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Abstract—Cognitive radio (CR) is an enabling technology for
efficient use of available spectrum and promises unprecedented
flexibility in multi-hop wireless networking. This paper explores
networking related issues associated with CRs. Specifically, we
consider how to maximize the rates of a set of user communi-
cation sessions in a multi-hop CR-based wireless network. Due
to potential interference at the physical layer, we find that it is
essential to follow a cross-layer approach, with joint optimization
at physical (power control), link (frequency band scheduling),
and network (flow routing) layers. We give a mathematical
characterization of this cross-layer optimization problem. We
develop a centralized solution procedure based on the branch-
and-bound framework. Using numerical results, we demonstrate
the efficacy of the solution procedure and offer quantitative
understanding on the joint optimization at different layers.

Index Terms—Cognitive radio, multi-hop wireless network,
interference, cross-layer optimization.

I. INTRODUCTION

Cognitive radio (CR) is a revolution in radio technology
that is enabled by advances in RF design, signal processing,
and communications software [14]. It promises unprecedented
flexibility in radio communications and efficient use of spec-
trum. The potential of CR has been recognized by the commer-
cial sector as well as the military (e.g., JTRS program [10])
and public safety communications (e.g., SAFECOM [15]).

Our goal in this paper is to optimize network level perfor-
mance of multi-hop CR networks. It is now well understood
that network performance for such networks is tightly coupled
with lower layer behaviors [17]. For instance, maximizing user
throughput at the network level not only depends on flow
routing, but also depends on the algorithms at link layer (e.g.,
frequency band assignment) and physical layer (e.g., power
control). As a result, an optimal solution at the network level
must be developed with joint consideration of multiple layers.

Recently, there is a growing interest on gaining under-
standing on multi-hop CR networks (see, e.g., [17], [18]).
However, most of these work are based on the so-called
“protocol interference model” [8]. Under such model, the
notions of transmission range and interference range are used
to determine the feasibility of successful transmission and the
existence of interference. It is now well understood that such
binary decision on interference modeling has its limitation.
On the other hand, the so-called “physical model” is widely
accepted as an accurate characterization of interference. Under
physical model, a transmission is successful if and only if
signal-to-interference-and-noise-ratio (SINR) at the intended

receiver exceeds a certain threshold so that the transmitted
signal can be decoded with an acceptable bit error rate
(BER). Further, capacity calculation is based on SINR (via
Shannon’s formula), which takes into account of interference
due to simultaneous transmission at other nodes. Unfortu-
nately, although physical model is accurate, there is much
difficulty in carrying out analysis with physical model due
to the computational complexity it involves, particularly when
it comes to cross-layer optimization in a multi-hop network
environment.

In this paper, we investigate networking problem for multi-
hop CR networks. We employ the physical model for in-
terference modeling and study the problem via cross-layer
optimization approach. In particular, we consider how to
maximize the rates of a set of user communication sessions,
with joint consideration at physical layer (via power control),
link layer (via frequency band scheduling), and network layer
(flow routing). We give a mathematical characterization for
these layers and formulate the problem into a mixed integer
nonlinear program (MINLP). We develop a centralized solu-
tion to this complex optimization problem based on branch-
and-bound (BB) framework and a reformulation-linearization
technique (RLT) [16]. The solution we develop is guaranteed
to be within a factor of (1− ε) from the optimum, where ε is
a small parameter reflecting our desired accuracy.

The remainder of this paper is organized as follows. In
Section II, we give a mathematical characterization of power
control, scheduling, and routing for multi-hop CR networks.
We also present the problem formulation in this study. In
Section III, we present a solution based on branch-and-bound
framework. Section IV presents numerical results for the cross-
layer solution. Section V reviews related work and Section VI
concludes this paper.

II. MATHEMATICAL MODELS

We consider a CR-based ad hoc network with a set of nodes
N . For a node i ∈ N , the set of available frequency bands
Mi depends on its location and may not be identical to the
available frequency bands at other nodes. We assume that the
bandwidth of each frequency band (channel) is W . Denote
M the set of all frequency bands present in the network, i.e.,
M =

⋃
i∈N Mi. Denote Mij = Mi

⋂Mj , which is the
set of frequency bands that is common on both nodes i and
j and thus can be used for transmission between these two
nodes. In the rest of this section, we present mathematical
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TABLE I
NOTATION.

