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Abstract—Interference alignment (IA) is a powerful technique to handle interference in wireless networks. Since its inception, IA has
become a central research theme in the wireless communications community. Due to its intrinsic nature of being a physical layer
technique, IA has been mainly studied for point-to-point or single-hop scenario. There is a lack of research of IA from networking
perspective in the context of multi-hop wireless networks. The goal of this paper is to make such an advance by bringing IA technique
to multi-hop MIMO networks. We develop an IA model consisting of a set of constraints at a transmitter and a receiver that can be used
to determine IA for a subset of interfering streams. We further prove the feasibility of this IA model by showing that a DoF vector can
be supported free of interference at the physical layer as long as it satisfies the constraints in our IA model. Based on the proposed
IA model, we develop an IA design space for a multi-hop MIMO network. To study how IA performs in a multi-hop MIMO network, we
compare the performance of a network throughput optimization problem based on our developed IA design space against the same
problem when IA is not employed. Simulation results show that the use of IA can significantly decrease the DoF consumption for IC,
thereby improving network throughput.
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1 INTRODUCTION

Interference management is a fundamental problem in
wireless networks. Interference alignment is a major
advance in interference management in recent years that
offers a new direction to handle mutual interference
among different users. The basic idea of IA is to construct
signals at transmitters so that these signals overlap (align
in the same direction) at their unintended receivers while
they are resolvable at their intended receivers. It was
shown in [3] that IA can achieve K/2 degrees of freedom
(DoF) in the K-user interference channel based on the
assumption of arbitrary large time or frequency diversity.
It was also shown in [6], [16] that IA can significantly
increase the user throughput in practical MIMO WLAN.
Given its huge potential in increasing network DoFs,
IA has brought tremendous attention in the wireless
communications community.

Due to its intrinsic nature of being a physical layer
technique, most of the IA results are limited to point-to-
point or single-hop scenario. There is a lack of advance
of IA technique from networking perspective, especially
in the context of multi-hop wireless networks. Extending
IA from a single-hop to multi-hop network does not
appear to be straightforward, as the transmission and
interference patterns in a multi-hop network are much
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more complex and can easily become intractable. In
[15], Li et al. made the first attempt to explore IA in
a multi-hop MIMO network. There, the idea of IA was
discussed in several example scenarios to illustrate its
benefits. However, the key concept of IA (i.e., construct-
ing signals at transmitters so that these signals overlap
at their unintended receivers while remaining resolvable
at their intended receivers) was not incorporated into
their problem formulation and solution procedure. In
[28] and [29], Zeng et al. studied IA in cellular and multi-
hop networks from networking perspective. But their
IA results were limited to single-antenna networks and
cannot be applied to multi-hop MIMO networks.

The lack of results of IA in multi-hop MIMO networks
underscores both the technical barrier in this area and
the critical need to close this gap. The goal of this
paper is to make a concrete step toward advancing
IA technique in multi-hop MIMO networks. We study
IA in its most basic form [3], i.e., the construction of
transmit data streams so that (i) they overlap at their
unintended receivers and (ii) they remain resolvable at
their intended receivers. The construction of transmit
data streams requires the design of precoding vector for
each data stream at its transmitter. Since the interfering
streams are overlapping at the receivers, one can use
fewer DoFs to cancel these interfering streams. As a
result, the DoF resources consumed for IC can be re-
duced and thus more DoF resources can be available
to transport data streams. Although our IA design may
not be immediately used in practical multi-hop networks
due to its requirement of central controller and global
channel state information (CSI), it can serve as a proof of
concept and offer theoretical insights and guidance in the
design of practical IA schemes. The main contributions
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Fig. 1. SM and IC in MIMO. A solid line with arrow
represents intended transmission while a dashed line with
arrow represents interference.

of this paper are summarized as follows.
• We develop an analytical IA model for a multi-

hop MIMO network. Our model consists of a set
of constraints at each transmitter to determine the
subset of interfering streams used for IA and a
set of constraints at each receiver to determine the
alignment pattern of the interfering streams.

