than the trans-
mission range at a node, i.e., RI (q) > RT (q).

Necessary and Sufficient Condition for Successful Transmission. In
a CR network, each node has a set of frequency subbands that it may use
for transmission and reception. Suppose that subband (m, k) is available
at both node i and node j , and q(m,k)

i j denotes the transmission power
from node i to node j in subband (m, k). Then to schedule a successful
transmission from node i to node j , the following necessary and sufficient
condition, expressed as two constraints, must be met. The first constraint
(C-1) is that receiving node j must be physically within the transmission
range of node i, i.e.,

(C-1) di j ≤ RT
(
q(m,k)

i j

) =
(

q(m,k)
i j

QT

)1/n

.

The second constraint (C-2) is that the receiving node j must not fall into the
interference range of any other node p (p ∈ N , p �= i) that is transmitting
on the same subband, i.e.,

(C-2) djp ≥ RI
(
q(m,k)

pz

) =
(

q(m,k)
pz

QI

)1/n

,

where z is the intended receiving node of transmitting node p.
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Now we formalize the necessary and sufficient condition for successful
transmission into a mathematical model in the general context of multihop
CR networks. Suppose that subband (m, k) is available at both node i and
node j , i.e., m ∈ Mi j , where Mi j = Mi

⋂M j . Define

x(m,k)
i j =

{
1 if node i transmits data to node j on subband (m, k),
0 otherwise.

We consider scheduling in the frequency domain. Thus, once a subband
(m, k) is used by node i for transmission to node j , m ∈ Mi j , this subband
cannot be used again by node i to transmit to a different node. That is,

(C-3)
∑
j∈T m

i

x(m,k)
i j ≤ 1,

where T m
i is the set of nodes that are within the transmission range of node

i under full power spectral density Q on band m.
Rmax

T denotes the maximum transmission range of a node when it trans-
mits at full power. Then based on (15.2), we have

Rmax
T = RT (Q) =

(
Q

QT

)1/n

.

Thus, we have

QT = Q

(Rmax
T )n

.

Then for a node transmitting at a power q ∈ [0, Q], its transmission range
is

RT (q) =
(

q

QT

)1/n

=
[

q(Rmax
T )n

Q

]1/n

=
(

q

Q

)1/n

Rmax
T . (15.3)

Similarly, Rmax
I denotes the maximum interference range of a node when

it transmits at full power. Then by the same token we have

Rmax
I = RI (Q) =

(
Q

QI

)1/n

,

QI = Q

(Rmax
I )n

.
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For a node transmitting at a power q ∈ [0, Q], its interference range is

RI (q) =
(

q

Q

)1/n

Rmax
I . (15.4)

Recall that T m
i denotes the set of nodes that are within the transmission

range from node i under full power spectral density Q on band m. More
formally, we have T m

i = { j : di j ≤ Rmax
T , j �= i, m ∈ M j }. Similarly, Im

j
denotes the set of nodes that can cause interference to node j on band m
under full power spectral density Q, i.e., Im

j = {p : djp ≤ Rmax
I , m ∈ Mp}.

Note that the definitions of T m
i and Im

j are both based on full transmission
power spectral density Q. When the power spectral density level q is below
Q, the corresponding transmission and interference ranges will be smaller.
As a result, it is necessary to keep track of the set of nodes that fall into
the transmission range and the set of nodes that can produce interference
whenever transmission power changes at a node.

Applying (15.3) and (15.4) to the two constraints (C-1) and (C-2) for
successful transmission from node i to node j , we have

di j ≤ RT
(
q(m,k)

i j

)=
(

q(m,k)
i j

Q

)1/n

Rmax
T , (15.5)

djp ≥ RI
(
q(m,k)

pz

)=
(

q(m,k)
pz

Q

)1/n

Rmax
I

(
p∈Im

j , p �= i, z∈T m
p

)
. (15.6)

Based on (15.5) and (15.6), we have the following requirements for the
transmission link i → j and interfering link p → z:

q(m,k)
i j

{
∈

[(
di j

Rmax
T

)n
Q, Q

]
if x(m,k)

i j = 1,

= 0 if x(m,k)
i j = 0,

q(m,k)
pz ≤

{(
dkj

Rmax
I

)n
Q if x(m,k)

i j = 1,

Q if x(m,k)
i j = 0,

(
p ∈ Im

j , p �= i, z ∈ T m
p

)
.