Symbol Definition
N The set of nodes in the network
Mi The set of available bands at node i ∈ N
M The set of frequency bands in the network
Mij The set of frequency bands on link i → j
W Bandwidth of a frequency band
L The set of active user communication sessions

s(l), d(l) Source and destination nodes of session l ∈ L
r(l) Minimum rate requirement of session l
K Rate scaling factor for all sessions

Pmax The maximum transmission power at a transmitter
η Ambient Gaussian noise density

gij Propagation gain from node i to node j
α The minimum required SINR
T m

i The set of nodes that can transmit to (and receive
from) node i on band m

Ti The set of nodes that can transmit to (and receive
from) node i

Im
j The set of nodes that may make interference on

band m at node j
xm

ij Binary indicator to mark whether or not band m

is used by link i → j
fij(l) Data rate for session l on link i → j

Q The number of transmission power levels
qm
ij The transmission power level from node i to node

j on band m
tmi The transmission power level at node i on band m
sm
ij The SINR from node i to node j on band m

Notation for branch-and-bound procedure
ε A small positive constant reflecting our desired

accuracy in the final solution
Ωz The set of all possible solutions in problem z

LBz , UBz The lower and upper bounds of problem z
ψz The local search solution for problem z

LB, UB The maximum lower and upper bounds among all
problems

ψε The (1− ε) optimal solution

characterization of each layer in a multi-hop CR network.
Table I lists all notation in this paper.

A. Scheduling and Power Control

Scheduling for transmission at each node in the network
can be done either in time domain or frequency domain. In
this paper, we consider scheduling in frequency domain in the
form of assigning frequency bands (channels). To maximize
the capacity, there may still be concurrent transmissions within
the same channel (and thus interference).

Denote

xm
ij =

{
1 If node i transmits data to node j on band m,
0 otherwise. (1)

Due to interference, a node i can use a band m for transmitting
to one node j or receiving from one node k. That is,

∑

k∈T m
i

xm
ki +

∑

j∈T m
i

xm
ij ≤ 1 , (2)

where T m
i is the set of all possible nodes that node i can

transmit to (and receive from) on band m in the network.
For power control, we assume that the transmission power

at a node can be tuned to a finite number of levels between 0
and Pmax. To model this discrete version of power control, we
introduce an integer parameter Q that represents the total num-
ber of power levels to which a transmitter can be adjusted, i.e.,

0, 1
QPmax,

2
QPmax, · · · , Pmax. Denote qm

ij ∈ {0, 1, 2, · · · , Q} the
integer power level. Clearly, when node i does not transmit
data to node j on band m, qm

ij should be 0. Under the
maximum allowed transmission power level Q, we have

qm
ij

{ ≤ Q If xm
ij = 1,

= 0 otherwise.

With joint consideration of xm
ij and qm

ij , the above relationship
can be re-written as

qm
ij ≤ Qxm

ij , (3)

which shows that the coupling relationship between power
control and scheduling.

As discussed earlier, to maximize capacity, there may be
concurrent transmissions by different nodes on the same band.
Under physical model, a transmission is successful if and only
if the SINR at the receiving node exceeds a certain threshold,
say α. Mathematically, for a transmission from node i to
node j on band m, when there is interference from concurrent
transmissions on the same band, the SINR is

sm
ij =

gij
qm

ij

Q Pmax

ηW +
∑k 6=i,j

k∈N
∑h6=i,j

h∈T m
k

gkj
qm

kh

Q Pmax

=
gijq

m
ij

ηWQ
Pmax

+
∑k 6=i,j

k∈N
∑h6=i,j

h∈T m
k

gkjqm
kh

,

where η is the ambient Gaussian noise density, gij is the
propagation gain from node i to node j.

Based on our model for scheduling, if xm
ij = 1, then xm

ki = 0
for k ∈ T m

i and xm
kj = 0 for k ∈ T m

j . As a result, by (3),
qm
ki = 0 and qm

kj = 0. Then we have

sm
ij =

gijq
m
ij

ηWQ
Pmax

+
∑k 6=i,j

k∈N
∑

h∈T m
k

gkjqm
kh

.

Denote tmk =
∑

h∈T m
k

qm
kh. We have

sm
ij =

gijq
m
ij

ηWQ
Pmax

+
∑k 6=i,j

k∈N gkjtmk
. (4)

Note that this SINR computation also holds when qm
ij = 0,

i.e., when there is no transmission from node i to node j on
band m.