• We prove the feasibility of the proposed analytical
IA model. Specifically, we show that a DoF vector
can be supported at the physical layer as long as
it satisfies the constraints in our IA model. This is
done by constructing the precoding and decoding
vectors for each data stream such that all data
streams in this DoF vector can be transported free
of interference.

• Based on the analytical IA model, we develop a
set of constraints across multiple layers of a multi-
hop MIMO network. Collectively, these constraints
characterize an IA design space for a multi-hop
MIMO network. Based on this space, IA can be
jointly exploited with upper-layer scheduling for a
target network performance objective.

• To evaluate the performance of our IA design space,
we study a network throughput optimization prob-
lem and compare the results against those for the
same problem when IA is not employed. We show
that the use of IA can conserve DoF resources in the
network and increase throughput significantly.

The remainder of this paper is organized as follows.
Section 2 offers some essential background on IA in
MIMO networks. Section 3 discusses the challenges of
applying IA in multi-hop networks. Section 4 presents
a new analytical IA model for MIMO networks and
Section 5 proves the feasibility of this model. In Sec-
tion 6, we apply the IA model to a multi-hop MIMO
network and develop a cross-layer design space for IA.
In Section 7, we apply our IA design space to study a
throughput maximization problem and demonstrate the
benefits of IA in a multi-hop MIMO network. Section 8
presents related work and Section 9 concludes this paper.

2 PRELIMINARIES: IA IN MIMO
In this section, we review MIMO in terms of its DoF
resources for spatial multiplexing (SM) and interference
cancellation (IC). We also review how IA can help con-
serve DoF consumption required for IC. The notation in
this paper is listed in Table 2 (in supplemental material).
MIMO’s DoF Resources for SM and IC. The concept
of DoF was originally defined to represent the maxi-
mum multiplexing gain of an MIMO channel by the
information theory community (see e.g., [27]). It was

then extended by the networking research community
to characterize a node’s spatial freedom provided by
its multiple antennas (see e.g., [8], [21], [24]). Typically,
the total number of DoFs at a node is equal to the
number of antennas at this node, and represents the total
available resources at this node that can be used for SM
and IC. SM refers to the use of one or multiple DoFs
(both at transmit and receive nodes) for data stream
transmission/reception, with each DoF corresponding to
one independent data stream. IC refers to the use of
one or more DoFs to cancel interference, with each DoF
being responsible for canceling one interfering stream.
IC can be done either at a transmit node (to cancel
interference to a receive node) or a receive node (to
cancel interference from a transmit node). For example,
consider the two links in Fig. 1. To transmit z1 data
streams on link (T1, R1), both nodes T1 and R1 need to
consume z1 DoFs for SM. Similarly, to transmit z2 data
streams on link (T2, R2), both nodes T2 and R2 need to
consume z2 DoFs for SM. The interference from T2 to
R1 can be canceled by either R1 or T2. If R1 cancels this
interference, it needs to consume z2 DoFs. If T2 cancels
this interference, it needs to consume z1 DoFs.
IA in MIMO. In the context of MIMO, IA refers to
a construction of data streams at transmitters so that (i)
they overlap (align) at their unintended receivers and
(ii) they remain resolvable at their intended receivers [3].
The construction of transmit data streams is equivalent
to the design of precoding vector for each data stream
at each transmitter. Since the interfering streams are
overlapped at a receiver, one can use fewer DoFs to
cancel these interfering streams. As a result, the DoF
resources consumed for IC will be reduced and thus
more DoF resources become available for data transport.
To perform IA in an MIMO network, CSI is required at
both transmitter and receiver sides.

