
1

Memory Forensic Challenges
under Misused Architectural Features

Ning Zhang∗, Ruide Zhang∗, Kun Sun†, Wenjing Lou∗, Y. Thomas Hou∗, Sushil Jajodia†
∗Virginia Polytechnic Institute and State University

†George Mason University

Abstract—With increasingly complex cyber attacks occurring
every day, memory-based forensic techniques are becoming
instrumental in digital investigations. Forensic examiners can
unravel what happened on a system by acquiring and inspecting
in-memory data. However, the foundation of this analysis can be
invalidated if the memory acquisition has been altered. In this
paper, we study the feasibility of malicious software misusing
architectural features to sabotage memory forensics. The misuse
of two architectural features, namely physical address layout and
secure containers, is presented.

The first architectural feature explored in this paper is the
physical address layout. It is used by the northbridge to route
memory access to either physical memory or I/O devices on x86
platforms. Observing this design choice, we propose Hidden in
I/O Space (HIveS), which manipulates CPU registers to alter the
physical address layout to conceal memory. The system uses a
novel I/O Shadowing technique to lock a memory region named
HIveS memory into I/O address space to prevent access. Two novel
techniques, Blackbox Write and TLB Camouflage, are developed
to further protect the unlocked HIveS memory against memory
forensics while allowing access for attackers.

The second architectural feature explored in this paper is
hardware-aided secure execution technology. More specifically,
hardware-enforced memory encryption in Intel secure guard
extension (SGX) is used in Malicious Enclave Software (Malclave-
ware) to prevent introspection and memory forensics.

A prototype of HIveS is built and tested against a set of
memory acquisition tools for both Windows and Linux running
on the x86 platform. Malclaveware is also prototyped in Windows
to demonstrate the risk. More importantly, we proposed coun-
termeasures and mitigations for the newly discovered attacks.
Through these discussions, we aim to raise the awareness of the
potential risks of misusing hardware architectural features.

I. INTRODUCTION

Digital forensics is the science on collecting and presenting
digital evidence. With the ever-increasing use of computing
systems in our daily life, computers and networks have become
not only the personal portal to instant information, but also
a platform that criminals exploit to commit crimes. Digital
forensics is now one of the services sought at the very
beginning of all types of investigation-criminal, civil, and
corporate [1], [2].

Disk forensic methods and tools have matured in the past
two decades, offering comprehensive capabilities to extract
and visualize artifacts from nonvolatile storage images. With
the prevalence of memory-hiding techniques and the need to
evade disk forensics, adversaries are starting to hide the pres-
ence of malicious code and data only in the memory [3], [4],
[5]. To tackle this problem, forensic examiners are increasingly
relying on live memory forensics to uncover the malicious
content in the memory [1].

Memory forensics often involve memory acquisition and
memory analysis. In memory acquisition, the system mem-
ory is collected as an image. This image is then examined
by the forensic examiner in memory analysis. The accu-
racy of memory analysis builds on the sound acquisition
of system memory. There are two general memory acqui-
sition approaches: software-based approach and hardware-
based approach. Software-based solutions rely on a trusted
memory acquisition module in the operating system to acquire
the memory through the processor [6], [7]. Hardware-based
solutions often utilize dedicated I/O devices, such as a network
interface card, to capture the physical memory image via
direct memory access (DMA) [8], [9], [10] with the processor
totally bypassed. Some hardware-based approaches use the
remanence of physical memory to extract sensitive data from
the memory modules in systems that are powered off for a
short time [11], [12].

To counter live memory forensics, attackers have developed
various anti-forensic techniques to sabotage the memory ac-
quisition process [13]. Current anti-forensic techniques against
software-based memory acquisition rely on manipulating the
software used in the memory acquisition process. Some ex-
amples include modifying the acquisition module or the OS
kernel [14], [15], [5], hooking operating system APIs [16],
or installing a thin hypervisor on the fly [17]. Based on
this observation, it is suggested that the memory acquisition
process can be trusted if the acquisition software along with
all its dependencies has not been tampered with [6]. However,
in this paper, we show that architectural features in modern
systems can be used to sabotage the memory acquisition step
in memory forensics; and more importantly, what forensic
examiners can do to mitigate these threats. The misuse of two
architectural features is presented. Physical address remapping
is misused in Hidden in I/O Space (HIveS) as an operating
system (OS) agnostic anti-forensic mechanism. Hardware-
assisted secure containers are misused in Malicious Enclave
Software (Malclaveware) to provide memory encryption and
introspection shielding for malware.

Misusing physical address layout-HIveS. The first archi-
tectural feature we explore is the physical address layout.
Physical address space on x86 platform is shared between
physical memory and I/O devices. Memory access to a phys-
ical address gets directed to either the memory controller
or the I/O bus based on the location in the address space
layout. This physical address layout is also what memory
forensics tools use to understand where the physical memory
regions are located. Memory forensic tools obtain this layout
information by interacting with the operating system or BIOS,



2

and they assume this layout is correct and updated. We show
that this condition can be easily violated by presenting HIveS.
HIveS alters the machine’s physical address layout while the
system is in an operational state by modifying registers in the
processor. With this manipulated address layout, HIveS can
conceal a memory region called HIveS memory from being
observed and acquired by memory forensics tools.

The basic idea of HIveS is to map (or lock) memory into
the I/O space, so that any operation on the physical memory
address will be redirected to the I/O bus instead of the memory
controller. When the HIveS memory is locked, its memory
content cannot be accessed by any processor, including the
one(s) controlled by the attacker. When the attacker wants to
access the HIveS memory, she would first unlock the memory
region by mapping it back into the memory address space.

To protect the unlocked HIveS memory against memory
forensics, we propose two novel techniques: Blackbox Write
and TLB Camouflage. Blackbox Write enables only write
access to the HIveS memory by creating asymmetric read
and write destinations between the memory space and the
I/O space. TLB Camouflage exploits TLB cache incoherency
among multi-core processors to ensure exclusive read and
write access for a single processor core to the HIveS memory.
HIveS is operating system agnostic, since it only changes
the system hardware configurations. We build a prototype
of HIveS on an x86 desktop with an AMD FX processor
running both Windows and Linux. Since HIveS conceals the
presence of malware without changing any system software,
including BIOS, hypervisor or OS kernel, it can effectively
defeat the most updated software-based memory acquisition
tools on both Windows and Linux. Furthermore, we extend
HIveS with several existing anti-forensic techniques, such as
RAM-less encryption and Cache-based I/O storage, to defeat
hardware-based memory acquisition approaches.

Misusing secure computing-Malclaveware. The second
architectural feature we explore is the recently widely used
secure execution technology [18], [19]. Strong hardware-
assisted execution environments are capable of protecting ap-
plications even from the traditional highest-privilege software,
the operating system. While this property is very attractive for
security-critical tasks, such protection can also be misused by
attackers to deny forensic memory acquisition. To demonstrate
the potential threat, we adopt the secure enclave technology
of Intel SGX [18] in malware, and call the new family Mal-
claveware. Transparent, hardware-based CPU-bound memory
encryption of SGX is used in Malclaveware to deny foren-
sic examiner access to plaintext memory. Using the remote
attestation, the malware will execute only in the designated
environment, effectively evading most of the current sandbox-
based detections [20], [21]. Lastly, by protecting the malware
execution in the secure enclave, it would be impossible for the
host-based protection to introspect the malware internals. We
apply the design to ransomware [22], [23], and build a highly
targeted ransomware prototype that exploits the protection of
SGX.

Instead of presenting only the attacks, we reflex on the root
causes of insecurity and provide discussion on the countermea-
sures. We propose several countermeasures for detecting and

mitigating HIveS and Malclaveware. One approach to detect
HIveS is to directly inspect the CPU registers. However, it
remains a challenge to distinguish proper configurations from
malicious usages. We find application whitelisting to be an
important step towards preventing secure container misuses.

To summarize, we make the following contributions:
• We identify a general class of anti-memory-forensic

technique that exploits hardware architectural features
and present two attacks within the class, HIveS and
Malclaveware.

• We present HIveS, an OS agnostic system that exploits
hardware features on x86 platform to conceal memory
in I/O space, effectively subverting the foundation of
memory acquisition. We develop two novel techniques,
Blockbox Write and TLB Camouflage to enable covert
operations on the unlocked HIveS memory against mem-
ory forensics. A prototype of HIveS is built on the
x86 platform to demonstrate its capability for concealing
the HIveS memory against several of the most updated
memory forensic tools on both Windows and Linux.