Mathematically, these requirements can be rewritten as

(C-1′) q(m,k)
i j ∈

[(
di j

Rmax
T

)n

Qx(m,k)
i j , Qx(m,k)

i j

]
,

(C-2′) q(m,k)
pz ≤ Q −

[
1 −

(
dpj

Rmax
I

)n]
Qx(m,k)

i j

(
p ∈ Im

j , p �= i, z ∈ T m
p

)
.
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Recall that we consider scheduling in the frequency domain, and that in
(C-3) we state that once a subband (m, k) is used by node i for transmission
to node j , this subband cannot be used again by node i to transmit to
a different node. In addition, for successful scheduling in the frequency
domain, the following two constraints must also hold:

(C-4) For a subband (m, k) that is available at node j , this subband can-
not be used for both transmission and receiving. That is, if subband
(m, k) is used at node j for transmission (or receiving), then it can-
not be used for receiving (or transmission).

(C-5) Similarly to constraint (C-3) on transmission, node j cannot use the
same subband (m, k) for receiving from two different nodes.

Note that (C-4) can be viewed as a “self-interference” avoidance con-
straint where at the same node j , its transmission to another node z on
band m interferes with its reception from node i on the same band. It
turns out that the above two constraints are mathematically embedded in
(C-1′) and (C-2′). That is, once (C-1′) and (C-2′) are satisfied, then both
constraints (C-4) and (C-5) are also satisfied. This result is formally stated
in the following lemma. Its proof can be found in [20].

Lemma 15.1

If transmission powers on every transmission link and interference link satisfy
(C-1′) and (C-2′) in the network, then (C-4) and (C-5) are also satisfied.

The significance of Lemma 15.1 is that since (C-4) and (C-5) are embed-
ded in (C-1′) and (C-2′), they can be removed from the list of scheduling
constraints. That is, it is sufficient to consider constraints (C-1′), (C-2′), and
(C-3) for scheduling and power control.

15.2.3 Flow Routing and Link Capacity Model

Recall that we consider an ad hoc network consisting of a set of N nodes.
Among these nodes, there is a set of L active user communication (unicast)
sessions. s(l) and d(l) denote the source and destination nodes of session
l ∈ L and r(l) denotes the rate requirement (in b/s) of session l . To route
these flows from their respective source nodes to their destination nodes,
it is necessary to employ multihop due to limited transmission range of a
node. Further, to have better load balancing and flexibility, it is desirable to
employ multipath routing (i.e., allow flow splitting) between a source node
and its destination node. This is because a single path is overly restrictive
and usually does not yield an optimal solution.

Mathematically, this can be modeled as follows. fi j (l) denotes the data
rate on link (i, j ) that is attributed to session l , where i ∈ N ,
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j ∈ Ti = ⋃
m∈Mi

T m
i . If node i is the source node of session l , i.e., i = s(l),

then ∑
j∈Ti

fi j (l) = r(l). (15.7)

If node i is an intermediate relay node for session l , i.e., i �= s(l) and
i �= d(l), then

j �=s(l)∑
j∈Ti

fi j (l) =
k �=d(l)∑
k∈Ti

fki(l). (15.8)

If node i is the destination node of session l , i.e., i = d(l), then∑
k∈Ti

fki(l) = r(l). (15.9)

It can be easily verified that once (15.7) and (15.8) are satisfied, (15.9) must
also be satisfied. As a result, it is sufficient to have (15.7) and (15.8) in the
formulation.

In addition to the above flow balance equations at each node i ∈ N for
session l ∈ L, the aggregated flow rates on each radio link cannot exceed
this link’s capacity. Under q(m,k)

i j , we have

s(l)�= j,d(l)�=i∑
l∈L

fi j (l) ≤
∑

m∈Mi j

K (m)∑
k=1

c(m,k)
i j

=
∑

m∈Mi j

K (m)∑
k=1

W(m)u(m,k) log2

(
1+ gi j

ηW
q(m,k)

i j

)
, (15.10)

where η is the ambient Gaussian noise density. Note that the denominator
inside the log function contains only ηW. This is due to the use of protocol
interference modeling, i.e., when node i is transmitting to node j on band
m, then the interference range of all other nodes on this band should not
contain node j .

