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ABSTRACT
Augmented reality is poised to become the next dominant
computing paradigm over the next decade. With promises of
three-dimensional graphics and interactive interfaces, aug-
mented reality experiences will rival the very best science
fiction novels. This breakthrough also brings in unique chal-
lenges on how users can authenticate one another to share
rich content between augmented reality headsets. Tradi-
tional authentication protocols fall short when there is no
common central entity or when access to the central au-
thentication server is not available or desirable. Looks Good
To Me (LGTM) is an authentication protocol that leverages
the unique hardware and context provided with augmented
reality headsets to bring innate human trust mechanisms
into the digital world to solve authentication in a usable
and secure way. LGTM works over point to point wireless
communication so users can authenticate one another in any
circumstance and is designed with usability at its core, re-
quiring users to perform only two actions: one to initiate and
one to confirm. Users intuitively authenticate one another,
using seemingly only each other’s faces, but under the hood
LGTM uses a combination of facial recognition and wireless
localization to bootstrap trust from a wireless signal, to a
location, to a face, for secure and extremely usable authen-
tication.

1. INTRODUCTION
Augmented reality (AR) is one of the most exciting new

technologies on the horizon, promising three-dimensional in-
terfaces that one or more users can directly interact with.
Users will be able to interact with these rich digital inter-
faces while remaining aware of and responsive to their phys-
ical surroundings. These semi-immersive interfaces are com-
monly provided via head-mounted displays (HMDs) with
translucent lenses that render digital content in two or three
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dimensions on top of the real world. Many of these HMDs
will be stand-alone computers equipped with powerful pro-
cessors, wireless communications, one or more high resolu-
tion cameras, and depth sensors. This sophisticated array
of hardware is used to provide fully interactive AR which
requires: hand tracking, intense graphics processing, and
environment mapping.

Users of AR headsets have the same need that users of
any other consumer electronic device have today: to send
content to others. With AR, this content will usually be
far richer, and thus larger, than we’ve seen on other plat-
forms, since users will be creating, viewing, and working
with three-dimensional objects, which inherently have more
information associated with them than their equivalent two-
dimensional representations. Users will be sharing three-
dimensional scene captures, three-dimensional engineering
part diagrams, and entire rooms full of three-dimensional
digital objects. It’s also expected that users will share a
large amount of content face-to-face since this will provide
3D objects that both users can see and/or interact with in
real time. The current parallel to face-to-face digital shar-
ing in AR is using a smart phone to show a video or picture
to someone. The sharing action is the same, but the shar-
ing medium has switched from physically displaying one’s
screen to sharing the content across two users’ devices. We
expect this type of sharing to increase with AR as much of
the physical world’s in-person content exchanges transition
to the digital world, like so many other content streams in
the past.

Content sharing between users in close proximity is an
interesting and well-studied problem [25, 29, 39, 44]. Local
sharing stands in contrast to today’s typical content sharing
schemes which take advantage of preexisting infrastructures
such as cell towers, wireless access points, and the Internet.
This makes sense considering the most common use case
for digitally sharing content currently is to share it with
those who aren’t present. Today, you wouldn’t send someone
standing next to you a video, you would show it to them on
your device. But with AR you would send someone sitting
next to you a video so that the two of you can watch it
together through your respective headsets.

This type of local sharing deserves separate consideration
from the general content sharing problem, it will be worth-
while to explore and design for the specific conditions that
separate local sharing from remote sharing. By sharing con-
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tent locally, network resources are saved and money may be
saved if charge-by-data usage plans are being used for Inter-
net access. The Microsoft HoloLens [5], a new AR headset,
recognizes the value in this and has separate support for
local sharing vs. remote sharing [37].

When working in a localized communications scenario where
there is no central authority, authentication can be tricky.
It will often be the case that two users have not used their
devices to communicate before, meaning there will be no
preexisting security context between the two devices such
as a pin, key, token, etc. This problem is commonly known
as device pairing and it is well studied [14, 15, 17, 18, 26, 34,
35, 41, 44, 46, 47, 52]. In this scenario authentication must
be bootstrapped, which leads to well-known protocols, in-
cluding Bluetooth, being vulnerable to man-in-the-middle
(MITM) attacks). Furthermore, these device pairing pro-
tocols are often not usable [50] which can lead to further
security problems and user frustration. We go into more
detail about existing device pairing work in the background
section.

In this paper we examine device pairing in the context of
AR headsets, and develop a novel solution to pair two head-
sets that is quick and intuitive while providing a high de-
gree of security. Our solution leverages the unique hardware
capabilities required for AR and a unique combination of
contextual information about AR headset use, facial recog-
nition, and very recent advances in wireless localization.

