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Abstract—Broadcast authentication is a critical security service in wireless 
sensor networks (WSNs), as it allows the mobile users of WSNs to broadcast 
messages to multiple sensor nodes in a secure way. Previous solutions on broadcast 
authentication are mostly symmetric-key-based solutions such as µTESLA and 
multilevel µTESLA. These schemes are usually efficient; however, they all suffer 
from severe energy-depletion attacks resulted from the nature of delayed message 
authentication. Being aware of the security vulnerability inherent to existing 
solutions, we present several efficient public-key-based schemes in this chapter to 
achieve immediate broadcast authentication with significantly improved security 
strength. Our schemes are built upon the unique integration of several 
cryptographic techniques, including the Bloom filter, the partial message recovery 
signature scheme and the Merkle hash tree. We prove the effectiveness and 
efficiency of the proposed schemes by a comprehensive quantitative analysis of their 
energy consumption regarding both computation and communication.  

Index: Security, Wireless Sensor Networks, Broadcast Authentication, 
Multi-user  
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15.1 Introduction 

Wireless Sensor Networks (WSNs) have enabled data gathering from a vast 
geographical region and present unprecedented opportunities for a wide range of 
tracking and monitoring applications from both civilian and military domains [2], 
[3], [31]. In these applications, WSNs are expected to process, store, and provide 
the sensed data to the network users upon their demands [20]. As the most 
common communication paradigm, the network users are expected to issue the 
queries to the network in order to obtain the information of their interest. 
Furthermore, in wireless sensor and actuator networks [3], the network users may 
need to issue their commands to the network (probably based on the information 
they received from the network). In both cases, there could be a large number of 
users in the WSNs, which might be either mobile or static; and the users may use 
their mobile clients to query or command the sensor nodes from anywhere in the 
WSN. Obviously, broadcast/multicast 1  operations are fundamental to the 
realization of these network functions. Hence, it is also highly important to 
ensure broadcast authentication for the security purpose.  

Broadcast authentication in WSNs was first addressed by µTESLA [27]. In 
µTESLA, users of WSNs are assumed to be one or a few fixed sinks, which are 
always assumed to be trustworthy. The scheme adopts a one-way hash function 

()h  and uses the hash preimages as keys in a message authentication code (MAC) 
algorithm. Initially, sensor nodes are preloaded with )(0 xhK n= , where x  is the 
secret held by the sink. Then, )(1

1 xhK n−=  is used to generate MACs for all the 
broadcast messages sent within time interval 1I . During time interval 2I , the 
sink broadcasts 1K , and sensor nodes verify 01)( KKh = .The authenticity of 
messages received during time interval 1I  are then verified using 1K . This 
delayed disclosure technique is used for the entire hash chain and thus demands 
loosely synchronized clocks between the sink and sensor nodes. µTESLA is later 
enhanced in [17] to overcome the length limit of the hash chain. Most recently, 
µTESLA is also extended in [18] to support multiuser scenario but the scheme 
assumes that each sensor node only interacts with a very limited number of users.  

It is generally held that µTESLA-like schemes have the following 
shortcomings when applied to multi-hop large scale WSNs even in the single-
user scenario: 1) all the receivers have to buffer all the messages received within 
one time interval; 2) they are subject to Wormhole attacks [12], where messages 

                                                 
1For our purpose, we do not distinguish multicast from broadcast in this chapter.  
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could be forged due to the propagation delay of the disclosed keys. However, 
here we point out a much more serious vulnerability of µTESLA-like schemes 
when they are applied in multi-hop WSNs. Since sensor nodes buffer all the 
messages received within one time interval, an adversary can hence food the 
whole network arbitrarily. All the adversary has to do is to claim that the 
flooding messages belong to the current time interval which should be buffered 
for authentication until the next time interval. Since wireless transmission is very 
expensive in WSNs, and WSNs are extremely energy constrained, the ability to 
food the network arbitrarily could cause devastating Denial of Service (DoS) 
attacks. Moreover, this type of energy-depletion DoS attacks become more 
devastating in multiuser scenario as the adversary now can have more targets and 
hence more chances to generate bogus messages without being detected. 
Obviously, all these attacks are due to delayed authentication of the broadcast 
messages. In [12], TIK is proposed to achieve immediate key disclosure and 
hence immediate message authentication based on precise time synchronization 
between the sink and receiving nodes. However, this technique is not applicable 
in WSNs as pointed out by the authors. Therefore, multiuser broadcast 
authentication still remains a wide open problem in WSNs.  

Observing that symmetric-key-based broadcast authentication schemes such 
as µTESLA are insufficient for WSNs, we resort to public key cryptography 
(PKC) for more effective solutions in this chapter. We address multiuser 
broadcast authentication problem in WSNs by designing PKC-based solutions 
with minimized computational and communication costs.  

Objectives of the chapter: We focus on providing multi-user broadcast 
authentication in WSNs, where the broadcast messages are initiated by a number 
of network users. Please note that the network users in this chapter refer to 
personnel or devices that use the WSN; they are not sensor nodes. On the one 
hand, we aim to achieve immediate message authentication and resist DoS 
attacks in the presence of both user revocation and node compromise. On the 
other hand, we want to optimize both computational and communication costs. 

Overview of the chapter: In this chapter, we propose four different public-
key-based approaches and provide in-depth analysis of their advantages and 
disadvantages. In all the four approaches, the users are always authenticated 
through their public keys. We first propose a straightforward certificate-based 
approach and point out its high energy inefficiency with respect to both 
communication and computation costs. We then propose a direct storage based 
scheme, which has high efficiency but suffers from the scalability problem. A 
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Bloom filter based scheme is further proposed to improve the memory efficiency 
over the direct storage based scheme. Further techniques are also developed to 
increase the security strength of the proposed scheme. Lastly, we propose a 
hybrid scheme to support a larger number of network users by employing the 
Merkle hash tree technique. We give an in-depth quantitative analysis of the 
proposed schemes and demonstrate their effectiveness and efficiency in WSNs in 
terms of energy consumption.  

Organization of the chapter: The remaining part of this chapter is as follows: 
In Section II, we introduce the cryptographic mechanisms to be used. Section III 
presents the system assumption, adversary model, and security objectives. In 
Section IV, we introduce two basic schemes. We next propose two advanced 
schemes and detail the underlying design logic in Section V. In Section VI, we 
analyze the performance and security strength of the proposed schemes. Section 
VII then discusses further enhancements of the proposed schemes. Finally, 
Section VIII is the future work and Section IX is the conclusion.  