15.3 Case Study
In the last section, we presented analytical models for power control,
scheduling, and flow routing. In this section, we show how to apply these
analytical models to solve some real problems for multihop CR networks.

First and foremost, we should have an objective function. For CR net-
works, a number of objective functions can be considered for problem
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formulation. A commonly used objective is to maximize network capacity,
which can be expressed as maximizing a scaling factor for all the rate re-
quirements of the communication sessions in the network (see, e.g., [1,14]).
For CR networks, we consider an objective called the bandwidth footprint
product (BFP), which characterizes the spectrum and space occupancy for
the nodes in a CR network. The BFP was first introduced by Liu and Wang
in [16]. The so-called footprint refers to the interference area of a node
under a given transmission power, i.e., π · (RI (q))2. Since each node in
the network will use a number of bands for transmission and each band
will have a certain footprint corresponding to its transmission power, an
important objective is to minimize the network-wide BFP, which is the sum
of BFPs among all the nodes in the network. That is, our objective is to
minimize

∑
i∈N

∑
m∈Mi

∑
j∈T m

i

K (m)∑
k=1

W(m)u(m,k) · π
(
RI

(
q(m,k)

i j

))2
,

which is equal to

π(Rmax
I )2

∑
i∈N

∑
m∈Mi

∑
j∈T m

i

K (m)∑
k=1

W(m)u(m,k)

(
q(m,k)

i j

Q

)2/n

.

Since π(Rmax
I )2 is a constant factor, we can remove it from the objective

function.
Using this objective function, we study two specific problems for CR

networks. In Section 15.3.1, we study the subband division and alloca-
tion problem under fixed transmission power (i.e., no power control).
The goal is to explore how the different-sized available bandwidth in the
network should be optimally divided and allocated among the nodes. In
Section 15.3.2, we study the power control problem when all the subbands
are identical (i.e., fixed channel bandwidth). The goal there is to explore
how to optimally adjust the power level at each node in the network so
that the objective function is minimized.

15.3.1 Case A: Subband Division and Allocation Problem

Problem Formulation. In this case study, we focus on subband division
and spectrum sharing for CR networks. We assume the transmission power
spectral density is Q and is fixed, i.e.,

q(m,k)
i j =

{
Q if x(m,k)

i j = 1,

0 if x(m,k)
i j = 0,
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which is equivalent to

q(m,k)
i j = Qx(m,k)

i j . (15.11)

As a result, the objective function of minimizing the network-wide BFP is
equivalent to minimizing the network-wide bandwidth usage, i.e.,

∑
i∈N∑

m∈Mi

∑
j∈T m

i

∑K (m)

k=1 Wu(m,k)(x(m,k)
i j )2/n. Since x(m,k)

i j is a binary variable (0 or
1), this is equivalent to minimizing

∑
i∈N

∑
m∈Mi

∑
j∈T m

i

K (m)∑
k=1

Wu(m,k)x(m,k)
i j .

We now examine the power control and scheduling constraints (C-1′)
and (C-2′) under fixed transmission power. Due to (15.11), (C-1′) always
holds and thus can be removed from problem formulation. Due to fixed
transmission power, (C-2′) can be rewritten as

Qx(m,k)
pz ≤ Q −

[
1 −

(
dpj

Rmax
I

)n]
Qx(m,k)

i j

(
p ∈ Im

j , p �= i, z ∈ T m
p

)
,

which is equal to

x(m,k)
pz

{= 0 if x(m,k)
i j = 1.

≤ 1 if x(m,k)
i j = 0

(
p ∈ Im

j , p �= i, z ∈ T m
p

)
,

since x(m,k)
pz and x(m,k)

i j are binary variables. Thus, x(m,k)
pz + x(m,k)

i j ≤ 1 for
p ∈ Im

j , p �= i, z ∈ T m
p . On the other hand,

∑
z∈T m

p
x(m,k)

pz ≤ 1 due to (C-3).
Putting these together into a more compact form, we have

∑
z∈T m

p

x(m,k)
pz + x(m,k)

i j ≤ 1
(

p ∈ Im
j , p �= i

)
.

