
1

Chapter 15

Effective Multi-user Broadcast Authentication in
Wireless Sensor Networks

Kui Ren1, Wenjing Lou2, and Yanchao Zhang3
1Dept. of ECE, Illinois Institute of Technology, Chicago, IL 60616

kren@ece.iit.edu
2Dept. of ECE, Worcester Polytechnic Institute, Worcester, MA 01609

wjlou@ece.wpi.edu
3Dept. of ECE, New Jersey Institute of Technology, Newark, NJ 07102

yczhang@njit.edu

Abstract—Broadcast authentication is a critical security service in wireless
sensor networks (WSNs), as it allows the mobile users of WSNs to broadcast
messages to multiple sensor nodes in a secure way. Previous solutions on broadcast
authentication are mostly symmetric-key-based solutions such as µTESLA and
multilevel µTESLA. These schemes are usually efficient; however, they all suffer
from severe energy-depletion attacks resulted from the nature of delayed message
authentication. Being aware of the security vulnerability inherent to existing
solutions, we present several efficient public-key-based schemes in this chapter to
achieve immediate broadcast authentication with significantly improved security
strength. Our schemes are built upon the unique integration of several
cryptographic techniques, including the Bloom filter, the partial message recovery
signature scheme and the Merkle hash tree. We prove the effectiveness and
efficiency of the proposed schemes by a comprehensive quantitative analysis of their
energy consumption regarding both computation and communication.

Index: Security, Wireless Sensor Networks, Broadcast Authentication,
Multi-user

Encyclopedia on Ad Hoc and Ubiquitous Computing, edited by Dharma Agrawal and Bin Xie, World Scientific, 2009

Book Title

2

15.1 Introduction

Wireless Sensor Networks (WSNs) have enabled data gathering from a vast
geographical region and present unprecedented opportunities for a wide range of
tracking and monitoring applications from both civilian and military domains [2],
[3], [31]. In these applications, WSNs are expected to process, store, and provide
the sensed data to the network users upon their demands [20]. As the most
common communication paradigm, the network users are expected to issue the
queries to the network in order to obtain the information of their interest.
Furthermore, in wireless sensor and actuator networks [3], the network users may
need to issue their commands to the network (probably based on the information
they received from the network). In both cases, there could be a large number of
users in the WSNs, which might be either mobile or static; and the users may use
their mobile clients to query or command the sensor nodes from anywhere in the
WSN. Obviously, broadcast/multicast 1 operations are fundamental to the
realization of these network functions. Hence, it is also highly important to
ensure broadcast authentication for the security purpose.

Broadcast authentication in WSNs was first addressed by µTESLA [27]. In
µTESLA, users of WSNs are assumed to be one or a few fixed sinks, which are
always assumed to be trustworthy. The scheme adopts a one-way hash function

()h and uses the hash preimages as keys in a message authentication code (MAC)
algorithm. Initially, sensor nodes are preloaded with)(0 xhK n= , where x is the
secret held by the sink. Then,)(1

1 xhK n−= is used to generate MACs for all the
broadcast messages sent within time interval 1I . During time interval 2I , the
sink broadcasts 1K , and sensor nodes verify 01)(KKh = .The authenticity of
messages received during time interval 1I are then verified using 1K . This
delayed disclosure technique is used for the entire hash chain and thus demands
loosely synchronized clocks between the sink and sensor nodes. µTESLA is later
enhanced in [17] to overcome the length limit of the hash chain. Most recently,
µTESLA is also extended in [18] to support multiuser scenario but the scheme
assumes that each sensor node only interacts with a very limited number of users.

It is generally held that µTESLA-like schemes have the following
shortcomings when applied to multi-hop large scale WSNs even in the single-
user scenario: 1) all the receivers have to buffer all the messages received within
one time interval; 2) they are subject to Wormhole attacks [12], where messages

1For our purpose, we do not distinguish multicast from broadcast in this chapter.

Chapter Title for Chapter 1 Headings

3

could be forged due to the propagation delay of the disclosed keys. However,
here we point out a much more serious vulnerability of µTESLA-like schemes
when they are applied in multi-hop WSNs. Since sensor nodes buffer all the
messages received within one time interval, an adversary can hence food the
whole network arbitrarily. All the adversary has to do is to claim that the
flooding messages belong to the current time interval which should be buffered
for authentication until the next time interval. Since wireless transmission is very
expensive in WSNs, and WSNs are extremely energy constrained, the ability to
food the network arbitrarily could cause devastating Denial of Service (DoS)
attacks. Moreover, this type of energy-depletion DoS attacks become more
devastating in multiuser scenario as the adversary now can have more targets and
hence more chances to generate bogus messages without being detected.
Obviously, all these attacks are due to delayed authentication of the broadcast
messages. In [12], TIK is proposed to achieve immediate key disclosure and
hence immediate message authentication based on precise time synchronization
between the sink and receiving nodes. However, this technique is not applicable
in WSNs as pointed out by the authors. Therefore, multiuser broadcast
authentication still remains a wide open problem in WSNs.

Observing that symmetric-key-based broadcast authentication schemes such
as µTESLA are insufficient for WSNs, we resort to public key cryptography
(PKC) for more effective solutions in this chapter. We address multiuser
broadcast authentication problem in WSNs by designing PKC-based solutions
with minimized computational and communication costs.

Objectives of the chapter: We focus on providing multi-user broadcast
authentication in WSNs, where the broadcast messages are initiated by a number
of network users. Please note that the network users in this chapter refer to
personnel or devices that use the WSN; they are not sensor nodes. On the one
hand, we aim to achieve immediate message authentication and resist DoS
attacks in the presence of both user revocation and node compromise. On the
other hand, we want to optimize both computational and communication costs.

Overview of the chapter: In this chapter, we propose four different public-
key-based approaches and provide in-depth analysis of their advantages and
disadvantages. In all the four approaches, the users are always authenticated
through their public keys. We first propose a straightforward certificate-based
approach and point out its high energy inefficiency with respect to both
communication and computation costs. We then propose a direct storage based
scheme, which has high efficiency but suffers from the scalability problem. A

Book Title

4

Bloom filter based scheme is further proposed to improve the memory efficiency
over the direct storage based scheme. Further techniques are also developed to
increase the security strength of the proposed scheme. Lastly, we propose a
hybrid scheme to support a larger number of network users by employing the
Merkle hash tree technique. We give an in-depth quantitative analysis of the
proposed schemes and demonstrate their effectiveness and efficiency in WSNs in
terms of energy consumption.

Organization of the chapter: The remaining part of this chapter is as follows:
In Section II, we introduce the cryptographic mechanisms to be used. Section III
presents the system assumption, adversary model, and security objectives. In
Section IV, we introduce two basic schemes. We next propose two advanced
schemes and detail the underlying design logic in Section V. In Section VI, we
analyze the performance and security strength of the proposed schemes. Section
VII then discusses further enhancements of the proposed schemes. Finally,
Section VIII is the future work and Section IX is the conclusion.