15. 2 Background 

15.2.1 Digital Signature  

A digital signature algorithm is a cryptographic tool for generating non-
repudiation evidence, authenticating the integrity as well as the origin of a signed 
message. In a digital signature algorithm, a signer keeps a private key secret and 
publishes the corresponding public key. The private key is used by the signer to 
generate digital signatures on messages and the public key is used by anyone to 
verify signatures on messages. The digital signature algorithms mostly used are 
RSA [32] and DSA [26]. ECDSA is referred to Elliptic Curve Digital Signature 
Algorithm [11]. While RSA with 1024-bit keys (RSA-1024) provides the 
currently accepted security level, it is equivalent in security strength to ECC with 
160-bit keys (ECC-160). Hence, for the same level of security strength, ECDSA 
uses a much short key size and hence has a short signature size (320-bit).  

15.2.2 The Bloom Filter and Counting Bloom Filter  

A Bloom filter is a simple space-efficient randomized data structure for 
representing a set in order to support membership queries [23]. A Bloom filter for 
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representing a set 1SS = , 2S ,…, nS of n  elements is described by a vector υ  of 
m  bits, initially all set to 0. A Bloom filter uses k  independent hash functions 

1h ,…, kh  with range 0 ,…, 1 m-  which map each item in the universe to a 
random number uniform over 1]-m ..., [0, . For each element Ss∈ , the bits 

)(shi  are set to 1 for ki ≤≤1 . Note that a bit of υ  can be set to 1 multiple 
times. To check if an item x  is in S , we check whether all bits )(xhi  are set to 1. 
If not, x  is not a member of S  for certain, that is, no false negative error. If yes, 
x  is assumed to be in S . A Bloom filter may yield a false positive. It may 
suggest that an element x  is in S  even though it is not. The probability of a 
false positive for an element not in the set can be calculated as follows. After all 
the elements of S are hashed into the Bloom filter, the probability that a specific 
bit is still 0 is mknkn em /)/11( −≈− . The probability of a false positive f  is then 

kmknkkn em )1())/11(1( /−−≈−− .We let kpf )1( −= . From now on, for 
convenience, we use the asymptotic approximations p and f  to represent, 
respectively, the probability that a bit in the Bloom filter is 0 and the probability 
of a false positive. Let mknep /−= . 

The counting Bloom filter is a variation of the Bloom filter, which allows 
member deletion. In the counting Bloom filter, each entry in the Bloom filter is 
not a single bit but a small counter that tracks the number of elements that have 
hashed to that location [10]. When an element is deleted, the corresponding 
counters are decremented. To avoid overflow, counters must be chosen large 
enough [10].  

15.2.3 The Merkle Hash Tree  

A Merkle Tree is a construction introduced by Merkle in 1979 to build secure 
authentication schemes from hash functions [22]. It is a tree of hashes where the 
leaves in the tree are hashes of the authentic data values wnnn ,...,, 21 . Nodes 
further up in the tree are the hashes of their respective children. For instance, 
assuming that 4=w  in Fig. 15.1, the values of the four leaf nodes are the hashes 
of the data values, )( inh , 1=i , 2 , 3 , 4 , respectively, under a one-way hash 
function ()h  (e.g., SHA-1 [25]). The value of an internal node A 
is ))(||)(( 21 nhnhhha = , and the value of the root node is )||( bar hhhh = . rh  is 
used to commit to the entire tree to authenticate any subset of the data values 

1n , 2n , 3n , and 4n  in conjunction with a small amount of auxiliary authentication 
information AAI  (i.e., N2log  hash values where N  is the number of leaf nodes). 
For example, a receiver with the authentic hr requests for 3n  and requires the 
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authentication of the received 3n . The source sends the >< )(,:AAI 4nhha to the 
receiver. The receiver can then verify 3n  by first 
computing ))(||)((),( 433 nhnhhhnh b =  and ),||( bar hhhh = and then checking 
if the calculated rh  is the same as the authentic root value rh . Only if this check is 
positive, the user accepts 3n . The Merkle hash tree can prevent an adversary 
from sending bogus data to deceive the client. In the earlier example, an 
adversary impersonating can not send a bogus 3n  to the client without being 
detected. This is because he can not find ah and )( 4nh  such that 

ra hnhnhhhh =)))(||)((||( 43 as ()h is one-way.  

