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7.1 Abstract

Large-scale wireless sensor networks (WSNs) are highly vulnerable to at-
tacks because they consist of numerous miniaturized resource-constraint
devices, interact closely with the physical environment, and communicate
via wireless links. These vulnerabilities are exacerbated when WSNs have
to operate unattended in a hostile environment, such as battlefields. In
such ah environment, an adversary poses a physical threat to all the sensor
nodes; that is, an adversary may capture any node compromising critical
security data, including keys used for confidentiality and authentication.
Consequently, it is necessary to provide key management services to WSNs
in such environments that, in addition to being efficient, are highly robust
against attacks. In this chapter, we illustrate a key management design for
such networks by describing a self-organizing key management scheme for
large-scale WSNs, called Survivable and Efficient Clustered Keying (SECK).
SECK is designed for managing keys in a hierarchical WSN consisting of
low-end sensor nodes clustered around more capable gateway nodes. Us-
ing cluster-based administrative keys, SECK localizes the impact of attacks
and considerably improves the efficiency of maintaining fresh session keys.

7.2 Introduction

Key management is crucial to the secure operation of wireless sensor net-
works (WSNs). A large number of keys must be managed in order to encrypt
and authenticate all sensitive data. The objective of key management is to
dynamically establish and maintain secure channels among communicating
parties. Typically, key management solutions use administrative keys (a.k.a.
key encryption keys) to securely and efficiently (re-)distribute and, at times,
generate the secure channel session keys (a.k.a. data encryption keys) to the
communicating parties. Session keys may be pair-wise keys used to secure
a communication channel between two nodes that are in direct or indi-
rect communication [3,4,19,21], or they may be group keys [17,18,31,32]
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shared by multiple nodes. Network keys (both administrative and session
keys) may need to be changed (re-keyed) to maintain secrecy and resiliency
to attacks, failures, or network topology changes. Key management entails
the basic functions of generation, assignment, and distribution of network
keys. It is to be noted that re-keying is comprised essentially of these basic
functions.

The success of a key management scheme is determined, in part, by its
ability to efficiently survive attacks on the highly vulnerable and resource
challenged sensor networks. Key management schemes in sensor networks
can be classified broadly into dynamic or static solutions based on whether
re-keying (update) of administrative keys is enabled post network deploy-
ment. Schemes can also be classified into homogeneous or heterogeneous
schemes with regard to the role of network nodes in the key management
process. All nodes in a homogeneous scheme perform the same function-
ality; on the other hand, nodes in a heterogeneous scheme are assigned
different roles. Homogeneous schemes generally assume a flat network
model, while heterogeneous schemes are intended for both flat as well as
clustered networks. Other classification criteria include whether nodes are
anonymous or have predeployment identifiers and if, when (pre-, post-
deployment, or both), and what deployment knowledge (location, degree
of hostility, etc.) is imparted to the nodes. In this chapter we use the primary
classification of static versus dynamic keying.

Recently, numerous static key management schemes have been pro-
posed for sensor networks. Most of them are based on the seminal random
key predistribution scheme introduced by Eschenauer and Gligor [3]. In this
scheme, each sensor node is assigned & keys out of a large pool P of keys
in the predeployment phase. Neighboring nodes may establish a secure
link only if they share at least one key, which is provided with a certain
probability based on the selection of kand P. A major advantage of this
scheme is the exclusion of the base station in key management. However,
successive node captures enable an attacker to reveal network keys and use
them to attack other nodes. Subsequent extensions to that scheme include
using key polynomials [21] and deployment knowledge [20] to enhance
scalability and resilience to attacks.

Another emerging category of schemes, including the scheme proposed
in this chapter, uses dynamic keying and employs a combinatorial formu-
lation of the group key management problem to affect efficient re-keying
[10]. While static schemes primarily assume that administrative keys will out-
live the network and emphasize pair-wise session keys, dynamic schemes
advocate rekeying to achieve attack resiliency in long-lived networks and
emphasize group communication keys. Table 7.1 shows the primary differ-
ences between static and dynamic keying in performing key management
functions. Moharram and Eltoweissy [12] provide a performance and secu-
rity comparison between static and dynamic keying.
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Table 7.1 Key Management Functions in Static and Dynamic Keying

(Admin. Keys Assumed) Static Keying Dynamic Keying
Key assignment Once at predeployment Multiple times
Key generation Once at predeployment Multiple times
Key distribution All keys are predistributed  Subsets of keys are
to nodes prior to deploy- redistributed to
ment some nodes as needed
Re-keying Not applicable Multiple times;
requires a small
number of messages
Handling node Revealed keys are lost Revealed keys are
capture and may be used to altered to prevent
attack other nodes further attacks

SECK (Survivable and Efficient Clustered Keying) is a dynamic key man-
agement scheme that is appropriate for a network with a multi-tier hierar-
chical architecture deployed in a hostile environment. In such a hierarchical
network, the bottom tier consists of clusters of sensor nodes, each cluster
consisting of many low-end nodes and a more capable cluster head node.
In this chapter we focus on robust key management within a cluster. We
give more details of the network architecture in Section 7.3.

In a hostile environment, a2 WSN operates unattended and its nodes are
highly prone to capture. SECK, originally proposed in Chorzempa et al. {11,
is a self-organizing scheme that sets up key associations in the network
clusters, establishes pair-wise and group keys, provides efficient methods
for di‘stributing and maintaining session keys, efficiently adds and revokes
nodes, provides efficient mechanisms to recover from multiple node cap-
tures, and enables location-based reclustering of nodes. Using analytical
and simulation results, we show that SECK is robust against the attacks
that we identify in the threat model described in Section 7.5 of this chap-
ter. Moreover, our results show that SECK incurs low communications and
storage overhead on the sensor nodes.