15. 2 Background

15.2.1 Digital Signature

A digital signature algorithm is a cryptographic tool for generating non-
repudiation evidence, authenticating the integrity as well as the origin of a signed
message. In a digital signature algorithm, a signer keeps a private key secret and
publishes the corresponding public key. The private key is used by the signer to
generate digital signatures on messages and the public key is used by anyone to
verify signatures on messages. The digital signature algorithms mostly used are
RSA [32] and DSA [26]. ECDSA is referred to Elliptic Curve Digital Signature
Algorithm [11]. While RSA with 1024-bit keys (RSA-1024) provides the
currently accepted security level, it is equivalent in security strength to ECC with
160-bit keys (ECC-160). Hence, for the same level of security strength, ECDSA
uses a much short key size and hence has a short signature size (320-bit).

15.2.2 The Bloom Filter and Counting Bloom Filter

A Bloom filter is a simple space-efficient randomized data structure for
representing a set in order to support membership queries [23]. A Bloom filter for

Chapter Title for Chapter 1 Headings

5

representing a set 1SS = , 2S ,…, nS of n elements is described by a vector υ of
m bits, initially all set to 0. A Bloom filter uses k independent hash functions

1h ,…, kh with range 0 ,…, 1 m- which map each item in the universe to a
random number uniform over 1]-m ..., [0, . For each element Ss∈ , the bits

)(shi are set to 1 for ki ≤≤1 . Note that a bit of υ can be set to 1 multiple
times. To check if an item x is in S , we check whether all bits)(xhi are set to 1.
If not, x is not a member of S for certain, that is, no false negative error. If yes,
x is assumed to be in S . A Bloom filter may yield a false positive. It may
suggest that an element x is in S even though it is not. The probability of a
false positive for an element not in the set can be calculated as follows. After all
the elements of S are hashed into the Bloom filter, the probability that a specific
bit is still 0 is mknkn em /)/11(−≈− . The probability of a false positive f is then

kmknkkn em)1())/11(1(/−−≈−− .We let kpf)1(−= . From now on, for
convenience, we use the asymptotic approximations p and f to represent,
respectively, the probability that a bit in the Bloom filter is 0 and the probability
of a false positive. Let mknep /−= .

The counting Bloom filter is a variation of the Bloom filter, which allows
member deletion. In the counting Bloom filter, each entry in the Bloom filter is
not a single bit but a small counter that tracks the number of elements that have
hashed to that location [10]. When an element is deleted, the corresponding
counters are decremented. To avoid overflow, counters must be chosen large
enough [10].

15.2.3 The Merkle Hash Tree

A Merkle Tree is a construction introduced by Merkle in 1979 to build secure
authentication schemes from hash functions [22]. It is a tree of hashes where the
leaves in the tree are hashes of the authentic data values wnnn ,...,, 21 . Nodes
further up in the tree are the hashes of their respective children. For instance,
assuming that 4=w in Fig. 15.1, the values of the four leaf nodes are the hashes
of the data values,)(inh , 1=i , 2 , 3 , 4 , respectively, under a one-way hash
function ()h (e.g., SHA-1 [25]). The value of an internal node A
is))(||)((21 nhnhhha = , and the value of the root node is)||(bar hhhh = . rh is
used to commit to the entire tree to authenticate any subset of the data values

1n , 2n , 3n , and 4n in conjunction with a small amount of auxiliary authentication
information AAI (i.e., N2log hash values where N is the number of leaf nodes).
For example, a receiver with the authentic hr requests for 3n and requires the

Book Title

6

authentication of the received 3n . The source sends the ><)(,:AAI 4nhha to the
receiver. The receiver can then verify 3n by first
computing))(||)((),(433 nhnhhhnh b = and),||(bar hhhh = and then checking
if the calculated rh is the same as the authentic root value rh . Only if this check is
positive, the user accepts 3n . The Merkle hash tree can prevent an adversary
from sending bogus data to deceive the client. In the earlier example, an
adversary impersonating can not send a bogus 3n to the client without being
detected. This is because he can not find ah and)(4nh such that

ra hnhnhhhh =)))(||)((||(43 as ()h is one-way.

Fig. 15.1 An example of Merkle hash tree

15.3 System Model, Adversary Model, and Design Goals

System Model: In this chapter, we consider a large spatially distributed WSN,
consisting of a fixed sink(s) and a large number of sensor nodes. The sensor
nodes are usually resource-constrained with respect to memory space,
computation capability, bandwidth, and power supply. The WSN is aimed to
offer information services to many network users that roam in the network, in
addition to the fixed sink(s) [20]. The network users may include mobile sinks,
vehicles, and people with mobile clients, and they are assumed to be more
powerful than sensor nodes in terms of computation and communication abilities.
For example, the network users could consist of a number of doctors, nurses,
medical equipment (acting as actuators) and so on, in the case of CodeBlue [19],
where the WSN is used for emergency medical response. These network users
broadcast queries/commands through sensor nodes in the vicinity, and expect the
replies that reflect the latest network information. The network users can also
communicate with the sink or the backend server directly without going through
the WSN if necessary. We assume that the sink is always trustworthy but the
sensor nodes are subject to compromise. At the same time, the users of the WSN
may be dynamically revoked due to either membership changes or compromise,

Chapter Title for Chapter 1 Headings

7

and the revocation pattern is not restricted. We also assume that the WSN is
loosely synchronized.
Adversary Model: In this chapter, we assume that the adversary’s goal is to inject
bogus messages into the network, attempt to deceive sensor nodes, and obtain the
information of his interest. Additionally, Denial of Service (DoS) attacks such as
bogus message flooding, aiming at exhausting constrained network resources, is
another important focus of the chapter. We assume that the adversary is able to
compromise both network users and the sensor nodes. The adversary hence could
exploit the compromised users/nodes for such attacks. However, we do assume
that adversary cannot compromise an unlimited number of sensor nodes.
Design Motivation: When µTESLA was proposed, sensor nodes were assumed to
be extremely resource-constrained, especially with respect to computation
capability, bandwidth availability, and energy supply [27]. Therefore, PKC was
thought to be too computationally expensive for WSNs, though it could provide
much simpler solutions with much stronger security resilience. At the same time,
the computationally efficient onetime signature schemes are also considered
unsuitable for WSNs, as they usually involve intense communications [27].
However, recent studies [9], [29], [35] showed that, contrary to widely held
beliefs, PKC with even software implementations only is very viable on sensor
nodes. For example [35], Elliptic Curve Cryptography (ECC) signature
verification takes 1.61s with 160-bit keys on ATmega128 8MHz, a processor
used in current Crossbow motes platform [8]. Furthermore, the computational
cost is expected to fall faster than the cost to transmit and receive. For example,
ultra-low-power microcontrollers such as the 16-bit Texas Instruments MSP430
[34] can execute the same number of instructions at less than half the power
required by the 8-bit ATmega128L. The benefits of transmitting shorter ECC
keys and hence shorter messages/signatures generation sensor nodes are expected
to combine ultra-low power circuitry with so-called power scavengers such as
Heliomote [15], which allow continuous energy supply to the nodes. At least 8-
20µW of power can be generated using MEMS-based power scavengers [4].
Other solar-based systems are even able to deliver power up to 100mW for the
MICA Motes [15], [16]. These results indicate that, with the advance of fast
growing technology, PKC is no longer impractical for WSNs, though still
expensive for the current generation sensor nodes, and its wide acceptance is
expected in the near future [9].
Design Goals: Our security goal is straightforward: all messages broadcasted by
the network users of the WSN should be authenticated so that the bogus ones

Book Title

8

inserted by the illegitimate users and/or compromised sensor nodes can be
efficiently rejected/filtered. We also focus on minimizing the overheads of the
security design. Especially, energy efficiency (with respect to both
communication and computation) and storage overhead are given priority to cope
with the resource-constrained nature of WSNs.