Recall that under physical model, a transmission from node
i to node j on band m is successful if and only if sm

ij ≥ α.
Then by (1), we can couple xm

ij and sm
ij as follows.

xm
ij =

{
1 If sm

ij ≥ α,
0 otherwise.

which can be written into the following equivalent relationship.

sm
ij ≥ αxm

ij .

B. Routing

In a multi-hop ad hoc network, we assume there is a set of
L active user communication (unicast) sessions. Denote s(l)
and d(l) the source and destination nodes of session l ∈ L
and r(l) the minimum rate requirement (in b/s) of session l.
In our study, we aim to maximize a scaling factor K for all



session rates. That is, what is the maximum factor K such
that a rate of K · r(l) can be transmitted from s(l) to d(l) for
each session l ∈ L in the network.

To route these data flows from its source node to destination
node, multi-hop relaying is necessary, due to limited transmis-
sion power at each node. Further, for optimality and flexibility,
it is desirable to allow flow splitting and multi-path routing.
This is because a single path flow routing for a session is
overly restrictive and is unlikely to guarantee optimal solution.

Mathematically, this can be modeled as follows. Denote
fij(l) the data rate on link (i, j) that is attributed to session
l, where i ∈ N , j ∈ Ti =

⋃
m∈Mi

T m
i . If node i is the source

node of session l, i.e., i = s(l), then
∑

j∈Ti

fij(l) = r(l)K . (5)

If node i is an intermediate relay node for session l, i.e., i 6=
s(l) and i 6= d(l), then

j 6=s(l)∑

j∈Ti

fij(l) =
k 6=d(l)∑

k∈Ti

fki(l) . (6)

If node i is the destination node of session l, i.e., i = d(l),
then

∑

k∈Ti

fki(l) = r(l)K . (7)

It can be easily verified that once (5) and (6) are satisfied, (7)
must also be satisfied. As a result, it is sufficient to list only
(5) and (6) in the formulation.

In addition to the above flow balance equations at each node
i ∈ N for session l ∈ L, the aggregated flow rates on each
radio link cannot exceed this link’s capacity. For a link i → j,
we have

s(l)6=j,d(l) 6=i∑

l∈L
fij(l) ≤

∑

m∈Mij

W log2(1 + sm
ij ) . (8)

The constraint in (8) further illustrates the coupling relation-
ship among flow routing, power control, and scheduling.

C. Problem Formulation
Putting together all the constraints for scheduling, power

control, and flow routing, we have the following complete
problem formulation.

Max K

s.t.
∑

i∈Tm
k

xm
ki +

∑

j∈Tm
i

xm
ij ≤ 1 (i ∈ N , m ∈Mi)

qm
ij −Qxm

ij ≤ 0 (i∈N , m∈Mi, j∈T m
i ) (9)∑

j∈Tm
i

qm
ij − tm

i = 0 (i ∈ N , m ∈Mi)

ηWQ

Pmax
sm

ij +

k 6=i,j∑

k∈N
gkjt

m
k sm

ij − gijq
m
ij = 0

(i ∈ N , m ∈Mi, j ∈ T m
i )

αxm
ij − sm

ij ≤ 0 (i ∈ N , m ∈Mi, j ∈ T m
i ) (10)

s(l)6=j,d(l)6=i∑

l∈L
fij(l)−

∑
m∈Mij

W log2(1 + sm
ij ) ≤ 0

(i ∈ N , j ∈ Ti)

∑
j∈Ti

fij(l)− r(l)K = 0 (l ∈ L, i = s(l))

j 6=s(l)∑
j∈Ti

fij(l)−
k 6=d(l)∑
i∈Tk

fki(l)=0 (l∈L, i∈N , i 6=s(l), d(l))

xm
ij ∈ {0, 1}, qm

ij ∈ {0, 1, 2, · · · , Q}, tm
i , sm

ij ≥ 0

(i ∈ N , m ∈Mi, j ∈ T m
i )

K, fij(l) ≥ 0 (l ∈ L, i ∈ N , i 6= d(l), j ∈ Ti, j 6= s(l)) ,

where Q, η, W,α, Pmax, gij , and r(l) are all constants and
K, xm

ij , qm
ij , tmi , sm

ij , and fij(l) are all optimization variables.
This formulation is a mixed integer non-linear program
(MINLP), which is NP-hard in general [6].