Under fixed transmission power, the link capacity constraint (15.10) is

s(l)�= j,d(l)�=i∑
l∈L

fi j (l)≤
∑

m∈Mi j

K (m)∑
k=1

W(m)u(m,k) log2

(
1+ gi j Q

ηW

)
x(m,k)

i j .

Now we have the following optimization problem for subband division
and allocation:

Min
∑
i∈N

∑
m∈Mi

∑
j∈T m

i

K (m)∑
k=1

W(m)x(m,k)
i j u(m,k)
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s.t.
K (m)∑
k=1

u(m,k) = 1 (m ∈ M),

∑
j∈T m

i

x(m,k)
i j ≤ 1

(
i ∈ N , m ∈ Mi , 1 ≤ k ≤ K (m)

)
,

x(m,k)
i j +

∑
z∈T m

p

x(m,k)
pz ≤ 1

(
i ∈ N , m ∈ Mi , j ∈ T m

i ,

1 ≤ k ≤ K (m), p ∈ Im
j , p �= i

)
,

s(l)�= j,d(l)�=i∑
l∈L

fi j (l) −
∑

m∈Mi j

K (m)∑
k=1

W(m) log2

(
1 + gi j Q

η

)
x(m,k)

i j u(m,k)

≤ 0 (i ∈ N , j ∈ Ti),

∑
j∈Ti

fi j (l) = r(l) (l ∈ L, i = s(l)),

j �=s(l)∑
j∈Ti

fi j (l) −
p �=d(l)∑
p∈Ti

f pi(l) = 0 (l ∈ L, i ∈ N , i �= s(l), d(l)),

x(m,k)
i j = 0 or 1, u(m,k) ≥ 0

(
i ∈ N , m ∈ Mi , j ∈ T m

i , 1 ≤ k ≤ K (m)
)
,

fi j (l) ≥ 0 (l ∈ L, i ∈ N , i �= d(l), j ∈ Ti , j �= s(l)),

where W(m), gi j , Q, η, and r(l) are constants, while x(m,k)
i j , u(m,k), and fi j (l)

are optimization variables.
The above optimization problem is a mixed-integer nonlinear program-

ming (MINLP) problem, which is NP-hard in general [9]. Although existing
software (e.g., BARON [2]) can solve very small-sized network instances
(e.g., several nodes), the time complexity becomes prohibitively high for
large-sized networks.

Solution Approach. Here we show a promising approach to solving
this problem. Under this approach, we first find a lower bound for the
objective via a linear relaxation, which is done by relaxing the integer
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variables and using a linearization technique. Using this lower bound as
a performance benchmark, we develop a highly effective algorithm based
on a so-called sequential fixing (SF) procedure [12]. The main idea of SF
is to determine the binary variables in the scheduling decisions iteratively
via the relaxed formulation. Specifically, since the integer variables x(m,k)

i j

can only have binary values of either 0 or 1, we can set x(m,k)
i j iteratively

based on their closeness to either 0 or 1 in the solution to the relaxed
formulation. That is, if during an iteration x(m,k)

i j has a value close to 1, then

we can make a scheduling decision by fixing this x(m,k)
i j to 1. In the next

iteration, by updating the relaxed problem with these newly fixed values,
we can continue the same process to determine (fix) other x(m,k)

i j variables.

The iteration continues until we fix all the x(m,k)
i j s to binary values. The

details of this approach can be found in [12].

Simulation Results. The performance of the SF algorithm can be sub-
stantiated by simulation results. Specifically, we will show that the solution
obtained via the SF algorithm is very close to the lower bound. Since the
optimal objective value lies between the lower bound and the solution ob-
tained by the SF algorithm, the solution given by the SF algorithm must be
even closer to the true optimum.