The core idea of the scheme relates to how humans au-
thenticate other human speakers. When trying to determine
whom is speaking, our brains localize the source of the au-
dio signal heard and then we match up that origin with a
face that our brain has also recognized [11, 36]. Humans
take a wave-signal source, localize it, then pair it with a
face. Our work uses this idea, except instead of localizing
an audio signal our system localizes a wireless signal that
is adjacent to a face and recognizes the face automatically
using facial recognition. By doing this, we create an authen-
tication scheme robust against man-in-the-middle (MITM)
attacks that reduce the problem of pairing for two users to
simply looking at each other’s faces and indicating to their
AR headset that it “Looks Good To Me”, thus establishing a
secure connection. This system is aptly called “Looks Good
To Me” or LGTM for short. In this paper we contribute:

• The LGTM protocol which brings innate human trust
mechanisms into the digital world, allowing users to
share any type of content with one-another face-to-face
just by selecting a person to share with

• Analysis where we demonstrate that LGTM is secure
against MITM attacks and highly usable

• We publish a full open-source implementation of LGTM
under the MIT software license as a prototype and a
building point for further improvements

In section 2 we provide context by surveying relevant ar-
eas including AR, device pairing, and wireless localization.
In section 3 we present the system model, threat model, se-
curity objectives, and the LGTM protocol. In section 4 we
present analyses of LGTM covering security, usability, and
privacy implications. In Section 5 we present the details of
our LGTM implementation, including a link to the complete
open-source code-base. In section 6 we present experimental

results involving localization accuracy and performance. In
section 7 we discuss the potential for future work surround-
ing LGTM. In section 8 we conclude.

2. BACKGROUND

2.1 Augmented Reality
AR has been around as a research topic since as early as

1993 [54], but only recently have AR headsets been pursued
as consumer and business products [1,2,4,5]. AR at its core
is taking what we see in reality and overlaying additional
digital objects on top of it in the form of two-dimensional
or three-dimensional renderings. Additionally, users can di-
rectly interact with these digital objects using their hands
or other parts of their body.

The vision for future AR experiences lies in the HMD,
a large pair of glasses with a mechanism to deliver light
encoding specific digital objects directly into the user’s field
of vision. There is a wave of AR HMDs coming to market
including the Meta 2 [4], the Microsoft HoloLens [5], and
Magic Leap [2], all of which sport immersive and interactive
experiences.

AR headsets are trending towards being stand-alone com-
puters. The Microsoft HoloLens is already a fully function-
ing computer, and the company Meta has stated that it
intends to move toward a full stand-alone computer head-
set [4]. This trend implies that AR users will be able to
enjoy all the current advantages of computers with the ad-
dition of the powerful sensors and paradigm changing user
interfaces that come with AR. This allows us to look at tra-
ditional problems that arise in the context of computers and
computing and reexamine these existing problems and their
existing solutions in the context of AR computers with an
eye to improve upon the current state-of-the-art by using
the additional functionality provided via the hardware and
abilities from AR.

One of these problems is device pairing, which is a com-
mon procedure that must be done to connect two devices
together such as a headset and a smart phone, a speaker
and a smart phone, two smart phones, or any other wireless
peripheral with a smart phone or computer.

2.2 Device Pairing
Device pairing is the area dedicated to authenticating de-

vices without prior security context, and there have been
many schemes introduced to address this problem on de-
vices with myriad hardware features and constraints [14,
18, 34, 35, 41, 44–46]. Virtually all of these methods rely on
communication over one or more out-of-band (OOB) chan-
nels. An OOB channel is any channel which is not the pri-
mary communications channel being used. This secondary
channel can be defined quite broadly and many schemes
use human sensory capabilities or human activity as the
OOB channel [27, 28, 38]. The primary channel that the
secondary channel is used to authenticate is a human im-
perceptible channel, most often the wireless channel. Most
device pairing schemes proceed as follows. Some information
is transmitted over the OOB channel, which is then used for
authentication in the primary channel via some specialized
authentication procedure. These authentication procedures
can vary widely depending on what sort of OOB channel is
used and what sort of information is transmitted across it.
The simplest and most common example is for a numerical



pin to be exchanged or verified between two devices via one
or more human actors. Depending on the scheme, the pin
may need to be entered on both devices, transmitted be-
tween two devices and then verified as matching by one or
more users, or some combination of the two [3,19,27]. When
human actors are involved, the exchanged information is of-
ten short to improve usability [3, 19], and thus possesses a
low level of entropy, reducing its security.

Usability in device pairing schemes has accumulated its
own body of research [14, 21, 24, 26, 28, 50] through proto-
col comparisons, usability studies, and analyses of security
issues that usability can affect. Usability is important be-
cause it can affect protocol adoption and even the security
of the protocol. If users are prompted to confirm a numeric
string that appears on a pair of devices, and they confirm
it without thorough checking, it is easy for incorrect devices
to be authenticated, which is a huge security leak [50].