• We present Malclaveware, which takes advantage of
hardware-assisted secure execution technology to prevent
memory forensics and system introspection. We apply the
concept of Malclaveware to ransomware to create a new
breed of ransomware that is highly targeted and able to
hide the file encryption key-even in the presence of a
higher-privilege forensics subsystem. Experiments on our
prototype show little performance impact.

• We provide discussion on the countermeasures and limi-
tations of the newly presented attacks to fuel development
of future system defense.

II. BACKGROUND

A. Physical Address Layout

The entire range of memory addresses accessible by x86
processors is often referred to as physical address space.
Contrary to popular beliefs, the length of such address space
usually does not equal to the amount of actual physical
memory installed on the platform. This is because some of
the address is mapped to the bus for I/O devices, instead of
dynamic random-access memory (DRAM). A typical memory
layout of systems with AMD processors is shown in Figure 1,
where the shaded areas are backed by DRAM and the areas
without shade are backed by I/O devices. This memory layout
is used by the Memory Map Unit (MMU) to route memory
requests from the processor to either DRAM or memory-
mapped I/O (MMIO).

B. Allocations in Physical Address Space

The memory setting of an x86 system is initialized by the
BIOS at hardware reset and parsed by the operating system
during the system bootstrap [24]. The layout is configured via
several configuration registers in the northbridge (NB) and the
processor. The DRAM Base/Limit register pair is among the
earliest ones configured by the BIOS. They define the ranges of
physical address space mapped to DRAM in the northbridge.
Any access to these areas will be forwarded to the DRAM
Controller (DCT). These registers are configured by the BIOS



3

Fig. 1. Physical Address Layout on AMD Architecture

with the result of system memory probing during hardware
initialization. Therefore, they are designed to be lock-once
(i.e., write-once). The values cannot be changed until the next
system reset. The next set of registers that shapes the memory
layout consists of two Mode Specific Registers (MSR)-the Top
Of Memory (TOM) registers. AMD processors allow system
software to use TOM registers to specify where memory
accesses are directed for a given address range [25]. There are
two TOM registers, TOP MEM1 (TOM1) and TOP MEM2
(TOM2). Figure 1 shows that the address range from 0 to
TOM1, as well as the address range from 4GB to TOM2, are
set as system memory on this AMD system. Access requests
within these two ranges are directed to the DRAM, while
requests outside these two ranges are directed to the I/O space.
The purpose of these two registers is to offer the operating
system software the ability to carve out large memory space
to organize DRAM and I/O devices. Even though they can be
changed when the system is operational, unlike the DRAM
Base/Limit register, it is rare to change the memory address
allocation after the system starts up. This is because the
DRAM boundaries, governed by DRAM Base/Limit registers,
have already been determined. Lastly, systems usually stop
functioning if these registers are changed, since the OS kernel
was not expecting the change of hardware configuration while
the system is running. The last set of registers that shape the
layout is also MSR in the processor. They are the Input Output
Remap Registers (IORR). This set of registers can create a
special mapping beyond the base setting to direct specific
read/write access of any address space between the I/O space
and the DRAM space. The registers are designed to enable
system software to shadow the ROM device in memory to
improve system performance.

III. MISUSING PHYSICAL ADDRESS LAYOUT - HIVES

In the ongoing battle between attackers and digital forensics
examiners, memory acquisition is becoming an important
technique for evidence collection. From the perspective of
an attacker, we design HIveS, an anti-forensic system that
is capable of evading acquisition by software-based memory
forensics tools on a designated range of physical memory

chosen by the attacker. We call this HIveS memory.
A high-level block diagram of the HIveS system is shown

in Figure 2. For simplicity, we show a generic x86 multi-
core architecture with one processor consisting of two cores.
Each processor core has its own cache and TLB. When a
processor core needs to access the DRAM memory, it sends
a request to the northbridge. The MUX inside the northbridge
is responsible for forwarding the memory request to either the
DRAM controller or the southbridge, based on the physical
address layout. This layout was initialized by the BIOS, then
further defined by the operating system using model-specific
registers (MSRs), including the top of memory (TOM) regis-
ters and the I/O range registers (IORRs). When the physical
address is mapped to the I/O space, the request is forwarded
to the southbridge. When the physical address falls in the
DRAM range, the memory request goes through the DRAM
controller to the physical memory. HIveS has two states,
locked and unlocked. When it is in the locked state, the HIveS
memory is completely inaccessible to any processor core. This
is because all access attempts are forwarded to the I/O space
once HIveS is locked. While the system remains in this state,
even the malicious core (e.g., Core 1 in Figure 2) cannot
access the HIveS memory. When the attacker needs to access
the HIveS memory, she can set HIveS to the unlocked state,
where only the malicious core can access the HIveS memory,
and memory requests from all other cores are redirected to
another DRAM region. Lastly, since HIveS relies only on
hardware configurations to conceal the HIveS memory, it is OS
agnostic. Moreover, it leaves no trace in memory. Unlike some
of the current rootkits that modify kernel data structures or
operating system APIs, HIveS cannot be detected by checking
the integrity of the OS.

A. Inaccessibility in the Locked State

Considering the use case of a password-stealing rootkit,
whose goal is to steal passwords and store them quietly in
some place before an opportunity to exfiltrate, there is no need
for the rootkit to read from, or write to, the memory where the
stolen passwords are stored until it is ready to transmit. HIveS
is designed as an anti-forensics tool, so we develop a novel
I/O Shadowing technique to block all processor cores from
accessing the HIveS memory. The basic idea of I/O shadowing
is to dynamically manipulate the configuration of a memory
range so that even if it is backed by the DRAM in the physical
address space, any read/write request will be redirected to
the I/O space. The real content in the DRAM memory are
shadowed by the memory-mapped I/O (MMIO). Among the
various controls that shape the memory layout, there are two
MSRs that can be controlled by the system software when the
system is operational. They are TOM and IORR.

Though TOM registers can be modified after the system
boots up, any modification of the TOM registers can greatly
affect the system stability, since the OS kernel uses the TOM
registers in many default system settings. Furthermore, TOM
modifications can only change the boundary between the
default I/O area and the DRAM area. Even if system instability
was not an issue, the manipulation would be very limited. We
instead use I/O range registers (IORRs) to adaptively prevent



4

Fig. 2. Architecture of HIveS - Lock and Unlock state of the HIveS storage by manipulating physical address space using IORR registers

all processor cores from accessing the HIveS memory. IORRs
are variable-range memory type range registers (MTRRs).
They can be used to specify if reads and writes in any physical
address range should map to system memory or memory-
mapped I/O (MMIO). In AMD architecture [25], up to two
address ranges of varying sizes can be controlled using IORRs.
Figure 1 shows an example that maps an area of system RAM
between 4GB and 5GB into MMIO using one IORR.

Each IORR has a pair of registers, IORR base register and
IORR mask register. The IORR mask register contains the
length of the region and a valid bit indicating whether the
IORR configuration pair is active. The IORR base register
contains the starting address of the IORR region, as well as
two important flag bits, WrMem and RdMem [25]. When these
two bits are set to 1, the northbridge directs read/write requests
for this physical address range to system memory. When these
bits are cleared to 0, all reads/write requests are directed to
memory-mapped I/O. The RdMem and WrMem bits in IORR
are originally designed for shadowing ROMs of I/O devices in
DRAM memory to improve system performance. The system
can create a shadow region by setting WrMem = 1 and
RdMem = 0 for a dedicated memory range and then copy the
ROM from I/O device into DRAM memory. Once the copy
operation is completed, the system changes the bit value to
WrMem = 0 and RdMem = 1. Now the memory reads are
directed to the faster copy in the DRAM memory instead of
the ROM of the device; write requests are still being directed
to the ROM, but the ROM simply ignores any write request.

The I/O shadowing provided by IORRs can be misused to
redirect processor requests of a valid system memory area to
the I/O space. When both RdMem and WrMem bits are set to 0
in the IORR, all read and write requests to the HIveS memory
will be redirected to the I/O space. With this configuration,
the HIveS memory becomes inaccessible for all processor
cores. Since both Windows and Linux operating systems make
no assumptions on the default configurations and usages of
IORRs, the modification of unused IORRs has little impact on
the OS. Furthermore, IORR registers offer great adaptability

Fig. 3. Blackbox Write - asymmetric read/write destination for memory access

in both the location and size of the HIveS memory.

