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Abstract. Cloud Computing has come into reality as a new IT infras-
tructure built on top of a series of techniques such as distributed comput-
ing, virtualization, etc. Besides the many benefits that it can bring forth,
Cloud Computing also introduces the difficulty of protecting the security
of data outsourced by cloud users. This chapter will first study the basic
concepts and analyze the essentials of data security issues pertaining to
Cloud Computing. Then we elaborate on each issue by discussing its na-
ture and existing solutions if available. Specifically, we will emphasize on
issues of protecting data confidentiality/integrity/availability, securing
data access and auditing, and enforcing the regulations and compliances
regarding to data security and privacy.
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1 Overview

Cloud Computing is a new IT infrastructure in which computing resources are
provided as a utility to cloud users in the pay-as-you-go manner. By integrat-
ing techniques such as Service Oriented Architecture (SOA), virtualization, dis-
tributed computing and etc, cloud computing offers elastic, on-demand and mea-
sured services to cloud users anytime anywhere whenever Internet is available,
and enable them to enjoy the illusionary unlimited computing resources. The
services provided by the cloud can be at different levels of the system stack,
which can be described by the terminology of “X as a service (XaaS)” where
X could be Software, Infrastructure, Hardware, Platform and etc. For example,
Amazon EC2 provide Infrastructure as a service and allow cloud users to manage
virtual machine instances and control almost the entire software stack above the
OS kernel; Google AppEngine provides Software as a service which is targeted
at traditional web applications; Microsoft Azure offers services which are inter-
mediate between AppEngine and EC2. By deploying applications in the cloud,
cloud users are able to enjoy massive and elastic computing resources without
the large capital outlays in building their own data centers. Such a fact will sig-
nificantly benefit the IT industry, especially small and medium IT enterprises,
letting alone individuals, who were greatly limited by computing resources. For
this reason, Cloud computing is believed to have the potential to shape the IT
industry in the future.
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1.1 What is Cloud Computing?

Although the benefits of cloud computing are obvious, it is not trivial to pro-
vide a concrete definition for cloud computing due to its intrinsic complexity.
To the date when this book is written, there is no standardized definition of
the term cloud computing except several attempts by leading institutions and
standard organizations. A research group from the University of California at
Berkeley [19] defines cloud computing as below:

Cloud Computing refers to both the applications delivered as services over the
Internet and the hardware and systems software in the datacenters that provide
those services. The services themselves have long been referred to as Software as
a Service (SaaS). The datacenter hardware and software is what we will call a
Cloud. When a Cloud is made available in a pay-as-you-go manner to the general
public, we call it a Public Cloud; the service being sold is Utility Computing. We
use the term Private Cloud to refer to internal data centers of a business or other
organization, not made available to the general public. Thus, Cloud Computing
is the sum of SaaS and Utility Computing ...

- “Above the Clouds: A Berkeley View of Cloud Computing”

NIST [15] gives the following unofficial definition of cloud computing:

cloud computing is a “pay-per-use model for enabling available, convenient
and on-demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction.

- NIST unofficial draft

Notwithstanding that there is no such a unique definition of cloud computing,
these works together do outline several most important characteristics of cloud
computing: 1) Computing resources at different level of the system stack are
provided as cloud services in the pay-as-you-go manner like traditional utility
services, e.g., Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS). Cloud users just need to pay for what they
have actually used. 2) Rapidly elastic and scalable resources are available to
cloud users. Cloud users are able to launch more computing resources at peak
time and release them at nonpeak times, and saves their capital expenditure
in hardware/software to deal with the fluctuation in workloads. 3) The services
are provided in the on-demand manner and can be configured by cloud users
themselves. This makes it very convenient for cloud users to access cloud services
as they no longer need to interact with the system administrator and go through
the usually lengthy processing routines. 4) Cloud services are made accessible
via the Internet. Cloud users can launch these services on any platform that
supports web techniques. 5) Computing resources are pooled and provided to
cloud users independent of their locations. Besides these essential characteristics,
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Cloud Computing also has other properties such as multi-tenant architecture,
i.e., applications of numerous customers may co-run or co-exist on the same
physical device. According to its ownership and the technical architecture, Cloud
Computing can be categorized as Public Cloud, Private Cloud, Hybrid Cloud and
Community Cloud. Pubic Clouds provide services to the general public across the
Internet while a Private Cloud exclusively serves a single enterprise/organization.
Hybrid Clouds integrate models of both Public Cloud and Private Cloud to meet
specific business and technology needs. Community Clouds are usually used by
organizations with similar objectives.

1.2 Key Enabling Techniques of Cloud Computing

Although the term Cloud Computing is new, the underlying concept of cloud
computing is actually not new. In the 1960s, John McCarthy mentioned that
“computation may someday be organized as a public utility” in his speaking at
the MIT Centennial. Douglas Parkhill in his 1966 book [47] thoroughly explored
the characteristics of the “Computer Utility” which are very similar to those
characteristics of the modern-day cloud computing. However, cloud computing,
or the “Computer Utility”, had not become a reality until the late 2000s when
several critical enabling techniques at various levels of the system stack are all
made available: broadband networks, the Web technology, Service Oriented Ar-
chitecture (SOA), Software as a Service (SaaS), virtualization, distributed com-
puting and the plentiful of software and operating systems. The broadband net-
works serve as a fundamental element in cloud computing for efficiently coupling
physically distributed resources into a logically integrated service and providing
smooth remote access for cloud users. The Web technologies offer platform inde-
pendent ways for users to visualize and configure remote services. SOA makes it
possible to deploy applications based on a loosely-coupled suite of services across
multiple separate systems/servers over the Internet. SaaS provides application
level of services in a pay-as-you-go model. Virtualization abstracts logical de-
vices from physical devices and allows co-residence of multiple logically isolated
instances such as operation systems on a single physical machine. Virtualization
and distributed computing together make computing as utility and elasticity
of computing resources possible. The availability of high-performance and cost-
effective computing and storage hardware devices is fundamental to the illusion
of unlimited resource.

1.3 Security in Cloud Computing

The many characteristics of Cloud computing have made the long dreamed vi-
sion of computing as a utility a reality and will have the potential to benefit
and shape the whole IT industry. When deciding whether or not to move into
the cloud, potential cloud users would take into account factors such as service
availability, security, system performance and etc, among which security is the
main concern according to a survey conducted by the IDC Enterprise Panel
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in 2008. However, the security issue of Cloud Computing is intrinsically compli-
cated, which can be explained by the fact that cloud computing is built on top of
existing techniques and architectures such as SOA, SaaS, distributed computing
and etc. When combining all the benefits of these techniques and architectures,
Cloud Computing also inherits almost all their security issues at various levels of
the system stack. Besides this, the operation model of Cloud Computing will also
reshape the trust model when cloud users move their applications from within
their enterprise/organization boundary into the open cloud. By doing so, cloud
users may lose physical control over their applications and data. In cloud envi-
ronments network perimeters will no longer exist from cloud users’ perspective,
which renders traditional security protection mechanisms such as firewalls not
applicable to cloud applications. Cloud users have to heavily rely on the cloud
service providers for security protection. On the other hand, in cloud computing
(except private clouds) users and cloud service providers are not necessarily from
the same trust domain. In applications such as heathcare, cloud service providers
and/or their system administrators may not even be allowed to access sensitive
user data when providing security protection according to corresponding regu-
lations/compliances. It requires that cloud service providers are able to provide
necessary security services to meet individual cloud users’ security requirements
while abiding to the regulations/compliances. In non-sensitive applications, it is
also important to protect cloud users’ critical data and help them verify security
services provided by the cloud. Secure auditing mechanisms are usually neces-
sary for this purpose. In Cloud Computing the multi-tenancy property will make
applications from different organizations and trust domains reside and interact
on the same physical computing resources. This will inevitably bring forth more
security risks in the sense that any intentional or inadvertent misbehavior by
one cloud user would make other co-residences victims, and creates more oppor-
tunities for malicious attackers from the Internet. To address all these security
issues in Cloud Computing, we need to explore the nature of Cloud Computing
security problems and answer the following questions: Which objects are we go-
ing to protect? Who can be the potential attackers and how would they attack?
What kind of security services should we provide? Which security mechanisms
should we use?