III. A CENTRALIZED SOLUTION

A. Overview

For the complex MINLP problem, we employ the so-called
branch-and-bound framework [13] to develop a solution. Un-
der branch-and-bound, we aim to provide a (1 − ε)-optimal
solution, where ε is a small positive constant reflecting our
desired accuracy in the final solution.

To start with, branch-and-bound employs some relaxation
technique to obtains a linear relaxation for the original prob-
lem. The solution to this relaxed problem provides an upper
bound (UB) to our objective function. With the relaxation
solution as a starting point, branch-and-bound uses a local
search algorithm to find a feasible solution to the original
problem, which provides a lower bound (LB) for the objective
function. If the obtained lower and upper bounds are close to
each other, i.e., LB ≥ (1 − ε)UB, then the current feasible
solution is (1− ε) optimal and we are done.

Otherwise, branch-and-bound replaces the original prob-
lem with two sub-problems, say problem 1 and problem 2.
This is accomplished by choosing an appropriate variable for
partitioning and dividing the range of the partition variable
into smaller ranges. For problems 1 and 2, branch-and-bound
performs relaxation and local search on each problem and
we obtain upper bounds UB1 and UB2 and lower bounds
LB1 and LB2 for problems 1 and 2, respectively. Since the
relaxations in problems 1 and 2 are both tighter than that in
the original problem, we have max{UB1, UB2} ≤ UB and
max{LB1, LB2} ≥ LB. Then the upper bound of the original
problem is updated as UB = max{UB1, UB2} and the lower
bound is updated as LB = max{LB1, LB2}. As a result,
we now have smaller gap between UB and LB. Then we
either have a (1−ε) optimal solution (if LB ≥ (1−ε)UB) or
choose a problem with the maximum upper bound and perform
partition for this problem.

An important property of branch-and-bound is that we may
remove some problems from further consideration during the
iterations. In particular, if we find a problem z with LB ≥
(1 − ε)UBz , then we can conclude that this problem cannot



x

y

x
L
 X

U
 β 

I 

II 

III 

IV 
y=ln x 

Fig. 1. A convex hull for y = ln x.

provide much improvement on LB and we can thus remove
this problem from further consideration.

In the rest of this section, we present the key components in
the branch-and-bound framework, which are problem specific
and far from trivial.

B. Linear Relaxation

During each iteration of the branch-and-bound procedure,
we need a linear relaxation technique to obtain an upper bound
of the objective function.

For the polynomial term tmk sm
ij in the problem formu-

lation, we apply a novel method based on Reformulation-
Linearization Technique (RLT) [16]. That is, we introduce
a new variable um

ijk; replace tmk sm
ij by um

ijk; and add RLT
constraints on these variables. Suppose tmk and sm

ij are bounded
by (tmk )L ≤ tmk ≤ (tmk )U and (sm

ij )L ≤ sm
ij ≤ (sm

ij )U ,
respectively. Thus, we have [tmk − (tmk )L] · [sm

ij − (sm
ij )L] ≥ 0,

[tmk −(tmK)L]·[(sm
ij )U−sm

ij ] ≥ 0, [(tmk )U−tmk ]·[sm
ij−(sm

ij )L] ≥
0, and [(tmk )U − tmk ] · [(sm

ij )U − sm
ij ] ≥ 0. From the above

relationships and substituting um
ijk = tmk sm

ij , we have the
following RLT constraints for um

ijk.

(tmk )L · sm
ij + (sm

ij )L · tmk − um
ijk ≤ (tmk )L · (sm

ij )L ,

(tmk )U · sm
ij + (sm

ij )L · tmk − um
ijk ≥ (tmk )U · (sm

ij )L ,

(tmk )L · sm
ij + (sm

ij )U · tmk − um
ijk ≥ (tmk )L · (sm

ij )U ,

(tmk )U · sm
ij + (sm

ij )U · tmk − um
ijk ≤ (tmk )U · (sm

ij )U .