B. Exclusive Access in the Unlocked State

The HIveS memory in the unlocked state is designed to al-
low exclusive access from the processor core controlled by the
attacker, while preventing acquisition by the processor cores
that perform memory forensics. IORRs are registers shared by
all processor cores, so any modification on one IORR register
affects all the processor cores in the system. When an attacker
needs to access the HIveS memory in a single core system,
she can simply unlock HIveS memory by disabling the I/O
shadowing, read or modify content in the HIveS memory,
and then lock it by enabling the I/O shadowing. However,
it becomes a challenge to ensure exclusive access to HIveS
memory with parallel execution in a multi-core system, since
the forensic examiner can be collecting memory with the other
running core. We develop two new techniques, Blackbox Write
and TLB Camouflage, to solve this problem.

1) Blackbox Write

The key idea behind Blackbox Write technique is the asym-
metric memory access to the DRAM between the attacker and
forensic examiner. Attackers that utilize the HIveS memory to
store the stolen information often require only write access to
the memory region, and occasionally read it during exfiltration.
On the other hand, forensic examiners are interested only
on reading the memory content. To preserve the integrity of
the evidence, memory forensic tools always read the memory
content and never write to the memory.



5

Fig. 4. TLB Camouflage - core specific memory address mapping

Based on the above asymmetric operations,Blackbox Write
redirects all memory read requests to the I/O space by setting
RdMem = 0 in IORR and redirects all the memory write re-
quests to the HIveS memory by setting WrMem = 1. Under
this setting, attackers can write new content into the HIveS
memory while preventing forensic examiners from analyzing
it. Furthermore, since there is no real I/O device in the I/O hub
to respond to the memory reads, a default value (e.g, 0xFF in
AMD FX processor [26]) is returned instead. Since the IORR
register allows the creation of such redirection on any physical
address, the attacker can always use the physical address range
that does not correspond to a valid I/O device for HIveS
memory. Note that HIveS memory is also writable by the
forensic examiner. However actively modifying memory is an
act of compromising evidence, which is against the principle
of digital forensics. The attacker eventually needs to send the
data in the HIveS memory to a remote machine. For instance,
after a fixed amount of user key strokes have been stealthily
recorded, the keylogger needs to send the data to a remote
server. One approach is to temporarily modify the IORR to
allow access then disable the access after data exfiltration. On
the other hand, instead of unlocking processor’s read access
to the HIveS memory, the attacker can also exfiltrate the
data using DMAs. For example, the attacker who controls
the kernel can program the network interface adapter that is
commonly included in most of the modern computing systems
to exfiltrate the stolen data hidden in HIveS memory.

2) TLB Camouflage

While blackbox write is an effective technique for malware
that continuously stores sensitive data in a secret place with
little need to read back, such as keyloggers, it does not meet
the requirement for malware that requires continue read and
write access to the HIveS memory. We propose TLB Camou-
flage technique to mitigate this problem. Figure 4 shows the
basic idea of TLB Camouflage, where the unlocked HIveS
memory can only be accessed by the malicious Core 1 that is
controlled by the attacker, while the read and write requests
from Core 2 for memory forensics are redirected to another
memory space. TLB Camouflage enables exclusive access to
HIveS memory by creating an incoherent view of memory
mapping between cores, allowing the HIveS memory content
to be accessed only by the processor core that is running the
malicious software.

Modern operating systems enable paging mechanism to
translate virtual memory addresses into physical memory
addresses before passing the memory access requests to the

DRAM Controller (DCT) [24]. The Translation-Lookaside
Buffer (TLB), also known as page-translation caches, is de-
signed to reduce the performance penalty during the time-
consuming address translation process [25]. Only one memory
access per virtual memory request is required when the transla-
tion for the demanding page is present in the TLB (a TLB hit).
When there is no entry in the TLB for the demanding page, a
TLB miss occurs. Additionally, the translation information for
the page is copied from a page table entry (PTE) into the TLB
(a TLB reload). Each processor core has its own TLB [25],
[27]. When the operating system changes a page mapping, the
TLB won’t be automatically updated to reflect the new virtual-
to-physical address translation. TLB Camouflage exploits this
property to create a page translation incoherence among dif-
ferent processor cores. The idea behind TLB Camouflage is to
create an incoherent cache entry in the TLB caches among the
running processor cores. A new page is allocated in the kernel
for the page translation manipulation, such that the rest of the
system would not be affected. Then, all the other processor
cores are paused. At this point, the malicious core can flush
the TLB and make sure that there is no pre-existing translation
stored already for the newly allocated page. The PTE of the
allocated page is then modified to point to HIveS memory, and
several LDR instructions are then used to force a translation
table walk and TLB reload. Furthermore, the malicious core
would have a TLB entry mapping to HIveS memory. Then the
PTE is modified back to the original values, and the other cores
are resumed. Technically, the TLB entry for the allocated page
of malicious core is incoherent, and contains a false mapping.
This is exactly what we need. In Figure 4, when Core 2
requests to access the virtual page of the HIveS memory, it will
get the content in the regular memory. On the other hand, since
the malicious Core 1 has an incoherrent TLB entry pointed to
the HIveS memory address, it can access the HIveS memory
if the TLB entry has not been flushed out.

TLB Camouflage technique improves the usability of HIveS
memory, which can be used not only as temporary storage with
few interactions, but also as interactive memory storage to sup-
port more malicious operations. However, TLB Camouflage
has some limitations. First, not all forensic tools rely on the
existing kernel page tables to map virtual addresses to physical
addresses [6]. For example, a DMA-based memory acquisition
device [28] acquires memory bypassing the processor. Second,
the TLB entry should be sustained all the time; otherwise,
the malicious core cannot access the HIveS memory either.
Since TLB-locking capability is not supported by the latest
x86 architecture, malicious code has to freshen the TLB entry
periodically.

C. HIveS Memory Access Property

When the HIveS memory is in the locked state by applying
the I/O shadowing technique, none of processor cores can read
or write the HIveS memory. Most of the time, the attacker
does not need to access the HIveS memory at all, so it can
lock the memory for better protection. However, the attacker
has to unlock the memory eventually to access it. When the
attacker only needs to write to the HIveS memory, she can use
the Blackbox Write technique. Moreover, if the attacker also



6

needs to frequently read the memory content, she can use the
TLB Camouflage technique. Table I shows the different access
privileges to the HIveS memory for both attackers and forensic
examiners when applying different anti-forensic techniques.

TABLE I
COMPARISON OF ACCESS TO HIVES MEMORY

Attacker Rd Attacker Wr User Rd User Wr
I/O Shadowing no no no no
Blackbox Write no yes no yes

TLB Camouflage yes yes no no

HIveS is operating system agnostic, so the HIveS memory
can be concealed on x86 platforms for both Windows and
Linux. However, we need to develop a kernel module on Linux
or a device driver on Windows with the root privilege to set
the hardware registers. Contrary to current rootkits that modify
kernel data structures or routines in the operating system,
HIveS does not leave any trace in the memory or hard disk,
so it cannot be detected by checking the integrity of the OS
image in the memory and the hard disk.

D. HIveS Extension

HIveS is mainly developed to defeat software-based mem-
ory acquisition methods that rely on a trusted software module
in the operating system to acquire the physical memory
through the processor-to-memory path. Both I/O Shadowing
and Blackbox Write rely on modifying the IORR registers,
and TLB Camouflage creates an incoherent page translation in
TLB caches of multiple processor cores. All the modifications
are made on the processor, and thus only affect process-
ing of memory requests originated from the processor. On
the other hand, hardware-based memory acquisition solutions
can detect HIveS, since a dedicated I/O device can capture
physical memory images via direct memory access, which
totally bypasses the processor hardware configurations made
by HIveS. Moreover, the Cold Boot technique [12] exploits
the physical remanence property of memory chips to directly
extract sensitive data from the chips. The Cold Boot technique
resets the system and invalidates all configurations prior to
system reset. To enhance the capability of HIveS against the
hardware-based forensics tools, we propose to retrofit several
existing techniques in HIveS, including IOMMU, RAM-less
encryption, and Cache-based I/O storage.