In this chapter, we particularly focus on the issue of data security. More
specifically, we want to identify the types of data that we need to protect, poten-
tial attackers in Cloud Computing and attacks they may launch to compromise
data security. Then we discuss necessary security services for data security as
well as corresponding security mechanisms for providing these security services.

2 Data Security in Cloud Computing

Data protection is a crucial security issue for most organizations. Before moving
into the cloud, cloud users need to clearly identify data objects to be protected
and classify data based on their implication on security, and then define the se-
curity policy for data protection as well as the policy enforcement mechanisms.
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For most applications, data objects would include not only bulky data at rest
in cloud servers (e.g., user database and/or filesystem), but also data in transit
between the cloud and the user(s) which could be transmitted over the Internet
or via mobile media (In many circumstances, it would be more cost-effective
and convenient to move large volumes of data to the cloud by mobile media
like archive tapes than transmitting over the Internet.). Data objects may also
include user identity information created by the user management model, ser-
vice audit data produced by the auditing model, service profile information used
to describe the service instance(s), temporary runtime data generated by the
instance(s), and many other application data. Different types of data would be
of different value and hence have different security implication to cloud users.
For example, user database at rest in cloud servers may be of the core value for
cloud users and thus require strong protection to guarantee data confidential-
ity, integrity and availability. User identity information can contain Personally
Identifiable Information (PII) and has impact on user privacy. Therefore, just
authorized users should be allowed to access user identity information. Service
audit data provide the evidences related to compliances and the fulfillment of
Service Level Agreement (SLA), and should not be maliciously manipulated.
Service profile information could help attackers locate and identify the service
instances and should be well protected. Temporary runtime data may contain
critical data related to user business and should be segregated during runtime
and securely destroyed after runtime.

Security Services: The basic security services for information security include
assurance of data Confidentiality, Integrity, and Availability (CIA). In Cloud
Computing, the issue of data security becomes more complicated because of the
intrinsic cloud characteristics. Before potential cloud users are able to safely
move their applications/data to the cloud, a suit of security services would be
in place which we can identify as follows (not necessarily all needed in a specific
application):

1) Data confidentiality assurance: This service protects data from being dis-
closed to illegitimate parties. In Cloud Computing, data confidentiality is a basic
security service to be in place. Although different applications may have different
requirements in terms of what kind of data need confidentiality protection, this
security service could be applicable to all the data objects discussed above.

2) Data integrity protection: This service protects data from malicious mod-
ification. When having outsource their data to remote cloud servers, cloud users
must have a way to check whether or not their data at rest or in transit are
intact. Such a security service would be of the core value to cloud users. When
auditing cloud services, it is also critical to guarantee that all the audit data are
authentic since these data would be of legal concerns. This security service is
also applicable to other data objects discussed above.

3) Guarantee of data availability: This service assures that data stored in
the cloud are available on each user retrieval request. This service is particularly
important for data at rest in cloud servers and related to the fulfillment of Service
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Level Agreement. For long-term data storage services, data availability assurance
is of more importance because of the increasing possibility of data damage or
loss over the time.

4) Secure data access: This security service is to limit the disclosure of data
content to authorized users. In practical applications, disclosing application data
to unauthorized users may threat the cloud user’s business goal. In mission-
critical applications, inappropriate disclosure of sensitive data can have juristic
concerns. For better protection on sensitive data, cloud users may need fine-
grained data access control in the sense that different users may have access
to different set of data. This security service is applicable to most of the data
objects addressed above.

5) Regulations and compliances: In practical application scenarios, storage
and access of sensitive data may have to comply specific compliance. For exam-
ple, disclosure of health records may be limited by the Health Insurance Porta-
bility and Accountability Act (HIPAA) [12]. In addition to this, the geographic
location of data would frequently be of concern due to export-law violation is-
sues. Cloud users should thoroughly review these regulation and compliance
issues before moving their data into the cloud.

6) Service audition: This service provides a way for cloud users to monitor
how their data are accessed and is critical for compliance enforcement. In the
case of local storage, it is not hard to audit the system. In Cloud Computing,
however, it requires the service provider to support trustworthy transparency of
data access.

Adversary Model: In Cloud Computing, cloud users move applications from
within their enterprise/organization boundary into the open cloud. By doing
so, cloud users lose physical control over their data. In such an open environ-
ment, cloud users may confront all kinds of attacks. Although there might be
various categorization methods for the attacks, it is useful to identify where
these attackers come from and what kind of attacks they can launch. Based on
this criteria we divide attackers in Cloud Computing as two types: insiders and
outsiders.

1) Insiders: The insiders refer to the subjects within the system. They could
be malicious employees with authorized access privileges inside of the cloud
user’s organization, malicious employees at the Cloud Service Provider’s side,
and even the Cloud Service Provider itself. In practice, an employee, at both
the cloud user side and the Cloud Service Provider side, could become mali-
cious for reasons such as economic benefits. These insider attackers can launch
serious attacks such as learning other cloud users’ passwords or authentication
information, obtaining control of the virtual machines, logging all the commu-
nication of other cloud users, and even abusing their access privilege to help
unauthorized users gain access to sensitive information. Although in practical
deployments cloud users may have to establish trust relationship with cloud
service providers, the occasionally possible misbehavior of cloud server can be
anyone or the combination of the following: 1) potentially decide to hide data
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corruptions caused by server hacks or Byzantine failures to maintain reputation;
2) neglect to keep or deliberately delete some rarely accessed data files so as
to save resources; 3) try to acquire as much data information as possible by
eavesdropping and monitoring the network traffic; 4) even collude with a small
number of malicious users for the purpose of harvesting the data file contents
when it is highly beneficial. Cloud users should thoroughly review all the po-
tential vulnerabilities and protect their assets on any intentional or inadvertent
security breach. More specifically, cloud users should be aware what kind of se-
curity services these providers can offer and how the providers implement these
security services. Verification mechanisms should be available to cloud users for
verifying the security services provided by the service providers. For valuable
and/or sensitive data, cloud users may also have to implement their own secu-
rity protection mechanisms, e.g., strong cryptographic protection, in addition to
whatever security service cloud service providers offer.

2) Outsiders: By moving data into the cloud users will lose their conven-
tional network perimeters and expose their data in an open system. Just like
any other open systems, Cloud Computing could be vulnerable to malicious
attacks from the Internet. This is because Cloud Computing usually does not
limit the type of user when providing services. For example, in Amazon EC2
anybody can register as a cloud user if they provide their credit card informa-
tion. Malicious attackers can easily log into the cloud and launch attacks. More
specifically, outsider attackers can launch both passive attacks such as eaves-
dropping the network traffic, and active attacks like phishing legitimate users’
credential, manipulating network traffic and probing the cloud structure. For
some cloud services, outsider attackers can launch very severe attacks by taking
advantage of the system flaw. For example, by launching cross virtual machine
attacks [49], attackers are able to monitor VMs from their co-resident VMs and
threaten their security. By bluepilling/subverting hypervisors [4,8], attackers are
even able to control the whole system stack above the hypervisor. To address
outsider attacks, cloud service providers have the responsibility to secure their
cloud infrastructure, isolate user application in the cloud, patch system flaws
timely, and notify cloud users with any discovered security risks. Cloud users
should strictly abide to the security guidance when using cloud services for the
purpose of reducing the possibility of security breach. Cloud users need to nego-
tiate recovery and backup mechanism with service providers for better security
protection.