2.3 Wireless Localization
Wireless localization seeks to determine the exact point

of origin of a wireless signal using only the signal itself. Un-
til very recently wireless localization systems were infeasi-
ble to implement on commodity hardware due to high per-
node antenna-count requirements [22] and the high number
of nodes required, since many locations where localization
would be beneficial simply do not have the required number
of access points to provide accurate localization [16, 22, 23].
Yet another barrier to implementing localization on com-
modity devices is the lack of availability of granular informa-
tion on the wireless channel on commodity hardware. Many
commodity hardware devices have only provided received
signal strength information (RSSI) as a measure of wire-
less signals, but recently there has been a trend towards
providing more granular channel state information (CSI) on
commodity devices [20,55].

These past limitations and recent developments have lead
to a recent influx of wireless localization work with tech-
niques that both improve precision and decrease hardware
requirements [16, 33, 48, 51]. Much of this work has only
occurred in the past year, opening up new applications of
wireless localization that did not previously exist. The most
recent of these works reduces the hardware required for pre-
cise localization to a single access point with three anten-
nas [51], which is unparalleled given that previous single
access point localization was simply not feasible with high
precision. We leverage these very recent advances in lo-
calization in LGTM’s development, and expect LGTM to
improve as wireless localization continues to become more
robust and more precise.

3. LGTM PROTOCOL

3.1 System Model and Assumptions
Consider this scenario: Alice and Bob meet for the first

time and want to pair their AR headsets to exchange some
three-dimensional content. Alice and Bob both trigger the
pairing protocol on their devices. Moments later they are
both prompted to confirm one-another’s faces, which are
outlined on their respective AR displays. Alice and Bob
confirm one-another’s faces and now they are free to com-
municate over an encrypted channel. What could be simpler
than that? This is what LGTM promises.

LGTM is specifically designed for authenticating two users,
Alice and Bob. Alice and Bob are assumed to be users
equipped with AR HMDs which are also stand-alone com-
puters equipped with: wireless communications hardware
with support for a point to point communications protocol,
software and hardware support for wireless localization us-
ing the same wireless hardware used for communication, a
high-definition video camera, and a translucent display di-
rectly in front of the users’ eyes that is capable of displaying
digital objects on top of the physical world.

An important piece of information that each headset is
assumed to possess is a facial recognition model capable of
recognizing the user of the headset. Alice’s headset has a fa-
cial recognition model trained to recognize her, and likewise
for Bob. Training these models can be done in a mirror.

The two hardware devices are assumed to have no prior
security context and we assume that Internet access is not
reliably accessible or not desirable.

As for the users themselves, Alice and Bob are assumed to
be in sight of each other and would like to share some sort of
digital content with one another, such as shared holograms
or basic messaging. No assumptions are made of Alice and
Bob’s relationship with each other: they may be friends or
strangers.

3.2 Threat Model and Protocol Objectives
Attackers have quite a bit of power when dealing with a

wireless channel since the communications medium is both
public and localized. Attackers have the capability to: eaves-
drop on all packets transmitted, and replay packets collected
from eavesdropping in any order. Further, the attacker may
have multiple transceivers at her disposal, so attacks can be
coordinated between multiple nodes. However, it is neces-
sary for an attacker to be physically present, either person-
ally or via a device controlled remotely, in order to modify
the wireless channel.

An attacker with powerful equipment may attempt to im-
personate Alice to trick Bob into sending sensitive content.
She may also impersonate Bob to send Alice malicious data,
such as malware embedded in a PDF file. Furthermore, an
attacker may launch a MITM attack to eavesdrop on Alice
and Bob’s communications.

We do not include denial-of-service (DOS) attacks in our
threat model since these attacks are present across all wire-
less and networked devices and cannot be completely de-
fended against. However we do briefly discuss how DOS
attacks can be executed against LGTM in section 4.

Lastly, the attacker may want to prevent communication
between Alice and Bob by either jamming the wireless com-
munication or draining the battery of the AR devices. We
do not consider this problem in our threat model as denial-
of-service attacks are pervasive across all networked devices,
but we do include a brief discussion after the protocol de-
scription regarding potential mitigation strategies.

The primary security objective is for Alice and Bob to
correctly authenticate one another’s wireless signals so that
they can engage in secure point to point wireless commu-
nication. Since Alice and Bob do not share any security
context, this authentication must be bootstrapped.

A secondary objective is for Alice and Bob to correctly se-
lect which user they want to communicate with. This objec-
tive is directly related to the first but it warrants distinction
as a worthy problem on its own merit since there are many



practical attacks that rely upon tricking users into selecting
the wrong thing [12,42]. There has even been work done on
these attacks that specifically look at AR systems [40]. We
refer to this pervasive issue as the user-selection problem.