1) Hiding from I/O Devices

We propose to use IOMMU to evade physical memory
forensics by I/O devices via DMA. Similar to the translation
from virtual memory addresses to physical memory addresses
performed by the MMU, IOMMU is a hardware device that
translates device DMA addresses into proper physical memory
addresses [27]. Each I/O device is assigned a protected domain
with a set of I/O page tables that define the corresponding
memory addresses. During a DMA transfer, the IOMMU inter-
cepts the access message from the I/O bus and checks its cache
(IOTLB) for the I/O-to-memory address translation along
with the access right. IOMMU is controlled with in-memory
tables and memory-mapped registers. Once a DMA request
passes IOMMU, it is then processed by the northbridge. The
northbridge then forwards the request either to the I/O hub or

the DRAM controller base on the ranges defined by DRAM
Base/Limit and MMIO Base/Limit registers. Therefore, HIveS
can set the IOMMU to only allow a peripheral device to
perform DMA into assigned regions, thus preventing a full
system memory acquisition with DMA. When the IOMMU
is not available on some old systems, the DMA can also
be redirected by manipulating the northbridge using MMIO
Base/Limit registers. The main idea is to modify the MMIO
Base/Limit registers to bounce DMA reads back to the I/O
hub. The details can be found in [29].

2) Hiding from Cold Boot

There are two solutions to evade Cold Boot-based mem-
ory acquisition mechanisms: RAM-less encryption and Cache
based I/O storage. The basic idea of RAM-less encryption
is to encrypt all the memory content in the HIveS memory
with a secret key stored in CPU registers [30], [31]. Since
operating systems do not use all the MTRR and IORR register
pairs all the time, HIveS can encrypt the HIveS memory
using AES and store the encryption key in unused MTRR
or IORR registers. Thus, even if the physical memory is
completely acquired through Cold Boot, the content of HIveS
are still being protected, because the encryption key in the
CPU registers is lost forever due to the system reset. The
basic idea of cache-based I/O storage is to save HIveS memory
only in the CPU cache [32], [33], [34] and then mask it with
I/O Shadowing technique. When the memory address is set
to cacheable in the page table entry and both RdMem and
WrMem bits in the IORR base register are set to 1, any write to
that location will trigger a cache line fill if the memory content
are not yet loaded in the cache. When the HIveS system is
unlocked, the attacker can simply write data into memory, as
usual. When the HIveS system is locked, the HIveS memory is
cached and masked by I/O shadowing. Therefore, neither I/O
devices nor the processor can read out the HIveS memory
in the cache. However, it remains a challenge to maintain
the content in the cache considering the limited cache control
provided by the x86 architecture [25], [27].

IV. HIVES IMPLEMENTATION AND EVALUATION

We build a prototype of HIveS on an x86 desktop with an
AMD FX processor. The motherboard is ASUS M4 A96 R2.0,
running a AMD FX-8320 8-core processor with single bank
DDR3 4GB memory. The 4GB memory is relatively small
but it shortens the time for memory acquisition and it is large
enough to demonstrate all the functionality of HIveS.

To illustrate the effectiveness of the HIveS memory, we
implement a keylogger rootkit called HIL that uses HIveS
memory to store the keystrokes so that the stolen information
cannot be detected by memory forensics. We implement HIL
prototypes on both Windows and Linux. On Ubuntu 13.04, we
implement a Linux kernel module to support all the techniques
in HIveS. On 64-bit Windows 7, we implement a kernel mode
device driver as a keylogger and use WinDbg debugger to
configure the IORR pair. We implement I/O shadowing, Black-
box Write, and TLB Camouflage techniques and evaluate their
effectiveness using several updated software-based memory
forensic tools. We also implement RAM-less encryption and



7

cache-based I/O Storage techniques to demonstrate the capa-
bility of HIveS to evade Cold Boot-based physical memory
forensics. The source code and dataset can be found in [35].

TABLE II
VERIFICATION AGAINST MEMORY FORENSIC TOOLS

Tool Version OS Detect HIveS
UnitTest 1.0 Linux No
LiME 1.1 Linux No
MemDump 1.01 Linux No
DD 8.13 Linux No
WinPmem 2.3.1 Windows No
Mem Marshall 1.0 Windows No
Memoryze 3.0 Windows No
Dumpit 1.3.2 Windows No

A. I/O Shadowing

Since modification of MSR require privilege mode, we
implemented most of the functionalities in a kernel module.
User-space programs can communicate with the kernel module
through procfs export. For I/O shadowing, the kernel module is
responsible for manipulating the IORR register to set the base
and the size of the HIveS memory, as well as the WrMem
and RdMem flag bits. With the physical address and HIveS
running mode passed in through procfs, the module first masks
off the lower 12 bits of the physical address, and inserts it into
bits 12 to 47 in the I/O Range Base register, MSRC001 0016,
since the physical addressing in AMD x64 is 47 bits. The
bits 3 and 4 of the register are RdMem bit and WrMem bit,
respectively. For I/O Shadowing, we clear both bit 3 and bit
4 to redirect both read and write requests into the I/O space.
The IORR base register should always be written first, since
the IORR mask register, MSRC001 0017, contains a valid bit,
which will immediately enable the IORR pair once this bit is
set. Therefore, we cannot set the two IORR registers in reverse
order; otherwise, the system will fail and hang itself. In the
AMD FX system [25], the valid bit is bit 11 of the IORR
mask register.

Although the detailed HIveS implementation is different on
Linux and Windows, the workflow remains the same. We first
load HIveS as a kernel module in the system. An 1MB area at
physical address offset of 0x10c800000 is allocated to be the
HIveS memory. With RdMem and WrMem both set, we fill the
memory with the repeating pattern of 0x12345678. The cache
is also flushed to make sure the patterns are written into the
memory. Then, we enable I/O shadowing to lock the HIveS
memory by clearing both the WrMem and RdMem bits. At this
point, all the content in the HIveS memory should be protected
against memory forensic tools. We verify that none of the
software-based memory forensic tools that we tested is able
to capture the HIveS memory protected by the I/O shadowing
technique. Table II summarizes the tools that we used in
our experiments. For all the tools we tested, none of these
memory forensic tools can detect the HIveS memory through
searching the special repeating pattern 0x12345678 when the
I/O shadowing is enabled. However, when the memory dumps
are taken again after the I/O shadowing is disabled, we can
identify the repeating pattern in the memory dumps.

B. Blackbox Write and TLB Camouflage

Blackbox Write only provides write access to the HIveS
memory and prevents any read access. We implement it by
clearing the RdMem bit and setting the WrMem bit. To disable
Blackbox Write, we simply clear the valid bit of the IORR pair.
To verify its effectiveness, we set up the keylogger to work in
the Blackbox Write mode. Instead of filling the HIveS memory
with the repeating pattern 0x12345678, we run the keylogger,
and manually type in, “this is a HIveS blackbox write test!”.
When Blackbox Write is enabled, we dump the memory using
the memory acquisition tools, including LiME, MemDump,
and WinPmem, to capture the entire physical memory images.
Further, we verify that the sentence we typed was not found
in the acquired memory image. Immediately after the first
round of memory dump, we disable Blackbox Write to allow
both read and write access to the HIveS memory and perform
memory dumping again. This time, we were able to find the
logs of what we just typed.

TLB Camouflage protects the HIveS memory by only
allowing read and write access to a single processor core. After
pausing all other cores, we flush the TLBs of all cores. Next,
we disable all interrupts on the malicious core and then read
the content of the HIveS memory into a temporary memory
space. The kernel module then goes in a busy loop accessing
the memory location continuously to sustain the TLB entry
in the malicious core’s TLB. We confirm that only a single
processor core can access the HIveS memory by dumping the
memory images using different processor cores and searching
the coded repeating pattern.

C. HIveS Extensions

For RAM-less encryption, we use a secret key to XOR the
plain text instead of using the AES function, since the feasibil-
ity of RAM-less encryption has already been verified [30], [31]
and our focus is on testing the stability of the MSRs for storing
the secret key. In particular, we use the unused MTRR registers
and IORR registers, which can be identified by checking the
valid bit. On our AMD platform, there are eight MTRR pairs
per core plus two shared core IORR registers. When the valid
bit is cleared, the register is not used by the system. The bits
provided by these registers are large enough to store a short
encryption key.

For cache-based I/O storage, we perform a simple exper-
iment to verify that the cache-based I/O storage is able to
keep the sensitive data in the cache only. Similarly, a repeating
pattern, 0x12345678, is written into the HIveS memory. Now
the pattern should be stored in the cache. Next, we execute an
INVD instruction, which invalidates all cache content without
writing them back to the physical memory. If the pattern is
indeed in the cache, after the execution of INVD instruction,
such written pattern should no longer be observable. In our
experiment, since the memory read-back after INVD is not
0x12345678, the modifications to the memory we wrote were
truly stored in the cache. However, when the processor is busy,
such content stored in the cache are flushed out to the physical
DRAM in a very short time.