System Model: From the high level, the system architecture for cloud computing
data services can be depicted as figure 1. At its core, the architecture consists
of four different entities: the data owner, who is also a cloud user and has large
amount of data files to be stored in the cloud; the cloud user, who is authorized
by the data owner to access his data files; the cloud server, which is managed
by cloud service providers to provide data storage and data sharing services and
has significant storage space and computation resources; the third party auditor
(TPA), which is the trusted entity that assesses the cloud storage security on
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Fig. 1. The architecture of cloud data service

behalf of the data owner upon request. In the cloud paradigm, the data owner
may represent either the individual or the enterprise customer, who relies on
the cloud server for remote data storage and maintenance, and thus is relieved
from the burden of building and maintaining local storage infrastructure. In
most cases, cloud service providers also provides benefits like availability (being
able to access data from anywhere) and relative low cost (paying as function
of needs). Cloud service providers implement the necessary security protection
mechanisms for data services. The data owners can also implement their own
security protection mechanisms for better security protection such as end-to-end
security. Instead of auditing the cloud services by themselves, data owners (cloud
users) may delegate all the auditing tasks to the third-party auditors.

2.1 Data Confidentiality

Data confidentiality is a basic security service for data protection. In cloud com-
puting, providing such a service is of great importance because of the following
characteristics of cloud computing that will increase the risk of data breach:
remote data storage, lacking of network perimeter, third-party cloud service
providers, multi-tenancy and massive sharing of infrastructure. In addition, since
Cloud Computing, by its very nature, integrates many existing and new tech-
niques, it will inevitably introduce new security risks due to both system design
flaws and its implementation flaws. The challenges in providing satisfying secu-
rity assurance in terms of data confidentiality exist in the following folds: data
security versus usability, system scalability and dynamics. To ensure data confi-
dentiality, the most straightforward method is to encrypt all the sensitive data
when being stored, processed, and transmitted by cloud servers. When data en-
cryption provides satisfying level of security protection, there are several subtle
and challenging issues to be addressed which we can list as follows

– how to efficiently distribute data decryption keys to authorized cloud users?
– how to efficiently deal with user dynamics, in particular user revocation?
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– how to efficiently handle data dynamics in terms of data modification?
– how to guarantee accountability of users?
– how to enable computing over encrypted data?

The first three questions are related to the issue of key management. In par-
ticular, efficient key distribution is always a sophisticated issue in large-scale ap-
plication scenarios. As the very characteristic of Cloud Computing is to provide
elastic and scalable computing resources to potentially large scale applications,
it is very possibly that there will be a large volume data and a large number
of users presented in the system. It is challenging to efficiently and securely
distribute the key(s) to authorized users when the users enter the system as it
usually requires the data owner to stay online providing the key distribution
service. More than this, user revocation is anther prohibiting issue as it is in
traditional cryptography. In many cases, user revocation will involve broadcast-
ing with all the users in the system and/or re-encryption of existing data stored
in the cloud. Similarly, data dynamics would also involve data re-encryption
and/or re-distribution of decryption key(s), which would represent a huge com-
putation and communication overhead in the system. In large-scale systems an
ideal solution is those that can make data encryption operation independent to,
or having minimal impact on, the process of key distribution in the sense that,
any modification/re-encryption of data will not introduce update/re-distribution
of decryption key. For this purpose special attention should be paid to the sys-
tem design as well as the choice of the underlying cryptographic primitive(s).
Such an issue is particularly related to cryptography based data access control.
In section 2.4, we will present detailed discussion on the issue as well as the
related solutions.

For encryption based solutions, data access privilege is granted by possession
of the corresponding decryption key(s). This opens up the door for authorized
but malicious users to abuse their access privilege by re-distributing data de-
cryption keys to unauthorized users. To prevent such key abuse from happening,
one way is to secure the data decryption key with temper-resistant hardware on
user’s side so that the potentially malicious user is not able to access the key
while enabling her/him to decrypt data. Temper-resistant devices are usually
designed in the way that, when interfered with, they will zeroise the sensitive
data, e.g., the decryption key, or the chip just fractures. In this way, the only
way that the malicious user is able to abuse the key is by sharing the phys-
ical device with others, which greatly limit the ability of attackers. Neverthe-
less, as the malicious attacker physically possesses the device, it is possible to
launch clever attacks which can bypass the protection mechanism inside of the
device, e.g., chosen message attacks, fingerprinting attacks [18] and etc. Alter-
natively, people can use reactive instead of proactive techniques for addressing
the issue of key abuse. More specifically, one can take action upon any detected
event of key abuse (the detection process can be various, be it technical or non-
technical). A well-accepted solution for reactively thwarting key abuse is to go
through a process of data forensics and enable the authority to identify the key
abuser and generate the corresponding evidence upon detected key abuse. In
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broadcast encryption [27, 40, 46] such techniques are usually called traitor trac-
ing [26, 29, 31, 44, 59]. The main issue with this technique is its efficiency and
scalability.

Another important issue is to enable processing over encrypted data. This
is an extremely challenging issue as there are various types of data processing
operations. Enabling computing over encrypted data for some operations may
logically contradict with the goal of data confidentiality by its very nature. In
specific applications, one needs to clearly define to which extend data confiden-
tiality should be achieved in the sense that which kind of information related to
the data can be disclosed and which can not. For example, given the encrypted
version of two numbers, one may not be able to know the exact numbers without
decrypting them. But she may be able to tell the order of the two numbers given
their encrypted versions with encryption schemes like order preserving encryp-
tion [17]. In this case, the order between the two numbers may be not a piece
of sensitive information and one can sort the numbers given their encrypted
version without knowing their original value. Similarly, for keyword search one
may want to hide the actual keywords but do not need to protect the pattern of
the search queries. In the literature, many interesting cryptographic primitives
have been proposed for supporting operations over encrypted data, e.g., search-
able encryption [23,30,33,39,54], homomorphic encryption [9], format-preserving
encryption [24], order-preserving encryption [17] and etc. Recently, Gentry pro-
posed a fully homomorphic encryption scheme [37] which enables us to evaluate
arbitrary functions over encrypted data without being able to decrypt. However,
its current construction is far from practical due to its complexity and can just
serve as a theoretical feasibility.

Data encryption provides an effective way for protecting data confidentiality.
The price of it is the degradation of efficiency and flexibility for data process-
ing. An alternative way to deal with data confidentiality is to remove sensitive
data and just store non-sensitive data in the cloud. For example, when dealing
with data containing personal identifiable information (PII), one would remove
these uniquely identifiable information to protect user privacy. This technique
is similar to the ideas of k-anonymity and its enhancements [16, 32, 45, 50, 55]
(e.g., l-diversity, t-closeness) in database. As compared to data encryption, this
method preserves the efficiency and flexibility for data processing. This method
also greatly simplifies the complexity of system management since there is no
longer the need for key distribution and management. The main downside of
this solution is that it will cause information loss by removing the sensitive in-
formation. In many application situations, this process will make the data useless
though data confidentiality is preserved.

In addition to the above two methods for data confidentiality, there is an-
other method which is so-called ”information-centric” protection [13]. With this
method, data is self-describing and defending: Data are encrypted with a kind of
usage policy. Whenever the data is accessed, the system will run a program that
checks the environment by the data usage policy. If the verifying program makes
sure that the environment is secure enough, it will create a secure virtualization
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environment and decrypt the data. The data can be accessed by applications
in plaintext in this secure environment. This ”information-centric” protection
mechanism is based on the Trusted Computing technique to check the environ-
ment security. This method provides a novel idea of protecting data security
while preserving usability of data. However, in practical deployment, it would
be not trivial to implement such a ”information-centric” protection mechanism.
Moreover, when the scheme verify the environment security at the time of data
extraction, it does not provide security protection or detection when the virtual-
ization environment is running. In particular, it is still possible to launch attacks
during the runtime of the virtualization environment, e.g., launching cross VM
attacks.