15.4 The Basic Schemes

We explore the PKC domain for the possible solutions to multiuser broadcast
authentication in WSNs. The PKC-based solutions realize immediate message
authentication and thus can overcome the delayed message authentication
problem present in µTESLA-like schemes.

15.4.1 The Certificate-Based Authentication Scheme (CAS)

CAS works as follows. Each user (not a sensor) of the WSN is equipped with a
public/private key pair (PK/SK), and signs every message he broadcasts with his
SK using a digital signature scheme such as ECDSA [11]. Note that in all our
designs, we do not require sensors to have public/private key pairs for themselves.
To prove the user’s ownership over his public key, the sink2 is also equipped
with a public/private key pair and serves as the certification authority (CA). The
sink issues each user a public key certificate, which, to its simplest form, consists
of the following content)}||ExpT||PK{h(U,ExpT,SIG,PKUCert

IDSinkIDID UIDSKUIDU = ,
where IDU denotes the user’s ID,

IDUPK denotes its public key, ExpT denotes
certificate expiration time, and SIG is a signature over)}||ExpT||PKh(U

IDUID
with SinkSK . Hence, a broadcast message is now of the form as follows:

><
ID

IDU
UIDSK

CertMttUhSIGttM)},||||({||,, (I)
Here, M denotes the broadcast message and tt denotes the current time. For the
purpose of message authentication, sensor nodes are preloaded with SinkPK before
the network deployment; and message verification contains two steps: the user
certificate verification and the message signature verification.
CAS suffers from two main drawbacks. First and foremost, it is not efficient in
communication, as the certificate has to be transmitted along with the message
across every hop as the message propagates in the WSN. A large per message
overhead will result in more energy consumption on every single sensor node. In

2 We assume that the sink represents the network planner.

Chapter Title for Chapter 1 Headings

9

CAS, the per message overhead is as high as
128|||)}||({||| =++

IDIDU UIDSK CertMUhSIGtt bytes. As in [35], the user
certificate is at least 86 bytes, when ECDSA-160 [11] is used. Here, we assume
that tt and IDU are both two bytes, in which case the scheme supports up to
65,535 network users. Moreover, 40|)}||({| =MUhSIG IDSK IDU

 bytes, when
ECDSA-160 [11] is assumed. Second, to authenticate each message, it always
takes two expensive signature verification operations. This is because the
certificate should always be authenticated in the first place.

15.4.2 The Direct Storage Based Authentication Scheme (DAS)

One way to reduce the per message overhead and the computational cost is to
eliminate the existence of the certificate. A straightforward approach is then to let
sensor nodes simply store all the current users’ ID information and their
corresponding public keys. In this way, a broadcast message now only contains
the following contents:

><
IDIDU UIDIDSK PKUMttUhSIGttM ,)},||||({,, (II)

Verifying the authenticity of a user public key is reduced to finding out whether
or not the attached user/public key pair is contained in the local memory. Upon
user revocation, the sink simply sends out ID information of the revoked user,
and every sensor node deletes the corresponding user/public key pair in its
memory.

The drawbacks of DAS are obvious. Given a storage limit of 5 KB, only 232
users can be supported at most; even with a memory space of 19.5 KB, DAS can
only support up to 1, 000 users. At the same time, CAS can support up to 2, 560
users given the same storage limit 5 KB. The reason is that in CAS only the ID
information of the revoked users is stored by the sensor nodes. Therefore, DAS is
neither memory efficient nor scalable. However, the advantage of DAS is also
significant as compared to CAS. It successfully reduces the per message
overhead down to 64|||||)}||({||| =+++

IDIDU UIDIDSK PKUMUhSIGtt bytes.
The above analysis clearly shows that more advanced schemes are needed other
than DAS and CAS. And the direction to seek is to improve storage efficiency
while retaining or further reducing the per message overhead.

15.5 The Advanced Schemes

Book Title

10

In this section, advanced schemes are proposed to achieve both storage efficiency
and communication efficiency simultaneously. The proposed schemes
significantly outperform the previous basic schemes through a novel integration
of several cryptographic techniques.

15.5.1 The Bloom Filter Based Authentication Scheme (BAS)

System Preparation: The sink generates the public keys for all network users,
and constructs the set:

,...},,,,{
2211
><><=

IDID UIDUID PKUPKUS
Where ,}{# NS = and {}# denotes the cardinality of the set. Using the Bloom
filter, the sink can apply k system-wide hash functions (cf. Section II.B) to map
the elements of S (each with 2+L bytes, that is, 2|| =IDU bytes, and

LPK
IDU =|| bytes to an m -bit vectorυ with 110 ... −= mvvvυ where we have

)2(=< LNm to reduce the filter size and kNm > to retain a small probability of
a false positive. These k hash functions are known by every node and the sink.
For each iv ,],1,0[−∈ mi we have

Additionally, the sink constructs a counting Bloom filter υ of cm * bits with
110 ... −= mvvvυ , where each iv ,]1,0[−∈ mi is a c -bit counter, i.e., cv =|| i

bits. The value of iv is determined as follows:

And ⎡ ⎤]))1,0[,(max(log 2 −∈= mivc i bits, which is usually of 4 bits for most
applications [10]. The above operations are illustrated in Fig. 15.2 The sink
finally preloads each sensor node with υ (not including υ), as well as the sink’s
public key and the common domain parameters of the ECDSA signature scheme.

⎪
⎩

⎪
⎨

⎧
=

∈∈∃
=

otherwise 0,
 s.t.

N],[1,j k],[1,l if 1,
i i)||PK(U hv IDjj UIDl

N]}.[1,jk],[1,lfor
,)||(|),{(#

∈∈∃
== iPKUhPKIDv IDjIDj UIDjlUji

Chapter Title for Chapter 1 Headings

11

Fig. 15.2 An example of the Bloom filter and Counting Bloom Filter

Message Signing and Authentication: Let sGPK
IDU = , be the public key of

user IDU , where s is the private key of the signer, and G is the generator of a
subgroup of an elliptic curve group of order r . Let (.)KS be a symmetric key
cipher such as AES. To broadcast a message M (10|| ≥M bytes), IDU takes the
steps below following [24], a variant of ECDSA with the partial message
recovery property:

 Concatenate ,|||| >< IDUttM and break it into two parts 1M and ,2M
where 10|| ≤M bytes.