8

V. MISUSING Secure COMPUTING - MALCLAVEWARE

Based on the same intuition of HIveS, we study another
widely-used architectural feature, hardware-assisted secure ex-
ecution. More specifically, we present a case study of adopting
the Intel SGX secure execution in malicious software, which
we call Malclaveware.

A. Secure Computing - SGX

As modern software becomes increasingly complex, produc-
ing bug-free program binaries remains an open research chal-
lenge. To provide trusted execution environments for security-
sensitive tasks, system designers often rely on hardware-
assisted secure containers [18], [36], [37]. The Intel SGX
technology is a newly developed instruction set extension
to provide secure execution on commodity processors [18].
SGX allows an application to place sensitive portions of
its program inside a secure container, called enclave. The
confidentiality and integrity of the application code and data
inside the enclave is protected by the hardware, even from a
compromised privilege operating system and certain hardware
attacks such as Cold Boot attack [12].

B. Ransomware and Cryptography

Malicious software continues to be one of the biggest
security threats today. Ransomware [38] is a type of malware
that denies users the availability of computing resources, often
by encrypting user files or locking the workstation. Though
the concept of ransomware is not new [38], it has gained
momentum lately due to the growing importance of data in
computing systems. Coupled with recent advancements in
crypto-currency [39], ransomware offers cyber criminals an
easy way to generate significant amount of revenue safely.
IBM found that spam emails containing ransomware increased
6,000 percent in 2016 compared to 2015 [40]. The FBI
expected the costs of financial loss due to ransomware to reach
as much as one billion US dollars for year 2016 [40].

The primary method used by ransomware to deny users
access to their data is by encrypting the content with a secret
key generated by the attacker. Victims can obtain the secret
decryption key from the attacker only when the requested
ransom is paid in full, commonly via cryptocurrency, such
as Bitcoin [39]. Recent ransomware variants often use a com-
bination of symmetric key and asymmetric key cryptography.
Symmetric cryptography, such as AES, is generally orders of
magnitude faster than the asymmetric counterpart. However,
when the secret key is recovered via memory forensics, it can
be used to decrypt the victim files. On the other hand, asym-
metric cryptography allows the attacker to encrypt files using
the public key, and the content can only be decrypted with the
private key, which cannot be recovered in the victim system
via memory forensics. To reap the benefit of both worlds,
advanced ransomware generates a random key to encrypt
victims’ files using symmetric cryptography, then encrypts the
random encryption key using the public key of the attacker.
Such an approach provides both efficiency and secrecy, and is
becoming more widespread in newer versions of ransomware
such as CryptoLocker [22]. Furthermore, the cryptographic
implementation of these malware has also evolved from naive

Fig. 5. Architecture of Malclaveware- hiding behind secure computing

use of Windows CryptoAPI, which can be hooked easily for
introspection, to statically-linked OpenSSL code that is more
difficult to analyze [41].

However, regardless of the implementation, the use of
different types of cryptography in ransomware forces the
attacker to make the tradeoff between secrecy and efficiency.
He can either use symmetric cryptography and risk the keys
being extracted by memory forensics, or use asymmetric
cryptography and risk being discovered before finishing the
encryption of victims’ files.

C. Malclaveware

Malware can be significantly harder to counter when it is
constructed with the SGX secure execution technology. We
call this new breed of malware Malclaveware. An overview of
the design is shown in Fig. 5. Malware is separated into two
parts, the benign portion of the code runs in the application
space, while the malicious logic is shifted into the secure
enclave that is shielded from the operating system.

1) Enclave Attestation for Anti-Analysis

SGX supports remote software attestation with the CPU as
the trusted computing base (TCB) [18]. It allows a remote
party to verify cryptographically the software that is loaded
inside the enclave and its execution environment. Shared
secrets generated during the attestation process can be used
to bootstrap secure communication between the code inside
the enclave and the remote party.

One of the most powerful methods for malware detection
today is through behavior-based dynamic analysis. The key
component of these malware scanning engines is to observe
the behavior of unknown software in a controlled environ-
ment [20], [21]. To resist such dynamic analysis, malware
authors started to embed environment detection capabilities
into the binary [21]. The execution timing, vendor-specific
CPUIDs, or the existence of paravirtualization driver are
among the most commonly used features for detection. How-



9

ever, it remains an open challenge to allow users to reliably
verify the execution environment remotely.

The remote attestation enabled by the Intel SGX fundamen-
tally changes the problem. The SGX platform offers remote
users the ability to verify the execution environment, including
the platform specification. The signature generated through
remote attestation is cryptographically verifiable. Upon suc-
cessful infiltration to the victim systems, ransomware typically
connects back to the attacker server immediately for key
generation. However, with the support of SGX, the attacker
can verify the execution environment before proceeding. If
a virtual environment is detected, the malware can terminate
to avoid detection. To make program analysis more difficult
for the defender, the attacker can even encrypt the malicious
payload and only decrypt it when the environment is attested.
The ability to launch such highly targeted attacks significantly
diminishes the effectiveness of behavior-based malware detec-
tion systems.

2) Enclave Protection for Malware Protection

The enclave is entered by invoking the EENTER instruction.
Execution in enclave can either run to completion and exit
using EEXIT, or until it encounters an exception or interrupt.
Enclave memory protection is accomplished by encrypting all
data outside the processor boundary, and decrypting them only
within the processor for computation. Upon context switch,
the application context is saved and sanitized by SGX before
handing the control to the OS. The current generation of
ransomware encrypts files using statically linked symmetric
key cryptographic functions. During the file encryption phase,
the symmetric key could be captured by the operating system
by inspecting the process memory. With the OS transparent
memory encryption capability provided by Intel SGX, it is
possible to conceal not only the malicious code but also the
data, such as secret keys from memory forensics.

VI. MALCLAVEWARE IMPLEMENTATION
AND EVALUATION

We built a prototype of the Malclaveware using the Intel
SGX SDK platform. The experimental platform runs Windows
10 on the Intel NUC, powered by Intel i7-6770HQ with 8 GB
memory. According to the vendor specification, the read and
write speed of our SSD is 560 MB/s and 400 MB/s, respec-
tively. Our prototype invokes the AES-NI instruction inside
the enclave to encrypt all file buffers. The source code and
dataset can be found in [35]. SGX enclave applications need
to be signed using the developer key. However, due to the lack
of an Intel approved developer key, we evaluate the prototype
of Malclaveware in the debug mode. Despite running in debug
mode, enclave protection discussed previously remains active,
and the OS can only access data in the enclave through special
instructions, such as EDBGRD [42]. Therefore, there are two
strategies of deployment for malware authors. To make an
attempt to evade the unsuspected victims, he can choose to use
debug mode to avoid identification of the developer key. On the
other hand, he can also deploy Malclaveware in release mode.
This way, the malicious content is guaranteed to be protected

Fig. 6. Malclaveware File Encryption Speed Evaluation

by the hardware, which is likely the preferred method for high-
value targets.

A. Memory Protection Validation

We want to verify that the sensitive cryptographic key is
indeed protected under the SGX protection even under debug
mode, since that could be one of the deployment models.
We dump the register content and system memory during the
file encryption of Malclaveware using Dumpit v1.3.2 [43].
To validate the system memory image, we search the raw
image and found the known key values outside the enclave. To
verify that secrets inside the enclave are not in the image, we
generated a new secret key inside the enclave by calculating
the XOR of the key outside the enclave and a random string.
This newly generated secret key is not found in the memory
image.

B. Malclaveware Performance Evaluation

We also evaluated the performance impact on encryption
in Malclaveware for using the SGX environment. Fig. 6
shows the comparison of three implementations, which are
using AES-NI instructions to encrypt files inside the SGX
enclave, using AES-NI to encrypt files without using SGX and
using C implementation of OpenSSL to encrypt files without
using SGX. We use the OpenSSL AES C implementation
as the baseline for current ransomware performance. AES-NI
without SGX represents the performance while using hardware
cryptography acceleration. Lastly, AES-NI inside the SGX
enclave is our proposed system. To evaluate the tradeoff in
different user environments, we also repeat the experiment
using file repositories of different average file sizes to study
the effect of file size on the performance. The average size of a
word document is about 300KB, according to a study done by
Microsoft [44]. Therefore, we created three repositories of text
files with randomly generated content. The average file sizes
are 50 KB, 500 KB, and 5 MB respectively. We can see that
by adopting AES-NI encryption, it is possible to encrypt files
faster than the current implementation of ransomware [22].
Furthermore, the performance impact of the enclave is very
small across repositories of files with different average sizes.