In Cloud Computing, various types of data in different applications may have
their specific nature in terms of dynamics, data processing operations, sensitivity
and etc. For example, in some application cloud users may store a large volume of
data on cloud servers for persistence and will be just queried and/or retrieved by
themselves and other authorized users. In some other applications, data stored
in the cloud will be frequently accessed and processed by applications running
on the cloud servers. It is not practical to give a uniform solution for protecting
data in all these applications. Instead, we may want to choose a data protection
method according to the nature of data. For this purpose, it is necessary to
first classify data according to the pre-defined natures. For relatively static data
at rest on the cloud, e.g., log data of a system, we may need to encrypt the
data in bulky in the way that allows simple data query and retrieval operations.
Existing techniques such as searchable encryption [23,30,33,39,54] can be applied
to this type of data. For data frequently subjected to modification, we may
want to encrypt the data block by block so that updating one data block does
not other data blocks. Techniques such as hierarchical key tree [48] might be
suitable for this case. However, one must be aware of the tradeoff between data
confidentiality and usability and choose an appropriate data encryption scheme.
There might be the situation in which no suitable data encryption scheme is
available to simultaneously meet both the goal of security and that of usability
for the cloud user. In such a case, cloud users might have to either rely on legal
practices such as the service level agreement for data protection, or store the data
on a more trustworthy cloud environment, e.g., using a private or community
cloud instead of a public cloud. For sensitive data such as personally identifiable
information, it would cause legal issue if disclosed to any unauthorized party. In
such a case, one may have to trade usability for data security when these two
goals can not be achieved simultaneously, or store the data on a trustworthy
cloud. During the runtime of virtual machine instances, they may also access or
generate temporary sensitive data. It is important that the VM instances destroy
all the sensitive temporary data after their execution.

2.2 Data Integrity Protection

Data integrity is another important security issue in cloud computing. Such a
security assurance is necessary not only for communications between cloud users
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and cloud servers, but also for data at rest on cloud servers. In particular, cloud
users may have great concerns on data integrity when outsourcing valuable data
assets in the cloud for storage. The possible long lifetime of outsourced data
would make it more likely vulnerable to intentional or inadvertent modification,
corruption, or deletion, be it caused by careless system maintenance or for the
purpose of cost saving. While the issue of data integrity for communications can
be addressed with off-the-shelf techniques such as message integrity code, that
for data storage seems to be more cumbersome because of the following facts:

First, cloud users may not be willing to fully rely on cloud service providers
for providing data integrity protection. This is because cloud services are usually
provided by third-party providers who are not necessary in the same trust do-
main of the cloud users. Although cloud users can establish the trust relationship
with cloud service providers via mechanisms such as service level agreement, this
practice is still not able to give cloud users the full confidence on data integrity
due to the possible occasional purposive or inadvertent misbehaviors from the
cloud service providers. Such misbehaviors could be the result of providers’ de-
cision to hide data corruptions caused by server hacks or Byzantine failures to
maintain reputation, or their neglect of keeping or deliberate deletion of some
rarely accessed data files so as to save resources. Given such a fact, cloud users
would like to protect integrity of their own data assets by themselves or through
their trusted agents.

Second, data integrity service should be provided in the timely manner. This
is because in practical applications it is usually too late for cloud users to find out
data corruption when they are actually retrieving the data. This is particularly
true for long term storage of large volume data, in which many portion/blocks
of data could be seldom accessed in a long period of time. When some portion
of data is found corrupted on retrieval, it could be impossible to recover as
information needed for recovery may have been lost during the long interval. For
example, disk recovery is usually not possible when the physical disk location of
the data has been overwritten by new data. The longer it is since data corruption,
the more likely it is that the data can not be recovered. To provide timely data
integrity service to cloud users to reduce the risk of data corruption of lost, it is
necessary to supply them with efficient data integrity check mechanism, which
should be able to process the possibly large volume of data without introducing
too much computation/communication overhead.

Third, the ”self-served” data integrity check requires not only the active
involvement of cloud users, but also the necessary expertise and computing power
of them. In cloud computing, however, cloud users vary greatly in their available
resources and expertise. It turns out that most cloud users may not have the
ability to perform data integrity check by themselves. A reasonable solution
to this issue is to let the cloud users delegate the task of data integrity check
to a third professional party of their trust (i.e., a third party auditor (TPA))
which has the necessary resources and expertise. During this delegation process,
however, the tension exists between TPA verifiability and data privacy. This is
because in practical applications user data may contain sensitive information,
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which cloud users may not want to disclose to TPA though they trust the TPA
in performing data integrity check. It is desirable, but challenging, to provide
such a solution to cloud users that allows them to delegate the task of data
integrity check without violate their data privacy.

Fourth, as data stored on cloud servers may subject to modification by cloud
users, the data integrity mechanism should efficiently support such data dynam-
ics. It means that, the overhead for supporting data dynamics introduced to
both cloud servers and the verifier, be it cloud users themselves or a third party
auditor, should be in a reasonable range. Ideally, modification of one block of
data should not affect other data blocks in terms of data integrity protection.

Preferably, a data integrity protection mechanism should address all these
issues, i.e., it should support frequent data integrity check on large volume of data
when allowing third-party verification and data dynamics. To provide strong
protection on data integrity, cryptographic methods can be applied. Intuitively,
one may want to use message authentication codes (MAC) for data integrity
as follows. Initially, data owners (cloud users) locally generate a small amount
MACs for the data files to be outsourced and maintain a local copy of these
MACs. Whenever the data owner needs to retrieve the file, he can verify the
data integrity by re-calculating the MAC of the received data file and comparing
it to the locally pre-computed value. In case the size of data file is large, a hash
tree [10] can be employed, where the leaves are hashes of data blocks and internal
nodes are hashes of their children of the tree. The data owner only needs to store
the root nodes of the hash tree to authenticate his received data. Whenever the
data owner needs to retrieve a block or blocks of data, the server sends the
data bock(s) as well as the necessary internal hash nodes, which can be either
computed on the fly or pre-computed by the cloud servers, to the data owner.
The data owner calculates the hash value(s) of the received data block(s), with
which he can compute the root hash given other internal hash nodes sent by the
server. Data integrity is verified against the stored root hash. Given the second
pre-image resistance property of the hash function, security of the data integrity
verification mechanism can be achieved. While this method allows data owners
to verify the correctness of the received data from cloud, it does not give any
assurance about the correctness of other outsourced data. In other words, it
does not give any guarantee that the data in the cloud are all actually intact,
unless the data are all downloaded by the owner. Because the amount of cloud
data can be huge, it would be quite impractical for data owner to retrieve all
of his data just in order to verify the data is still correct. In case that the data
auditing task is delegated to TPA, this method inevitably violates our suggested
requirements, including: large auditing cost for cloud server (for accessing and
transferring the whole data), and data privacy exposure to TPA (for retrieving
local copy of data).

To avoid retrieving data from the cloud server, a simple improvement to this
straightforward solution can be performed as follows: Before data outsourcing,
the owner chooses a set of random MAC keys, pre-computes the MACs for the
whole data file, and publishes these verification metadata to TPA. The TPA
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can each time reveal a secret MAC key to the cloud server and ask for a fresh
keyed MAC for comparison. In this way, the bandwidth cost for each auditing is
only at bit-length level (keys and MACs). However, a particular drawback is the
number of times a data file can be verified is limited by the number of secret keys
that must be a fixed priori, which might introduce additional on-line burden to
the data owner: Once all possible secret keys are exhausted, data owner then
has to retrieve data from the server in order to re-compute and re-publish new
MACs to TPA. Another drawback of this improved approach is its inability to
deal with data dynamics, as any data change would make those pre-computed
MACs unusable at all.