We use the following example to illustrate the benefits
of IA in MIMO networks. Consider the 4-link network as
shown in Fig. 2. Assume that each node is equipped with
three antennas. Suppose that there are 2 data streams
on link (T1, R1), 2 data streams on link (T2, R2), and 1
data stream on link (T3, R3). At transmitter Ti, denote
uk
i as the precoding vector for its outgoing data stream

k. Denote Hji as the channel matrix between receiver Rj

and transmitter Ti. We assume that Hji is of full rank.
When IA is not employed, R4 needs to consume 5

DoFs to cancel the interference from transmitters T1, T2,
and T3 [8], [24]. Since there are only 3 DoFs available at
receiver R4, it is not possible to cancel all 5 interfering
streams, let alone to receive any data stream from T4.
But when IA is used (see Fig. 2), we can align the
5 interfering streams into 2 dimensions, which can be
canceled by R4 with only 2 DoFs. Hence, R4 still has 1
remaining DoF, allowing it to receive 1 data stream from
transmitter T4.

We give one possible approach to construct the 5
precoding vectors at T1, T2, and T3, respectively. To show
that the 5 interfering streams can indeed be aligned into
2 dimensions at receiver R4, we denote a := b if there
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Fig. 2. An illustration of IA at node R4. A solid line with
arrow represents intended transmission while a dashed
line with arrow represents interference.

exists a nonzero complex number c for vectors a and
b such that a = c · b. We begin by constructing the
precoding vectors at transmitter T1 by letting u1

1 := e1
and u2

1 := e2, where ek is a vector with the k-th element
being 1 and all the other elements being 0. For the
two precoding vectors [u1

2 u2
2] at transmitter T2, we

align the interfering stream corresponding to u1
2 to the

interfering stream corresponding to u1
1 at receiver R4.

This can be done by letting H42u
1
2 := H41u

1
1 and thus

u1
2 := H−1

42 H41u
1
1. Similarly, we can align the interfering

stream corresponding to u2
2 to the interfering stream

corresponding to u2
1 at receiver R4. This is done by

letting H42u
2
2 := H41u

2
1 and thus u2

2 := H−1
42 H41u

2
1.

Finally, for the precoding vector u1
3 at transmitter T3,

we can align its interfering stream to the interfering
stream corresponding to u1

1 at receiver R4. This is done
by letting H43u

1
3 := H41u

1
1 and thus u1

3 := H−1
43 H41u

1
1.

As a result of IA, the 5 interfering streams are aligned
into only 2 dimensions and can be canceled with 2 DoFs
(instead of 5 DoFs) by receiver R4.

Note that in this example, we only illustrate how
to achieve IA at one receiver. In a multi-hop network,
the goal is to accomplish IA at as many receivers as
possible so as to maximally harvest the benefits of IA.
This requires careful coordination at network level and
is a much harder problem, as we elaborate in the next
section.

3 IA IN MULTI-HOP NETWORKS: WHERE ARE
THE CHALLENGES

As discussed in Section 1, although there is a flourish of
research on IA in the point-to-point or single-hop sce-
narios, results on extending IA to a multi-hop network
remain very limited. This is because there are a number
of new challenges, which we summarize as follows.

(i) How to coordinate IA among a large number of
nodes in an MIMO network is a very hard problem.
In particular, for each pair of nodes, one needs to
decide which subset of interfering streams for IA
and how to align them successfully at the receiver.
While performing IA, one must also ensure that
the desired data streams at each intended receiver
remain resolvable. The answers to these questions
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Fig. 3. An MIMO network. A solid line with arrow rep-
resents intended transmission while a dashed line with
arrow represents interference.

require the development of a new IA model, as we
shall present in this paper.

(ii) Proving the feasibility of an IA model is not trivial
task. One must show that any DoF vector can be
supported in the network as long as it satisfies the
constraints in the underlying IA model. Specifically,
one needs to show that for each data stream char-
acterized by the DoF vector, there exist a precoding
vector at its transmitter and a decoding vector at its
receiver so that this data stream can be transported
free of interference. As we will see in Section 5,
constructing such a precoding vector and decoding
vector for each data stream is very challenging.