The most distinguishing feature of SECK is its robustness against node
compromises and its ability to recover from those compromises. SECK was
designed for WSNs that must be deployed in hostile environments. In such
environments, we assume that an adversary poses a physical threat to all the
sensor nodes; that is, an adversary may capture any node. The noteworthy
advantages of SECK are twofold: (1) SECK requires low communications
overhead for key distribution and maintenance; in a hostile environment,
keys must be periodically updated to maintain their trustworthiness; SECK

is able to efficiently reestablish keys; and (2) SECK is able to efficiently re-
fresh keys, revoke captured nodes, and efficiently reestablish secure group
communications after node captures are detected.
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In Section 7.3 we describe the WSN architecture that is used throughout
the chapter. We describe the fundamental design principles of SECK in
Section 7.4, present the threat model in Section 7.5, and give full details of
SECK in Section 7.6. In Section 7.7 we discuss SECK’s robustness against
node captures. In Section 7.8 we discuss energy dissipation properties of
SECK. In Section 7.9 we describe related research. Finally, we summarize
our findings in Section 7.10.

7.3 The Network Architecture

In a flat network, all nodes are identical and there is no predetermined
architecture. Although simple and efficient for small network sizes, the flat
network architecture lacks scalability. A multi-tiered architecture provides
scalability, notable energy efficiency, and security benefits [6,27,28,33, 34].
Recent data aggregation techniques [8], which remove redundancy in col-
lected data, lend themselves to this hierarchical architecture. Also, WSN
routing research has shown that using a multi-tiered architecture for routing
can prevent premature battery depletion among nodes near the base sta-
tion, because, in a flat network, these nodes receive significantly higher traf-
fic volume than remote nodes [29,30]. A multi-tiered architecture can also
improve a network’s robustness against node or key captures by limiting
the effects of an attack to a certain portion of the network. For example, in
a multi-tiered WSN, nodes are deployed in clusters, and each cluster can es-
tablish keys independently of other clusters. Thus, a key compromise in one
cluster does not affect the rest of the network. In this section we describe
a two-tiered network architecture that is suitable for large-scale WSNs.
Figures 7.1a and 7.1b show the physical and bierarchical network topol-
ogy for such a network, respectively. In this architecture, a small number of
high-end nodes, called Aggregation and Forwarding Nodes (AFNs), are de-
ployed together with numerous low-end sensor nodes, called micro-sensor
nodes (MSNs). In addition, the network includes a globally trusted base
station (BS), which is the ultimate destination for data streams from all
the AFNs. The BS has powerful data processing capabilities and is directly
connected to an outside network. Each AFN is equipped with a high-end
embedded processor and is capable of communicating with other AFNs
over long distances. The general functions of an AFN are (1) data aggre-
gation for information flows coming from the local cluster of MSNs, and
(2) forwarding the aggregated data to the next hop AFN toward the BS.
An MSN is a battery-powered sensor node equipped with a low-end pro-
cessor and mechanisms for short-range radio communications at low data
rates. The general function of the MSN is to collect raw data and forward
the information to the local AFN. The bottom tier of the network consists
of multiple clusters, where each cluster is composed of numerous MSNs
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Figure 7.1 A two-tiered wireless sensor network. (a) physical topology and (b) hi-
erarchical view.
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clustered around an administrative AFN. Within each cluster, a set of keys
must be deployed and managed to secure communications between the
MSNs and the AFN. SECK was designed for this purpose.

7.4 Fundamental Design Principles of SECK

In this section we explain the fundamental design principles employed
in SECK by describing a basic stripped-down instance of the scheme. In
particular, we focus our discussions on the way SECK manages keys within
a cluster. Table 7.2 presents the notation used throughout the remainder of
the chapter.

To distribute and refresh session (or communication) keys, SECK as-
signs a set of administrative keys to each node in a network. To manage
administrative keys within a cluster, SECK employs the Exclusion Basis Sys-
tem (EBS) [10]. EBS is based on a combinatorial formulation of the group
key management problem. It essentially provides a mechanism for estab-
lishing the administrative keys held by each node. An EBS-based key man-
agement system is defined by EBS(7, k, m) where n is the number of nodes
supported in the system, & is the number of keys within each key subset,

Table 7.2 Notation

Constants Identifiers
n  Number of nodes supported ina  N; i-th node
given EBS

k  Keys held by each node in EBS K a; i-th Administrative Key
m  Keys not held by each node in kg Group Key

EBS
d  (Connection) degree of an AFN K p; i-th node’s Base Station Pair-wise
Key
h Number of hops between the Kt i-th node’s Tree Administrative Key

furthest MSN and AFN,,
AFN,,  Primary AFN
AFN,  Backup AFN

Sets Other Notation

U Administrative Key set
Sii-th node’s Administrative Key

subset
Shi AFN's i-th hop neighbor set Ex(M)  Encrypt message M with key K
S¢  Compromised node set Al B Bitwise concatenation of A and B

Sut Uncompromised tree set
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Table 7.3 Sample Administrative Key Subsets using EBS(10,3,2)

NI N2 N3 N4 N5 Nﬁ N7 Ns Ng N10

Kay 1 1 1 1 1 1 0 0 0 0
Kaa 1 1 1t 0o 0o 0 1 1 1 0
Ka3 1 0o o 1 1 0 1 1 0 1
Kay2 0 1 0 1 0 1 1 0 1 1
Kas 0 0o 1 o0 1 1 0 1 1 1

and #i is the number of keys from the global key set not held within a
subset. We denote the administrative key set for all nodes in the system
as U, where |U| = k+ m and the total number of keys is k+ m. A given
EBS supports g4»Cr unique subsets of k key assignments. For full details
of the EBS, see [5,10]. We use N; to denote the i-th node and use S; to
denote its assigned administrative key subset, with |S;| = k. The notation
T; denotes the keys not held by N; where T, = U — S;. The following
property is the main motivation for utilizing the EBS. A subset of the global
key set is uniquely assigned to each node such that the remaining nodes
each have at least one of the keys not assigned to that node, that is, for all
J# i, S$iNT; # 0. We will show that this property makes node revocations
and session key replacement very efficient.

The AFN serving as the key management entity for its cluster must
store all &+ m keys, and each MSN must store k keys. Note that the key
subset held by each MSN is unique. This feature is utilized by the AFN to
distribute session keys, that is, keys of this subset are used to encrypt the
session keys before distribution. We illustrate an instance of EBS(10,3,2) in
Table 7.3. The i-th (1 < i < 10) node in the cluster is denoted as Nj;, and
the j-th (1 < j < 5) administrative key is denoted as K a;. An entry marked
with a “1” indicates that the node in the corresponding column possesses
the administrative key of the corresponding row.