 
Fig. 15.1 An example of Merkle hash tree 

15.3 System Model, Adversary Model, and Design Goals 

System Model: In this chapter, we consider a large spatially distributed WSN, 
consisting of a fixed sink(s) and a large number of sensor nodes. The sensor 
nodes are usually resource-constrained with respect to memory space, 
computation capability, bandwidth, and power supply. The WSN is aimed to 
offer information services to many network users that roam in the network, in 
addition to the fixed sink(s) [20]. The network users may include mobile sinks, 
vehicles, and people with mobile clients, and they are assumed to be more 
powerful than sensor nodes in terms of computation and communication abilities. 
For example, the network users could consist of a number of doctors, nurses, 
medical equipment (acting as actuators) and so on, in the case of CodeBlue [19], 
where the WSN is used for emergency medical response. These network users 
broadcast queries/commands through sensor nodes in the vicinity, and expect the 
replies that reflect the latest network information. The network users can also 
communicate with the sink or the backend server directly without going through 
the WSN if necessary. We assume that the sink is always trustworthy but the 
sensor nodes are subject to compromise. At the same time, the users of the WSN 
may be dynamically revoked due to either membership changes or compromise, 
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and the revocation pattern is not restricted. We also assume that the WSN is 
loosely synchronized.  
Adversary Model: In this chapter, we assume that the adversary’s goal is to inject 
bogus messages into the network, attempt to deceive sensor nodes, and obtain the 
information of his interest. Additionally, Denial of Service (DoS) attacks such as 
bogus message flooding, aiming at exhausting constrained network resources, is 
another important focus of the chapter. We assume that the adversary is able to 
compromise both network users and the sensor nodes. The adversary hence could 
exploit the compromised users/nodes for such attacks. However, we do assume 
that adversary cannot compromise an unlimited number of sensor nodes.  
Design Motivation: When µTESLA was proposed, sensor nodes were assumed to 
be extremely resource-constrained, especially with respect to computation 
capability, bandwidth availability, and energy supply [27]. Therefore, PKC was 
thought to be too computationally expensive for WSNs, though it could provide 
much simpler solutions with much stronger security resilience. At the same time, 
the computationally efficient onetime signature schemes are also considered 
unsuitable for WSNs, as they usually involve intense communications [27]. 
However, recent studies [9], [29], [35] showed that, contrary to widely held 
beliefs, PKC with even software implementations only is very viable on sensor 
nodes. For example [35], Elliptic Curve Cryptography (ECC) signature 
verification takes 1.61s with 160-bit keys on ATmega128 8MHz, a processor 
used in current Crossbow motes platform [8]. Furthermore, the computational 
cost is expected to fall faster than the cost to transmit and receive. For example, 
ultra-low-power microcontrollers such as the 16-bit Texas Instruments MSP430 
[34] can execute the same number of instructions at less than half the power 
required by the 8-bit ATmega128L. The benefits of transmitting shorter ECC 
keys and hence shorter messages/signatures generation sensor nodes are expected 
to combine ultra-low power circuitry with so-called power scavengers such as 
Heliomote [15], which allow continuous energy supply to the nodes. At least 8-
20µW of power can be generated using MEMS-based power scavengers [4]. 
Other solar-based systems are even able to deliver power up to 100mW for the 
MICA Motes [15], [16]. These results indicate that, with the advance of fast 
growing technology, PKC is no longer impractical for WSNs, though still 
expensive for the current generation sensor nodes, and its wide acceptance is 
expected in the near future [9].  
Design Goals: Our security goal is straightforward: all messages broadcasted by 
the network users of the WSN should be authenticated so that the bogus ones 
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inserted by the illegitimate users and/or compromised sensor nodes can be 
efficiently rejected/filtered. We also focus on minimizing the overheads of the 
security design. Especially, energy efficiency (with respect to both 
communication and computation) and storage overhead are given priority to cope 
with the resource-constrained nature of WSNs.  

15.4 The Basic Schemes 

We explore the PKC domain for the possible solutions to multiuser broadcast 
authentication in WSNs. The PKC-based solutions realize immediate message 
authentication and thus can overcome the delayed message authentication 
problem present in µTESLA-like schemes.  

15.4.1 The Certificate-Based Authentication Scheme (CAS)  

CAS works as follows. Each user (not a sensor) of the WSN is equipped with a 
public/private key pair (PK/SK), and signs every message he broadcasts with his 
SK using a digital signature scheme such as ECDSA [11]. Note that in all our 
designs, we do not require sensors to have public/private key pairs for themselves. 
To prove the user’s ownership over his public key, the sink2 is also equipped 
with a public/private key pair and serves as the certification authority (CA). The 
sink issues each user a public key certificate, which, to its simplest form, consists 
of the following content )}||ExpT||PK{h(U,ExpT,SIG,PKUCert

IDSinkIDID UIDSKUIDU = , 
where IDU  denotes the user’s ID, 

IDUPK denotes its public key, ExpT  denotes 
certificate expiration time, and SIG  is a signature over )}||ExpT||PKh(U

IDUID  
with SinkSK . Hence, a broadcast message is now of the form as follows:  

><
ID

IDU
UIDSK

CertMttUhSIGttM )},||||({||,,                      (I) 
Here, M  denotes the broadcast message and tt  denotes the current time. For the 
purpose of message authentication, sensor nodes are preloaded with SinkPK  before 
the network deployment; and message verification contains two steps: the user 
certificate verification and the message signature verification.  
CAS suffers from two main drawbacks. First and foremost, it is not efficient in 
communication, as the certificate has to be transmitted along with the message 
across every hop as the message propagates in the WSN. A large per message 
overhead will result in more energy consumption on every single sensor node. In 

                                                 
2 We assume that the sink represents the network planner. 
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CAS, the per message overhead is as high as 
128|||)}||({||| =++

IDIDU UIDSK CertMUhSIGtt  bytes. As in [35], the user 
certificate is at least 86 bytes, when ECDSA-160 [11] is used. Here, we assume 
that tt  and IDU  are both two bytes, in which case the scheme supports up to 
65,535 network users. Moreover, 40|)}||({| =MUhSIG IDSK IDU

 bytes, when 
ECDSA-160 [11] is assumed. Second, to authenticate each message, it always 
takes two expensive signature verification operations. This is because the 
certificate should always be authenticated in the first place.  

15.4.2 The Direct Storage Based Authentication Scheme (DAS)  

One way to reduce the per message overhead and the computational cost is to 
eliminate the existence of the certificate. A straightforward approach is then to let 
sensor nodes simply store all the current users’ ID information and their 
corresponding public keys. In this way, a broadcast message now only contains 
the following contents: 

><
IDIDU UIDIDSK PKUMttUhSIGttM ,)},||||({,,                    (II) 

Verifying the authenticity of a user public key is reduced to finding out whether 
or not the attached user/public key pair is contained in the local memory. Upon 
user revocation, the sink simply sends out ID information of the revoked user, 
and every sensor node deletes the corresponding user/public key pair in its 
memory.  

The drawbacks of DAS are obvious. Given a storage limit of 5 KB, only 232 
users can be supported at most; even with a memory space of 19.5 KB, DAS can 
only support up to 1, 000 users. At the same time, CAS can support up to 2, 560 
users given the same storage limit 5 KB. The reason is that in CAS only the ID 
information of the revoked users is stored by the sensor nodes. Therefore, DAS is 
neither memory efficient nor scalable. However, the advantage of DAS is also 
significant as compared to CAS. It successfully reduces the per message 
overhead down to 64|||||)}||({||| =+++

IDIDU UIDIDSK PKUMUhSIGtt bytes. 
The above analysis clearly shows that more advanced schemes are needed other 
than DAS and CAS. And the direction to seek is to improve storage efficiency 
while retaining or further reducing the per message overhead.  

15.5 The Advanced Schemes 



Book Title 
 
10 

In this section, advanced schemes are proposed to achieve both storage efficiency 
and communication efficiency simultaneously. The proposed schemes 
significantly outperform the previous basic schemes through a novel integration 
of several cryptographic techniques.  