To significantly reduce the arbitrarily large communication overhead for pub-
lic verifiability without introducing the on-line burden to data owner, Wang et.
al [58] employ the homomorphic authenticator technique [20,51]. Homomorphic
authenticators are unforgeable metadata generated from individual data blocks,
which can be securely aggregated in such a way to assure a verifier that a lin-
ear combination of data blocks is correctly computed by verifying only the ag-
gregated authenticator. Using this technique requires additional information en-
coded along with the data before outsourcing. Specifically, data file is divided into
n blocks mi (i = 1, . . . , n) and each block mi has a corresponding homomorphic
authenticator σi computed as its metadata to ensure the integrity. Specifically,
σi is computed as σi = (H(mi) · umi)α, where H is a cryptographic hash func-
tion, u is random number, and α is a system master secret defined on the integer
field being used. Every time to verify that the cloud server is honestly storing
the data, data owner or TPA can submit challenges chal = {(i, νi)} for sampling
a set of randomly selected blocks, where {νi} can be arbitrary weights. Due to
the nice property of homomorphic authenticator, server only needs to response
a linear combination of the sampled data blocks µ =

∑
i νi ·mi, as well as an ag-

gregated authenticator σ =
∏
i σ

νi
i , both computed from {mi, σi, νi}i∈chal. Once

the response of µ and σ is verified by TPA, then high probabilistic guarantee on
large fraction of cloud data correctness can be obtained. Because off-the-shelf
error-correcting code technique can be adopted before data outsourcing [42,51],
large fraction of correct cloud data would be sufficient to recover the whole data.

2.3 Data Availability

The unlimited and elastic resources offered by cloud computing would greatly
improve cloud users’ ability in data storage and processing. For example, by
creating multiple replicas of data in the cloud, cloud users can enjoy robust data
storage which may not be available locally due to limited resources. To provide
high quality data services to their own customers, cloud users (data owners)
may replicate data on geographically distributed cloud servers and allow their
customers to access data efficiently via local cloud servers (the use of which is
similar to that in content distribution networks (CDNs)). Cloud users can also
save the effort for data maintenance by delegating it to the cloud service provider
who may have more expertise in doing this. In brief, with cloud computing cloud
users would be able to operate high quality and large scale data services with
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minimal local deployment and maintenance effort. During this process, one of
the main concerns from the data user would be data availability in the following
sense:

First, cloud computing should guarantee that user data stored in the cloud
can be immediately available whenever retrieved. In particular, it is important
to assure the availability of data services and hence business continuity (BC) of
cloud users in case of temporarily or permanently cloud outage. In the real life,
the catastrophic events are more likely to happen due the outage of cloud such
as communication outage, power outage, bankrupt of the cloud service provider,
etc.

Second, cloud computing should provide the agreed service quality to cloud
users. For example, for redundant data storage the cloud user may need to store
k physical replicas in the cloud. In this case, it is important to guarantee that
the k replicas are indeed available in the cloud. This is also true when cloud
users need to storage data replicas on geographically distributed cloud servers
for quality of service. In these cases, the data are available but the quality of
service would be degraded when the cloud service provider is not following the
agreement. Special attention should be paid to the case of long term data storage.
In such a scenario, it is important to assure that the cloud service provider does
not break the service agreement by secretly moving less frequently accessed data
from onsite storage to secondary storage. Such a break of the service agreement
is usually easy to be ignored but will potentially degrade the service quality for
cloud users. In many application scenarios, the quality of data service such as
the speed of data access is very critical to the business success. It is important
to promise data availability at every aspect of data services as discussed.

In order for providing dependable and trustworthy cloud data service to cloud
users, appropriate mechanism(s) should be in place for cloud users to efficiently
verify the availability of their data. For the first case, the common practice is
to let cloud users store multiple replicas of data on distributed cloud servers or
in multiple clouds. For assurance of data availability, we just need to provide a
way for cloud users to make sure that the multiple copies of data do exist on
designated clouds or cloud servers, which is one of the goals for the second case.
For the second case, the essential issue is how to establish the trust between the
cloud service provider and cloud users in the sense that the specific share of data
does exist on designated storage sites/regions. Service level agreements (SLAs)
can be adopted to achieve this goal as is used in many application systems.
For assuring appropriate use of SLAs and avoiding possible disputes, effective
verification mechanism(s) should be in place. Along this direction, the litera-
ture has proposed several cryptographic mechanisms to provide strong security
protection on data availability in cloud computing. Among these solutions are
two most promising ones: “provable data possession (PDP)” [20] and “proof of
retrievability (PoR)” [42,51].

In all these works great efforts are made to design solutions that meet vari-
ous requirements: high scheme efficiency, stateless verification, unbounded use of
queries and retrievability of data, etc. Considering the role of the verifier in the
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model, existing PDP or PoR schemes fall into two categories: private verifiabil-
ity and public verifiability. While schemes with private verifiability can achieve
higher scheme efficiency, public verifiability allows anyone, not just the client
(data owner), to challenge the cloud server for correctness of data storage while
keeping no private information. Clients are then able to delegate the evaluation
of the service performance to an independent third party verifier, without devo-
tion of their computation resources. Pubic verifiability is very important because
cloud clients vary tremendously regarding to their computing capabilities. Many
of them, such as individuals, may not be able to afford the overhead of perform-
ing frequent integrity checks by themselves. It seems more rational to equip the
verification protocol with public verifiability, which is expected to play a more
important role in achieving economies of scale for Cloud Computing. Moreover,
for efficiency consideration, download of the original outsourced data should not
be required by the verifier for the verification purpose.

Another major concern among previous designs is on how to support dynamic
data operation for cloud data storage applications. That is, the data availability
protocols should not only consider static data remotely stored in the cloud,
but also data that may be updated, e.g., through block modification, deletion
and insertion. The state-of-the-art in the context of remote data storage mainly
focus on static data files. Efficient protocol for verifying the availability of data
with dynamic updates is needed. The following is the brief summary of existing
solutions.

Ateniese et al. [20] are the first to consider public data verification in their de-
fined “provable data possession (PDP) model for ensuring possession of data files
on untrusted storages. Their scheme utilizes the RSA-based homomorphic lin-
ear authenticators for auditing outsourced data and suggests randomly sampling
a few blocks of the file. The public data verification in their scheme demands
the linear combination of sampled blocks exposed to external auditor. Juels et
al. [42] describe a “proof of retrievability (PoR) model, where spot-checking
and error-correcting codes are used to ensure both possession and retrievabil-
ity of data files on remote archive service systems. The number of verification
challenges a user can perform in this scheme is fixed a priori. Public data verifi-
cation is not supported in their main scheme. Public PoR is supported in their
extended solution based on the technique of Merkle-tree. But this approach only
works with encrypted data. Dodis et al. [35] give a study on different variants
of PoR with private data verification. Shacham et al. [51] design an improved
PoR scheme built from BLS signatures [28] with full proofs of security in the
security model defined in [42]. Similar to the construction in [20], they use pub-
licly verifiable homomorphic linear authenticators that are built from provably
secure BLS signatures. Based on the elegant BLS construction, a compact and
public verifiable scheme is obtained. Shah et al. [52,53] propose allowing a TPA
to keep online storage honest by first encrypting the data then sending a number
of pre-computed symmetric-keyed hashes over the encrypted data to the verifier.
The verifier checks both the integrity of the data file and the servers possession
of a previously committed decryption key. This scheme only works for encrypted
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files, and it suffers from the auditor statefulness and bounded usage, which may
potentially bring in online burden to users when the keyed hashes are used up.