The administrative keys effectively serve as key encryption keys. They
allow the AFN to establish, refresh, and revoke session keys of any de-
gree belonging to any node. We define the degree of a key as the number
of nodes sharing that key. An advantage of EBS is the separation of ad-
ministrative keys from session keys. A node can possess any number of
session keys that it may share with different subgroups of nodes. As will
be described in Section 7.6, SECK uses this feature of EBS and assigns sub-
group session keys in a manner that enables recovery of nodes even if all
administrative keys are compromised due to the capture of multiple nodes.

As stated earlier, to initially distribute a session key to a specific node,
the AFN sends that key encrypted with the unique key combination that
the node possesses. To initially distribute a cluster-wide key to all members
of the cluster, one message is broadcast by the AFN to all members of the

et ——
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cluster for each administrative key. This requires £+ m short broadcasts by
the AFN. At any time, to update a session key Kg with Kg' and distribute
K g to any number of members less than or equal to 7, the basic version of
SECK executes the aforementioned procedure using a maximum of k+ m
keys. An example showing the update procedure of the session key, Kg,
is shown below:

AFN = N, ..., Ny : EKal(EKg(Kg, | IDAsrN))

AFN= N, ..., Ny : Exa(Exg(Kg || IDarn))

AFN = N, ..., Ny : EKaa(EKg(KgI fl ID4rN))

AFN= N, ..., N : Exa(Bgg(Kg || IDarn))

AFN = M,..., Ny : EK%(EKg(KgI I IDgrN)

Here, = denotes broadcast transmission. These broadcast messages ensure -
that only previous holders of Kg will be able to successfully receive the new

key, Kg'. If NV, is captured, or if its keys are compromised, it is necessary

to revoke all administrative and session keys held by N and thus evict it -
from all future secure communications. This ensures forward secrecy. To

accomplish this, the AFN needs to replace the administrative keys and the

session keys known to N;. From our running example, evicting N; would

require the following two transmissions (m = 2).

AFN=> N, ..., Ny :
IDarn || Exa(Exa (K@) | Exa,(Kd) || Exa(Kd)),
AFN = MN,..., Ny :

IDarn || Exa(Exa (K || Exa,(Kd) || Exa(Kd))

From Table 7.3, it can be seen that all remaining nodes will be able to
decipher at least one of these messages.

If more than one node is captured within a cluster, two cases arise:
(1) non-colluding node captures (e.g., attacks carried out by different ad-
versaries); and (2) colluding node captures. In the latter case, colluding
attackers may compromise all administrative keys by capturing only a few
nodes (e.g., by capturing nodes N; and Ns shown in Table 7.3, all adminis-
trative keys are revealed). In the former case, a maximum of #? broadcast
messages will be needed to evict y nodes at once. From our running exam-
ple, to evict non-colluding nodes N; and Ng, four messages are needed to
distribute the five new keys. One message will be doubly encrypted with
Ka and Ka, the second message with K&, and K a, the third message
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with Ka and Kay, while the fourth message will be encrypted with Ka
and Kas.

The basic scheme described above is efficient and functions well, pro-
vided that node captures are non-colluding. But in practice, collusion at-
tacks can occur and the key management solution must take this threat into
account. The aforementioned scheme has another drawback — it is not re-
silient against an AFN capture. In Section 7.6, we describe the full-fledged
version of SECK that provides effective solutions for both types of attacks
(i.e., colluding multiple MSN captures and AFN captures). In the next sec-
tion we describe the threat model that was considered when designing
SECK.

7.5 The Threat Model

We consider an attack scenario where an adversary is able to compromise
one or more nodes of a WSN. Specifically, we consider three different cases
with differing degrees of severity. Throughout the remainder of the chapter,
when stating that a node has been compromised or captured, we assume
that all key information held by that node is revealed to the attacker. In
the first scenario, an adversary may be able to target and capture an AFN.
A less severe attack would be when an attacker captures MSNs within the
same cluster. In the third scenario, incurring the least degree of damage,
an adversary would simply capture nodes at random throughout the net-
work. One threat that has not been addressed in group key management
schemes using administrative keys is the realistic possibility that multiple
nodes may be captured before any node capture is detected. Researchers
have pointed out that there really is no sure and efficient way to readily
detect a node capture [4,13]. Therefore, for a key management solution to
be truly effective in a hostile environment, it must recover from multiple
node captures.

The attack scenario that possesses the greatest threat to the bottom
tier of the network is the compromise of an AFN, that is, the first attack
scenario. This requires an adversary to locate and visually distinguish an
AFN from a MSN. Then an adversary must extract the sensitive contents
of the AFN (e.g., keys). If an AFN capture is not immediately detected,
all data collected by MSNs in that cluster will be compromised. After the
detection of the AFN capture, the following steps must be executed to
restore normal operations of the cluster: (1) notify MSNs of the capture,
(2) establish a new AFN for each MSN, and (3) establish a new security
relationship between the MSN and the AFN in the second step. Note that
in the second step, MSNs are “reclustered” or absorbed into other existing
clusters in their vicinity. If reclustering is not supported by the network, all
MSNs within the affected cluster are considered off-line until a new AFN is
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deployed. The AFN that is captured contains a full set of administrative keys
that will need re-keying. To localize the necessary re-keying operations, it
is necessary for administrative keys to be independently replaced. If the
administrative key sets were globally calculated and distributed to all AFNs,
all keys for all clusters would be compromised as a result of a single AFN
capture.

In the second attack scenario, MSNs within the same cluster are compro-
mised. In the basic version of SECK described in Section 7.4, it is possible
for an adversary to capture not only some, but all of the administrative keys
of a cluster with only a few MSN captures. This is possible if the adversary
is able to pick the nodes in a strategic manner. In the running example
of Section 7.4, the strategic choice would be to compromise N, and N,
which would reveal all five administrative keys. Therefore, if the detection
of node captures is not possible, or not prompt, the entire cluster will likely
be rendered insecure unless a method of recovery is developed. SECK pro-
vides a recovery method to salvage uncompromised MSNs within a cluster
when some or even all administrative keys are compromised.