VII. COUNTERMEASURES AND DISCUSSION

The goal of studying anti-forensics techniques is to move
another step forward in digital forensics. While architectural



10

features can be misused by attackers to incapacitate digital evi-
dence collection, they can also be clues for forensic examiners
to uncover truth masked by the malware.

A. Countermeasures to HIveS

HIveS represents a general approach to hide malicious
memory by subverting the organization of the physical address
layout. In order to defeat HIveS, it is important to get a reliable
representation of the true address layout. Unfortunately, there
is currently no architecturally supported method to verify
the accuracy of the layout. For the rest of the discussion,
we focus on countermeasures towards our implementation. In
such, there are two ways to mitigate the attack.

First, the manipulation of IORR is essential in HIveS in
achieving asymmetric memory read/write destination. The
utilization of the register can be a good hint. It can be checked
by inspecting the valid bit in the IORR mask register. The
direction of memory operation to I/O bus can also be detected
by the access time, since memory bus is considerably faster.
On the other hand, legitimate I/O devices may also use the
IORR to map physical memory address to the I/O space. For
instance, a AGP video driver in the Linux kernel uses the
IORR register in some systems. Furthermore, AMD provides
two pairs of IORR registers; so the examiner also needs to
examine the other pair, even if one might be used for legitimate
purposes. If the creation of the physical address remapping is
malicious, then the examiner can disable the IORR register to
examine true memory content. On the other hand, if the use is
benign, or if the use is system originated, directly manipulating
such mapping can lead to system instability, causing loss
of digital evidence. Given such risk, the examiner can read
the suspicious address directly. Even though this might cause
system instability, the probability of a system catastrophic
failure caused by memory read is often smaller. If all the bytes
read back are identical values 0xFF or 0x00, then most likely,
there is no real I/O device behind these I/O addresses.

Second, HIveS can be defeated by physical forensic meth-
ods such as a Cold Boot [12], when HIveS extensions such
as RAM-less encryption are not in use. To defeat HIveS with
an extension, forensic examiners can first dump the registers,
including all the MSRs and debugging registers from all
processor cores, and flush all cache. This way, the examiner
will have most of content outside of physical memory. The
system can then be reset to extract memory content exploiting
the memory remanence characteristics. We verified that it is
possible to extract the memory of the malware after resetting
the system to a clean state. This, however, changes many
system configurations in the system and potentially violates
the forensic principle of not altering the crime scene.

B. HIveS Limitation

Though the prototype shows promising potential in using
HIveS to conceal malicious code and sensitive data in HIveS
memory, the system has some limitations.

First, similar to other anti-forensics rootkits, HIveS requires
kernel privilege and is not available to user space malware.
Furthermore, the code of the rootkit must be exposed to the
operating system for execution. This is often referred to as the

rootkit paradox [45]. While such common limitation among
all rootkits is solved in HIveS, it pushes the boundary of the
field by offering the ability to conceal the actual data stolen.
Understanding data breath damage is often a much bigger
forensic challenge for many cyber crime investigations, ac-
cording to our conversations with the practitioners in the field.
Second, since the basic idea behind HIveS is manipulation
of the physical address layout, architecture with a fixed or
reliable way to retrieve the physical address layout is not
vulnerable to this attack. Furthermore, our implementation
of HIveS relies on manipulating hardware registers in the
AMD processor [25], therefore porting of the malware to
other platforms requires careful design changes. Lastly, HIveS
focuses on defeating the software-based memory acquisition
approaches, so it must be augmented with other anti-forensic
mechanisms to defeat the hardware-based memory acquisition
approaches. Those mechanisms increase the complexity of
HIveS and sometimes make the targeted system unstable.

C. Discussion on HIveS

Extending HIveS to Intel Platforms: Our implementation
of HIveS on the AMD platform misused the AMD specific
IORR registers alter the physical address layout. To the best
of our knowledge, there is no equivalent MSR in the Intel
platform [27]. This does not imply HIveS is impossible on
Intel. Malware authors will need to find another way to
alter the physical address layout to launch the attack. For
example, Intel Memory Controller Hub (MCH) chipsets also
provide capability to recover addressable memory space lost
to MMIO space [46]. One can modify the REMAPBASE
and REMAPLIMIT register in the chipset to manipulate the
physical address layout (also known as system address space in
Intel manuals). Our objective in this work is to raise awareness
of the architectural features which a malware can use to
manipulate physical address layout. From the perspective of
forensic examiner, the key is to validate the physical address
layout by examining registers such as IORR in AMD and
REMAPBASE in Intel. We plan to investigate manipulation
techniques on Intel platform as future work.

HIveS for Defense: Techniques in computer security are
like weapons, they can be used either to defend righteousness
or cause damage to society. For instance, the virtual machine-
based rootkit (VMBR) introduced by Rutkowska et al. [17] has
been used to capture host images in forensic memory analysis
[47], [48]. Similarly, though we present HIveS as a powerful
anti-forensic tool, it can certainly be developed and used as a
defense tool to protect sensitive data against malicious memory
scanning. For example, application passwords can be stored
in the HIveS memory without having to worry about malware
reading the passwords from the physical memory.

D. Limitation and Countermeasure of Malclaveware

Malclaveware represents a general approach in using
hardware-based secure computation mechanisms to conceal
malicious applications. Secure computation, such as Intel
TXT [27], ARM TrustZone [19], and SGX [18], provides an
isolated execution environment for sensitive applications [18],
[27], [19]. Using a small TCB, the environment is protected



11

from compromised components within the system. By design,
content inside such environments often cannot be accessed
by even the operating system [18], [19]. Therefore, once
the malware is executed inside the protected environment, it
would be very difficult to identify and remove them. The best
approach to counter these malware is to deny their access to
secure containers. Applications can be whitelisted for access
to secure execution. Another common approach is to disable
the unused advanced security features in the system.

Even though our implementation of Malclaveware with
SGX as the secure computation environment poses a signif-
icant threat, there are several ways to mitigate the threat.
First, the OS can verify if the enclave application is on
the whitelist before loading the binary. Second, even though
once the malware is inside the SGX enclave, it would be
impossible for the OS to introspect on the program internals.
Malclaveware remains a user space program that relies on
the OS through system calls to perform meaningful actions.
It is possible for the OS to analyze the behavior of an
application by analyzing the system calls from the enclave-
protected program. For example, Malclaveware invokes file
system utilities in the OS to read and write files. Frequent file
operations and asymmetric file read/write entropy can be used
to detect ransomware [20]. Third, only enclave applications
signed by Intel-issued developer keys can be deployed in
the release mode. Malicious attackers might not want to use
the enclave in release mode if they want to conceal their
identities. Therefore, we verified the possibility for the forensic
examiners to use debug instructions to introspect the malware
running in debug mode for forensic analysis.

Malclaveware also has its own limitations. First, each mal-
ware needs to be designed specifically for a type of secure
computation. Second, the use of hardware features limits the
applicable target platforms of the technique to only those that
support the secure computation hardware feature.

E. Discussion on Malclaveware

The concept of Malclaveware can be applied widely to
different types of secure computation platforms. However,
depending on the secure computation technology, the security
properties could be different. For example, if malicious code
can be loaded into the secure world of ARM TrustZone [19] as
a trusted security module, it will be able to evade introspection
from the normal world; however, it will remain exposed to
introspection within the secure world. The anticipated Secure
Encrypted Virtualization (SEV) technology from AMD [49]
can also be used to create a container for malware that prevents
introspection from the hypervisor.

VIII. RELATED WORKS

There is an ongoing arms race between the attackers and
the forensic examiners in computer forensics [15], [14], [50],
[51]. Memory forensic analysis is becoming an indispensable
tool for forensic examiners nowadays, and they have two ways
to acquire computer memory: software-based methods that use
a trusted software module to access memory through the CPU
processor [11], [7], [10], [9], [6], [52], [53], [54], [55]; and
hardware-based methods that rely on dedicated I/O devices to

access physical memory image via Direct Memory Access [8],
[6], [28], [56].

Software-based memory acquisition techniques rely on the
CPU processor to acquire physical memory through the op-
erating system. Unfortunately, after recognizing this depen-
dency, attackers have developed anti-forensic techniques to
compromise the memory acquisition process, such as directly
modifying the acquisition module or the OS kernel data struc-
ture [3], [14], [15], [5]; using rootkits to hook operating system
APIs [16]; or installing a thin hypervisor on the fly [17].
To defeat those anti-forensic techniques, Stüttgen et al. [6]
propose an anti-forensic resilient method to acquire physical
memory by eliminating its dependence on the operating system
routines and data structures. Schatze [53] proposes to bootstrap
a trusted new execution environment from the normal one to
make sure that the operating system is free of malware. System
management mode (SMM) can also be used to create a trusted,
isolated execution environment [9], [10]. Some researchers
propose to go deeper than the operating system level and
use hardware virtualization to avoid the memory acquisition
software being subverted by rootkits [47], [48]. However, our
preliminary work [57] showed that it is possible to conceal
memory used by an attacker, even when the acquisition soft-
ware is trusted due to malicious manipulation of the physical
address layout.