In another related work, Ateniese et al. [22] propose a partially dynamic
version of the prior PDP scheme, using only symmetric key cryptography but
with a bounded number of audits. In [56], Wang et al. consider a similar support
for partial dynamic data storage in a distributed scenario with additional feature
of data error localization. In a subsequent work, Wang et al. [57] propose to
combine BLS-based HLA with MHT to support both public data verification
and full data dynamics. Almost simultaneously, Erway et al. [36] developed a
skip lists based scheme to enable provable data possession with full dynamics
support. The verification in these two protocols requires the linear combination
of sampled blocks just as [20,51]. For these schemes, a promising future work is to
consider batch verification, which can greatly reduce the computation cost on the
third party verifier when coping with a large number of verification delegations.

2.4 Secure Data Access

In Cloud Computing, various sensitive data information pooled in the cloud
demands the cloud data storage and sharing service to be responsible for secure,
efficient and reliable distribution of data content to potentially large number of
authorized users on behalf of data owners. To address this issue, one way is to
rely on cloud servers and let them implement access control mechanisms such as
Role-Based Access Control (RBAC) [6]. As access control mechanisms like RBAC
are mature techniques with the capability to deal with fine-grained access control
in large scale systems, the goal of data access control can be effectively achieved.
The main issue with this solution exists in two folds: Firstly, in access control
mechanisms like RBAC, the server need to have full access to all the user data
when fulfilling their tasks. This requires that cloud users should fully trust the
cloud servers, and hence the Cloud Service Provider (or even their employees).
Secondly, due to the existence of serious outsider attacks at different layer of
the system stack, e.g., cross VM attacks and bluepilling/subverting hypervisor
attacks, it requires that cloud servers fulfilling the access control tasks should
be well protected at every layer. In practice, this could be a challenging task
considering the fact that cloud servers reside in such an open Internet.

An alternative way to provide secure data access service is based on crypto-
graphic methods. In this type of solutions, the data owner (cloud user) encrypts
data before storing them in the cloud and retain the secret key to himself/herself.
Data access is granted by distributing the data decryption key to the authorized
users. In this way, we achieve “end-to-end” security without disclosing data con-
tent to cloud servers. Different from the first method, this type of solutions do
not demand the cloud users to fully trust the cloud server (and hence the Cloud
Service Provider and its employees). However, cloud server can still take full
charge of the management of the outsourced encrypted data since they are not
able to compromise the data confidentiality. What makes the problem challeng-
ing is the enforcement of fine-grained authorization policies, the support of policy
updates in dynamic scenarios, and the system scalability, while maintaining low
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level complexity of key management and data encryption. Thus, the main re-
search work along this direction is to simultaneously achieve fine-grainedness,
scalability and data confidentiality of data access control in cloud computing,
without introducing significant computation burden on the data owner.

In the literature, existing related mechanisms [34,38,43] can be found in the
areas of shared cryptographic file systems and access control of outsourced data,
which have drawn great attention recently. These application scenarios share the
similar characteristic with Cloud Computing in terms of untrustworthiness of
data storage, which makes these proposed mechanisms potentially applicable to
Cloud Computing. In [43], Kallahalla et al. proposed Plutus as a cryptographic
file system to secure file storage on untrusted servers. Plutus groups a set of
files with similar sharing attributes as a file-group and associates each file-group
with a symmetric lockbox-key. Each file is encrypted using a unique file- blcok
key which is further encrypted with the lockbox-key of the file-group to which
the file belongs. If the owner wants to share a file-group, he just delivers the
corresponding lockbox-key to users. One nice property of Plutus is its simplicity
in key management since just a small number keys are involved, which makes
the system very efficient. Plutus is particularly applicable to the case of coarse-
grained access control in which data files/users can be categorized into a small
number of groups. But it is not suitable for the case of fine-grained access control.
This is because the complexity of key management is proportional to the total
number of file-groups which could be huge in the case of fine-grained access
control.

In [38], Goh et al. proposed SiRiUS which is layered over existing file systems
such as NFS but provides end-to-end security. For the purpose of access control,
SiRiUS attaches each file with a meta data file that contains the file’s access
control list (ACL). SiRiUS encrypts the file with a file encryption key (FEK)
and then encrypts the FEK with each individual authorized user’s public key for
fine-grained data sharing. The extended version of SiRiUS uses NNL broadcast
encryption algorithm [46] to encrypt the FEK of each file. One nice property
of SiRiUS is that the number of keys that each user need to keep is minimal,
which indicates a minimal key storage complexity as well as a minimal data
decryption complexity at the user’s side. Moreover, as this scheme is built on
top of NNL broadcast encryption algorithm, it inherits all the security properties
of NNL scheme such as efficient traitor tracing. When applied in large scale
applications, SiRiUS requires that the number of unauthorized users should be
relatively small as compared to the total number of users. This is because the
data encryption complexity (and hence the ciphertext size) is proportional to
the number of unauthorized users.

Ateniese et al. [21] proposed a secure distributed storage scheme based on
proxy re-encryption. In this scheme, the data owner encrypts blocks of content
with symmetric content keys. The content keys are all encrypted with a master
public key, which can only be decrypted by the master private key kept by
the data owner. The data owner uses his master private key and users public
key to generate proxy re-encryption keys, with which the semi-trusted server
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Fig. 2. An example for attribute-based encryption

can then convert the ciphertext into that for a specific granted user and fulfill
the task of access control enforcement. One nice property of this solution is
that it is very efficient in dealing with user management, especially for user
revocation. Actually, to revoke users, the server just needs to keep a revoked user
list and revoke a user by refusing to convert the ciphertext for him/her. When
applying this scheme in Cloud Computing, it requires that there is no collusion
between the server and any authorized but malicious user. This is because a
single such collusion would expose decryption keys of all the encrypted data and
compromise data security of the system completely. For this sake, this solution
will be more applicable to application scenarios in which cloud servers can be
trusted by the data owner (a cloud user). Different from the first solution, this
scheme is vulnerable to outsider attacks since on the cloud servers just ciphetexts
of data are stored. Data confidentiality can be protected even if the server is
compromised by outsider attackers.

In [34], Vimercati et al. proposed a solution for securing data storage on
untrusted servers based on key derivation methods. In this proposed scheme,
each file is encrypted with a symmetric key and each user is assigned a secret
key. To grant the access privilege for a user, the owner creates corresponding
public tokens from which, together with his secret key, the user is able to derive
decryption keys of desired files. The owner then transmits these public tokens to
the semi-trusted server and delegates the task of token distribution to it. Just
given these public tokens, the server is not able to derive the decryption key of
any file. This solution introduces a minimal number of secret key per user and
a minimal number of encryption key for each file.