 Generate a random key pair },{ Vu , where]1,1[−∈ ru ,)(1,1 yxuGV == ,
and 1(x mod .0) ≠r

 Encode-and-hashV into an integer Ι [24].
 Form 1F from 1M by adding the proper redundancy [1].
 Compute rFIc mod)(1+= , and make sure that 0≠c or repeat the above

steps otherwise.
 Compute),(22 MhF = and)(2

1 sCFuD += − mod r
 Repeat all the above steps if 0=D ; Output the signature as >< DC,

otherwise.
Then, IDU broadcasts

,,,,2 ><
IDUPKDCM (III)

Book Title

12

where tt and IDU are parts of 2M . And this is the known simplest message
format that can be achieved using PKC 3 . Now, upon receiving a broadcast
message (not from the sink), a sensor node checks the authenticity of the message
in two steps. First, it checks the authenticity of the corresponding public key by
verifying its membership in S . To do so, the sensor node checks whether

1)]||([
?
=

IDUIDl PKUhυ ,],1[kl ∈ , and a negative result will lead to the discarding
of the message. We note that here a false positive may happen due to the
probabilistic nature of the Bloom filter, but only with a very small (negligible)
probability when appropriate parameters are chosen as we will analyze later.
Second, it verifies the attached signature as follows:

 Discard the message if]1,1[−∉ rC or].1,1[−∉ rD
 Compute)(22 MhF = , rDH mod 1−= , and rHFH mod 21 =
 Compute rCHH mod 2 = , and

IDUPKHGHP 21 += .
 Discard the message if OP = .
 Encode-and-hash P into an integer I [24] and compute rI CF mod1 −= .
 Discard the message if the redundancy of 1F is incorrect.
 Otherwise accept 1M (obtained from 1F) and the signature and reconstruct

21 |||||| MMUttM ID = .
User Revocation/Addition: To revoke a user, say

jID
U , the sink follows the

steps below:
 First, it hashes iPKUh

jIDj UIDl =)||)(and decreases iv by 1. It repeats this
operation for all lh ,].,1[kl ∈

 From the updated counting Bloom filter ,υ the sink obtains the
corresponding updated Bloom filter 'υ with 110 '...''' −= mvvvυ . Here, 1' =iv
only when 1≥iv , and 0'=iv otherwise.

 The sink further calculates υυυ ⊕=∆ ' and deletes υ afterwards. Here
⊕ denotes bitwise exclusive OR operation. Obviously, ∆υ is an m -bit
vector with at most k bits set to 1. Hence ∆υ can be simply represented by
enumerating its 1-valued bits, requiring ⎡ ⎤mk 2log bits for indexing (kk ≤).
This representation is efficient for a small k as will be analyzed in Section
VI.B.

3 The claim is true only when ID-based cryptography [33] is excluded from consideration, in which
case the user’s ID is also his public key. Furthermore, the shortest signature size possibly obtained
from pairing is around 22 bytes [7], which is shorter than 40 bytes obtained from ECDSA.
However, to apply a pairing-based scheme (i.e., an ID-based signature or short signature) on sensor
nodes, the known reachable signature size has to be 84 bytes, even when a 32bit microprocessor
can be used [36]. And the energy cost is also multiple times higher than that of an ECDSA-160
signature.

Chapter Title for Chapter 1 Headings

13

 The sink finally broadcasts ∆υ after signing it. The message format follows
(III) but with the sink’s public key omitted, as every sensor already has it.

 Upon receiving and successfully authenticating the broadcast message,
every sensor node updates its own Bloom filter accordingly, that is, if

1, =∆ iv then 0=iv ,]1,0[−∈ mi .
BAS also supports simultaneous multiuser revocation. Suppose that

revN users are revoked simultaneously. The sink follows the same manner to
construct ∆υ with k bits set 1. Now we have revkNk ≤ . Furthermore, the
compressed message for representing ∆υ now could achieve)(pmH bits
theoretically, where)1(log)1(log)(22 pppppH −−−−= is the entropy
function and kmp)/11(−= is the probability of each bit being 0 in ∆υ . As
pointed out in [23], using arithmetic coding technique can efficiently approach
this lower bound.

BAS supports dynamic user addition in two ways. First, it enables a later
binding of network users and their (ID, public key) pairs. In this approach, the
sink may generate more (ID, public key) pairs than needed during system
preparation. When a new network user joins the WSN, it will be assigned an
unused ID and public key pair by the sink. Second, BAS could add new network
users after the revocation of old members. This approach, however, could only
add the same number of new users as that of the revoked. This requirement
ensures that the probability of a false positive never increases in BAS. To do so,
the sink updates its counting Bloom filter by hashing the new user’s information
into the current Bloom filter. The sink then obtains a ∆υ in the same way as in
the revocation case, and broadcasts it after compression. This time, if 1, =∆ iv ,
sensor nodes will set]1,0[,1 −∈= mivi to update their current Bloom filters.

15.5.2 Minimize the Probability of a False Positive

Since the Bloom filter provides probabilistic membership verification only, it is
important to make sure that the probability of a false positive is as small as
possible.

Book Title

14

Fig. 15.3 The minimum probability of a false positive regarding

N
m

Theorem 1: Given the number of network users N and the storage space m
bits for a single Bloom filter, the minimum probability of a false positive f that
can be achieved is k−2

with ,2ln

N
mk = that is,

.)6185.0(N
m

f =

Proof: since ,)1())11(1(/ kmkNkkN e
m

f −−≈−−= we then have .)1ln(/ mkNekef
−−=

Let).1ln(/ mkNekg −−= Hence, minimizing f is equivalent to minimizing g
with respect to k . We find

mkN

mkN
mkN

e
e

m
kNe

dk
dg

/

/
/

1
)1ln(−

−
−

−
+−=

It is easy to check that the derivative is 0 when .2ln
N
mk = And it is not hard to

show that this is a global minimum [23]. Note that in practice, k must be an
integer. �

Fig. 15.3 shows the probability of a false positive f as a function of
N
m i.e., bits

per element. We see that f decreases sharply as
N
m increases. When

N
m increases

from 8 to 96 bits, f decreases from 210*1.2 − to 2110*3.9 − . Obviously, f

determines the security strength of our design. For example, when 92=
N
m bits,

Chapter Title for Chapter 1 Headings

15

the adversary has to generate around 8.632 public/private key pairs on average
before finding a valid one to pass the Bloom filter. This is almost
computationally infeasible, at least within the lifetime of the WSN (usually at
most several years). However, when 64/ =Nm bits, the adversary is now
expected to generate around 4.442 public/private key pairs before finding a valid
pair. The analysis below shows the time and cost of the attack. To generate a
public/private key pair in ECDSA-160, a point multiplication operation has to be
performed, for which the fastest known implementation speed is 0.21ms through
a specialized FPGA design [14]. Suppose the adversary could afford 100,000
such FPGAs, which would cost no less than one million dollars. Then, by
executing 100,000 FPGAs simultaneously, to generate one valid key pair still
takes 13.2 hours roughly. With the above analysis, we suggest to select the value
of f carefully according to the security requirements of the different types of
applications. Given a highly security sensitive military application, we suggest
that f should be no larger than ,10*36.6 20− i.e., 92/ ≥Nm bits. On the other
hand, when the targeted applications are less security sensitive as in the civilian
scenario, we can tolerate a larger f . This is because the adversary is now
generally much less resourceful as compared to the former case.