(iii) In a multi-hop environment, an IA scheme is also
coupled with the upper layer scheduling and rout-
ing algorithms. The upper layer algorithms deter-
mine the set of transmitters, the set of receivers,
the set of links, and the number of data streams on
each link, which vary from each time slot. Thus,
an IA scheme must be jointly designed with upper
layer scheduling and routing algorithms, which is
again a challenging problem.

In this paper, we address challenges (i) and (ii) in
Sections 4 and 5, respectively. Challenge (iii) is addressed
in Section 6.

4 MODELING IA IN MIMO NETWORKS

Consider a multi-hop MIMO network in Fig. 3. Each
node is equipped with NA antennas. We assume that
the network is static and the CSI is available at both
transmitter and receiver sides. We also assume that
scheduling is done in the time domain, with each time
frame having K time slots. To develop an IA model, we
focus on one time slot t (1 ≤ t ≤ K). Denote NT as
the number of transmitters and NR as the number of
receivers in the time slot.1 Denote L as the set of links in

1. When there is no ambiguity, we omit the time slot index t in this
section and the next section.
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the network with L = |L|. Denote φ = (z1, z2, · · · , zL) as
the DoF vector in the network, where zl is the number
of data streams on link l ∈ L.2 At a transmitter, its
different data streams may go to different receivers (see,
e.g., T1 in Fig. 3). For transmitter Ti, denote λi as the
number of outgoing data streams and thus we have
λi =

∑
l∈Lout

i
zl, where Lout

i is the set of outgoing links
from transmitter Ti. Similarly, at a receiver, it may receive
desired data streams from multiple transmitters (see,
e.g., R12 in Fig. 3). For receiver Rj , denote µj as the
number of its incoming data streams and thus we have
µj =

∑
l∈Lin

j
zl, where Lin

j is the set of its incoming links
to receiver Rj .

Consider a node pair (Ti, Rj). Denote skij as the trans-
mission of stream k (1 ≤ k ≤ λi) from transmitter Ti

to receiver Rj . If this stream k is intended to receiver
Rj , then skij is a data stream for receiver Rj . Otherwise,
stream skij is an interfering stream for receiver Rj . Denote
Sij as the set of data streams from transmitter Ti to
receiver Rj , with σij = |Sij |. Denote Aij as the set of
interfering streams from transmitter Ti to receiver Rj , with
αij = |Aij |. Thus, we have σij + αij = λi. Note that
without IA, receiver Rj needs to consume αij DoFs to
cancel the interfering streams from transmitter Ti [8],
[24].

For receiver Rj , to reduce its DoF consumption for
IC, we can align a subset of its interfering streams to the
other interfering streams by properly constructing their
precoding vectors (as illustrated by Fig. 2). Among the
interfering streams in Aij , denote Bij as the subset of in-
terfering streams that are aligned to the other interfering
streams at receiver Rj , with βij = |Bij |. Then the number
of “effective” interfering streams from transmitter Ti to
receiver Rj is decreased from αij to αij − βij .

The question to ask is how to perform IA among the
nodes in the network so that

• (C-1): each interfering stream in Bij ’s can be suc-
cessfully aligned at the unintended receivers;

• (C-2): each data stream remains resolvable at its
intended receiver.

Sections 4.1 and 4.2 address this question by exploring
constraints at a transmitter and at a receiver, respectively.

4.1 IA Constraints at a Transmitter
Consider a transmitter Ti as shown in Fig. 4. Based on
the definitions of Aij and Bij , we know Bij ⊆ Aij . Thus,
we have the following constraints at transmitter Ti:

βij ≤ αij , j ∈ Ii, 1 ≤ i ≤ NT, (1)

where Ii is the set of nodes within the interference range
of node i.