For the log term, we propose to employ three tangential
supports, which is a convex hull linear relaxation. We first
analyze the bounds for 1 + sm

ij . Then, we introduce a variable
cm
ij = ln(1 + sm

ij ) and consider how to get a linear relaxation
for y = ln x over xL ≤ x ≤ xU . This function can be bounded
by four segments (or a convex hull), where segments I, II, and
III are tangential supports and segment IV is the chord (see
Fig. 1). In particular, three tangent segments are at (xL, lnxL),
(β, lnβ), and (xU , lnxU ), where β = xL·xU ·(ln xU−ln xL)

xU−xL
is

the horizontal location for the point intersects extended tangent
segments I and III; segment IV is the segment that joins points
(xL, lnxL) and (xU , lnxU ). The convex region defined by the
four segments can be described by the following four linear

Local Search Algorithm
Initialization:

1. Set qm
ij = (qm

ij )L and xm
ij as 0 or 1 if its value set

only have one element 0 or 1, respectively.
2. Compute the requirement

∑s(l)6=j,d(l)6=i
l∈L f̂ij(l).

Iteration:
3. Compute the capacity and the ratio kij between the capacity

and the requirement for each link i → j.
4. Suppose link i → j has the smallest kij . We will try to

increase its capacity as follows.
5. If we can increase qm

ij on a used band {
6. Suppose band m has the largest q̂m

ij among these bands.
7. Increase qm

ij under the constraints of qm
ij ≤ (qm

ij )U and
new kij ≤ 1. }

8. else, if we can increase qm
ij on an available but currently

unused band {
9. Suppose band m has the largest q̂m

ij among these bands.
10. Increase qm

ij under the constraints of qm
ij ≤ (qm

ij )U and
new kij ≤ 1.

11. We also need to set xm
ij = 1, xm

ih = 0 for h∈Ti, h 6=j,
xm

ki = 0 for k ∈ Ti. }
12. else the iteration terminates since the smallest kij cannot be

increased.

Fig. 2. Pseudocode of proposed local search algorithm.

constraints.

xL · y − x ≤ xL(lnxL − 1) ,

β · y − x ≤ β(lnβ − 1) ,

xU · y − x ≤ xU (lnxU − 1) ,

(xU−xL)y+(lnxL−lnxU )x≥xU lnxL−xL lnxU .

As a result, the non-polynomial (log) term can also be relaxed
into linear constraints.

Based on the above linear relaxation techniques, we can
relax the original problem into a linear program (LP).

C. Local Search of Feasible Solution

A linear relaxation for a problem z can be solved in
polynomial time. Denote the relaxation solution as ψ̂z , which
provides an upper bound to problem z but may not be feasible.
We now show how to obtain a feasible solution ψz based on
ψ̂z .

Denote x and q as the vector for variables xm
ij and qm

ij ,
respectively. To obtain a feasible solution, we need to deter-
mine the integer values for x and q in solution ψz such that
(2), (4), (9), (10) hold. All other variables are based on x and
q. Initially, each qm

ij is set to the smallest value (qm
ij )L in its

value set and xm
ij is fixed as 0 or 1 if its value set only has one

element 0 or 1, respectively. Based on these qm
ij ’s, we can com-

pute the capacity
∑

m∈Mij
W log2

(
1 + gijqm

ij
ηW Q
Pmax

+
∑k 6=i,j

k∈N gkjtm
k

)

for each link i → j. The requirement on a link i → j

is
∑s(l)6=j,d(l) 6=i

l∈L f̂ij(l). Thus, we can compute kij , the ratio
between the capacity and the requirement. The objective value
for the current x and q is K · min{kij : i ∈ N , j ∈ Ti}.
Thus, we aim to increase the minimum kij . We always try
to increase the smallest kij by increasing some qm

ij under the
constraint qm

ij ≤ (qm
ij )U . When we cannot further increase the

smallest kij , we are done. The pseudocode of this local search
algorithm is given in Fig. 2.



TABLE II
LOCATION AND AVAILABLE FREQUENCY BANDS AT EACH NODE FOR A 20-NODE 5-SESSION NETWORK.