15.5.1 The Bloom Filter Based Authentication Scheme (BAS)  

System Preparation: The sink generates the public keys for all network users, 
and constructs the set:  

,...},,,,{
2211
><><=

IDID UIDUID PKUPKUS  
Where ,}{# NS =  and {}# denotes the cardinality of the set. Using the Bloom 
filter, the sink can apply k  system-wide hash functions (cf. Section II.B) to map 
the elements of S  (each with 2+L  bytes, that is, 2|| =IDU  bytes, and 

LPK
IDU =|| bytes to an m -bit vectorυ  with 110 ... −= mvvvυ  where we have 

)2( =< LNm  to reduce the filter size and kNm >  to retain a small probability of 
a false positive. These k  hash functions are known by every node and the sink. 
For each iv , ],1,0[ −∈ mi we have 
 
 
 
 
 

Additionally, the sink constructs a counting Bloom filter υ  of cm *  bits with 
110 ... −= mvvvυ , where each iv , ]1,0[ −∈ mi  is a c -bit counter, i.e., cv =|| i  

bits. The value of iv  is determined as follows:  
 
  
 
 

And ⎡ ⎤]))1,0[,(max(log 2 −∈= mivc i  bits, which is usually of 4 bits for most 
applications [10]. The above operations are illustrated in Fig. 15.2 The sink 
finally preloads each sensor node with υ  (not including υ ), as well as the sink’s 
public key and the common domain parameters of the ECDSA signature scheme.  
 

⎪
⎩

⎪
⎨

⎧
=

∈∈∃
=

otherwise   0,
  s.t.      

N],[1,j k],[1,l if    1,
i i)||PK(U hv IDjj UIDl

N]}.[1,jk],[1,lfor   
,)||(|),{(#

∈∈∃
== iPKUhPKIDv IDjIDj UIDjlUji
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Fig. 15.2 An example of the Bloom filter and Counting Bloom Filter 

Message Signing and Authentication: Let sGPK
IDU = , be the public key of 

user IDU , where s is the private key of the signer, and G is the generator of a 
subgroup of an elliptic curve group of order r . Let (.)KS  be a symmetric key 
cipher such as AES. To broadcast a message M ( 10|| ≥M  bytes), IDU takes the 
steps below following [24], a variant of ECDSA with the partial message 
recovery property:  

 Concatenate ,|||| >< IDUttM  and break it into two parts 1M and ,2M  
where 10|| ≤M  bytes. 

 Generate a random key pair },{ Vu , where ]1,1[ −∈ ru , )( 1,1 yxuGV == , 
and 1(x mod .0) ≠r  

 Encode-and-hashV into an integer Ι [24]. 
 Form 1F from 1M by adding the proper redundancy [1]. 
 Compute rFIc mod)( 1+= , and make sure that 0≠c or repeat the above 

steps otherwise.  
 Compute ),( 22 MhF =  and )( 2

1 sCFuD += − mod r  
 Repeat all the above steps if 0=D ; Output the signature as >< DC,  

otherwise. 
Then, IDU  broadcasts  

,,,,2 ><
IDUPKDCM                               (III) 
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where tt  and IDU  are parts of 2M . And this is the known simplest message 
format that can be achieved using PKC 3 . Now, upon receiving a broadcast 
message (not from the sink), a sensor node checks the authenticity of the message 
in two steps. First, it checks the authenticity of the corresponding public key by 
verifying its membership in S . To do so, the sensor node checks whether 

1)]||([
?
=

IDUIDl PKUhυ , ],1[ kl ∈ , and a negative result will lead to the discarding 
of the message. We note that here a false positive may happen due to the 
probabilistic nature of the Bloom filter, but only with a very small (negligible) 
probability when appropriate parameters are chosen as we will analyze later. 
Second, it verifies the attached signature as follows: 

 Discard the message if ]1,1[ −∉ rC  or ].1,1[ −∉ rD  
 Compute )( 22 MhF = , rDH  mod 1−= , and rHFH  mod 21 =  
 Compute rCHH  mod 2 = , and 

IDUPKHGHP 21 += . 
 Discard the message if OP = . 
 Encode-and-hash P  into an integer I  [24] and compute rI CF  mod1 −= . 
 Discard the message if the redundancy of 1F  is incorrect. 
 Otherwise accept 1M  (obtained from 1F ) and the signature and reconstruct 

21 |||||| MMUttM ID = . 
User Revocation/Addition: To revoke a user, say 

jID
U , the sink follows the 

steps below:  
 First, it hashes iPKUh

jIDj UIDl =)||)(  and decreases iv  by 1. It repeats this 
operation for all lh , ].,1[ kl ∈  

 From the updated counting Bloom filter ,υ  the sink obtains the 
corresponding updated Bloom filter 'υ  with 110 '...''' −= mvvvυ . Here, 1' =iv  
only when 1≥iv , and 0'=iv  otherwise.  

 The sink further calculates υυυ ⊕=∆ ' and deletes υ afterwards. Here 
⊕ denotes bitwise exclusive OR operation. Obviously, ∆υ is an m -bit 
vector with at most k bits set to 1. Hence ∆υ  can be simply represented by 
enumerating its 1-valued bits, requiring ⎡ ⎤mk 2log bits for indexing ( kk ≤ ). 
This representation is efficient for a small k  as will be analyzed in Section 
VI.B. 

                                                 
3 The claim is true only when ID-based cryptography [33] is excluded from consideration, in which 
case the user’s ID is also his public key. Furthermore, the shortest signature size possibly obtained 
from pairing is around 22 bytes [7], which is shorter than 40 bytes obtained from ECDSA. 
However, to apply a pairing-based scheme (i.e., an ID-based signature or short signature) on sensor 
nodes, the known reachable signature size has to be 84 bytes, even when a 32bit microprocessor 
can be used [36]. And the energy cost is also multiple times higher than that of an ECDSA-160 
signature. 



Chapter Title for Chapter 1 Headings 
 

13 

 The sink finally broadcasts ∆υ after signing it. The message format follows 
(III) but with the sink’s public key omitted, as every sensor already has it.  