In the third attack scenario, an attacker may compromise nodes ran-
domly throughout the network. A clustered architecture’s main advantage,
in terms of security, is its ability to localize the effects of attacks on randomly
chosen nodes. More discussions on this topic are given in Section 7.7.1. A
secondary advantage is that multiple decentralized attacks may not have
increased effect compared to a single attack instance. If two adversaries
located randomly throughout the network compromise one node each,
combining the information obtained from these nodes provides no added
benefit, assuming the nodes are not within the same cluster. Of course, this

is true only if each AFN generates its administrative keys independently
from others.

7.6 The Complete Specification of SECK

We have shown how SECK maintains fresh keys and revokes single users
from secure communication. We now describe the mechanisms needed
to complete SECK. We start our discussions by describing the full set of
keys stored by each MSN to support SECK. We also describe a location-
training scheme that sets up the network clusters and the coordinate system
used to establish administrative keys. Then we describe techniques for
replacing administrative keys compromised by multiple MSN captures. Next
we describe a reclustering scheme for salvaging MSNs within a cluster after
the AFN of that cluster has been captured. Finally, we describe a method to
dynamically add an MSN to the network. In Figure 7.2 we show the overall
operation and components that constitute SECK.
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Figure 7.2 Components of SECK.

7.6.1 Required Keys

Initially each MSN will be deployed with the complete administrative key
set {Kay; Ko, ..., Koy} After a short setup period, only a subset of
these keys will be stored. In addition, each MSN will be required to store
key Kp;; which is a pair-wise secret key shared with the BS, and one tree
administrative key K#. Kp; is needed for the reclustering process after
the capture of the AFN has been detected. The key Ki; is used to replace
compromised administrative keys after MSN captures have been detected.

7.6.2  Location Training

The location-training scheme will establish a cluster of MSNs around a
primary AFN, AFN,, and assign each MSN a cluster coordinate identifier.
This identifier is needed to establish each MSN’s administrative key subset,
and is also used when routing data to an MSN’s primary AFN. In addition,
this scheme enables an MSN to store the location of the next-hop MSN, N,,
in the direction of its backup AFN, AFN;,. Each MSN is absorbed into AFN b'S
cluster in the event of AFN,’s compromise or failure. A cluster coordinate
established is given as (¢ree, hopcount), where tree is an integer assigned
by AFN,, and hopcount is the MSN’s distance from AFN ». We define a
tree as a set of MSNs that routes packets through the same tree root when
forwarding data to the AFN,, where the tree root is an MSN that is one
hop away from the AFN,,. Once a cluster coordinate has been established
for each MSN, that coordinate is used to establish the corresponding key
subset from the stored global administrative key set.

Itis assumed that at this point MSNs have completed neighborhood dis-
covery, and every MSN and AFN is aware of the unique identities (IDs) of all
one-hop neighbors through broadcasted “hello” messages (we assume each
MSN and AFN is embedded with a unique ID before deployment). Now,
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each AFN broadcasts the list of one-hop neighbors that it has discovered
to all MSNs within each transmission range. Each entry in the list is a
tuple of an MSN ID and its assigned tree number (assignment of tree
numbers is described in Section 7.6.3). This broadcast transmission can be
expressed as

AFN; = Ny, ..., Ny :

IDAFN, II (ID11 treel) " (I‘D27 ”'96'2) " .. " (IDIS;,llv treels;,ﬂ)y

where m denotes the number of MSNs within the transmitting range of
the AFN, and Sp; denotes the set of MSNs within one hop of AFN;. Each
one-hop node will serve as a tree root for multi-hop nodes established in
that tree. MSNs search this list for their ID and the ID of their discovered
neighbors. If a node finds its ID on this list, it assigns its cluster coordinate as
(treerp, 1) and becomes one of the tree roots of AFN,,. If an MSN does not
find its ID, but finds the ID of a neighbor, say 1, it assigns itself the cluster
coordinate (tree;p,, 2) — the first entry corresponds to the tree number
of the neighbor MSN and the second entry indicates the hop count from
AFN . MSNs with multiple neighbors on the neighbor list of AFN,, should
randomly choose which tree to join.

The group of second-hop neighbors, Sy, initiates the propagation of the
coordinate establishment message by broadcasting their cluster coordinate
and I Darn, as follows:

For all N; € Sy, N; = neighbors : IDarn, || (tree, bopcount)y,

Upon hearing this message, MSNs not yet holding a cluster coordinate will
know how many hops away from AFN, they are, and what their cluster
coordinate should be. As these messages propagate, all MSNs will establish
their cluster coordinates. An MSN will always forward the first coordinate es-
tablishment message it receives. Once an MSN begins to receive additional
coordinate establishment messages, it will forward this message only if it is
the closest backup AFN heard so far, that is, if hopcount,., < bopcounty,
where hopcount, is the number of hops to AFN,. Each MSN will store
I Dugn,, hopcounty, and the MSN ID of the node that sent the coordinate
establishment message containing I Dypy,. This MSN will serve as N, to-
ward AFN,. We describe, in Section 7.6.5, the importance of establishing
Ny and AFN,. Every MSN, with the exception of the | S| established root
nodes, must broadcast one message when establishing their primary clus-
ter coordinate. Every MSN must transmit at least one additional message
when establishing AFN,. We will assume the case where the optimal AFN,
is established with the first coordinate establishment message received.
Then, the total communication overhead for the location training process
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Figure 7.3 Optimal cluster coordinates established in a single cluster.

is 14 2n— |Sp| transmissions per cluster, where 7 denotes the number of
MSNs in the cluster. Using our running example, Figure 7.3 shows cluster
coordinates established within a ten MSN cluster. This figure shows the
optimal case, because each node receives a unique cluster coordinate. In
the following section we explain how the sum of the entries in each node’s
cluster coordinate yields a unique subset identifier between 1 and 10.

7.6.3  Establishment of Administrative Keys

The administrative key subset is determined by the assignment of the AFN
cluster coordinate. We propose an algorithm for assigning tree numbers
based on the expected number of hops within a cluster. We assume that
the expected number of hops can be estimated based on the density of
AFN deployment relative to MSN deployment. We denote the number of
neighbors found by an AFN (or degree of AFN) as d, (d = |Sp1|) and the
maximum number of estimated hops within a cluster as ». We assign tree
numbers as tree; = i- b for 0 < i < d. The administrative key subsets
are then determined by the sum of the two elements of a node’s cluster
coordinate. Because a cluster coordinate consists of (tree,bopcount), an
MSN’s key subset identifier is calculated as tree + hopcount. Each unique
cluster coordinate within the expected maximum number of hops within a
cluster, b, will generate a unique key subset identifier in the range of [1, d-hl.