At transmitter Ti in Fig. 4, there are λi precoding
vectors corresponding to λi outgoing streams. Since
each outgoing stream interferes with all the unintended
receivers within transmitter Ti’s interference range, the
corresponding precoding vector determines the direction

2. The activity of link l is determined by the value of zl. When zl = 0,
link l is inactive.
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Fig. 4. IA constraints at transmitter Ti. In this figure, data
streams from Ti to the receivers are not shown.

of one interfering stream for each of those receivers. For
instance, precoding vector u1

i determines the directions
of the outgoing stream at receivers R1, R2, · · · , RNr ,
one of which is the intended receiver and the rest
are unintended receivers. However, among the Nr − 1
directions for interfering streams, only one of them can
be successfully aligned to a particular direction for IA
by constructing u1

i . Therefore, for the interfering streams
from transmitter Ti, at most λi interfering streams can be
successfully used for IA at their receivers, since there are
λi precoding vectors at transmitter Ti. Mathematically,
we have the following constraints at transmitter Ti:∑

j∈Ii

βij ≤ λi, 1 ≤ i ≤ NT. (2)

At transmitter Ti, the DoF consumption is only for SM.
Specifically, the number of DoFs consumed at transmitter
Ti is equal to the number of its outgoing data streams
(i.e., λi). Since the DoFs consumed at a node cannot
exceed its total DoFs, we have the following constraints
at transmitter Ti:

λi ≤ NA, 1 ≤ i ≤ NT. (3)

4.2 IA Constraints at a Receiver

Consider a receiver Rj in Fig. 5. To ensure (C-1) and
(C-2) at receiver Rj , we have the following conditions:

• Based on our definition of Bij , the interfering
streams in each Bij should not occupy “effective”
directions at receiver Rj . Therefore, at receiver Rj ,
each interfering stream in ∪i∈IjBij can only be
aligned to an interfering stream in ∪i∈Ij (Aij\Bij).

• To ensure the resolvability of the data streams at
each receiver, we must have that any interfering
stream in Bij cannot be aligned to an interfering
stream in Aij . To show the reason, suppose that
skij in Bij is aligned to sk

′

ij in Aij at receiver Rj .
Then, we have uk

i := H−1
ji Hjiu

k′

i := uk′

i . This
means that uk

i and uk′

i are linearly dependent and
consequently these two streams are not resolvable
at their intended receivers.
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• To ensure the resolvability of the data streams at
each receiver, we must ensure that any two interfer-
ing streams in Bij cannot be aligned to the same
(a third) interfering stream. To show the reason,
suppose that both skij and sk

′

ij in Bij are aligned to
sli′j at receiver Rj . Then, we have uk

i := H−1
ji Hji′u

l
i′

and uk′

i := H−1
ji Hji′u

l
i′ . We therefore have uk

i := uk′

i ,
indicating that uk

i and uk′

i are linearly dependent.
This means that these two streams are not resolvable
at their intended receivers.

We shall show that the above three conditions are all
satisfied if the following constraints are satisfied at each
receiver Rj :

βij ≤
k ̸=i∑
k∈Ij

(αkj − βkj), i ∈ Ij , 1 ≤ j ≤ NR. (4)

At each receiver Rj , its DoFs are consumed for SM
and IC. Specifically, the number of DoFs consumed for
SM is equal to the number of its incoming data streams
(i.e., µj); the number of DoFs consumed for IC is equal
to the number of “effective” interfering streams at this
receiver (i.e.,

∑
i∈Ij

(αij−βij)). Since the DoFs consumed
for SM and IC cannot exceed its total DoFs, we have the
following constraints at receiver Rj :

µj +
∑
k∈Ij

(αkj − βkj) ≤ NA, 1 ≤ j ≤ NR. (5)

Collectively, constraints (1)–(5) characterize an ana-
lytical IA model for an MIMO network. A question
about this model is its feasibility: For a DoF vector
φ = (z1, z2, · · · , zL) that meets these IA constraints, is it
also feasible? We answer this question in the following
section.

5 FEASIBILITY OF THE IA MODEL
To prove the feasibility of the proposed analytical IA
model, we must first clarify what we mean by “feasibil-
ity.” The following definition clarifies this issue.

Definition 1: Suppose that a stream k from transmitter
Ti is intended to receiver Rj . uk

i is its precoding vector at

transmitter Ti and vl
j is its decoding vector at receiver Rj .