 Upon receiving and successfully authenticating the broadcast message, 
every sensor node updates its own Bloom filter accordingly, that is, if 

1, =∆ iv  then 0=iv , ]1,0[ −∈ mi . 
BAS also supports simultaneous multiuser revocation. Suppose that 

revN users are revoked simultaneously. The sink follows the same manner to 
construct ∆υ with k bits set 1. Now we have revkNk ≤ . Furthermore, the 
compressed message for representing ∆υ  now could achieve )( pmH bits 
theoretically, where )1(log)1(log)( 22 pppppH −−−−=  is the entropy 
function and kmp )/11( −= is the probability of each bit being 0 in ∆υ . As 
pointed out in [23], using arithmetic coding technique can efficiently approach 
this lower bound.  

BAS supports dynamic user addition in two ways. First, it enables a later 
binding of network users and their (ID, public key) pairs. In this approach, the 
sink may generate more (ID, public key) pairs than needed during system 
preparation. When a new network user joins the WSN, it will be assigned an 
unused ID and public key pair by the sink. Second, BAS could add new network 
users after the revocation of old members. This approach, however, could only 
add the same number of new users as that of the revoked. This requirement 
ensures that the probability of a false positive never increases in BAS. To do so, 
the sink updates its counting Bloom filter by hashing the new user’s information 
into the current Bloom filter. The sink then obtains a ∆υ  in the same way as in 
the revocation case, and broadcasts it after compression. This time, if 1, =∆ iv , 
sensor nodes will set ]1,0[,1 −∈= mivi  to update their current Bloom filters.  

15.5.2 Minimize the Probability of a False Positive  

Since the Bloom filter provides probabilistic membership verification only, it is 
important to make sure that the probability of a false positive is as small as 
possible. 
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Fig. 15.3 The minimum probability of a false positive regarding 

N
m  

Theorem 1: Given the number of network users N and the storage space m 
bits for a single Bloom filter, the minimum probability of a false positive f that 
can be achieved is k−2

 
with ,2ln

N
mk =  that is,  

.)6185.0( N
m

f =  

Proof: since ,)1())11(1( / kmkNkkN e
m

f −−≈−−=  we then have .)1ln( / mkNekef
−−=  

Let ).1ln( / mkNekg −−=  Hence, minimizing f  is equivalent to minimizing g  
with respect to k . We find  

mkN

mkN
mkN

e
e

m
kNe

dk
dg

/

/
/

1
)1ln( −

−
−

−
+−=  

It is easy to check that the derivative is 0 when .2ln
N
mk =  And it is not hard to 

show that this is a global minimum [23]. Note that in practice, k must be an 
integer. � 

Fig. 15.3 shows the probability of a false positive f  as a function of 
N
m  i.e., bits 

per element. We see that f decreases sharply as 
N
m  increases. When 

N
m increases 

from 8 to 96 bits, f decreases from 210*1.2 −  to 2110*3.9 − . Obviously, f  

determines the security strength of our design. For example, when 92=
N
m bits, 
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the adversary has to generate around 8.632 public/private key pairs on average 
before finding a valid one to pass the Bloom filter. This is almost 
computationally infeasible, at least within the lifetime of the WSN (usually at 
most several years). However, when 64/ =Nm bits, the adversary is now 
expected to generate around 4.442 public/private key pairs before finding a valid 
pair. The analysis below shows the time and cost of the attack. To generate a 
public/private key pair in ECDSA-160, a point multiplication operation has to be 
performed, for which the fastest known implementation speed is 0.21ms through 
a specialized FPGA design [14]. Suppose the adversary could afford 100,000 
such FPGAs, which would cost no less than one million dollars. Then, by 
executing 100,000 FPGAs simultaneously, to generate one valid key pair still 
takes 13.2 hours roughly. With the above analysis, we suggest to select the value 
of f  carefully according to the security requirements of the different types of 
applications. Given a highly security sensitive military application, we suggest 
that f should be no larger than ,10*36.6 20−  i.e., 92/ ≥Nm bits. On the other 
hand, when the targeted applications are less security sensitive as in the civilian 
scenario, we can tolerate a larger f . This is because the adversary is now 
generally much less resourceful as compared to the former case.  

 
Fig. 15.4 Maximum supported number of network users with respect to storage limit 

15.5.3 Maximum Number of Network Users Supported  

It is important to know how many network users can be supported in BAS so that 
the WSN can be well planned. The following theorem provides the answer.  
Theorem 2: Given the storage space m bits for a single Bloom filter and the 
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required probability of a false positive )),1,0(( ∈reqreq ff the maximum number of 

network users that can be supported is ,
ln

)2(ln 2

reqf
m−  that is,  

reqf
mN

ln
4805.0−

≤  

Proof: Since the minimal probability of a false positive kf −= 2  is achieved 

with ,2ln
N
mk = we have 2ln

2 N
m

reqf
−

= . Then, we can easily get 
reqf

mN
ln

)2(ln 2−
= in 

this case; and this is the maximum number of users that can be supported given 
reqf  and m . � 

Fig. 15.4 illustrates the maximum supported number of network users as a 
function of the storage limit. Fig. 15.4 shows that BAS supports up to 1,250 users 
when ,1042.4 14−∗=reqf 1,000 users when 171003.2 −∗=reqf  and 869 users when 

,1036.6 20−∗=reqf  for a storage space of 9.8 KB. Obviously, BAS also allows 
tradeoff between the maximum supported number of network users and the 
probability of a false positive given a fixed storage limit.  

15.5.4 Supporting More Users using the Merkle Hash Tree: The Hybrid 
Authentication Scheme (HAS)  

Through the above analysis, we know that the maximum supported number of 
network users is usually limited given the storage limit and the probability of a 
false positive. For example, if 201036.6 −∗=reqf

 
and the storage limit is 4.9 KB, 

the maximum number of users supported by BAS is 434. Therefore, an additional 
mechanism has to be employed to support more users when necessary. HAS 
achieves this goal by employing the Merkle hash tree technique, which trades the 
message length for the storage space. That is, by increasing the per message 
overhead, HAS can support more network users. Specifically, HAS works as 
follows.  

The sink first calculates the maximum number of users supported in case of 
BAS according to the given storage limit and the desired probability of a false 
positive. It then collects all the public keys of the current network users and 
constructs a Merkel hash tree. In fact, the sink constructs N leaves with each leaf 
corresponding to a current user of the WSN. For our problem, each leaf node 
contains the binding between the corresponding user ID and his public key, that 
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is, ).,(
IDUID PKUh  The values of the internal nodes are determined by the method 

introduced in Section II.C. The sink further prunes the Merkle hash tree into a set 
of equal-sized smaller trees. We denote the value of the root node of a small hash 
tree as i

rh , ||,...,1 Si = , where || S equals the maximum number of supported 
users the sink calculates in BAS.  