3.3 Protocol
To begin the protocol, Alice presses a button which may

be digitally rendered over reality or physically located on
the AR headset. At this point Alice’s headset begins lis-
tening on the local wireless channel and broadcasts an ini-
tialization message. Since Bob is not listening yet, Alice’s
message goes unanswered. Bob presses a button to initiate
the protocol, opening his device up to listen to the wire-
less channel and generating an initialization packet contain-
ing Diffie-Hellman parameters g and p, Bob’s private key b,
Bob’s public key computed as: B = gb mod p, and a ran-
domly generated number, RB1, to serve as half of a session
identifier. Bob broadcasts his message g||p||B||RB1, where
|| denotes concatenation. Alice receives Bob’s initialization
message, generates her private key a and computes her pub-
lic key in relation to the received Diffie-Hellman parameters
g and p as: A = gamodp. Alice generates a random number
RA1, to serve as the second half of a session identifier and
broadcasts her public key A concatenated with the random
number RA1, and RB1||RA1, which is the session identifier
for Alice and Bob’s current session. This makes Alice’s full
message: A||RA1||RB1. Bob receives Alice’s message and
verifies that it is in response to his initial message by check-
ing RB1||RA1. Alice and Bob both compute the shared key
K = Bamodp = Abmodp. At this point Alice and Bob have
established a shared symmetric key, but have not established
the authenticity of each other’s identities.

Alice Bob

10. A || R
A1

 || R
B1

13. Retrieve facial recognition parameters: F
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Figure 1: Protocol diagram of Alice and Bob’s communica-
tions and computations during LGTM. Note that H(·) de-
notes a facial recognition algorithm, G(·) denotes a wireless
localization algorithm, and || denotes concatenation.

Bob retrieves facial recognition parameters that define a
facial recognition model to recognize his face, FB . Bob en-
crypts the facial recognition parameters using the shared
key and an initialization vector, IV, which Bob concatenates
with his encrypted facial recognition parameters, giving us
IV ||E(IV,K, FB), and broadcasts this message. Alice re-
ceives Bob’s encrypted message with his facial recognition
parameters and also records the channel state information,

CSIA, associated with the packets carrying Bob’s message.
Alice decrypts the message and retrieves FB . Alice com-
putes Bob’s location using a wireless localization algorithm
denoted by G(·) to get Bob’s location: LA = G(CSIA). Al-
ice runs a facial recognition algorithm denoted by H(·), using
Bob’s facial recognition parameters to obtain a location for
any faces that match FB , denoted by FLA = H(FB). Alice
compares LA and FLA to see if the coordinates overlap. If
they do not match then they are thrown out. If there are
no matches among all the options for LA and FLA then the
protocol is aborted. If there are matches, then Alice’s de-
vice renders a box around Bob’s face, matched by FB , and
whose location, FLA, overlaps with the corresponding LA.
Alice is prompted to verify that the protocol has selected the
correct face. In practice, there may be many pairs of faces
and locations to check at once since multiple users may be
carrying out LGTM at the same time. In this case, Alice
selects Bob’s face from the available faces, if it is present. If
Alice fails to select Bob’s, face then the protocol aborts at
this point.

Otherwise, Alice retrieves facial recognition parameters
that define a facial recognition model to recognize her face,
FA. Alice uses the shared key, K and the last several bytes
of FB as an initialization vector, IV, to compute the encryp-
tion, E(IV,K, FA) and broadcasts it. Bob receives Alice’s
encrypted message with her facial recognition parameters
and also records the channel state information, CSIB , as-
sociated with the packets carrying Alice’s message. Bob
decrypts the message using the shared key, K, and the ini-
tialization vector derived from the last several bytes of FB

and retrieves FA.
Bob computes Alice’s location using the wireless localiza-

tion algorithm to get: LB = G(CSIB). Bob runs the facial
recognition algorithm, using Alice’s facial recognition pa-
rameters to obtain a location for any faces that match FA,
denoted by FLB = H(FA). Bob compares LB and FLB to
see if the coordinates overlap. If they do not match, then
they are thrown out. If there are no matches among all the
options for LB and FLB , then the protocol is aborted. If
there are matches, then Bob has a box drawn around Alice’s
face, matched by FA, and whose location, FLB , overlaps
with the corresponding LB . Bob is prompted to verify that
the protocol has selected the correct face. In practice, there
may be many pairs of faces and locations to check at once
since multiple users may be carrying out LGTM at the same
time. In this case, Bob selects Alice’s face from the available
faces, if it is present. If Bob fails to select Alice’s face then
the protocol aborts. Otherwise, the protocol has successfully
completed, Alice and Bob have established a secure key K,
and they have authenticated each other’s wireless signals
ensuring that they are communicating with who they think
they are. They are now free to send encrypted content back
and forth.

4. PROTOCOL ANALYSIS

4.1 Protocol Components

Key Exchange and Channel Security.
LGTM uses Diffie-Hellman key exchange [13] for estab-

lishing a shared key between Alice and Bob. High-speed
key generation makes it feasible to generate a new key pair
every time pairing is performed. This provides LGTM with



perfect forward secrecy, meaning that if an attacker obtains
one of the private keys used in a single pairing the other
public-private key pairs along with the symmetric keys de-
rived from them remain secure.