Each AFN is responsible for generating and distributing the tree ad-
ministrative keys for each tree in its cluster. This requires d - b messages
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transmitted by the AFN, one for each of the unique key subset identifiers
used in the cluster. The first step is to generate d tree administrative keys,
where K1 is the tree administrative key for all nodes in the J-th tree. Re-
call that a tree consists of all nodes that utilize the same forwarding route.
From Figure 7.3, we see that N; and N, are members of treey. Each Kt; is
distributed to each N in Iree; as follows:
For all N; € l‘reej, AFN — N, : EK@(EK@(. . ‘EKQSiI(Klj)' 3
where — represents unicast transmission and Si={Ka, Ka, ..., Kas,}.
It is important for the administrative key set, U, to be independently up-
dated within each cluster after all tree administrative keys have been es-
tablished. If the same set of administrative keys is maintained globally, the
compromise of a single cluster’s keys would compromise the entire net-
work’s keys. We described in Section 7.5 that in order to isolate an attack,
the administrative keys must be independently generated in each cluster
and not shared among clusters.

7.6.4 Administrative Key Recovery

If all administrative keys have been compromised due to multiple node
captures within an isolated set of trees, then the remaining trees can be sal-
vaged using their tree administrative keys to reestablish their administrative
key subsets.

In Section 7.5 we stated that the capture of a group of MSNs can com-
promise most or all of the administrative keys in the basic version of SECK.
When all of the administrative keys of the cluster have been compromised,
even the MSNs that are not captured are excluded from any further commu-
nications with the rest of the network. Hence, it is necessary to distribute
new session keys to those MSNs. We assume a scenario where an AFN at
some point receives notification that a set of nodes, which we denote as S
has been compromised, resulting in the compromise of all administrative
keys. In response, the AFN computes the set of trees not containing any
node from S, which we denote as S, as

Sur = {tree; : tree; N S, = @, Viree;)
The AFN then creates | S| messages, each containing a set of new admin-
istrative keys, and transmits the messages to the appropriate trees as shown

in the following expression:

For all tree; € S,;, AFN = tree; :

Ex/(Exa(Kad) || Exa,(Kd) || ... | Exa, . Ka,, )
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Note that the technique described above cannot salvage MSNs that be-
long to a tree in which some of its nodes have been compromised. In
Section 7.7.3, we show that the technique described above can salvage a
greater percentage of MSNs when the attack is more localized (i.e., con-
centrated in a specific region of a cluster).

7.6.5 Reactive Reclustering after AFN Capture

Unlike an MSN, an AFN carries out several key tasks that are essential to its
cluster. Because the loss or capture of an AFN can incapacitate the entire
cluster, giving the MSNs the ability to recover from such a situation greatly
improves the sutvivability of the cluster by removing the single point of
failure [15]. To keep the MSNs operational after an AFN capture, we need
to recluster the MSNs into neighboring clusters and establish new security
relationships between the reclustered MSNs and their respective backup
AFNs. We identify two approaches to address this problem. First, MSNs
may proactively maintain backup security relationships with neighboring
AFNs, similar to the approach in Gupta and Younis [16]. This requires the
MSNs to participate in periodic key update procedures with multiple AFNs.
The second approach involves MSNs reactively utilizing a trusted third party
(TTP) to establish a new security relationship with a backup AFN after the
capture of the primary AFN is detected. It is reasonable to assume that,
in mission-critical applications, the AFNs would be equipped with tamper-
resistant hardware because of their importance. We assume that successful
AFN captures are infrequent events and adopt the reactive approach be-
cause it does not require the MSNs to maintain backup information.

In SECK’s approach, the BS acts as the TTP. The BS establishes a security
relationship between the MSN (that is being reclustered), N;, and AFN. » The
BS authenticates AFN;, and N, and distributes a new pair-wise key to those
nodes so that a new administrative key subset may be established.

Before describing the recluster procedure, we make some prefatory
comments. We assume that the AFNs are each equipped with a high-end
embedded processor (e.g., Intel Xscale PXA250) that is capable of executing
asymmetric cryptographic operations Recall that at the completion of the
location training procedure, each MSN is aware of the identities of the AFN B
and the next-hop MSN en route to the AFN,, N,.

Upon detection that N;’s primary AFN has been captured, N, constructs
a short recovery request message destined for the BS. Then M, sends the
following message to Ny.

Ny > Ny : IDM II IDAFNb || nonce; II MACKP'.

where M ACk,, represents a message authentication code (MAC) generated
with Nj’s base station pair-wise key, K p;. We assume that N, routes this
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message to AFN, in the same manner as forwarding sensed data to AFN,,
for data aggregation. After receiving this message, AFN, digitally signs this
message, appends the signature to the message, and forwards the following
message to the BS:

AFNb — BS: IDN¢ " IDAFN,, " nonce; " MACKP‘ " SignApr

where Sign,ry, represents AFNy's signature. When the BS receives this
message, it authenticates N; using the MAC and then authenticates AFN,,
using the signature. If both nodes are authenticated, the BS generates a
secret key K arn,—n, and transmits it to both AFN, and N; as shown in the
following equations:

BS > AFN,:
IDN, | IDarN, | Bk ypwor (Karn,~n, | IDn, || IDary, || nonce)
BS —» MV

IDn, | IDgrnN, | Exp (K arn,—n; | IDn, | IDarp, || nonce)

where K4rypy represents the public key of AFN,. Using Kary,—n, Ni
and AFN, can now establish a security relationship. Using K 4rn,—n,, AFNp
finalizes N;’s membership in its cluster by sending N; a subset of admin-
istrative keys and the corresponding subset identifier. It is noted that if an
EBS reaches its maximum number of nodes, that is, 7= z;,Cp, adding a
new node will require the expansion of the EBS by adding a new key. For
brevity, we do not describe the process of extending an EBS in this chapter;
we simply assume that the size of a cluster’s initial EBS will be sufficient
for node additions and refer the reader to Eltoweissy et al. [10] for an EBS
expansion mechanism.