Besides software-based memory acquisition, several
hardware-based memory acquisition methods have been
developed recently [28], [58], [59], [8] to use a trusted
peripheral device to capture the physical memory image via
DMA. Since it does not rely on the CPU processor to get
the physical memory, the hardware-based approaches can
successfully prevent those anti-forensic techniques that are
originally designed to defeat the software-based approaches.
However, Rutkowska [29] shows that it is possible to present
a different view of the physical memory to the peripherals by
reprogramming the northbridge. Therefore, in-memory data
acquired by DMAs could be compromised, as well [9], [6].

A special type of memory acquisition technique relies on
the unique remanence property of physical DRAM [12], [11].
Despite the popular belief that volatile content in DRAM are
gone once the computer resets or powers off, Halderman et
al. [12] demonstrate a Cold Boot attack that can reliably
recover the content in the memory modules even after the
power has been cut off for a short period of time. Though the
original Cold Boot is demonstrated as an attack, it is also an
effective method for memory forensics.

TABLE III
ATTACKS BY MISUSING ARCHITECTURAL FEATURES

System Feature misused Cold Boot

SMM Rootkit [60] System management mode X

Bluepill Attack [61] HW virtualization X

Shadow Walker [15] TLB Incoherence X

TPM Cloaking [62] TPM - Intel TXT X

HIveS [57] Physical address layout X

Cloaker [63] IV reloation & TLB locking X

CacheKit [64] Cache, physical address layout x
Malclaveware Intel SGX x



12

Even though we are the first to study the impact of archi-
tectural feature misuse in memory forensics, there has been a
line of research that examines how hardware resources can be
misused for malware [64], [60], [63], [61] to impede system in-
trospection. Table III shows the architectural features that each
of the previous works utilized and whether hardware-based
memory acquisition, such as Cold Boot, can be used to detect
the malware. As shown in the table, the most effective method
to detect these attacks that misused architectural features [60],
[63], [61], [15], [62] is memory forensics [62] using Cold
Boot, like memory acquisition procedures [12], [11]. Building
on our preliminary work [57] that focused on the potential
threat of physical address layout manipulation on memory
forensics, we presented Malclaveware, which takes a different
approach against memory forensics. Instead of manipulating
the system to conceal the presence of memory, we apply
hardware encryption to encrypt the memory to sabotage the
memory acquisition process. Using the processor-bounded
memory encryption in SGX, Malclaveware effectively denies
memory forensics access to plaintext data.

IX. CONCLUSIONS

In this paper, we present a new class of anti-memory-
forensic techniques that misuse features in modern computer
architecture to prevent digital forensics. The prototypes of two
attacks are built to demonstrate the feasibility. The first proto-
type, HIveS, manipulates the physical address space to conceal
data. In-memory data is shadowed behind the I/O address.
Besides the I/O Shadowing technique that prevents forensic
memory acquisition via processor, we also develop two new
techniques: blackbox write and TLB Camouflage. Blackbox
write enables the attacker exclusive write access to HIveS
memory, while TLB Camouflage grants a single malicious
core exclusive read and write access. The second prototype,
Malclaveware, exploits secure execution technology to prevent
the operating system from uncovering malicious activity. The
cryptographic component in Ransomware is inserted in the
SGX enclave in Malclaveware. Due to the protection of SGX
technology, the operating system is unable to access the
encryption key stored in the malware enclave. To mitigate
the newly discovered threats, we provide discussion on the
possible countermeasures in an effort to fuel development of
future secure systems.

ACKNOWLEDGMENT

This work was supported in part by US National Science
Foundation under grants CNS-1446478. Dr. Kun Suns work
is supported by U.S. Office of Naval Research under grants
N00014-16-1-3214 and N00014-16-1-3216.

REFERENCES

[1] N. Beebe, “Digital forensic research: The good, the bad and the
unaddressed,” in Advances in digital forensics V, pp. 17–36, Springer,
2009.

[2] N. R. Council, “Strengthening Forensic Science in the United States:
A Path Forward.” https://www.ncjrs.gov/pdffiles1/nij/grants/228091.pdf,
2009.

[3] D. Bilby, “Low down and dirty: Anti-forensic rootkits,” BlackHat Japan,
2006.

[4] S. L. Garfinkel, “Digital forensics research: The next 10 years,” Digital
Investigation, vol. 7, pp. S64–S73, 2010.

[5] E. Florio, “When malware meets rootkits,” Virus Bulletin, 2005.
[6] J. Stüttgen and M. Cohen, “Anti-forensic resilient memory acquisition,”

Digital Investigation, vol. 10, pp. S105–S115, 2013.
[7] E. Libster and J. D. Kornblum, “A proposal for an integrated memory

acquisition mechanism,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 14–20,
Apr. 2008.

[8] B. D. Carrier and J. Grand, “A hardware-based memory acquisition
procedure for digital investigations,” Digital Investigation, vol. 1, no. 1,
pp. 50 – 60, 2004.

[9] A. Reina, A. Fattori, F. Pagani, L. Cavallaro, and D. Bruschi, “When
hardware meets software: A bulletproof solution to forensic memory
acquisition,” in Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, (New York, NY, USA), pp. 79–
88, ACM, 2012.

[10] J. Wang, F. Zhang, K. Sun, and A. Stavrou, “Firmware-assisted mem-
ory acquisition and analysis tools for digital forensics,” in Systematic
Approaches to Digital Forensic Engineering (SADFE), 2011 IEEE Sixth
International Workshop on, pp. 1–5, IEEE, 2011.

[11] E. Chan, S. Venkataraman, F. David, A. Chaugule, and R. Campbell,
“Forenscope: A framework for live forensics,” in Proceedings of the
26th Annual Computer Security Applications Conference, pp. 307–316,
ACM, 2010.

[12] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Communications
of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[13] R. Harris, “Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem,” digital investigation,
vol. 3, pp. 44–49, 2006.

[14] T. Haruyama and H. Suzuki, “One-byte modifications for breaking
memory forensic analysis,” Black Hat Europe, 2012.

[15] S. Sparks and J. Butler, “Shadow walker: Raising the bar for rootkit
detection,” Black Hat Japan, pp. 504–533, 2005.

[16] D. Sd, “Linux on-the-fly kernel patching without lkm,” Volume 0x0b,
Issue 0x3a, Phile# 0x07 of 0x0e-Phrack Magazine-http://www. phrack-
dont-give-a-shit-about-dmca. org/show. php, 2001.

[17] J. Rutkowska, “Subverting vistatm kernel for fun and profit,” Black Hat
Briefings, 2006.

[18] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.,” in HASP@ ISCA, p. 10, 2013.

[19] “ARM Security Technology, Building a Secure System using TrustZone
Technology,” apr 2009.

[20] A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
“Unveil: A large-scale, automated approach to detecting ransomware,”
in USENIX Security 16, pp. 757–772, 2016.

[21] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security, pp. 51–62, ACM,
2008.

[22] T. Fischer, “Private and public key cryptography and ransomware,” 2014.
[23] E. Kirda, “Cutting the gordian knot: A look under the hood of

ransomware attacks,” in Detection of Intrusions and Malware, and
Vulnerability Assessment: 12th International Conference, DIMVA 2015,
Milan, Italy, July 9-10, 2015, Proceedings, vol. 9148, p. 3, Springer,
2015.

[24] D. Bovet and M. Cesati, Understanding the Linux kernel. O’reilly, 2007.
[25] “Advanced Micro Devices. Amd64 Architecture Programmer’s Manual,”

vol. Vol. 2, may 2013.
[26] Advanced Micro Devices, Inc., “BIOS and Kernel Developer’s Guide

(BKDG) For AMD Family 15h Processors, Rev 3.23.”
[27] “Intel 64 and IA-32 Architectures Software Developer’s Manual,” sep

2013.
[28] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-

a coprocessor-based kernel runtime integrity monitor.,” in USENIX
Security Symposium, pp. 179–194, 2004.

[29] J. Rutkowska, “Beyond the CPU: Defeating hardware based RAM
acquisition,” Proceedings of BlackHat DC 2007, 2007.