We consider |N | = 20 nodes in a 500 × 500 area (in meters). Among
these nodes, there are |L| = 5 active sessions, each with a random rate
within [10, 100] Mb/s. We assume that there are M = 5 bands that can be
used for the entire network (see Table 15.2). Recall that the set of avail-
able bands at each CR node is a subset of these five bands depending on
the node’s location, and the sets of available bands at any two nodes in
the network may not be identical. In the simulation, this aspect is mod-
eled by randomly selecting a subset of bands from the pool of five bands
for each node. Further, we assume that bands I to V can be divided into
3, 5, 2, 4, and 4 subbands, although other desirable divisions can be used.
Note that the size of each subband may be unequal and is part of the op-
timization problem. We assume that the transmission range at each node
is 100 m and that the interference range is 150 m. The path loss index n
is assumed to be 4, and β = 62.5. The threshold QT is assumed to be

Table 15.2 Available Bands M in the Network in the Simulation Study

Band Index Spectrum Range (MHz) Bandwidth (MHz)

I [1240, 1300] 60.0
II [1525, 1710] 185.0
III [902, 928] 26.0
IV [2400, 2483.5] 83.5
V [5725, 5850] 125.0
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Figure 15.2 Normalized costs (with respect to lower bound) on 100 sets of ran-
domly generated 20-node networks.

10η. Thus, we have QI =
(

100
150

)n
QT and the transmission power spectral

density Q = (100)nQT /β = 1.6 · 107η.
We present simulation results for 100 randomly generated data sets for

20-node networks. Figure 15.2 shows the normalized costs for 100 data
sets. The running time for each point is less than 10 seconds on a Pentium
3.4 GHz machine. For each point, we use the SF algorithm to determine the
cost, which is the total required bandwidth in the objective function. Then
we normalize this cost with respect to the lower bound obtained by linear
relaxation. The average normalized cost among the 100 simulations is 1.04
and the standard deviation is 0.07. There are two observations that can be
made from this figure. First, since the ratio of the solution obtained by SF
(upper bound of optimal solution) to the lower bound solution is close to
1 (in many cases, they coincide with each other), the lower bound must be
very tight. Second, since the optimal solution (unknown) is between the
solution obtained by the SF algorithm and the lower bound, the SF solution
must be even closer to the optimum.

15.3.2 Case B: Power Control Problem

Problem Formulation. In this case study, we focus on power control
for CR networks. We assume that M bands are divided equally, each with
a bandwidth W. The set of available bands at each node i is Mi .

For power control, we allow the transmission power spectral density to
be adjusted between 0 and Q. In practice, the transmission power spectral
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density can only be tuned into a finite number of discrete levels between
0 and Q. To model this discrete version of power control, we introduce
an integer parameter H that represents the total number of power levels
to which a transmitter can be adjusted, i.e., 0, 1

H Q, 2
H Q, . . . , Q. Denote

hm
i j ∈ {0, 1, 2, . . . , H} the integer power level for qm

i j , i.e., qm
i j = hm

i j

H Q.
Under such discrete levels of power control, constraints (C-1′), (C-2′),

and (15.10) can be rewritten as follows:

hm
i j ∈

[(
di j

Rmax
T

)n
Hxm

i j , Hxm
i j

]
, (15.12)

hm
pz ≤ H −

[
1 −

(
dpj

Rmax
I

)n]
Hxm

i j

(
p ∈ Im

j , p �= i, z ∈ T m
p

)
, (15.13)

∑s(l)�= j,d(l)�=i
l∈L fi j (l) ≤ ∑

m∈Mi j
W log2

(
1 + gi j Q

ηW H hm
i j

)
.

For the objective function, again we consider the bandwidth foot-
print product (BFP), which is

π(Rmax
I )2

∑
i∈N

∑
m∈Mi

∑
j∈T m

i

W
(

qm
i j

Q

)2/n

= π(Rmax
I )2

∑
i∈N

∑
m∈Mi

∑
j∈T m

i

W
(

hm
i j

H

)2/n

.

Since π(Rmax
I )2 is a constant factor, we can remove it from the objective

function.
Putting all these together, we have the following formulation:

Min
∑

i∈N
∑

m∈Mi

∑
j∈T m

i
W

(
hm

i j

H

)2/n

s.t.
∑
j∈T m

i

xm
i j ≤ 1 (i ∈ N , m ∈ Mi),

hm
i j −

(
di j

Rmax
T

)n

Hxm
i j ≥ 0

(
i ∈ N , m ∈ Mi , j ∈ T m

i

)
, (15.14)

hm
i j − Hxm

i j ≤ 0
(
i ∈ N , m ∈ Mi , j ∈ T m

i

)
, (15.15)
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∑
z∈T m

p

hm
pz +

(
1 −

(
dpj

Rmax
I

)n)
Hxm

i j ≤ H

(
i ∈ N , m ∈ Mi , j ∈ T m

i , p ∈ Im
j , p �= i

)
, (15.16)

s(l)�= j,d(l)�=i∑
l∈L

fi j (l) −
∑

m∈Mi j

W log2

(
1 + gi j Q

ηW H
hm

i j

)
≤ 0, (i ∈ N , j ∈ Ti),

∑
j∈Ti

fi j (l) = r(l) (l ∈ L, i = s(l)),

j �=s(l)∑
j∈Ti

fi j (l) −
p �=d(l)∑
p∈Ti

f pi(l) = 0 (l ∈ L, i ∈ N , i �= s(l), d(l)),

xm
i j ∈ {0, 1}, hm

i j ∈ {0, 1, 2, . . . , Q} (
i ∈ N , m ∈ Mi , j ∈ T m

i

)
,

fi j (l) ≥ 0 (l ∈ L, i ∈ N , i �= d(l), j ∈ Ti , j �= s(l)),

where W, gi j , Rmax
T , Rmax

I , Q, η, r(l), and H are constants, and xm
i j , hm

i j , and
fi j (l) are optimization variables. In this formulation, (15.14) and (15.15)
come from (15.12), while (15.16) is based on (15.13) by noting that in (C-3)
there is at most one z ∈ T m

p such that xm
pz = 1. As a result, by (15.15) there

is at most one z ∈ T m
p such that hm

pz > 0. Thus, (15.13) can be rewritten as

∑
z∈T m

p
hm

pz≤ H −
(
1−

(
dpj

Rmax
I

)n)
Hxm

i j

(
p∈Im

j , p �= i
)
,

which is equivalent to (15.16).
This optimization problem is in the form of a mixed-integer nonlinear

programming (MINLP) problem, which is NP-hard in general [9]. In [20],
we developed a solution procedure based on branch-and-bound approach
[18] and convex hull relaxation. The details of this solution approach are
quite mathematically involved, and we refer readers to [20].

Simulation Results. To offer some insights into the power control prob-
lem, we present some simulation results from [20]. We consider a 20-node
ad hoc network with each node randomly placed in a 500 × 500 area
(in meters). An instance of network topology is given in Figure 15.3 with
each node’s location listed in Table 15.3. We assume there are |M| =
10 frequency bands in the network and each band has a bandwidth of
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Figure 15.3 A 20-node ad hoc network.

Table 15.3 Each Node’s Location and Available Frequency
Bands for the 20-node Network

Node Index Location Available Bands

1 (10.5, 4.3) I, II, III, IV, V, VI, VII, VIII, IX, X
2 (1.7, 17.3) II, III, IV, V, VI, VII, X
3 (10.7, 30.8) I, III, IV, V, VI, VII, VIII, IX, X
4 (10.2, 45.3) I, III, IV, V, VI, VII, VIII, IX, X
5 (17.8, 4) I, II, V, VI, VII, VIII, IX
6 (17.2, 15.2) I, II, IV, VIII
7 (16.9, 30.8) I, II, III, IV, V, VI, VII, VIII, IX, X
8 (12.3, 47.3) I, III, IV, V, VII, VIII, IX
9 (28.2, 11.5) I, III, V, VII

10 (32.1, 13.8) I, II, III, IV, VI, VII, VIII, IX, X
11 (30.4, 25.6) I, II, III, V, VI, VIII, IX, X
12 (29.7, 36) I, II, III, IV, VI, VI
13 (41.7, 3.1) I, II, III, V, VI, VIII, IX, X
14 (41.7, 3.1) I, IV, V, VIII, IX, X
15 (43.3, 25.3) II, III, IV, V, VI, VII, VIII, IX, X
16 (44.1, 42.7) I, II, IV, VI, VII, VIII, IX, X
17 (49.6, 15.8) I, II, III, IV, V, VI, VII, VIII
18 (28.7, 2.5) I, II, III, VI, VII, VIII, IX, X
19 (28, 43.5) II, IV, V, VI, VIII
20 (5, 46.9) II, IV, V, VI, VII
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Table 15.4 Source Node, Destination Node, and
Rate Requirement of the Five Active Sessions

Source Node Destination Node Rate Requirement

7 16 28
8 5 12

15 13 56
2 18 75
9 11 29

W = 50 MHz. Each node may only have a subset of these frequency bands.
In the simulation, this is modeled by randomly selecting a subset of bands
for each node from the pool of 10 bands. Table 15.3 shows the available
bands for each node.