Fig. 15.4 Maximum supported number of network users with respect to storage limit

15.5.3 Maximum Number of Network Users Supported

It is important to know how many network users can be supported in BAS so that
the WSN can be well planned. The following theorem provides the answer.
Theorem 2: Given the storage space m bits for a single Bloom filter and the

Book Title

16

required probability of a false positive)),1,0((∈reqreq ff the maximum number of

network users that can be supported is ,
ln

)2(ln 2

reqf
m− that is,

reqf
mN

ln
4805.0−

≤

Proof: Since the minimal probability of a false positive kf −= 2 is achieved

with ,2ln
N
mk = we have 2ln

2 N
m

reqf
−

= . Then, we can easily get
reqf

mN
ln

)2(ln 2−
= in

this case; and this is the maximum number of users that can be supported given
reqf and m . �

Fig. 15.4 illustrates the maximum supported number of network users as a
function of the storage limit. Fig. 15.4 shows that BAS supports up to 1,250 users
when ,1042.4 14−∗=reqf 1,000 users when 171003.2 −∗=reqf and 869 users when

,1036.6 20−∗=reqf for a storage space of 9.8 KB. Obviously, BAS also allows
tradeoff between the maximum supported number of network users and the
probability of a false positive given a fixed storage limit.

15.5.4 Supporting More Users using the Merkle Hash Tree: The Hybrid
Authentication Scheme (HAS)

Through the above analysis, we know that the maximum supported number of
network users is usually limited given the storage limit and the probability of a
false positive. For example, if 201036.6 −∗=reqf

and the storage limit is 4.9 KB,

the maximum number of users supported by BAS is 434. Therefore, an additional
mechanism has to be employed to support more users when necessary. HAS
achieves this goal by employing the Merkle hash tree technique, which trades the
message length for the storage space. That is, by increasing the per message
overhead, HAS can support more network users. Specifically, HAS works as
follows.

The sink first calculates the maximum number of users supported in case of
BAS according to the given storage limit and the desired probability of a false
positive. It then collects all the public keys of the current network users and
constructs a Merkel hash tree. In fact, the sink constructs N leaves with each leaf
corresponding to a current user of the WSN. For our problem, each leaf node
contains the binding between the corresponding user ID and his public key, that

Chapter Title for Chapter 1 Headings

17

is,).,(
IDUID PKUh The values of the internal nodes are determined by the method

introduced in Section II.C. The sink further prunes the Merkle hash tree into a set
of equal-sized smaller trees. We denote the value of the root node of a small hash
tree as i

rh , ||,...,1 Si = , where || S equals the maximum number of supported
users the sink calculates in BAS.

Next, the sink constructs a Bloom filterυ following the same way as described
in the last section. The difference is that now the member set },...,,{ ||21 S

rrr hhhS = .
Then, the sink preloads each sensor node withυ . At the same time, each user
should obtain its AAI according to his corresponding leaf node’s location in the
smaller Merkle hash tree. Let T denote all the nodes along the path from a leaf
node to the root (not including the root), and A be the set of nodes corresponding
to the siblings of the nodes in T . Then, AAI further corresponds to the values

associated with the nodes in A. Obviously, AAI is of size ()
||

log2 S
NL ∗ bytes,

where L is the length of the hash values. Upon user revocation, the sink simply
updates all the sensor nodes with the ID information of the revoked users. And
each node directly stores the revoked IDs as described earlier. Now a message
sent by a user IDU is of form

><
IDID UU AAIPKDCM ,,,,2 . (IV)

Each node verifies the authenticity of a user public key in two steps. First, it
calculates the corresponding root node value i

rh using
IDUAAI attached in the

message. Second, it checks whether or not the calculated i
rh is a member of υ

stored by itself. By checking Message (IV), we can easily find that HAS doubles
the maximum supported number of users as compared to BAS at the cost of 20
more bytes per message overhead, assuming SHA-1 is used [25]. And the
number can be further doubled with 40 more bytes per message overhead.

Book Title

18

Fig. 15.5 Energy consumption in communication regarding different schemes

15.6 Performance Analysis

In this section, we analyze the performance of BAS and HAS with respect to
communicational and computational overheads (in terms of energy consumption),
and security strength. We give a quantitative analysis of the schemes and
compare them with the other two basic schemes.

15.6.1 Communication Overhead

We study how the message size affects the energy consumption in
communication in a WSN. We investigate the energy consumption as the
function of the size of the WSN (denoted as W). We denote by trE the hop-wise
energy consumption for transmitting and receiving one byte. As reported in [35],
a Chipcon CC1000 radio used in Crossbow MICA2DOT motes consumes 28.6
and 59.2µJ to receive and transmit one byte, respectively, at an effective data
rate of 12.4 Kb/s. Furthermore, we assume a packet size of 41 bytes, 32 bytes for
the payload and 9 bytes for the header [35]. The header, ensuring an 8-byte
preamble, consists of source, destination, length, packet ID, CRC, and a control
byte [35]. We also assume that 20|| =M bytes.

Then, for BAS, the signature size is still the same as that of ECDSA, but only
part of the message now has to be transmitted, with the saving of up to 10 bytes.
Therefore, the per message overhead of BAS is 54 bytes, which is 10 bytes less
than that of DAS. As Message (III) is 74 bytes, there should be 3 packets in total,

Chapter Title for Chapter 1 Headings

19

among which two of them are 41 bytes, and one is 19 bytes. Therefore, there
should be 12538119241 =∗+∗+∗ bytes for transmission (including 8-byte
preamble per packet). Hence, the hop-wise energy consumption of message
transmission is mJ 40.7µJ 2.59125 =∗ ; and the energy consumption of message
reception is mJ 58.3µJ 6.28125 =∗ . For each message broadcast, every sensor
node should retransmit the message once and receive ω′ times of the same
message assuming the blind flooding is used 4 Here, ω′ denotes node density in
terms of the total number of sensor nodes within one unit disc, where a unit disc
is a circle area with radius equal to the transmission range of sensor nodes5.
Hence, the total energy consumption in communication will be

mJ)58.34.7(ω′∗+∗W .
Fig. 15.5 illustrates the energy consumption in communication as a function

of W with 20=′ω . Clearly, BAS consumes a much lower energy as compared to
others. For example, when W =15,000, CAS always costs 2.20 KJ, while BAS
costs only 1.18 KJ. The energy saving for a single broadcast can be more than
1,000 J between BAS and CAS. Note that although DAS also consumes much
less energy than CAS, DAS only supports up to 45422/1000 ≈ users. At the
same time, BAS can handle 869 users even when 201036.6 −∗=reqf CAS handles
more users than BAS and DAS, however, at the cost of much higher energy
consumption. Moreover, HAS can handle a large number of users but with a
much lower energy consumption when compared to CAS. In summary, BAS
demonstrates the highest communication efficiency, as well as desirable storage
efficiency. From Fig. 15.5, we also find that the energy consumption in
communication is the critical cost for WSNs, as a single broadcast of a message
of only 20 bytes in length could cost energy on the order of KJ. This also exposes
the severe vulnerability of the µTESLA-like schemes, as they allow the adversary
to flood the WSN arbitrarily.