[30] T. Müller, F. C. Freiling, and A. Dewald, “Tresor runs encryption
securely outside ram,” in USENIX Security Symposium, 2011.

[31] P. Simmons, “Security through amnesia: a software-based solution to the
cold boot attack on disk encryption,” in Proceedings of the 27th Annual
Computer Security Applications Conference, pp. 73–82, ACM, 2011.

[32] Y. Lu, L. Lo, G. Watson, and R. Minnich, “CAR: Using Cache as RAM
in LinuxBIOS.” http://rere.qmqm.pl/∼mirq/cache as ram lb 09142006.
pdf.



13

[33] J. Pabel, “Frozencache: Mitigating cold-boot attacks for full-disk-
encryption software.,” in 27th Chaos Communication Congress, 2010.

[34] L. Guan, J. L. amd Bo Luo, and J. Jing, “Copker: Computing with
Private Keys without RAM.,” in In Network and Distributed System
Security Symposium (NDSS), 2014.

[35] “Memory Forensic Challenges under Misused Architectural Features.”
http://memoryforensic.weebly.com/.

[36] N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “Case: Cache-assisted secure
execution on arm processors,” in Security and Privacy (SP), 2016 IEEE
Symposium on, pp. 72–90, IEEE, 2016.

[37] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with haven,” OSDI’14, 2014.

[38] A. Young and M. Yung, “Cryptovirology: Extortion-based security
threats and countermeasures,” in Security and Privacy, 1996. Proceed-
ings., 1996 IEEE Symposium on, pp. 129–140, IEEE, 1996.

[39] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[40] H. Taylor, “Ransomware spiked 6,000% in 2016 and most victims paid

the hackers, IBM finds.” https://goo.gl/8afou8.
[41] V. Kotov and M. Rajpal, “Understanding crypto-ransomware,” Bromium

whitepaper, 2014.
[42] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual,

System Programming Guide, Sep 2016.
[43] “Dumpit.” https://zeltser.com/memory-acquisition-with-dumpit-for-dfir-2/.
[44] D. G. Lunde, “What is the average size of an office

document?.” https://blogs.technet.microsoft.com/dangl/2012/10/18/
what-is-the-average-size-of-an-office-document/.

[45] J. D. Kornblum and C. ManTech, “Exploiting the rootkit paradox with
windows memory analysis,” International Journal of Digital Evidence,
vol. 5, no. 1, pp. 1–5, 2006.

[46] “Intel Chipset 4 GB System Memory Support ,” Feb 2005.
[47] L. Martignoni, A. Fattori, R. Paleari, and L. Cavallaro, “Live and

trustworthy forensic analysis of commodity production systems,” in
Recent Advances in Intrusion Detection, pp. 297–316, Springer, 2010.

[48] M. Yu, Q. Lin, B. Li, Z. Qi, and H. Guan, “Vis: virtualization enhanced
live acquisition for native system,” in Proceedings of the Second Asia-
Pacific Workshop on Systems, p. 13, ACM, 2011.

[49] D. Kaplan, J. Powell, and T. Woller, AMD MEMORY ENCRYPTION,
Apr 2016.

[50] T. Newsham, C. Palmer, A. Stamos, and J. Burns, “Breaking forensics
software: Weaknesses in critical evidence collection,” in Proceedings of
the 2007 Black Hat Conference, 2007.

[51] S. Vömel and F. C. Freiling, “A survey of main memory acquisition
and analysis techniques for the windows operating system,” Digital
Investigation, vol. 8, no. 1, pp. 3–22, 2011.

[52] D. Farmer and W. Venema, Forensic discovery, vol. 18. Addison-Wesley
Reading, 2005.

[53] B. Schatz, “Bodysnatcher: Towards reliable volatile memory acquisition
by software,” digital investigation, vol. 4, pp. 126–134, 2007.

[54] J. Sylve, “Lime-linux memory extractor,” ShmooCon12, 2012.
[55] M. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and incident

response in the enterprise,” digital investigation, vol. 8, pp. S101–S110,
2011.

[56] M. Becher, M. Dornseif, and C. N. Klein, “FireWire All Your Memory
are Belong to us,” Proceedings of CanSecWest, 2005.

[57] N. Zhang, K. Sun, W. Lou, T. Hou, and J. Sushil, “Now you see me:
Hide and seek in physical address space,” in ASIACCS, ACM, 2015.

[58] J. Wang, A. Stavrou, and A. K. Ghosh, “Hypercheck: A hardware-
assisted integrity monitor,” in RAID, pp. 158–177, 2010.

[59] BBN(Raytheon), “Fred: Forensic ram extraction device.” http://www.
digitalintelligence.com/products/fred/.

[60] S. Embleton, S. Sparks, and C. C. Zou, “SMM rootkit: a new breed
of OS independent malware,” Security and Communication Networks,
vol. 6, no. 12, pp. 1590–1605, 2013.

[61] J. Rutkowska, “Subverting VistaTM kernel for fun and profit,” Black
Hat Briefings, 2006.

[62] A. M. Dunn, O. S. Hofmann, B. Waters, and E. Witchel, “Cloaking
malware with the trusted platform module.,” in USENIX Security Sym-
posium, 2011.

[63] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell, “Cloaker:
Hardware supported rootkit concealment,” in Security and Privacy, 2008.
SP 2008. IEEE Symposium on, pp. 296–310, IEEE, 2008.

[64] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, “Cachekit: Evading
memory introspection using cache incoherence,” in EuroS&P, IEEE,
2016.

Ning Zhang received his Ph.D. degree in Depart-
ment of Computer Science from Virginia Polytech-
nic Institute and State University, in 2016. He is a
cyber engineer at Raytheon company from 2007 till
now. He is also an Adjunct Assistant Professor with
Virginia Tech since 2016. His research focuses on
systems and network security, including trusted com-
puting, binary analysis and cyber-physical systems.

Ruide Zhang received his B.S. degree from the
Department of Electrical Engineering, Beijing Uni-
versity of Posts and Telecommunications (BUPT),
Beijing, China, in 2014. Since the fall of 2014, he
has been pursuing the Ph.D. degree in the Com-
puter Science Department at Virginia Tech, under
the supervision of Prof. Wenjing Lou. His research
interests lie in system security and wireless security.

Kun Sun received his Ph.D. from Department of
Computer Science at North Carolina State Univer-
sity. Dr. Kun Sun is an Associate Professor in the
Department of Information Sciences and Technol-
ogy at George Mason University. He is also the
director of Sun Security Laboratory. He has more
than 10 years working experience in both industry
and academia. His research focuses on systems and
network security. The main thrusts of his research
include moving target defense, trustworthy comput-
ing, password management, and mobile security. He

published over 50 technical papers on security conferences and journals
including IEEE S&P, ACM CCS, NDSS, IEEE DSN, ESORICS, ACSAC,
IEEE TDSC, and IEEE TIFS.

Wenjing Lou received the Ph.D. degree in electrical
and computer engineering from the University of
Florida, in 2003. From 2003 to 2011, she was a
Faculty Member with the Worcester Polytechnic
Institute. She has been a Professor with Virginia
Tech since 2011. Since 2014, she has been serving
as a Program Director at the U.S. National Science
Foundation (NSF), where she is involved in the
Networking Technology and Systems program and
the Secure and Trustworthy Cyberspace program.
Her current research interests focus on privacy pro-

tection techniques in networked information systems and cross-layer security
enhancement in wireless networks, by exploiting intrinsic wireless networking
and communication properties.

Y. Thomas Hou received the Ph.D. degree from
the New York University Tandon School of Engi-
neering. He is currently the Bradley Distinguished
Professor of Electrical and Computer Engineering
with Virginia Tech, Blacksburg, VA. His current
research focuses on developing innovative solutions
to complex cross-layer problems in wireless and
mobile networks. He has authored two graduate text-
books, Applied Optimization Methods for Wireless
Networks (Cambridge University Press, 2014) and
Cognitive Radio Communications and Networks:

Principles and Practices (Academic Press/Elsevier, 2009). He is a member
of the IEEE Communications Society Board of Governors and the Steering
Committee Chair of the IEEE INFOCOM Conference.

Sushil Jajodia is University Professor, BDM Inter-
national Professor, and the director of Center for
Secure Information Systems at George Mason Uni-
versity. His research interests include information
security and privacy. He has authored or coauthored
six books, 41 edited books, and more than 425
papers. He is an IEEE fellow and has an h-index
of 96.