Next, the sink constructs a Bloom filterυ  following the same way as described 
in the last section. The difference is that now the member set },...,,{ ||21 S

rrr hhhS = . 
Then, the sink preloads each sensor node withυ . At the same time, each user 
should obtain its AAI  according to his corresponding leaf node’s location in the 
smaller Merkle hash tree. Let T  denote all the nodes along the path from a leaf 
node to the root (not including the root), and A be the set of nodes corresponding 
to the siblings of the nodes in T . Then, AAI further corresponds to the values 

associated with the nodes in A. Obviously, AAI  is of size ( )
||

log2 S
NL ∗  bytes, 

where L  is the length of the hash values. Upon user revocation, the sink simply 
updates all the sensor nodes with the ID information of the revoked users. And 
each node directly stores the revoked IDs as described earlier. Now a message 
sent by a user IDU  is of form  

><
IDID UU AAIPKDCM ,,,,2 .                            (IV)  

Each node verifies the authenticity of a user public key in two steps. First, it 
calculates the corresponding root node value i

rh  using 
IDUAAI attached in the 

message. Second, it checks whether or not the calculated i
rh is a member of υ  

stored by itself. By checking Message (IV), we can easily find that HAS doubles 
the maximum supported number of users as compared to BAS at the cost of 20 
more bytes per message overhead, assuming SHA-1 is used [25]. And the 
number can be further doubled with 40 more bytes per message overhead.  
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Fig. 15.5 Energy consumption in communication regarding different schemes 

15.6 Performance Analysis 

In this section, we analyze the performance of BAS and HAS with respect to 
communicational and computational overheads (in terms of energy consumption), 
and security strength. We give a quantitative analysis of the schemes and 
compare them with the other two basic schemes.  

15.6.1 Communication Overhead  

We study how the message size affects the energy consumption in 
communication in a WSN. We investigate the energy consumption as the 
function of the size of the WSN (denoted as W ). We denote by trE the hop-wise 
energy consumption for transmitting and receiving one byte. As reported in [35], 
a Chipcon CC1000 radio used in Crossbow MICA2DOT motes consumes 28.6 
and 59.2µJ to receive and transmit one byte, respectively, at an effective data 
rate of 12.4 Kb/s. Furthermore, we assume a packet size of 41 bytes, 32 bytes for 
the payload and 9 bytes for the header [35]. The header, ensuring an 8-byte 
preamble, consists of source, destination, length, packet ID, CRC, and a control 
byte [35]. We also assume that 20|| =M  bytes.  

Then, for BAS, the signature size is still the same as that of ECDSA, but only 
part of the message now has to be transmitted, with the saving of up to 10 bytes. 
Therefore, the per message overhead of BAS is 54 bytes, which is 10 bytes less 
than that of DAS. As Message (III) is 74 bytes, there should be 3 packets in total, 
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among which two of them are 41 bytes, and one is 19 bytes. Therefore, there 
should be 12538119241 =∗+∗+∗  bytes for transmission (including 8-byte 
preamble per packet). Hence, the hop-wise energy consumption of message 
transmission is mJ 40.7µJ 2.59125 =∗ ; and the energy consumption of message 
reception is mJ 58.3µJ 6.28125 =∗ . For each message broadcast, every sensor 
node should retransmit the message once and receive ω′  times of the same 
message assuming the blind flooding is used 4 Here, ω′  denotes node density in 
terms of the total number of sensor nodes within one unit disc, where a unit disc 
is a circle area with radius equal to the transmission range of sensor nodes5. 
Hence, the total energy consumption in communication will be 

mJ )58.34.7( ω′∗+∗W . 
Fig. 15.5 illustrates the energy consumption in communication as a function 

of W  with 20=′ω . Clearly, BAS consumes a much lower energy as compared to 
others. For example, when W =15,000, CAS always costs 2.20 KJ, while BAS 
costs only 1.18 KJ. The energy saving for a single broadcast can be more than 
1,000 J between BAS and CAS. Note that although DAS also consumes much 
less energy than CAS, DAS only supports up to 45422/1000 ≈  users. At the 
same time, BAS can handle 869 users even when 201036.6 −∗=reqf CAS handles 
more users than BAS and DAS, however, at the cost of much higher energy 
consumption. Moreover, HAS can handle a large number of users but with a 
much lower energy consumption when compared to CAS. In summary, BAS 
demonstrates the highest communication efficiency, as well as desirable storage 
efficiency. From Fig. 15.5, we also find that the energy consumption in 
communication is the critical cost for WSNs, as a single broadcast of a message 
of only 20 bytes in length could cost energy on the order of KJ. This also exposes 
the severe vulnerability of the µTESLA-like schemes, as they allow the adversary 
to flood the WSN arbitrarily.  

15.6.2 User Revocation/Addition Traffic Overhead  

Another important performance metric for the broadcast authentication schemes 

                                                 
4In an idealized lossless network, blind flooding, i.e., every node always retransmits 
exactly once every unique message it receives, is wasteful, as individual nodes are likely 
to receive the same broadcast multiple times. In practice, however, blind flooding is a 
commonly used technique, as its inherent redundancy provides some protection from 
unreliable (lossy) wireless networks [21].  
5We assume a uniform transmission range for all sensor nodes. 
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is the overhead of the user revocation/addition traffic. As analyzed in Section 
V.A, BAS requires the sink to broadcast ∆υ  upon user revocation/addition. We 
have shown that in the single user case, ∆υ can be efficiently represented by 
simply enumerating all its 1-valued bits, the length of which is bounded by 
⎡ ⎤mk 2log  bits. That is, the per user revocation traffic overhead is upper bounded 

by ⎡ ⎤mk 2log bits. And the theoretical lower bound obtained from the entropy 
function is )( pmH  bits with )1(log)1(log)( 22 pppppH −−−−=  and 

k

m
p )11( −= . It is not hard to see that the expectation value of k  is around 2/k , 

where 2ln
N
mk = . Our simulation shows that k  is always around 2/k . Hence, 

for a given -2010*6.36=reqf , we will have ⎡ ⎤ 68log 2 =mk bytes, and 52)( ≈pmH  
bytes, for 000,1=N . This implies that the per user revocation traffic ∆υ  only 
ranges from 52 to 68 bytes on average for 000,1=N , depending on the used 
coding method6. And for 000,11≤N , ∆υ  is at most 80 bytes on average. This 
overhead is much lower as comparable to that of the µTESLA-like scheme 
proposed for supporting multiple users [18]. In [18], the per user revocation 
traffic (i.e., a revocation certificate) is no less than ⎡ ⎤N2log1+  hash values, 
which is 220 bytes for N =1,000, and 300 bytes for N = 11,000, assuming the 
same hash length of 20 bytes. We further note that in contrast to µTESLA-like 
schemes, BAS does not require periodic key chain update (for running out of 
available keys) among users and sensor nodes. This is the advantage inherent to 
the PKC-based schemes.  