15.6.2 User Revocation/Addition Traffic Overhead

Another important performance metric for the broadcast authentication schemes

4In an idealized lossless network, blind flooding, i.e., every node always retransmits
exactly once every unique message it receives, is wasteful, as individual nodes are likely
to receive the same broadcast multiple times. In practice, however, blind flooding is a
commonly used technique, as its inherent redundancy provides some protection from
unreliable (lossy) wireless networks [21].
5We assume a uniform transmission range for all sensor nodes.

Book Title

20

is the overhead of the user revocation/addition traffic. As analyzed in Section
V.A, BAS requires the sink to broadcast ∆υ upon user revocation/addition. We
have shown that in the single user case, ∆υ can be efficiently represented by
simply enumerating all its 1-valued bits, the length of which is bounded by
⎡ ⎤mk 2log bits. That is, the per user revocation traffic overhead is upper bounded

by ⎡ ⎤mk 2log bits. And the theoretical lower bound obtained from the entropy
function is)(pmH bits with)1(log)1(log)(22 pppppH −−−−= and

k

m
p)11(−= . It is not hard to see that the expectation value of k is around 2/k ,

where 2ln
N
mk = . Our simulation shows that k is always around 2/k . Hence,

for a given -2010*6.36=reqf , we will have ⎡ ⎤ 68log 2 =mk bytes, and 52)(≈pmH
bytes, for 000,1=N . This implies that the per user revocation traffic ∆υ only
ranges from 52 to 68 bytes on average for 000,1=N , depending on the used
coding method6. And for 000,11≤N , ∆υ is at most 80 bytes on average. This
overhead is much lower as comparable to that of the µTESLA-like scheme
proposed for supporting multiple users [18]. In [18], the per user revocation
traffic (i.e., a revocation certificate) is no less than ⎡ ⎤N2log1+ hash values,
which is 220 bytes for N =1,000, and 300 bytes for N = 11,000, assuming the
same hash length of 20 bytes. We further note that in contrast to µTESLA-like
schemes, BAS does not require periodic key chain update (for running out of
available keys) among users and sensor nodes. This is the advantage inherent to
the PKC-based schemes.

15.6.3 Computational Overhead

It was previously widely held that PKC is not suitable in WSNs, as sensor nodes
are extremely computation constrained. However, recent studies [9], [35] showed
that PKC with only software implementations is very viable on sensor nodes. For
example in [35], an ECC signature verification takes 1.61s with 160-bit keys on
ATmega128 8MHz processor used in a Crossbow mote. We analyze the
computation cost of the proposed schemes to further justify the suitability of
PKC-based schemes in WSNs. In all our proposed schemes, the major
computational cost is due to the signature verification operation. In the following

6 We assume that the number of simultaneous network users is always around N.

Chapter Title for Chapter 1 Headings

21

analysis we omit the cost of other operations such as hash operations and table
lookup, as they are negligible as compared to the signature verification operation
[35].

In CAS, two ECDSA signature verifications are needed for each broadcast

message. In BAS, to verify a message takes 2ln
N
mk = hash operations and one

ECDSA signature verification. It was reported in [35] that an ECDSA-160
signature verification operation costs 45.09 mJ on a 8-bit ATmega128L
processor running at 4 MHz. If we assume that the sensor CPU is a low-power
high-performance 32-bit Intel PXA255 processor, the energy cost can be further
minimized. Note that the PXA255 has been widely used in many sensor products
such as Sensoria WINS 3.0 and Crossbow Stargate running at 400MHz.
According to [13], the typical power consumption of PXA255 in active and idle
modes are 411 and 121 mW, respectively. It was reported in [5] that it takes 92.4
ms to verify an ECDSA-160 signature with the similar parameters on a 32-bit
ARM microprocessor at 80 MHz. Therefore, the same computation on PXA255
roughly needs 18.48 92.480/400 ≈× ms, and the energy cost is hence around 7.6
mJ. Therefore, we can obtain the computational costs of the proposed CAS and
BAS schemes on different sensor platforms7. The results are summarized below.

BAS is obviously also more computationally efficient than CAS. Furthermore,
when we compare the computational cost with the communication cost on hop-
wise message transmission, we can find that both are on the same order, which
justifies the suitability of PKC-based schemes in WSNs.

15.6.4 Security Strength

The Bloom filter based public key verification ensures the security strength of the
proposed scheme by enabling immediate message authentication. That is, there is
no authentication delay on messages being broadcast. Therefore, it is very hard
for the adversary to perform network wide flooding in the WSN. As we analyzed

7 DAS and HAS consume similar amount of energy as BAS does, as they both require one
signature verification.

Book Title

22

above, by appropriately choosing a suitable value of reqf , such as -2010*6.36 in
military applications, it is infeasible to forge a valid public/private key pair
during the lifetime of the WSN. Furthermore, by embedding a time stamp into
the message, the message replay attack is also effectively prevented, as WSN is
assumed to be loosely synchronized [28]. Therefore, the immediate message
authentication capability provided by the proposed schemes can effectively
protect the WSN from network wide flooding attacks. This is the most significant
security strength over the µTESLA-like schemes, in which network wide
flooding attacks are always possible.

Moreover, since the public key operation is expensive, it is also important that
sensor nodes can be resistant to the local jamming attacks. Under such attacks,
the adversary may simply broadcast random bit strings to the sensor nodes within
his transmission range. If these neighbor sensors have to perform the expensive
signature verification operation for all received messages, it will be a heavy
burden on them. CAS obviously suffers from this type of attacks, as the signature
verification operation has to be performed for every received message. However,
in both BAS and HAS, such an attack can be effectively mitigated. This is
because in both schemes, a sensor node first verifies the authenticity of the
attached user public key through hash operations, so it performs signature
verification operation for a bogus public key only with a negligible probability
(e.g., 6.36*10−20). As reported in [35], the energy cost of SHA-1 is only 5.9
µJ/byte on a 8-bit ATmega128L processor, while ECDSA-160 could consume
45.09 mJ on signature verification. An adversary may also flood the sensor nodes
with forged messages but containing valid user public keys, which can be
obtained by eavesdropping the network traffic. In this case, the forged messages
can only be discarded after signature verification, and sensor nodes that are
physically close to the adversary can thus be abused. We note that this type of
attacks is always possible for PKC-based security mechanisms. However, this
attack can still be mitigated in BAS by implementing an alert report mechanism.
If a sensor node fails to authenticate the received messages multiple times in a
row, it will derive that an attack is going on and alert the sink about the attack.
The sink further carries out field investigations or other means to detect the
adversary and take corresponding remedy actions that are outside the scope of
this chapter.