LGTM uses symmetric key encryption to protect the con-
fidentiality of the facial recognition parameters. These pa-
rameters are not necessarily private, but they are not easily
obtainable by arbitrary individuals, so encrypting them pro-
vides protection from attackers that do not have easy access
to them. Furthermore, encryption serves as a form of au-
thentication so that Alice and Bob can properly keep track
of the potentially many message streams from LGTM being
performed between multiple parties in the same area at once.
Initialization vectors are used with symmetric encryption to
protect against known plain text attacks.

Wireless Localization.
LGTM’s security rests atop wireless localization’s accu-

racy. Localization connects a wireless signal to a physical
location by computing the signal’s point of origin. This
location can be matched with a device or person occupy-
ing that location, and with human assistance, this device or
person can be authenticated. Wireless localization remains
a difficult and unsolved problem and many current schemes
are too inaccurate to be suitable for security applications.
However, very recent and promising work achieves a median
error of 65 cm in line of sight conditions with a single lap-
top equipped with three antennas [51]. Consider now that
LGTM’s localization scenario is a constrained one. If two
users are performing LGTM, they must have a line of sight
between each other and in the most common use-case, they
will be quite close to one another, likely within four meters.
If we look at the results in [51] again with these constraints
in mind, we see that this localization technique achieves ac-
curate localization down to less than 15 cm median error,
which is sufficient for security applications.

Facial Recognition.
This brings us to facial recognition. We state above that

wireless localization is what allows LGTM to authenticate a
device or person, so of what use is facial recognition? Having
users authenticate a physical location computed using wire-
less localization, identified by say, a sphere, requires users to
search for the sphere and verify that it intersects with the
person they’re attempting to communicate with. This will
work, but it is not a very usable way for a user to choose
whom to communicate with (I.E. to solve the user-selection
problem). The facial recognition parameters exchanged in
LGTM serve to make it simple for a user to select whom
they are to communicate with.

Humans are phenomenal at facial recognition. It was
found in [49] that infants as young as 1-3 days old are able to
recognize faces. By using facial recognition to effectively pre-
process what the user is currently seeing, locations obtained
via localization that do not match up with the location of
the face identified by the facial recognition parameters are
automatically eliminated. This reduces the chances of a user
selecting an invalid location either accidentally or through
an attacker’s careful misdirection. Once the invalid selec-
tions are eliminated, there may still be multiple valid face-
location pairs to choose from, but selecting a face remains
a far simpler task than picking out a sphere or another sort
of location representation.

Human Verification.
The final step in the protocol is for the actual human

users to select a face from the options LGTM provides. A
user of any sharing system must tell that system whom they
wish to communicate with, so this step is a requirement
regardless of whether LGTM is in use or not. This step in
the LGTM protocol serves to select a user to share with as
well as authenticating that user, in a process seamless to
the user. From the user’s perspective selecting who to share
with is the same as authenticating them, which is possible
thanks to the preprocessing done using wireless localization
and facial recognition.

On top of this, humans are great at recognizing the differ-
ence between a mask and a true human face. Without the
human verification step, LGTM could be fooled by an at-
tacker wearing a mask. Human verification serves as a final
check against spoofing attempts, but doesn’t add any extra
steps for the user to jump through.

4.2 Security Against Attacks
We have spoken at length about the security properties

the techniques used in LGTM possess; now we discuss how
LGTM performs against attacks.

Man-in-the-Middle Attacks.
MITM attacks plague virtually every pairing protocol [26].

The very nature of pairing opens these protocols up to MITM
attacks since there is no prior authentication information.
LGTM, however, has protection against MITM attacks not
afforded to other pairing protocols thanks to wireless local-
ization. Localization pairs a signal to a location so attackers
must occupy the same physical location as both users to suc-
cessfully launch a MITM attack. This is still theoretically
possible using two extremely small coordinated devices phys-
ically located on Alice and Bob impersonating each of them
respectively, but this is very difficult since Alice and Bob are
likely to notice a wireless device placed on their person.

A more realistic MITM attack for the present is one re-
liant on inaccurate localization results. Localization can not
be called a solved problem yet, and any implementation of
LGTM will have to deal with the currently accepted local-
ization techniques, errors and all. The attack would still
require two coordinated devices, but they could be placed
adjacent to Alice and Bob instead of on their person. One
device would impersonate Alice, the other would imperson-
ate Bob, and the two devices would communicate the facial
recognition parameters back and forth to successfully im-
personate Alice and Bob. However as wireless localization
becomes more and more precise, as it has been over the
field’s entire history, these attacks will become harder and
harder.

User Impersonation Attacks.
Inaccurate localization results can also be used in one-

way impersonation. Eve might want to impersonate Alice
to Bob, so she sets up a device near enough to Alice to
fool the localization procedure and transmits Alice’s facial
recognition parameters.

User impersonation will usually be protected against even
further than localization goes by context. LGTM’s most
likely use-case is that Alice and Bob want to share digital
content via their AR headsets and that they are already in-
teracting and conversing. If Eve impersonates Alice to Bob,



then Alice will not be sharing anything with Bob and vice-
versa, which will not go unnoticed. Bob will likely terminate
the connection and try again since it will be apparent that
the protocol failed. It is possible though to imagine sce-
narios where Bob might not notice that he is paired with
someone besides Alice and in these cases the only defense is
to improve localization accuracy.