Node Location Available Bands Node Location Available Bands Node Location Available Bands
1 (0.1, 9.9) 1, 2, 3, 4, 7, 8, 9, 10 8 (22.6, 40.9) 1, 2, 3, 5, 7, 9, 10 15 (44.7, 24) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2 (29.2, 31.7) 1, 2, 3, 4, 5, 7, 8, 10 9 (35.3, 10.3) 2, 9 16 (47.9, 43.8) 1, 3
3 (3, 31.1) 1, 4, 5, 6 10 (31.9, 19.6) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 17 (46.4, 16.8) 1, 7, 9
4 (11.8, 40.1) 1, 2, 3, 4, 6, 9, 10 11 (28.1, 25.6) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 18 (11.5, 12.2) 2, 5, 6, 10
5 (15.8, 9.7) 1, 2, 3, 5, 6, 8, 9 12 (32.3, 38) 1, 8, 9, 10 19 (28.2, 14.8) 4, 5, 6, 7, 8, 9, 10
6 (16.3, 19.5) 3, 5, 6, 8, 9 13 (47.2, 2.6) 3, 5, 10 20 (2.5, 14.5) 1, 7, 10
7 (0.6, 27.4) 1, 4, 8, 9, 10 14 (44.7, 15) 2, 3, 6, 7, 8

TABLE III
SOURCE NODE, DESTINATION NODE, AND MINIMUM RATE REQUIREMENT

OF EACH SESSION IN THE 20-NODE 5-SESSION NETWORK.

Session Source Node Dest. Node Min. Rate Req.
l s(l) d(l) r(l)
1 16 10 9
2 18 3 1
3 12 11 4
4 13 17 3
5 15 6 2

D. Selection of Partition Variables

Based on the impact on the objective value, variables in x
are more important than variables in q. Thus, we should first
select one of x variables as the branch variable. In particular,
for the relaxation solution ψ̂z , the relaxation error of a discrete
variable xm

ij is min{x̂m
ij , 1 − x̂m

ij}, where x̂m
ij is the value

of variable xm
ij in solution ψ̂z . We choose an xm

ij with the
maximum relaxation error among all x variables and let its
value set in problems z1 and z2 be {0} and {1}, respectively.
Since the value set for this xm

ij only has one element, this xm
ij

can be replaced by a constant in the new problem. As a result,
some constraints may also be removed.

It should be note that we may pose more limitations on
other variables based on the new value set of xm

ij . That is, if
the new value set of xm

ij is {0}, then we have qm
ij = 0 based on

(9). If the new value set of xm
ij is {1}, then we have xm

ih = 0
for h ∈ Ti, h 6= j and xm

ki = 0 for k ∈ Ti based on (2).
When none of the x variables can be partitioned (i.e.,

each of their value sets has only one element), we select
one of q variables for partitioning. In particular, in the re-
laxation solution ψ̂z , the relaxation error of qm

ij is min{q̂m
ij −

bq̂m
ij c, bq̂m

ij c + 1 − q̂m
ij }, where q̂m

ij is the value of variable
qm
ij in solution ψ̂z . Assuming the value set of qm

ij in problem
z is {q0, q1, · · · , qK}, its value set in problems z1 and z2

will be {q0, q1, · · · , bq̂m
ij c} and {bq̂m

ij c+1, bq̂m
ij c+2, · · · , qK},

respectively. Again, based on the new value set of qm
ij , we may

impose additional limitations on other variables. In particular,
if the new value set of qm

ij is {0}, then we have xm
ij = 0 based

on (10). If the new value set of qm
ij does not include 0, then

we have xm
ij = 1 based on (9).

Note that when all possible partition variables in x and q
can no longer be partitioned (i.e., all values are assigned), the
other variables can be solved via an LP.

IV. NUMERICAL RESULTS

In this section, we present numerical results on the proposed
solution. Our goals are to demonstrate the efficacy of the

solution procedure and offer quantitative understanding on the
joint optimization at different layers.

A. Simulation Setting

For the ease of exposition, we normalize all units for
distance, bandwidth, rate, and power based on (8) with ap-
propriate dimensions. We consider a 20-node CR networks
with each node located in a 50x50 area. We assume there are
|M| = 10 frequency bands in the network and each band has
a bandwidth of W = 50. At each CR node, only a subset
of these bands is available. Table II gives the details of the
location of each node and the set of available bands at each
node. We assume there are 5 user communication sessions,
each with a minimum rate requirement within [1, 10]. The
source node, destination node, and minimum rate requirement
of each session are given in Table III.

We assume the propagation gain is gij = d−4
ij and the SINR

threshold α = 3 [7]. The maximum transmission power at each
node is Pmax = 4.8 ·105 ·η ·W . We assume that power control
can be done in Q = 10 levels.