15.7 Further Enhancements

Chapter Title for Chapter 1 Headings

23

15.7.1 Dealing with Long Messages

The messages broadcast in WSNs are usually short, due to the application
specific nature of WSNs. The query or command messages can be less than one
hundred bytes. However, there are few cases that long messages may be required
to be broadcast in WSNs. For example, the sink may broadcast code images to
the sensor nodes for the purpose of retasking WSNs [37]. The size of such code
images can be on the order of KB. In this case, it is not desirable to apply the
proposed BAS or HAS scheme directly by signing the whole message (i.e., the
message hash) only once or signing on every single packet otherwise. This is
because of two reasons. First, if we sign the whole message once, then each
sensor node can authenticate a message only after it obtains the entire message.
That is, the sensor nodes have to buffer a large number of received packets
before it can authenticate them. This obviously introduces a severe vulnerability
that could result in message flooding attacks. Second, if we sign every packet
belonging to the same message, the scheme overheads will increase significantly
with respect to both computation and communication. This is because now every
packet is attached with a signature, which is 40 bytes in our setting.

Fortunately, several solutions were proposed to solve this problem in the
context of code update in WSNs [38], [39]. The first solution is suitable for
lossless network environments, which employs off-line hash chain technique to
amortize the cost of a single digital signature over multiple packets and allow for
incremental message authentication and packet pipelining [38], [40]. The second
solution is aimed at tolerating packet losses. This solution makes use of a signed
hash tree technique and trades message overhead for potential packet losses [39].
Both solutions can be directly superimposed with BAS and HAS in dealing with
long messages. We omit the details of these solutions for space interest.

15.7.2 Reducing the Probability of a False Positive

In [41], a method is introduced to use two families of k hash functions, instead of
using one. And an element is in the set if either family gives back all 1s from the
filter. The trick is to choose one of the two families of the hash functions
adaptively: choose which family of hash functions to use for each element of
your set in such a way to keep the number of 1s in the filter as small as possible.
In such a way, a smaller false positive probability in the same space can be
achieved at the cost of more hashing. This method can reduce the probability of a
false positive to the half under certain conditions using the same storage space.

Book Title

24

This technique can be exploited by BAS so that we achieve a desirable
probability of a false positive with a smaller storage space.

15.7.3 Optimization on Constructing the Merkle Hash Tree

Different types of network users may have different broadcast frequencies in
practice. This fact can be exploited by HAS, when supporting a vast number of
network users is a must. Instead of pruning the user Merkle hash tree into a set of
equal-sized smaller trees, now the tree can be trimmed into the same number but
different-sized smaller ones based on user broadcast frequency. The higher the
frequency is, the smaller hash tree the user is grouped in. In such a way, the
energy efficiency can be improved in the overall sense, as more messages being
broadcast containing only smaller AAI sizes. This is similar to the idea
introduced in [9].

15.7.4 Using “Fast Forward, Slow React” to Prevent Public Key Forgery
Attacks

Since a false positive is still possible though small, the adversary can forge
different user public/private key pairs and seek to pass the membership test. In
this way, the adversary could possibly pretend to be a valid network user and has
its messages authenticated. The sensor nodes, however, will not be able to
distinguish the bogus public keys, once a successful guess is made.

On the other hand, a bogus public key can always be deterministically
detected by the sink, as the sink keeps the copies of all the user public keys.
Furthermore, as the sink is always connected to the WSN as assumed, it also
receives the broadcast messages sent by the users. Thus, the sink can always
detect a bogus public key that cannot be detected by the sensor nodes through
analyzing the received messages. The following “Fast forward, Slow React”
policy is designed to leverage this fact and does not affect message propagation
efficiency. In “Fast forward, Slow React” policy, each sensor node estimates the
round trip time between itself and the sink. We denote this time as IDU∆ .The
estimation of IDU∆ can be obtained from either direct location-based calculation
or the previous interactions between the node and the sink. If there are multiple
sinks, IDU∆ is estimated for the closest one. Then, upon successfully
authenticating a received message, each sensor node waits for IDU∆ additional
time to take the further reactions (“Slow React”) except for forwarding the

Chapter Title for Chapter 1 Headings

25

message (“Fast forward”). Suppose the message is a query. If node IDU has the
(partial) answer to this query, it delay replying the user with the answer IDU∆
time. When IDU∆ is timeout and there’s no warning received from the sink, IDU
now sends out the answer. And if the sink does broadcast a revocation message,

IDU will be able obtain it before any further action is taken. Note that no matter
whether IDU is an intended recipient, it always forwards the message without
delay, as long as the message is successfully authenticated by itself. Therefore, a
public key forgery attack will only result in one successful message broadcast,
given the “Fast forward, Slow React” policy enforced. And we note that the “Fast
forward, Slow React” policy can be implemented in an on-demand manner. That
is, only when the WSN is under attack will sensor nodes implement this policy.
The sink can be used to control the starting and ending time.

15.8 Challenges for Future Research

There are many challenges regarding multiuser broadcast authentication in
WSNs. One of the foremost important issues is to further reduce the
computational overhead of PKCs when applied on resource constrained sensor
nodes. Research along this direction can be two-fold: One is to adapt and test
more efficient state-of-the-art PKC algorithms on sensor nodes, which also
includes design new approaches to allow trade-offs between security strength and
computational complexity. The other is to use hardware-software co-design for
speeding up PKC computations on sensors. As sensor nodes are usually specially
purposed according to the desired application, its functionality can be
predetermined, which allows specific hardware design optimized both for the
application and security related algorithms. Other challenges include better
protocol design according to different user query patterns and data storage
mechanisms. It is also useful to make use of the potential heterogeneity among
the sensor nodes to design more resilient and efficient mechanisms for broadcast
authentication.

15.9 Conclusion

In this chapter, we studied the problem of multiuser broadcast authentication in
WSNs. We pointed out that symmetric-key-based solutions such as µTESLA are
insufficient for this problem by identifying a serious security vulnerability
inherent to these schemes: the delayed authentication of the messages can easily

Book Title

26

lead to severe energy-depletion DoS attacks. We then came up with several
effective PKC-based schemes to address the problem. Both computational and
communication costs of the schemes are minimized through a novel integration
of several cryptographic techniques. A quantitative energy consumption analysis,
as well security strength analysis were further given in detail, demonstrating the
effectiveness and efficiency of the proposed schemes.

15.10 Problems

1. What is a wireless sensor network?
2. What is a digital signature?
3. What is a bloom filter?
4. What is a Merkle hash tree?
5. How is the False Positive rate of a bloom filter defined?
6. How are broadcast messages authenticated according to the solutions

proposed in this chapter?
7. What is the security issue of µTESLA scheme when applied in large scale

multihop wireless sensor networks?
8. How to trade off between storage overhead and the false positive rate of the

bloom filter in this chapter?
9. What is a partial message recovery digital signature?
10. How does partial message recovery signature technique help improve

communication efficiency in this chapter?
11. How is user revocation operation performed in this chapter?