Denial-of-Service Attacks.
DOS attacks are a common attack across all devices with

network connectivity. Here we discuss two different ways
that DOS attacks can be launched against LGTM.

The first is common to all wireless devices, jamming the
wireless channel so that messages are not successfully re-
ceived at all. Defending against jamming is still an active
area of research. In LGTM, we do not have any built-
in defenses against jamming as jamming requires expensive
equipment and is illegal in many countries and states.

The second avenue is through the protocol itself. LGTM’s
localization step can be fairly expensive, and the rest of the
protocol doesn’t just happen for free. If Eve spams Alice or
Bob’s device with LGTM requests, they will waste time pro-
cessing these requests. But this attack goes further. Since
these AR headsets are stand-alone and mobile, they will be
battery-powered. By spamming Alice or Bob’s device and
forcing computation, Eve can execute a battery drain attack.
The best defense against an attack like this have monitor-
ing LGTM protocol messages, and if too many are received,
the protocol is aborted, similar to TCP’s congestion control
mechanism [32]. This control mechanism defends against
battery drain attacks, but not general denial of service.

4.3 Usability
Usability is a great thing to have for any piece of tech-

nology. It increases the likelihood of adoption, decreases
avoidable user error, and reduces user frustration, which is
linked to the other two points.

Besides being good for user satisfaction, usability can be
an important factor in increasing security by reducing user
errors that lead to security issues. It is no surprise that us-
ability is increasingly becoming a focus for security schemes,
especially in pairing [14, 21, 24, 26, 28, 50]. One study of de-
vice pairing methods [50] found that increasing the quality
and usability of a user interface in a security scheme de-
creased errors that lead to a security failure in one pairing
method by 20 percentage points and another by 7.5 percent-
age points. These two pairing methods were not seemingly
complex schemes either. The first one required comparing
two short alphanumeric strings on each device and confirm-
ing that they matched. The second one required selecting
matching alphanumeric strings from a list on each device.

There are established pairing protocols using short-range
peripherals in most consumer devices today. However, there
are still frequent user errors in the currently deployed tech-
nologies. Consider Bluetooth, there are three pairing meth-
ods in the standard which protect against MITM attacks:
numeric comparison, passkey entry, and OOB communica-
tion (most commonly provided via tap-to-pair, where users
bump two devices together to authenticate them) [3]. The
device pairing usability study in [50] showed that users com-
mit security errors up to 20 percent of the time when veri-
fying numeric strings; the consequence of a security error is
that the user authenticates the wrong user. Passkey entry

was even worse, resulting in security errors 42.5 percent of
the time [50]. These statistics indicate serious failures in
usability present in the Bluetooth standard which can lead
to security breaches far too often.

Tap-to-pair is a more usable alternative for smart phones,
but it would make for a very comical display when used
with headsets. Either users would have to each remove their
headsets and tap them together every time they authenticate
someone new, a process certain to cause disdain from users
or, even more comically, users would need to tap their heads
together to authenticate one another.

To improve user satisfaction and increase security, LGTM
must do better in designing a usable authentication system.
LGTM uses the combination of facial recognition and wire-
less localization to reduce user-device authentication to two
actions. By adding facial recognition on top of wireless local-
ization LGTM can auto-remove choices whose wireless signal
location and face location do not match up. Users outside
the device user’s field of view are also auto-eliminated by
context since the user is not facing that direction. Reducing
the number of choices available to a user is a fantastic way to
increase usability, since it inherently reduces cognitive load
for the user. But the core usability gain from LGTM comes
from combining the process of selecting which user to share
content with with the process of authentication. This makes
authentication seamless for the user and makes it less of an
abstract concept.

4.4 Privacy
A common misconception is that most people are not con-

cerned about digital privacy. However, a 2015 study by the
Pew Research Center [30] found that 86% of Internet users
have taken steps to remove or mask their digital footprints
online, and 55% of Internet users have taken steps to avoid
surveillance by specific individuals, organizations, or gov-
ernments. When it comes to user privacy, LGTM delivers.
Since LGTM relies on point to point wireless communica-
tion, attackers must be co-located with their targets, sig-
nificantly diminishing the reach that arbitrary attackers can
exert. Prolonged digital surveillance of an individual’s point
to point content sharing would require something akin to
stalking, which is unlikely to occur as often as hacking does
on the Internet.

Furthermore, by sending data from point to point, we can
avoid empowering a central authority with hordes of user
data: who users talk to, who users are close to, what users
are sending to one another, and when. This is data that
many users would like to keep private, but that many large
companies see as a gold mine. The safest way to keep this
data from being abused to is not make it available to third-
parties. With LGTM, this data is as private as any untapped
conversation between two people.