For our proposed branch-and-bound solution procedure, we
set ε to 0.1, which guarantees that the solution is within 90%
optimal.

B. Results and Observations

For the 20-node network with 5 sessions, the transmission
power levels on their respective frequency bands in the final
solution are:
Band 1: q1

7,3 = 1, q1
16,12 = 7;

Band 2: q2
8,2 = 2;

Band 3: q3
13,14 = 2;

Band 4: q4
1,7 = 7, q4

2,10 = 2;
Band 5: q5

11,10 = 1;
Band 6: q6

15,19 = 9;
Band 7: q7

14,17 = 1, q7
20,1 = 1;

Band 8: q8
12,11 = 3;

Band 9: q9
12,8 = 1, q9

19,6 = 3;
Band 10: q10

18,20 = 1.
Note that the same frequency band may be used by concurrent
transmissions, e.g., both node 7 → 3 and node 16 → 12 are
transmitting on band 1. To minimize interference, our solution
has placed these concurrent transmissions sufficiently apart
and set the optimal transmission power less than the maximum.

Figure 3 shows the routing topology in the final solution.
The flow rates are
Session 1: f2,10(1) = 103.30, f8,2(1) = 103.30, f11,10(1) =
15.86, f12,8(1) = 103.30, f12,11(1) = 15.86, f16,12(1) =
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Fig. 3. The routing topology for the 20-node 5-session network.

119.16;
Session 2: f1,7(2) = 13.24, f7,3(2) = 13.24, f18,20(2) =
13.24, f20,1(2) = 13.24;
Session 3: f12,11(3) = 52.96;
Session 4: f13,14(4) = 39.72, f14,17(4) = 39.72;
Session 5: f15,19(5) = 26.48, f19,6(5) = 26.48.
We can see that, to maximized the achieved capacity, multi-
path routing are used for session 1.

Under this solution, the achieved data rate for sessions 1
to 5 is 119.16, 13.24, 52.96, 39.72, 26.48, respectively, which
corresponds to a scaling factor of 13.24.

V. RELATED WORK

There has been substantial research efforts on multi-hop
wireless networks based on the protocol interference model
(see, e.g., [1], [9], [11]). The controversy surrounding (or argu-
ments against) the protocol model is that a binary decision of
whether or not interference exists (based on interference range)
does not accurately captures physical layer characteristics. As
a result, the accuracy (and validity) of results developed under
protocol model remains unclear.

As discussed in Section I, physical model is widely accepted
as an accurate characterization of interference. Unfortunately,
although physical model is accurate, there is much difficulty in
carrying out analysis with physical model due to the compu-
tational complexity it involves, particularly when it comes to
cross-layer optimization in a multi-hop network environment.
As a result, various simplifications have been employed in
recent investigations. In [2], Behzad and Rubin studied the
special case that the same power level are used at each node
and found that the maximum transmission power should be
used. However, for the general case where each node can
adjust its transmission power independently, a general solution
is not available. In [5], Elbatt and Ephremides proposed a two-
step approach with the aim of using a minimum power vector
while supporting as many users as possible; routing is given
a priori instead of being part of the optimization problem. In

[3], Chen and Lee proposed a layered (de-coupled) approach
for QoS scheduling and power control; while in [4], Cruz and
Santhanam proposed a two-step approach to minimize a power
cost function that first optimizes link scheduling and power
control, and then optimizes routing. Due to de-coupling in the
solution procedure, these approaches only yield sub-optimal
solutions.

In the area of multi-hop CR networks, although there has
been some recent efforts (e.g., [17], [18]), none of them
has made significant progress in addressing joint optimization
across multiple layers via the physical interference model.

On another line of research, various efforts have been made
to study asymptotic behavior (or scaling laws) of wireless
networks (see, e.g., [8], [12]). These efforts differ from ours
in this paper, which focuses on designing optimal cross-layer
algorithms for finite sized network.

VI. CONCLUSION

In this paper, we investigated cross-layer optimization prob-
lem for multi-hop CR networks, with joint consideration of
solutions at physical, link, and network layers. We gave a
mathematical characterization for power control, scheduling,
and routing under physical interference model. We developed
a centralized solution procedure based on the branch-and-
bound framework. Using numerical results, we demonstrated
the efficacy of the solution procedure and offered quantitative
understanding on the joint optimization at different layers.
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