References
[1] IEEE P1363a Standard, “Standard specifications for public key cryptography,”

(http://grouper.ieee.org/groups/1363/index.html), 2000.
[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Networks,

IEEE Communications Magazine,” Vol. 40, No. 8, pp. 102-116, August 2002.
[3] I. Akyildiz and I. Kasimoglu, “Wireless sensor and actor networks: research challenges,”

Ad Hoc Networks 2(4): 351367, 2004
[4] R. Amirtharajah, A. Chandrakasan, “Self-powered signal processing using vibration-based

power generation,” IEEE Journal of Solid-State Circuits, Vol. 33, pp. 687-695, 1998
[5] M. Aydos, T. Yanik, and C. Koc. “An high-speed ECC-based wireless authentication protocol

on an ARM microprocessor,” In Proc. of ACSAC, pp. 401-409, New Orleans, Louisiana, 2000.
[6] J. Baek, J. Newmarch, R. Naini and W. Susilo, “A Survey of Identity-Based Cryptography,”

AUUG 2004, pp. 95-102, 2004.
[7] D. Boneh, H. Shacham, and B. Lynn, “Short signatures from the Weil pairing,” J. of

Chapter Title for Chapter 1 Headings

27

Cryptology, Vol. 17-4, pp. 297-319, 2004.
[8] Crossbow Technology Inc, Wireless sensor networks, http://www.xbow.com/. 2004.
[9] W. Du, R. Wang, and P. Ning “An Efficient Scheme for Authenticating Public Keys in Sensor

Networks,” In Proc. MobiHoc’05, pp.58-67, May 25-28, 2005.
[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: A Scalable Wide-Area Web

Cache Sharing Protocol,” IEEE/ACM Transactions on Networking 8:3, 281-293, 2000
[11] D. Hankerson, A. Menezes, S. Vanstone, “Guide to Elliptic Curve Cryptography,” ISBN 0-

387-95273-X, 2004.
[12] Y. Hu, A. Perrig, and D. Johnson, “Packet Leashes: A Defense against Wormhole Attacks in

Wireless Ad Hoc Networks,” In proceedings of INFOCOM, 2003.
[13] “Intel PXA255 Processor Electrical, Mechanical, and Thermal Specification,”

http://www.intel.com/design/pca/applications processors/manuals/278780.htm
[14] T. Itoh and S. Tsujii, “ A fast algorithm for computing multiplicative inverse in GF (2

m
) using

normal bases,” Information and Communication, 78:171-177, 1988.
[15] A. Kansal, D. Potter and M. Srivastava, “Performance Aware Tasking for Environmentally

Powered Sensor Networks,” In Proc. of ACM SIGMETRICS’04, 2004
[16] A. Kansal and M. Srivastava, “An Environmental Energy Harvesting Framework for Sensor

Networks,” ACM/IEEE ISLPED, 2003.
[17] D. Liu and P. Ning, “Multi-level mTESLA: Broadcast authentication for distributed sensor

networks,” ACM Transactions in Embedded Computing Systems (TECS), vol. 3, no. 4, 2004.
[18] D. Liu, P. Ning, S. Zhu, and S. Jajodia, “Practical Broadcast Authentication in Sensor

Networks,” In Proc. of MobiQuitous 2005, July 2005.
[19] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel,

V. Shnayder, G. Mainland, S. Moulton, and M. Welsh, “Sensor Networks for Emergency
Response: Challenges and Opportunities,” In IEEE Pervasive Computing, 2004.

[20] C. Lu, G. Xing, O. Chipara, C. Fok, and S. Bhattacharya, “A Spatiotemporal Query Service
for Mobile Users in Sensor Networks, In Proc. of ICDCS, Columbus, 2005

[21] J. McCune, E. Shi, A. Perrig, and M. Reiter, “Detection of denial-of-message attacks on
sensor network broadcasts,” IEEE Symposium on Security and Privacy, pp.64-78, 2005.

[22] R. Merkle, “Protocols for public key cryptosystems,” In Proceedings of the IEEE Symposium
on Research in Security and Privacy, Apr 1980.

[23] M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Transactions on Networks, 10:5,
pp.613-620, October 2002.

[24] D. Naccache and J. Stern, “Signing on a Postcard,” In Proc. of Financial Cryptography’00,
LNCS vol. 1962, pp.121-135, 2000.

[25] NIST, “Digital hash standard,” Federal Information Processing Standards PUBlication 180-1,
April 1995.

[26] NIST: Proposed Federal Information Processing Standard for Digital Signature Standard
(DSS). Federal Register, vol. 56, no. 169, pp. 42980-42982 (1991)

[27] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar, “SPINS: Security protocols for
sensor networks,” In Proc. of MobiCom’01, 2001.

[28] A. Perrig, R. Canetti, J. Tygar, and D. Song, “The TESLA Broadcast Authentication
Protocol,” RSA CryptoBytes, 5, 2002.

Book Title

28

[29] K. Ren, K. Zeng, W. Lou, and P. Moran, “On Broadcast Authentication in Wireless Sensor
Networks,” IEEE Transactions on Wireless Communications, Vol. 6, No. 11, pp.4136-4144,
Nov., 2007

[30] K. Ren, W. Lou, and Y. Zhang, “Multi-user Broadcast Authentication in Wireless Sensor
Networks,” In Proc. of IEEE SECON 2007, San Diego, Jun., 2007

[31] K. Ren, W. Lou, and Y. Zhang, “LEDS: Providing Location-aware End-to-end Data Security
in Wireless Sensor Networks,” In Proc. of IEEE INFOCOM, Apr. 23-29, Barcelona, Spain,
2006

[32] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-
key cryptosystems,” Commun. ACM 21(2), pp.120-126, 1978

[33] A. Shamir, “Identity based cryptosystems and signature schemes,” In Proc. of CRYPTO’84,
LNCS Vol. 196, pp. 4753, 1984

[34] Texas Instruments Inc., “MSP430 Family of Ultra-lowpower 16-bit RISC Processors,”
http://www.ti.com

[35] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. Shantz. “Energy Analysis of Public-Key
Cryptography on Small Wireless Devices,” IEEE PerCom, March 2005.

[36] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Location based security mechanisms in wireless
sensor networks,” IEEE JSAC, Special Issue on Security in Wireless Ad Hoc Networks, vol.
24, no. 2, pp. 247-260, Feb. 2006

[37] J. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for network
programming at scale,” In Proc. of ACM SenSys’04, Baltimore, 2004.

[38] P. E. Lanigan, R. Gandhi, and P. Narasimhan, “Secure dissemination of code updates in sensor
networks,” In Proc. of ACM SenSys’05, 2005.

[39] J. Deng, R. Han, S. Mishra, “Secure Code Distribution in Dynamically Programmable
Wireless Sensor Networks,” In Proc. of ACM/IEEE IPSN 2006, pp. 292-300.

[40] R. Gennaro and P. Rohatgi, “How to sign digital streams,” Information and Computation,
165(1):100-116, 2001.

[41] S. Lumetta and M. Mitzenmacher, “Using the Power of Two Choices to Improve Bloom
Filters,” Preprint.