5. IMPLEMENTATION

5.1 Testbed
Real world AR headsets are still fresh on the market and

are very difficult to obtain. On top of this, the limited head-
sets on the market do not provide sufficient access to in-
formation about the wireless channel that is necessary for
wireless localization. Depending on the technique, modern
localization techniques may require access to physical layer
channel state information [33], channel switching and syn-



chronization [51], or some other type of wireless information.
These two factors make implementing LGTM on real AR
headsets infeasible.

However, we have stripped down LGTM’s hardware and
contextual requirements to the bare minimum leaving us in
need of: a high-definition video camera, wireless point to
point communication capabilities, wireless localization ca-
pabilities, a display, reasonable computational abilities, and
close proximity of a face to wireless antennas.

All of these requirements are satisfied by equipping two
Fujitsu LifeBook T900 laptops running Linux Mint 17 Qiana
with a Logitech C270 720p web cam, an Intel 5300 wireless
card with custom firmware for Linux from Halperin et al. [20]
that enables retrieval of channel state information and point
to point wireless communication using 802.11n, an array of
three antennas affixed to the back of the laptop screen at
10 centimeter intervals, and finally by attaching printed pic-
tures of faces from the Yalefaces dataset [8] to the back of
the laptop over the antenna array. This last point is im-
portant since AR headset users will have their face directly
adjacent to the wireless transmitter which LGTM exploits
to couple the wireless signal and the user together. This
context is an extremely important enabler of LGTM. A pair
of images with the face photograph on and off is shown in
Figure 2. To be sure, the testbed itself is not a practical
setup, but it perfectly emulates the requisite hardware of
real AR headsets.

Figure 2: Testbed laptop with and without a printed face
attached.

5.2 Technologies and Software
LGTM employs many technologies in service of bootstrap-

ping secure communication and these technologies have sev-
eral different implementation choices.

Wireless Capabilities.
We use custom firmware on the Intel 5300 wireless card

and supplementary software tools to collect channel state in-
formation, send packets, receive packets, and process chan-
nel state information [20]. We use the 5 GHz channel of
802.11n due to known issues that arise with the Intel 5300
card when it is used on the 2.4 GHz band [16,33].

Cryptography.
To perform the key exchange, we employ elliptic curve

Diffie-Hellman key exchange instead of standard Diffie-Hellman
key exchange to reduce the number of bits required for the
public-private key pairs, thus increasing performance [9].
For symmetric encryption, we use the advanced encryption
standard (AES) in Galois Counter Mode (GCM). GCM pro-

vides both authentication and encryption for messages using
a keyed hash as a message authentication code or HMAC. To
implement LGTM’s cryptographic components we use the
popular C++ library, Crypto++, which provides functions
and classes to support elliptic-curve Diffie-Hellman, random
number generation, AES, and GCM.

Facial Recognition.
Facial recognition is a multi-step process. Before recogniz-

ing a face, all the faces must be detected so they can be fed
to the facial recognition algorithm. Our implementation’s
facial detection relies upon Haar feature-based cascade clas-
sifiers [53]. This method was designed specifically for per-
formance. It uses many feature detectors which are run in a
tree-like fashion, with simpler, faster feature detectors being
run first, followed by more complex, more expensive, more
discriminating feature detectors.

For facial recognition, we use local binary pattern his-
tograms (LBPH) for facial recognition [7, 31]. We selected
LBPH because it is known to be robust in the face of less
than ideal situations like the kind we face in our testbed.
Furthermore, the models are of reasonable size, in our ex-
periments they totaled between 1000 and 1100 packets.

We used the OpenCV 3.0 [10] C++ library in our im-
plementation to implement LBPH for facial recognition and
also for facial detection using Haar feature-based cascade
classifiers. OpenCV provides out-of-the-box implementa-
tions for all of these methods as well as support for addi-
tional image preprocessing and real-time video annotations.

Wireless Localization.
The most intricate of the technologies involved in LGTM

is by far wireless localization. The recent advances in wire-
less localization [33, 48, 51] are indeed what make LGTM
feasible. For our testbed we implemented a modified ver-
sion of SpotFi, adapted to run from a single device instead
of coordinated devices.

SpotFi is an angle of arrival based localization technique
that relies on the classical MUSIC algorithm [43] to compute
the angle that a wireless signal originates from relative to an
array of antennas. The key to MUSIC is the existence of a
phase difference between antennas as a signal arrives at each
one in an array. These phase differences occur because the
antennas are at different locations, meaning a single wire-
less signal must travel different distances to arrive at each
antenna in an array.

However, MUSIC can be rendered inaccurate as a result
of multipath effects, caused by a single signal reflecting off
objects in the environment and thus arriving at different
angles, making the direct path angle of arrival difficult to
determine. Multipath can be resolved in MUSIC by having
more antennas. Specifically, the number of antennas must be
greater than the number of multipath components. However
average indoor conditions usually have five paths resulting
from multipath effects [33] and having five antennas on a
consumer device is currently both impractical and expensive.