7.6.6 MSN Addition

Throughout the lifetime of a WSN, it may be necessary to deploy additional
MSNs. We propose a way of adding nodes to an existing WSN. We assume
that MSNs are randomly deployed and that the MSN’s resulting cluster is
unknown. In SECK, each cluster maintains a unique and private set of
keys. For this reason it is impossible for a new MSN to be predeployed
with any keys that will enable authentication with a MSN or AFN directly.
However, each new MSN will contain a unique base station pair-wise key,
K p;, which allows the BS to facilitate a new security relationship between
the new MSN and existing AFN in the same way as the reclustering process
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described in Section 7.6.5. The only difference between deploying a new
MSN and reclustering an MSN is that the newly deployed MSN has no
knowledge of a backup AFN. Once a newly deployed MSN knows which
AFN’s cluster to join, it starts the reclustering process described above.,

To determine which AFN’s cluster is most appropriate to join, a new
MSN, Nyew, conducts a survey of neighbor nodes’ cluster status. First, Ny,
broadcasts a short “hello” message to announce its presence. Each neighbor,
neighbor; , that overhears this message replies with its cluster information
as follows:

neighbor; — Nyey IDpy, || I Dyrn, || bopcounty,
where I Dyry, is neighbory’s primary AFN, and hopcounty, is the hopcount
in neighbor;’s cluster coordinate identifier. NV, uses these replies to deter-
mine the most appropriate cluster to join and the most efficient neighbor
to use as a next-hop node to that cluster’s AFN. N, determines the most
appropriate AFN, AFN ., based on the number of neighbors belonging to
AFN pax. Npew selects the most efficient neighbor based on the neighbor’s
hopcount to AFN yax. The neighbor with the smallest hopcount is the most
efficient node to use as a next-hop node in the direction of AFN,,,;,. Now

that the next-hop node to AFN gy is known, N, conducts the reclustering
procedure described in Section 7.6.5.

7.7 Robustness of SECK against Node Capture

Node capture in hostile environments is inevitable, and an effective key
management scheme should be able to recover from such attacks to be
effective. We describe some of the inherent security advantages of utilizing
a clustered and hierarchical network architecture. Then, using the threats
identified in Section 7.5, we analyze how well SECK recovers from those
attacks.

7.7.1 Robustness of a Clustered Architecture

A clustered and hierarchical framework for WSNs provides many benefi-
cial security properties. Isolation is the primary benefit of a clustered key
management scheme. Each AFN is responsible for independently calculat-
ing and periodically distributing new administrative keys. Hence, an attack
that yields keys within one cluster will not impact any other cluster in the
network. An adversary must perform a global attack to completely com-
promise the network. This is not the case for most nonhierarchical key
management schemes. In nonhierarchical key management solutions, a lo-
calized attack often has a global impact on the network’s keys [3,17,19,21].
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7.7.2 Robustness against MSN Node Capture

In the example given in Table 7.3, it is possible for an adversary to capture
all the administrative keys of a cluster with only a small number of node
captures by strategically selecting the nodes to capture. For example, the
capture of N; and Ng would reveal all five administrative keys. Fortunately,
such attacks are difficult to carry out; to be successful, an adversary needs
to know which administrative keys are stored in each MSN. Of course, the
adversary can always randomly choose the nodes to capture and hope thata
large proportion of administrative keys is revealed by those captures. Using
simulations, we show that when the nodes are compromised randomly,
then the proportion of compromised keys is commensurate with the well-
known probabilistic key distribution scheme proposed in Eltoweissy and
Gligor [3].

Eschenauer and Gligor (EG) [3] proposed a probabilistic key establish-
ment technique for WSNs in which pair-wise secret keys are selected from a
global key pool. In the past few years, similar schemes have been proposed
[19,21]. The EG scheme has been shown to have acceptable key resiliency
properties. That is, the capture of a limited number of nodes does not re-
veal much key material of other nodes. Figure 7.4 compares three instances
of SECK with the EG scheme by plotting their ratio of keys captured as a
function of ratio of nodes captured. For SECK, the keys being considered
are administrative keys; for EG, the keys being considered are pair-wise
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Figure 7.5 Probability that all keys have been compromised versus the number of
nodes captured.

secret keys. Figure 7.4 shows that SECK’s robustness against random node
(MSN) captures is commensurate with that of the EG scheme.

Now we attempt to answer the following question: how many MSNs
must be captured before all the administrative keys of a cluster (k+ m
keys in total) are compromised? In Figure 7.5, the probability of capturing
all the administrative keys as a function of the number of nodes captured
is plotted for several instances of SECK, with all instances supporting ap-
proximately 50 nodes. We are interested in instances of SECK that support
about 50 nodes, as that is the expected size of a typical cluster that we
envision. The figure shows that the ratio k/m has a direct impact on the
robustness of SECK against node captures — decreasing the ratio improves
robustness against node captures and increasing the ratio has the opposite
effect. However, setting the ratio &/ mto a low value incurs a cost — as the
ratio decreases, the communication overhead required to distribute session
keys increases. One can see that there exists a communication overhead
versus node capture resiliency trade-off. Further discussions on this issue
are continued in the next section.

7.7.3 Evaluation of the Administrative Key Recovery Procedure

Recall that SECK generates d tree administrative keys for a cluster consist-
ing 'of » MSNs in which every MSN is within A hops of its primary AFN.
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Figure 7.6 Administrative key recovery procedure evaluation.

Figure 7.5 shows that SECK, using EBS(55,2,9), provides the most resiliency
against node captures. If 14 MSNs have been randomly captured in this case,
there is a good chance (>60 percent) that the complete administrative key
set has been compromised. If all the administrative keys of a cluster are
compromised, the network needs to execute the MSN administrative key re-
covery procedure. In the following paragraphs we discuss the effectiveness
of the administrative key recovery procedure in two distinct cases — best
and worst case scenarios — assuming that x MSNs have been captured.