In order to achieve secure, scalable and fine-grained data sharing on out-
sourced data in the cloud, Yu et al. [60] proposed a scheme which exploits the
following three advanced cryptographic techniques: attributed-based encryption
(ABE) [41], proxy re-encryption (PRE) [25] and lazy re-encryption [43]. The pro-
posed scheme is partially based on the fact that, in practical application scenarios
each data file can be associated with a set of attributes which are meaningful
in the context of interest. The access structure of each user can thus be defined
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as a unique logical expression over these attributes to reflect the scope of data
files that the user is allowed to access. As the logical expression can represent
any desired data file set, fine-grainedness of data access control is achieved. To
enforce these access structures, [60] defines a public key for each attribute and
encrypts files using the public keys corresponding to their attributes. User secret
keys are defined to reflect their access structures so that a user is able to decrypt
a ciphertext if and only if the data file attributes satisfy his access structure.
Figure 2 is a toy example for the case of health record exchange and sharing. In
this example, the health record is associated with a set of attributes (non-PII
information). User access structure is defined in the way that just allows the user
to access health records for asian or white patients treated by hospital A with di-
abetes. Such a definition of access privilege is in accordance with the descriptive
way seen in our real life and could be very expressive. Different from traditional
access control mechanisms such as RBAC, the access policy in this scheme is
enforced merely by encryption/decryption. According to [60], such a design also
brings about the efficiency benefit in that, 1) the complexity of data file en-
cryption is just related the number of attributes associated to the file, which is
independent to the number of users in the system, and 2) the functionality of this
scheme is similar to RBAC or ABAC in the sense that it separates the process of
data-attribution association from user-privilege binding. With such a design, the
file creation/deletion and new user grant operations just affect current file/user
without involving system-wide data file update or re-keying. To resolve the chal-
lenging issue of user revocation, the proposed scheme enables the data owner
to delegate tasks of data file re-encryption and user secret key update to cloud
servers without disclosing data file plaintexts or user access privilege information.
They achieve these design goals by exploiting a novel cryptographic primitive,
namely key policy attribute-based encryption (KP-ABE) [41], and combine it
with the technique of proxy re- encryption (PRE) and lazy re-encryption.

2.5 Compliances and Regulations

For mission-critical applications, store and access of sensitive data is strictly
regulated. Both the data owner and the cloud service provider should be aware
of the underlying regulations/compliances before moving sensitive data into the
cloud. Examples of these compliances are as follows.

– Health Insurance Portability and Accountability Act (HIPAA) The privacy
rule of HIPAA [14] regulates the correct use and disclosure of private health
information held by “covered entities” as defined HIPAA and the Depart-
ment of Health and Human Services (HHS). In particular, it defines 18 types
of Protected Health Information (PHI) held by a covered entity and sets up
regulations for the appropriate use and disclosure of PHI. PHI usually refers
to information that can be linked to an individual. But it is frequently in-
terpreted broadly and can include all parts in an individual’s health record
and/or payment history.
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– Federal Information Security Management Act (FISMA) FISM [2] intends
to regulate the information security for U.S. federal government agencies
and/or their contractors. A security framework is defined for information se-
curity and must be followed by all the agent information systems. Under this
framework, a suit of security measurements are required, such as information
categorization, security control, risk management, etc.

– SarbanesOxley (SOX) SOX [11] was enacted for public companies with the
primary goal of defending against corporate and accounting scandals in the
financial market. 11 titles are include in this act which involve several as-
pects of financial information security such as integrity, accountability, secure
audit, etc.

– Statement on Auditing Standards No. 70 (SAS 70) SAS 70 [7] aims to reg-
ulate the contracted internal controls for service organizations, including
hosted data centers, insurance claims processing companies, credit informa-
tion processors, etc. It defines a set of criteria for auditing standards that
an auditor must employ.

These compliances impose various requirements on data security. In a cloud
computing environment, following the compliances can be challenging due to
the cloud characteristics, e.g., multi-tenancy, Internet-based services, etc. Cer-
tain security certification and/or accreditation of the cloud service provider can
be required before the sensitive data can be stored in the cloud. Such a security
certification usually involves comprehensive assessment on the service provider
with regard to its operational and/or technical security controls. For example,
FISMA requires such a certification/accreditation before the agents can uti-
lize cloud services for data processing/storage. Whenever necessary, strong data
protection such as cryptographic mechanism should be employed to provide in-
formation confidentiality, integrity, availability, and more. Data access should
be audited to help detect inappropriate disclosure and/or modification of data.
Attention should also be paid to the geographic location of data storage, which
can be regulated by the export control regulations.

2.6 Audition

By moving into the cloud, cloud users lose physical control on their data. Cloud
users have to rely on cloud service providers for security assurance and quality of
service. In most cases, all the requirements from the cloud users will be defined
as a Service Level Agreement with cloud service providers. However, it becomes
difficult in the cloud for users, or their agents, to audit the services provided
by the cloud service providers. This is because cloud service providers usually
manage the whole system stack under the level of service provided. To abstract
the underlying service, it is necessary for cloud service providers to hide all the
lower level implementations and just expose necessary interfaces to cloud users.
On the contrary to this, data audit requires that cloud service providers provide
transparent services to cloud users. Given these two contradicting goals, it is
difficult to audit all parts of the services provided by the cloud service providers.
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Notwithstanding the hardness of auditing the cloud services transparently,
in practice it might be adequate to verify the services provided in a “black-box”
manner in the sense that just the key properties of the services are checked
during audit. In particular, for security services it would be enough to verify
whether the cloud service providers meet the requirements of the security goals
such as data confidentiality, integrity, availability as well as complying to the
compliances. In practical systems, it is very possibly that, instead of auditing
the services by themselves, cloud users would delegate data audit to third-party
federated organization. Such a delegation will not only save the effort for cloud
users, but also let them take advantage of expertise from the federated party,
e.g., legal expertise. In some cases, it may be necessary to enable public auditing
to facilitate the data auditing process. To enable public auditing, the whole
service architecture design should not only be secure, but more importantly be
practical from a systematic point of view. Keeping this in mind, we can briefly
elaborate a set of suggested desirable properties below that satisfy such a design
principle. Note that these requirements are ideal goals. They are not necessarily
complete yet or even fully achievable with current technologies.

Minimize auditing overhead First and foremost, the overhead imposed on the
cloud server by the auditing process must not outweigh its benefits. Such over-
head may include both the I/O cost for data accessing and the bandwidth cost
for data transferring. Besides, the extra online burden on data owner should also
be as low as possible. Ideally, after auditing delegation, data owner should just
enjoy the cloud storage service while be worry-free about the storage correctness
auditing.

Protect data privacy Data privacy protection has always been an important
aspect of service level agreement for cloud storage services. Thus, the implemen-
tation of public auditing protocol should not violate the owners data privacy.
In other words, TPA should be able to efficiently audit the cloud data storage
without demanding the local copy of data or even learning the data content.

Support data dynamics As cloud storage service is not just a data warehouse,
owners are subject to dynamically update their data via various application
purposes. The design of auditing protocol should incorporate this important
feature of data dynamics in Cloud Computing.

Support batch auditing The prevalence of large scale cloud storage service
further demands the auditing efficiency. When receiving multiple auditing tasks
from different owners delegations, TPA should still be able to handle them in a
fast yet cost-effective fashion. This property could essentially enable the scala-
bility of public auditing service even under a storage cloud with large number
of data owners.

To achieve these goals, strong cryptographic tools would be employed. For ex-
ample, we can use the technique POR [42] to audit data availability and integrity
in the cloud. However, it could be hard to achieve all these goals simultaneously
using existing cryptographic tools. In most cases, we still have to rely on the
cloud service provider to audit data.
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3 Commercial and Organizational Practices

Although there is still no standardized draft available for data security in Cloud
Computing (up to the time when this book was prepared), commercial parties
and organizations in the community do provide various proposals. This section
will give a brief overview of the security mechanisms adopted by the cloud com-
puting service providers to ensure customers security and privacy.

Amazon Web Services (AWS) Amazon offers its cloud computing ser-
vices using Amazon Web Services (AWS) [1] which provides a collection of remote
computing services, including Amazon S3, EC2, Virtual Private Cloud (VPC),
etc. AWS provides a suit of data security solutions at various levels of the system
stack.

Amazon S3 provides both bucket- and object-level access control. By default
only authorized access is allowed by the bucket and/or object creator (data
owner). Access control lists (ACLs) at the bucket/object level are used to grant
user access, which is authenticated via user’s signature with his/her private key.
Bucket and object level ACLs are independent. For example, an object does not
automatically inherit ACLs from its bucket. S3 provides the following types of
ACLs:

Authorized user with reference to Bucket:
- read: can list the file names, size, modified date
- write: can upload, delete files
- read access control policy(ACP): can check ACL of a bucket
- write ACP: can update ACL.