SpotFi presents techniques to resolve multipath without
increasing the number of antennas. The key insights are
using channel state information measurements from each
subcarrier in 802.11n wireless combined with a method of
creating more sensors using clever data restructuring. To
use these two insights SpotFi modifies MUSIC to consider
time of flight as well as angle of arrival. Leveraging these



Table 1: Modified SpotFi localization results. Percent cor-
rect for the top 1 through 5 positions are reported along
with mean error and median error for distances of: 1 m, 2
m, and 3 m.

Distances: 1 m 2m 3m

Correct in Top 1: 60.0 % 30.0 % 23.0 %
Correct in Top 2: 83.0 % 47.0 % 38.0 %
Correct in Top 3: 95.0 % 65.0 % 45.0 %
Correct in Top 4: 100.0 % 75.0 % 50.0 %
Correct in Top 5: 100.0 % 75.0 % 50.0 %

Mean Error: 0.722 m 1.654 m 2.321 m
Median Error: 0.664 m 1.526 m 1.991 m

insights allows SpotFi to use MUSIC effectively with only
three antennas. For in-depth technical details we refer the
reader to the full SpotFi paper [33].

The SpotFi system runs the modified version of MUSIC
[43] on multiple wireless access points and then combines
the results from each to come up with a precise location. In
our implementation however we are working from a single
laptop, and so we do no such combination, relying upon
the angle of arrival computed on our single device. This
will certainly decrease our localization accuracy, but there
is little other work dealing with wireless localization from a
single device with a limited number of antennas.

We implement our altered SpotFi along with the altered
MUSIC algorithm from scratch in MATLAB. To our knowl-
edge there is no open-source implementation of SpotFi yet,
despite apparent high demand [6], so our code release of
SpotFi is a valuable contribution in and of itself.

Bringing It All Together.
The techniques described above are implemented in a com-

bination of: C, C++, MATLAB, and Linux shell commands.
To tie all this software together and construct a data pipeline
for transmission, reception, processing, and user input we
use a Bash script to coordinate the flow of control. For
passing state variables and data between separate programs
we use files for simplicity. The source code for the entire
implementation of LGTM is available at: www.github.com/
egaebel/lgtm.

6. EXPERIMENTS
We found it prudent to run a few experiments to validate

our implementation. Our evaluation deals with the accuracy
of our SpotFi implementation adapted for point to point
use since this is the primary component responsible for the
security of this LGTM prototype, and our modifications are
completely untested.

6.1 Accuracy
SpotFi uses a likelihood technique to make the final selec-

tion of angle of arrival. Prior to this final selection SpotFi
has several candidate angle of arrivals to select from. This
can lead to an incorrect angle of arrival being selected over
the correct one by a slim margin. To evaluate the modified
SpotFi’s localization accuracy, we focus on the accuracy of
the top-5 angle of arrival selections as well as the mean error
and median error. To account for acceptable levels of error
in angle of arrival computations we introduce a slight error
tolerance of 40 cm on either side of the face, so our top-5 er-

ror rates are computed after having taken this tolerance into
account, but mean error and median error do not consider
this tolerance. The data used was gathered with the two
testbed laptops at angles of: -20, -10, 0, 10, and 20 degrees,
where 0 degrees is when the laptops are directly facing one
another, positive degrees are to the right, and negative de-
grees are to the left. For each angle, we performed LGTM
10 times and saved off the channel state information used
on each laptop, yielding 20 samples for each angle at each
distance for a total of 100 samples for each distance. We
repeated this at distances of: 1 m, 2 m, and 3 m. Top-5,
mean error, and median error accuracy reports can be found
in Table 1.

Localization accuracy is strongly coupled with distance
between devices. Percent correct in the top-1 position is
halved when moving from 1 meter to 2 meters and beyond 2
meters the percent correct in the top-5 positions drops be-
low 50%. This shows that we must rely on the localization
community to further increase the precision of localization
from a single access point. From the data we present mod-
ified SpotFi is only feasible for security purposes within 1
m, which still has its uses. However, it is a step towards a
more secure system. Further improvements to wireless lo-
calization will continue to improve the security of LGTM,
and indeed this has already happened since this work began
thanks to the work in [51].

7. CONCLUSION
The future of computing lies in AR and beyond. The dig-

ital interfaces that we all interact with on a daily basis are
going to become richer, more intuitive, and more natural.
It’s only right that authentication grow more intuitive and
natural as well. In this paper we have presented LGTM: au-
thentication for AR, which promises to make authenticating
a wireless signal as simple as figuring out who’s talking to
you. LGTM achieves this apparent simplicity by leverag-
ing advances in wireless localization and facial recognition,
combining wireless signal origin with a user’s face location
to create this simplicity.

We have implemented LGTM using a diverse set of soft-
ware, hardware, and technologies. This implementation has
been open-sourced, so that it can be built upon, improved
upon, and scrutinized by other interested parties. After per-
forming extensive empirical and theoretical analysis on our
implementation, we have found it to be a promising security
scheme that will only improve as time goes on and we get
closer to the future of computing.
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