The worst case occurs when each of the x captures occurs in separate
trees. This leaves d — x trees unaffected, and (d — x) - b nodes can be
recovered. If we approximate d with n/ b, the ratio of nodes that can be
recovered is (n— x- h)/(n— x). Suppose that every MSN in the cluster is
within two hops of the AFN (i.e., b = 2) and EBS(55, 2, 9) is used. Then our
procedure recovers 0.66 of the uncompromised nodes in the worst case.

The best case occurs when the attack is completely localized. That is, all
nodes within a single tree are captured before the attacker moves on to the
next tree. This will affect [x/ bl trees, leaving d — [x/ bl trees unaffected. If
we again approximate d with 7/ b, the ratio of nodes that can be recovered
is (n— b-[x/ b)/(n— x) =~ 1. From the above analysis we can observe that
SECK’s recovery procedure performs best in localized attacks.

In Figure 7.6, we have plotted the ratio of recoverable nodes in the best
and worst case attack scenarios. We assume that EBS(55, 2, 9) is employed.
In the figure, we have highlighted the case where 14 nodes have been
captured. In practice, the actual recovery ratio is expected to be somewhere



166 W Security in Sensor Networks

between 0.6 and 1.0 when 14 nodes are captured. As expected, as the ratio
of nodes captured increases, the ratio of recoverable nodes decreases.

7.8 Evaluation of Communication
and Storage Overhead

7.8.1 Energy Dissipation

In typical key management schemes, the energy required for computation
is three orders of magnitude less than that required for communication [15].
Moreover, the amount of energy consumed for computation varies signif-
icantly with hardware. Hence, we only consider energy costs associated
with radio signal transmission and reception, and do not consider energy
costs associated with computation. To calculate the amount of energy dissi-
pated during the execution of SECK, we use the power usage specification
of Sensoria’s WINS NG: the RF radio component consumes 0.021 mJ/bit
for transmission, and 0.014 mJ/bit for reception when operating at 10 kbps
(26]. We make the same assumptions as in Carman et al. [15] with regard to
the following message element sizes:

All node IDs are 64 bits.

All nonces are 64 bits.

All symmetric keys are 128 bits.

The tree identifier is 32 bits.

The hopcount is 32 bits.

All MACs are 128 bits.

The RSA modulus used for digital signatures is 1024 bits.

Table 7.4 shows the amount of energy dissipated by a single node to com-
plete one instance of each process (six processes are listed). We assume
that EBS(55,2,9) is employed in a cluster consisting of 50 MSNs with » = 2.
Each AFN has a neighbor degree of 20; that is, | Sk, | = 20. In the following
we discuss the major factors that contribute to the energy consumption for
each of these processes.

The energy required for the location training process is affected by the
efficiency at which the MSNss find their optimal backup AFN. We assume that
the backup AFN is found when a node receives the second coordinate es-
tablishment message. To distribute the tree administrative keys to all MSNs
in its cluster, an AFN must generate one message for each MSN in its clus-
ter. Hence, the energy consumed by each AFN is directly proportional to
the number of MSNss in its cluster. The communication overhead required
for the EBS maintenance process is the message transmission needed for
refreshing all administrative keys, and therefore this overhead depends on
the dimension of the EBS that is used. The energy cost of the tree recovery
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Table 7.4 SECK Communication Energy Consumption (in m}J)

Transmission Reception Total

i ini 55.10
Location trainin AFN 55.10 N/A

8 MSN 1.10 36.74 37.84
Distribute tree AFN 336.00 N/A 336.00
administrative key MSN N/A 4.48 4.48
EBS maintenance AFN 44 35 N/A 44.35
MSN N/A 29.56 29.56
7

Tree recove AFN 29.57 N/A 29.5
v MSN N/A 19.71 19.71
Reactive AFN 38.98 11.65 50.63
reclustering MSN 17.47 11.65 29.12
MSN addition AFN 38.98 11.65 50.63
MSN 20.67 11.65 32.32

process shown in Table 7.4 is the energy dissipated by the AFN f-or'each tree
recovered. The energy cost of reactive reclustering calculated in Table 7.4
is the energy needed to forward the recovery messages needed to recover
one MSN. Therefore, the total energy dissipated during the cluster recovery
process depends on the number of MSNs being recovered .with a specific
backup AFN. Finally, the energy cost during node addition is calculated as
the energy needed to respond to, then to forward the recovery messages of
one newly added MSN. It can be seen from Table 7.4 that SECK effectively
offloads much of the energy-intensive operations to the more capable AFN.

7.8.2 Storage Overhead

Prior to deployment, each MSN needs to store a key sut?set matrix and thfa
complete administrative key set. The key subset matrix is a (k+ m) X n'blt
matrix that identifies the keys associated with each subset. Table 7.3 is a
sample 5 x 10 key subset matrix. The key subset matrix requires 7- (k+ m)
bits to store, and the complete administrative key set requires 128 - (k+ m)
bits to store (here, we assume that 128-bit AES keys are used). Additionztll.y,
one 128-bit base station pair-wise key is stored at each MSN, for a total initial
storage requirement of ((128 + 7) - (k+ m) + 128) bits. With this forr‘ng!a,
one can calculate that each MSN would need to store 266 bytes of initial
keying material if EBS(55,2,9) is employed. o ‘ '
After deployment, each MSN deletes most of its initial keying mater.lal
immediately after the conclusion of the location training processes. .SPCC}ﬁ-
cally, each MSN deletes its key subset matrix and the unused fald'mml’stranve
keys. Recall that each MSN is assigned one 128-bit tree administrative key
after deployment. Assuming that EBS(55,2,9) is employed, each MSN would
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need to store 64 bytes of keying material or four 128-bit keys at the end of
the location training process.

7.8.3 Comparison of Communication Overhead

The keying communication overhead of SECK is incurred during (1) the
initial key establishment phase and (2) periodic key maintenance proce-
dures. We compare the communication overhead incurred in (1) and (2)
with those incurred in the Localized Encryption and Authentication Protocol

(LEAP) [13] and Simple Key Distribution Center (SKDC) [15], respectively. -

A unique feature of SECK is its use of both administrative keys and session
keys. Because of this feature, we cannot compare SECK, in its entirety,
with a single scheme. Instead, we decompose SECK into (1) and (2) and
compare the two constituent parts with LEAP and SKDC that respectively
carry out similar functions. LEAP supports multiple levels of communica-
tion through multiple degrees of key sharing. SECK provides a similar level
of flexibility within a clustered architecture. SKDC is a session key distri-
bution scheme that utilizes a leader node to distribute the session key. It
was shown in Carman et al. [18] that this basic method used by SKDC is
the most efficient means to distribute a session key.