Authorized user with reference to object:
- read: can download the file.
- write: can replace or delete file
- read ACP: can list ACL of the file
- write ACP: can modify ACL of the file.

S3 defines four types of users who may be granted access permission:
- Owner (account holder)
- Amazon S3 users (by adding amazon.com email address)
- Authenticated User (sharing globally with all S3 users)
- Non Authenticated users (All Users)

In Amazon EC2 security protection is provided at multiple levels such as hy-
pervisor, operating system, virtual machine instance, and API. For hypervisor,
EC2 utilizes a highly customized version of the Xen hypervisor and provides
four separate privilege modes for CPU. The host OS executes in most-privileged
mode, the guest OS runs in a lesser-privileged mode, and applications are in the
least privileged mode. Host OS can only be accessed by administrators of AWS.
Customers have full access to their guest OS and can configure multi-factor
authentication. AWS does not have any access privilege to customer instances
and their guest OS. Different instances running on the same physical machine
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are isolated from each other via the Xen hypervisor. Calls to launch and termi-
nate instances, change firewall parameters, and perform other functions are all
signed by the customers Amazon Secret Access Key. Without access to the cus-
tomers Secret Access Key, Amazon EC2 API calls cannot be made. In addition,
API calls can be encrypted with SSL to maintain confidentiality. In addition,
Amazon Virtual Private Cloud (VPC) enables to use isolated resources that
one owns within the AWS cloud, and then connect those resources directly to
your own datacenter using industry-standard encrypted IPsec VPN connections.

Microsoft Windows Azure Microsoft offers its cloud computing services
using Windows Azure [5]. Windows Azure is a cloud services operating system
that serves as the development, service hosting and service management envi-
ronment for the Windows Azure platform. Windows Azure provides developers
with on-demand compute and storage to host, scale, and manages web applica-
tions on the Internet through Microsoft datacenters. Windows Azure provides
confidentiality, integrity, and availability of customer data, and will also provide
transparent accountability to allow customers and their agents to track admin-
istration of applications and infrastructure, by themselves and by Microsoft.

Confidentiality Windows Azure provides data confidentiality via identity and
access management, isolation, and encryption. The identity and access manage-
ment mechanism adopts service management API (SMAPI) to provide web ser-
vices via the Representational State Transfer (REST) protocol, which runs over
SSL and is authenticated with a certificate and private key generated by the
customer. In windows azure customers are not granted administrative access to
their VMs, and customer software in Windows Azure is restricted to running
under a low-privilege account by default. By this the level of attack will be re-
duced. Communication between Azure internal components are always protected
with SSL and via mutual authentication. To assure data confidentiality, Azure
provides isolation at different levels: hypervisor, root OS, guest VM, fabric con-
troller. Customer access infrastructure is also logically isolated from customer
applications and storage. Critical internal stored or transmitted data can be
encrypted with the .NET Cryptographic Service Providers (CSPs) provided by
the Azure SDK. Azure’s Storage subsystem provides data deletion operations
for customers. Successful execution of a delete operation removes all references
to the associated data item and it cannot be accessed via the storage APIs.

Integrity The primary mechanism of integrity protection for customer data
lies within the Fabric VM design itself. Each VM is connected to three local
Virtual Hard Drives (VHDs): The D drive contains one of several versions of the
Guest OS, kept up-to-date with relevant patches, selectable by the customer. The
E drive contains an image constructed by the FC based on the package provided
by the customer. The C drive contains configuration information, paging files,
and other storage. The D and E virtual drives are effectively read-only and the
access to the C drive is read/write. Only authorized customers accessing their
Hosted Services via the Windows Azure Portal or SMAPI (as described earlier)
can change the configuration file.
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The monitoring Agent (MA) implemented by Azure gathers monitoring and
log information from many places and writes it to the log files. It then pushes
these log files into a pre-configured Windows azure storage account for audit.
Optionally, the customers can also use Monitoring Data Analysis Service which
will give the summary and analysis of the log files.

Google App Engine Google App Engine [3] is a platform for developing
and hosting web applications in Google managed datacenters. Rather than seg-
regating each customers data onto a single machine or set of machines, Google
Apps data from all Google customers is distributed amongst a shared infras-
tructure composed of Googles many homogeneous machines and located across
Googles many data centers. Google Apps uses a distributed file system designed
to store large amounts of data across large numbers of computers. Structured
data is then stored in a large distributed database built on top of the file system.
Data is chunked and replicated over multiple systems such that no one system
is a single point of failure. Data chunks are given random file names and are not
stored in clear text so they are not humanly readable. Googles security vision is
formed around a multi-layered security strategy that provides controls at mul-
tiple levels of data storage, access, and transfer. For example, Google provides
service-to-service authentication based on X.509 certificates which are issued by
Google-internal certificate authority. For deleted data, all the pointers to the
data are deleted to make sure that the requested item is deleted from all the
active servers. Google Apps also provides several additional security options that
can be utilized by a customers domain administrators. The security options in-
clude single sign-on, administrator-based single sign-out, policy-enforced secure
mail transfer, secure browser connections, etc.

4 Summary

Cloud computing is a promising computing model that has drawn extensive
attention from both the industry and academy. Data security is a crucial is-
sue for deploying applications into the cloud. In this chapter, we discussed the
basic concepts behind the cloud and introduced the security issues underlying
cloud computing. In particular, we defined the model for data security in cloud
computing, which includes security services and adversary model. This chapter
focuses on a set of crucial security issues pertaining to storing and accessing
data in cloud computing: data confidentiality, integrity, availability, secure data
access, regulations and compliances, and audition. We analyzed each issue with
details and discussed the possible solutions based on existing techniques. Dur-
ing our discussion, we took into account strong attackers such as insiders and
covered not only the regular application scenarios but also mission-critical ones.
We need to point out that, cloud computing is still at its early stage and data
security in cloud computing is an on-going research topic. Rather than offering a
complete definition and/or solution for this challenging issue, this chapter aims
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at providing a reference for practical deployment and further research on this
topic.

Exercises

1. Explain the concept of Cloud Computing and list at least five of its most
important characteristics.

2. What are the key enabling techniques of Cloud Computing?
3. What are the data security issues in Cloud Computing? What security ser-

vices are needed to address these issues?
4. What are the issues for protecting data confidentiality with encryption? Ex-

plain existing solutions for these issues.
5. Why protecting data integrity and availability is challenging in Cloud Com-

puting? List several existing solutions for this issue.
6. Why server mediated data access control is not enough for Cloud Comput-

ing? List several cryptography-based solutions and point out their pros and
cons.

7. Describe several compliances and regulations pertaining to data security and
privacy. Discuss the challenges to implement these compliances and regula-
tions in the cloud.

8. Give examples of how existing cloud companies solve the issue of data secu-
rity.

9. Section 2.2 presents a data integrity check mechanism for large data files
based on the hash tree. In the hash tree, each leaf node represents a hash
value computed for each data block in the file. The internal nodes are hashes
of their children. The root node (a hash value) of the hash tree is stored
by the data owner. While checking the integrity of a data block, the data
owner asks the server to send the block along with the necessary internal
hash values. The data owner computes the root hash with data received and
compares it with the root hash stored. Equality of the two means that the
data block is intact.
Assume that each data block has the same probability p of being corrupted.
The owner is actually able to detect any such corruption of the file with
probability 1 − p by randomly checking n data blocks. Please determine n
for p = 0.1. What is n if p is 0.01, 0.001, and 0.0001 respectively?
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