15.6.3 Computational Overhead  

It was previously widely held that PKC is not suitable in WSNs, as sensor nodes 
are extremely computation constrained. However, recent studies [9], [35] showed 
that PKC with only software implementations is very viable on sensor nodes. For 
example in [35], an ECC signature verification takes 1.61s with 160-bit keys on 
ATmega128 8MHz processor used in a Crossbow mote. We analyze the 
computation cost of the proposed schemes to further justify the suitability of 
PKC-based schemes in WSNs. In all our proposed schemes, the major 
computational cost is due to the signature verification operation. In the following 

                                                 
6 We assume that the number of simultaneous network users is always around N. 
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analysis we omit the cost of other operations such as hash operations and table 
lookup, as they are negligible as compared to the signature verification operation 
[35].  

In CAS, two ECDSA signature verifications are needed for each broadcast 

message. In BAS, to verify a message takes 2ln
N
mk =  hash operations and one 

ECDSA signature verification. It was reported in [35] that an ECDSA-160 
signature verification operation costs 45.09 mJ on a 8-bit ATmega128L 
processor running at 4 MHz. If we assume that the sensor CPU is a low-power 
high-performance 32-bit Intel PXA255 processor, the energy cost can be further 
minimized. Note that the PXA255 has been widely used in many sensor products 
such as Sensoria WINS 3.0 and Crossbow Stargate running at 400MHz. 
According to [13], the typical power consumption of PXA255 in active and idle 
modes are 411 and 121 mW, respectively. It was reported in [5] that it takes 92.4 
ms to verify an ECDSA-160 signature with the similar parameters on a 32-bit 
ARM microprocessor at 80 MHz. Therefore, the same computation on PXA255 
roughly needs 18.48 92.480/400 ≈× ms, and the energy cost is hence around 7.6 
mJ. Therefore, we can obtain the computational costs of the proposed CAS and 
BAS schemes on different sensor platforms7. The results are summarized below.  
 

 
 

BAS is obviously also more computationally efficient than CAS. Furthermore, 
when we compare the computational cost with the communication cost on hop-
wise message transmission, we can find that both are on the same order, which 
justifies the suitability of PKC-based schemes in WSNs.  

15.6.4 Security Strength  

The Bloom filter based public key verification ensures the security strength of the 
proposed scheme by enabling immediate message authentication. That is, there is 
no authentication delay on messages being broadcast. Therefore, it is very hard 
for the adversary to perform network wide flooding in the WSN. As we analyzed 

                                                 
7  DAS and HAS consume similar amount of energy as BAS does, as they both require one 
signature verification. 
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above, by appropriately choosing a suitable value of reqf , such as -2010*6.36   in 
military applications, it is infeasible to forge a valid public/private key pair 
during the lifetime of the WSN. Furthermore, by embedding a time stamp into 
the message, the message replay attack is also effectively prevented, as WSN is 
assumed to be loosely synchronized [28]. Therefore, the immediate message 
authentication capability provided by the proposed schemes can effectively 
protect the WSN from network wide flooding attacks. This is the most significant 
security strength over the µTESLA-like schemes, in which network wide 
flooding attacks are always possible.  

Moreover, since the public key operation is expensive, it is also important that 
sensor nodes can be resistant to the local jamming attacks. Under such attacks, 
the adversary may simply broadcast random bit strings to the sensor nodes within 
his transmission range. If these neighbor sensors have to perform the expensive 
signature verification operation for all received messages, it will be a heavy 
burden on them. CAS obviously suffers from this type of attacks, as the signature 
verification operation has to be performed for every received message. However, 
in both BAS and HAS, such an attack can be effectively mitigated. This is 
because in both schemes, a sensor node first verifies the authenticity of the 
attached user public key through hash operations, so it performs signature 
verification operation for a bogus public key only with a negligible probability 
(e.g., 6.36*10−20). As reported in [35], the energy cost of SHA-1 is only 5.9 
µJ/byte on a 8-bit ATmega128L processor, while ECDSA-160 could consume 
45.09 mJ on signature verification. An adversary may also flood the sensor nodes 
with forged messages but containing valid user public keys, which can be 
obtained by eavesdropping the network traffic. In this case, the forged messages 
can only be discarded after signature verification, and sensor nodes that are 
physically close to the adversary can thus be abused. We note that this type of 
attacks is always possible for PKC-based security mechanisms. However, this 
attack can still be mitigated in BAS by implementing an alert report mechanism. 
If a sensor node fails to authenticate the received messages multiple times in a 
row, it will derive that an attack is going on and alert the sink about the attack. 
The sink further carries out field investigations or other means to detect the 
adversary and take corresponding remedy actions that are outside the scope of 
this chapter.  

15.7 Further Enhancements 
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15.7.1 Dealing with Long Messages  

The messages broadcast in WSNs are usually short, due to the application 
specific nature of WSNs. The query or command messages can be less than one 
hundred bytes. However, there are few cases that long messages may be required 
to be broadcast in WSNs. For example, the sink may broadcast code images to 
the sensor nodes for the purpose of retasking WSNs [37]. The size of such code 
images can be on the order of KB. In this case, it is not desirable to apply the 
proposed BAS or HAS scheme directly by signing the whole message (i.e., the 
message hash) only once or signing on every single packet otherwise. This is 
because of two reasons. First, if we sign the whole message once, then each 
sensor node can authenticate a message only after it obtains the entire message. 
That is, the sensor nodes have to buffer a large number of received packets 
before it can authenticate them. This obviously introduces a severe vulnerability 
that could result in message flooding attacks. Second, if we sign every packet 
belonging to the same message, the scheme overheads will increase significantly 
with respect to both computation and communication. This is because now every 
packet is attached with a signature, which is 40 bytes in our setting.  