7.8.3.1 Key Establishment

In this subsection we compare the communication overhead incurred by
SECK during the key establishment process with that of LEAP. LEAP is a
well-known key management scheme that provides communication flexi-
bility by establishing multiple classes of keys. In SECK, a location-training
process is executed to establish administrative key sets; then a distribution
process is executed to distribute a session key. LEAP goes through similar
key establishment processes to establish each node’s pair-wise and cluster
keys.

LEAP restricts each node to three secure communication groups. SECK
places no such restriction and provides a simple mechanism to establish
secure communication groups of any degree within a cluster. In LEAP, every
MSN has a distinct pair-wise key established with each neighbor. In SECK,
however, every MSN establishes a pair-wise key only with its primary AFN.

In LEAP, each node calculates a single pair-wise key to share with
each neighbor. This calculated pair-wise key is unicasted to each of the
node’s d neighbors. In addition, establishing a LEAP cluster key requires
md—1)*/(n—1) ~ (d—1)? key transmissions throughout the network [13].
'LEAP does not provide a concrete message format. To compute the energy
dissipation incurred by LEAP, we assume that LEAP has the same message
format as that used in SECK for key distribution. Here, we only consider
communication-related energy dissipation. In Figure 7.7 we compare SECK
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Figure 7.7 Key establishment communication overhead.

and LEAP by plotting the energy dissipated by the network for key estab-
lishment as a function of the network size (for SECK, network size implies
cluster size). Note that the size of a network (i.e., number of nodes) has
the biggest impact on the energy required to establish keys. We set the
connection degree as 20, which was suggested by the authors of LEAP.

It is shown in Figure 7.7 that SECK is more efficient for small network
sizes. Distributing similar amounts of keying material using the method
described in SECK is better than that of LEAP when fewer nodes are con-
sidered. For the clustered network architecture described in Section 7.3, we
assume that clusters consist of approximately 50 nodes — for such network
sizes, SECK outperforms LEAP.

7.8.3.2 Updating Session Keys

We now switch our attention to the communication overhead incurred by
SECK to maintain session keys. Carman et al. [18] show that the straightfor-
ward technique of unicasting a session key to each group member incurs
the least amount of communication overhead among session key distribu-
tion schemes. SKDC is a simple instance of such a method and is most
effective for a single instance of session key distribution. Our emphasis
here is on the efficiency of session key distribution over multiple key up-
date periods.

For a network deployed in a hostile environment, where node captures
are expected, it is important to be able to continually distribute new session
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keys efficiently. SKDC creates an individual message for each group mem-
ber every time a session key must be updated, while SECK requires one
message for each administrative key. In Figure 7.8 we compare SECK and
SKDC in terms of the communication energy dissipated by the network due
to session key redistributions. The plot shows that SKDC outperforms SECK
during the initial session key update periods. This is because of SECK’s ini-
tial overhead for establishing the administrative keys. However, SECK out-
performs SKDC as the accumulated number of session key redistributions
increases. This result was expected — the administrative keys employed in
SECK reduce the cumulative number of messages that must be transmitted
by the AFN for session key redistributions.

7.9 Related Work

In the past few years, several technical approaches have been proposed to
provide WSNs with confidentiality and authentication services via pair-wise
secret (or key) sharing [3,13,19,21]. As stated earlier, Eschenauer and Gligor
[3] propose a static technique for probabilistic distribution of pair-wise keys.
In their scheme, keys are randomly chosen from a global key pool. Chan
et al. [19] extended this idea to provide localized attack resiliency. Most
WSN applications require additional levels of key sharing beyond pair-wise
shared keys — specifically, group keys.
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Carman et al. [18] conducted a comprehensive analysis of various group
key schemes. The authors concluded that group size is the primary fac-
tor that should be considered when choosing a scheme for generating
and distributing group keys in an WSN. Zhu et al. [13] proposed a com-
prehensive key management scheme called LEAP that establishes multiple
keys for supporting neighborhood as well as global information sharing.
Although LEAP includes several promising ideas, it does not adequately
address scalability issues concerning the distribution and maintenance of
group keys.

To address the difficult problem of scalability, many have proposed hi-
erarchical network architectures, similar to the one described in this chap-
ter. In [4,5,11], the authors utilize a clustered and hierarchical network
architecture for key management. Jolly et al. [4] employ a hierarchical net-
work organization to establish gateway-to-sensor keys. The clustering tech-
nique used by Jolly et al. was originally developed by Gupta et al. [22].
By using GPS signals, Gupta et al. propose to form a cluster in which
all nodes are within one hop of the cluster head. Eltoweissy et al. [5,11]
present another hierarchical key management scheme based on the Exclu-
sion Basis System to efficiently maintain group and session key information.
This approach supports key recovery only if node captures can be imme-
diately detected.

Bohge et al. [2] propose a hierarchical authentication technique to estab-
lish and recover keys. Their approach requires a broadcast authentication
scheme, and they employ a variation of WTESLA [24] for this purpose.

7.10 Conclusion

In a large-scale WSN deployed in a hostile environment, a key manage-
ment scheme is needed to manage the large number of keys in the system.
In this chapter we described a cluster-based dynamic key management
scheme, SECK, that is designed to address this specific issue. SECK meets
the stringent efficiency and security requirements of WSNs using a set of ad-
ministrative keys to manage other types of keys such as session keys. SECK
is a key management solution that includes (1) a location training scheme
that establishes clusters and the cluster coordinate system used in the MSN
recovery procedure; (2) a scheme for establishing and updating adminis-
trative keys; (3) a scheme for distributing session keys using administrative
keys; (4) a scheme for recovering from multiple node captures; and (5) a
scheme for reclustering and salvaging MSNs in the event that their AFN has
been captured. Through analytical and simulation results, we have shown
that SECK is resilient to node and key captures while incurring low levels
of communication overhead.
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