We assume that, under maximum transmission power, the transmission
range of each node is 100 m and the interference range is twice the trans-
mission range (i.e., 200 m). Both transmission range and interference range
will be smaller when transmission power is less than maximum. The path
loss index n is assumed to be 4, and β = 62.5. The threshold QT is assumed
to be 10η. Thus, we have QI = ( 100

200

)n
QT and the maximum transmission

power spectral density Q = (100)nQT /β = 1.6 · 107η.
Within the network, we assume there are |L| = 5 user communication

sessions, with source node and destination node randomly selected and the
rate of each session randomly generated within [10, 100]. Table 15.4 speci-
fies an instance of the source node, destination node, and rate requirement
for the 5 sessions in the network.

We apply the solution procedure to the 20-node network described
above for different levels of power control granularity (H). Under the
branch-and-bound solution procedure we set the desired approximation
error bound ε to be 0.05, which guarantees that the obtained solution is
within 5% of the optimum [20].

Note that H = 1 corresponds to the case that there is no power control,
i.e., a node uses its peak power spectral density Q for transmission. When
H is sufficiently large, the discrete nature of power control diminishes and
power control becomes continuous between [0, Q].

Figure 15.4 shows the results of our solution procedure. First, we note
that power control has a significant impact on BFP. Comparing the case
when there is no power control (H = 1) and the case of H = 15, we
find that there is nearly a 40% reduction in the total cost (objective value).
Second, the cost (objective) is a nonincreasing function of H . However,
when H becomes sufficiently large (e.g., 10 in this network setting), further
increases in H will not yield much reduction in cost. This suggests that for
practical purposes, the number of power levels to achieve a reasonably
good result does not need to be a large number.
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Figure 15.4 Total cost as a function of the number of power levels.

For H = 10, the transmission power levels are

h1
9,11 = 3,

h2
12,16 = 4,
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7,12 = 3,
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Figure 15.5 Flow routing topology for the five communication sessions in the 20-
node network (H = 10).
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h5
2,1 = 4,

h6
5,18 = 2,

h7
17,13 = 4,

h8
8,3 = 5, h8

14,17 = 1,

h9
1,5 = 1, h9

15,14 = 1,

h10
3,2 = 5.

For each hm
i j > 0, the corresponding scheduling variable xm

i j = 1, otherwise
xm

i j = 0. The flow routing topology for H = 10 is shown in Figure 15.5.
The corresponding flow rates are:

f7,12(1) = 28, f12,16(1) = 28,

f8,3(2) = 12, f3,2(2) = 12, f2,1(2) = 12, f1,5(2) = 12,

f15,14(3) = 56, f14,17(3) = 56, f17,13(3) = 56,

f2,1(4) = 75, f1,5(4) = 75, f5,18(4) = 75,

f9,11(5) = 29.

Note that a link may be used by multiple sessions. For example, link (2, 1)
is used by sessions 2 and 4. As a result, the total data rate on link (2, 1) is
f2,1(2) + f2,1(4) = 12 + 75 = 87.

15.4 Conclusion
Cognitive radio (CR) is a revolution in radio technology that promises un-
precedented flexibility in radio communications and is viewed as an en-
abling technology for future wireless networks. Due to the unique char-
acteristics associated with CR networks, problems for CR networks are
expected to be much more challenging and interesting. In this chapter,
we presented an analytical model for a multihop CR network at multiple
layers. The basic building block in our analytical model is the protocol in-
terference model. Building upon this protocol model, we presented models
for power control, scheduling, and routing at physical, link, and network
layers, respectively. To demonstrate the practical utility of these analytical
models, we studied two practical problems in a multihop CR network as
case studies. The first case study addressed the subband division and allo-
cation problem, and the second addressed the power control problem. The
results from these two case studies not only validated the practical utility of
the analytical models, but also helped gain some theoretical understanding
of a multihop CR network.
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