Fortunately, several solutions were proposed to solve this problem in the 
context of code update in WSNs [38], [39]. The first solution is suitable for 
lossless network environments, which employs off-line hash chain technique to 
amortize the cost of a single digital signature over multiple packets and allow for 
incremental message authentication and packet pipelining [38], [40]. The second 
solution is aimed at tolerating packet losses. This solution makes use of a signed 
hash tree technique and trades message overhead for potential packet losses [39]. 
Both solutions can be directly superimposed with BAS and HAS in dealing with 
long messages. We omit the details of these solutions for space interest.  

15.7.2 Reducing the Probability of a False Positive  

In [41], a method is introduced to use two families of k hash functions, instead of 
using one. And an element is in the set if either family gives back all 1s from the 
filter. The trick is to choose one of the two families of the hash functions 
adaptively: choose which family of hash functions to use for each element of 
your set in such a way to keep the number of 1s in the filter as small as possible. 
In such a way, a smaller false positive probability in the same space can be 
achieved at the cost of more hashing. This method can reduce the probability of a 
false positive to the half under certain conditions using the same storage space. 
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This technique can be exploited by BAS so that we achieve a desirable 
probability of a false positive with a smaller storage space.  

15.7.3 Optimization on Constructing the Merkle Hash Tree  

Different types of network users may have different broadcast frequencies in 
practice. This fact can be exploited by HAS, when supporting a vast number of 
network users is a must. Instead of pruning the user Merkle hash tree into a set of 
equal-sized smaller trees, now the tree can be trimmed into the same number but 
different-sized smaller ones based on user broadcast frequency. The higher the 
frequency is, the smaller hash tree the user is grouped in. In such a way, the 
energy efficiency can be improved in the overall sense, as more messages being 
broadcast containing only smaller AAI sizes. This is similar to the idea 
introduced in [9].  

15.7.4 Using “Fast Forward, Slow React” to Prevent Public Key Forgery 
Attacks  

Since a false positive is still possible though small, the adversary can forge 
different user public/private key pairs and seek to pass the membership test. In 
this way, the adversary could possibly pretend to be a valid network user and has 
its messages authenticated. The sensor nodes, however, will not be able to 
distinguish the bogus public keys, once a successful guess is made.  

On the other hand, a bogus public key can always be deterministically 
detected by the sink, as the sink keeps the copies of all the user public keys. 
Furthermore, as the sink is always connected to the WSN as assumed, it also 
receives the broadcast messages sent by the users. Thus, the sink can always 
detect a bogus public key that cannot be detected by the sensor nodes through 
analyzing the received messages. The following “Fast forward, Slow React” 
policy is designed to leverage this fact and does not affect message propagation 
efficiency. In “Fast forward, Slow React” policy, each sensor node estimates the 
round trip time between itself and the sink. We denote this time as IDU∆ .The 
estimation of IDU∆  can be obtained from either direct location-based calculation 
or the previous interactions between the node and the sink. If there are multiple 
sinks, IDU∆  is estimated for the closest one. Then, upon successfully 
authenticating a received message, each sensor node waits for IDU∆  additional 
time to take the further reactions (“Slow React”) except for forwarding the 
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message (“Fast forward”). Suppose the message is a query. If node IDU  has the 
(partial) answer to this query, it delay replying the user with the answer IDU∆  
time. When IDU∆  is timeout and there’s no warning received from the sink, IDU  
now sends out the answer. And if the sink does broadcast a revocation message, 

IDU  will be able obtain it before any further action is taken. Note that no matter 
whether IDU  is an intended recipient, it always forwards the message without 
delay, as long as the message is successfully authenticated by itself. Therefore, a 
public key forgery attack will only result in one successful message broadcast, 
given the “Fast forward, Slow React” policy enforced. And we note that the “Fast 
forward, Slow React” policy can be implemented in an on-demand manner. That 
is, only when the WSN is under attack will sensor nodes implement this policy. 
The sink can be used to control the starting and ending time.  

15.8 Challenges for Future Research 

There are many challenges regarding multiuser broadcast authentication in 
WSNs. One of the foremost important issues is to further reduce the 
computational overhead of PKCs when applied on resource constrained sensor 
nodes. Research along this direction can be two-fold: One is to adapt and test 
more efficient state-of-the-art PKC algorithms on sensor nodes, which also 
includes design new approaches to allow trade-offs between security strength and 
computational complexity. The other is to use hardware-software co-design for 
speeding up PKC computations on sensors. As sensor nodes are usually specially 
purposed according to the desired application, its functionality can be 
predetermined, which allows specific hardware design optimized both for the 
application and security related algorithms. Other challenges include better 
protocol design according to different user query patterns and data storage 
mechanisms. It is also useful to make use of the potential heterogeneity among 
the sensor nodes to design more resilient and efficient mechanisms for broadcast 
authentication.  

15.9 Conclusion 

In this chapter, we studied the problem of multiuser broadcast authentication in 
WSNs. We pointed out that symmetric-key-based solutions such as µTESLA are 
insufficient for this problem by identifying a serious security vulnerability 
inherent to these schemes: the delayed authentication of the messages can easily 



Book Title 
 
26 

lead to severe energy-depletion DoS attacks. We then came up with several 
effective PKC-based schemes to address the problem. Both computational and 
communication costs of the schemes are minimized through a novel integration 
of several cryptographic techniques. A quantitative energy consumption analysis, 
as well security strength analysis were further given in detail, demonstrating the 
effectiveness and efficiency of the proposed schemes.  

15.10 Problems 

1. What is a wireless sensor network? 
2. What is a digital signature? 
3. What is a bloom filter? 
4. What is a Merkle hash tree? 
5. How is the False Positive rate of a bloom filter defined? 
6. How are broadcast messages authenticated according to the solutions 

proposed in this chapter? 
7. What is the security issue of µTESLA scheme when applied in large scale 

multihop wireless sensor networks? 
8. How to trade off between storage overhead and the false positive rate of the 

bloom filter in this chapter? 
9. What is a partial message recovery digital signature? 
10. How does partial message recovery signature technique help improve 

communication efficiency in this chapter? 
11. How is user revocation operation performed in this chapter? 
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