Then, DoF vector φ = (z1, z2, · · · , zL) is feasible if there exist
precoding vector uk

i and decoding vector vl
j for each stream

k from transmitter Ti, 1 ≤ i ≤ NT, 1 ≤ k ≤ λi, such that

(vl
j)

THjiu
k
i = 1, (6a)

(vl
j)

THji′u
k′

i′ = 0, (6b)

for 1 ≤ k′ ≤ λi′ , i
′ ∈ Ij , (i′, k′) ̸= (i, k).

Note that (6a) and (6b) are bilinear constraints and
how to develop a general solution to a set of bilinear
equations remains open [13].

Simply put, we say a DoF vector is feasible if there
exist precoding and decoding vectors for each stream so
that the stream can be decoded at its intended receiver
free of interference. The following theorem is the main
result of this section.

Theorem 1: A DoF vector φ = (z1, z2, · · · , zL) is feasible
if it satisfies constraints (1)–(5) in the IA model.

It is worth pointing out that for a given DoF vector
φ = (z1, z2, · · · , zL), the values of αij , λi, and µj in the IA
constraints are fixed (i.e., λi =

∑
l∈Lout

i
zl, µj =

∑
l∈Lin

j
zl,

and αij =
∑Rx(l)̸=j

l∈Lout
i

zl), while the values of βij depend
on the specific IA scheme that one designs. In the rest
of this section, we prove Theorem 1 by construction.

5.1 Proof of Theorem 1: A Roadmap

As for notation, we use calligraphic uppercase letter to
denote a set of data/interfering streams and use boldface
uppercase letter to denote the set of its corresponding
precoding vectors. For a set of data streams in Sij , denote
Sij as the corresponding set of precoding vectors. For a
set of interfering streams in Aij , denote Aij as the corre-
sponding set of precoding vectors. For a set of interfering
streams in Bij , denote Bij as the corresponding set of
precoding vectors. Mathematically, we have

Sij = {uk
i : skij ∈ Sij},

Aij = {uk
i : skij ∈ Aij},

Bij = {uk
i : skij ∈ Bij}.

Accordingly, we have |Sij | = σij , |Aij | = αij , and |Bij | =
βij .

Consider receiver Rj shown in Fig. 5. Denote DS
j as

the set of data stream directions at receiver Rj . Denote
DI

j as the set of interfering stream directions at receiver
Rj . Then we have

DS
j = ∪i∈Ij{Hjiu

k
i : uk

i ∈ Sij},
DI

j = ∪i∈Ij{Hjiu
k
i : uk

i ∈ Aij}.

The following lemma shows a sufficient condition for
DoF vector φ to be feasible.

Lemma 1: A DoF vector φ = (z1, z2, · · · , zL) is feasible
if there exists a precoding vector uk

i for each stream k from
transmitter Ti (1 ≤ i ≤ NT, 1 ≤ k ≤ λi), such that

dim(DS
j ∪DI

j) = µj + dim(DI
j), 1 ≤ j ≤ NR, (7)
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where µj is the number of incoming data streams at receiver
Rj and µj =

∑
l∈Lin

j
zl for 1 ≤ j ≤ NR.

Proof: We show DoF vector φ is feasible by arguing
that if (7) is satisfied, then we can find a decoding vector
vl
j for each stream k from transmitter Ti such that (6a)

and (6b) are satisfied. Specifically, we show that the
following linear system is consistent if (7) is satisfied.

(vl
j)

THjiu
k
i = 1,

(vl
j)

THji′u
k′

i′ = 0, i′ ∈ Ij , 1 ≤ k′ ≤ λi′ , (i
′, k′) ̸= (i, k).

where vl
j is variable vector and H’s and u’s are given.

Based on the definition of DS
j and DI

j , we know

DS
j ∪DI

j = {Hji′u
k′

i′ : i′ ∈ Ij , 1 ≤ k′ ≤ λi′}.

It is easy to see that DS
j ∪DI

j is the set of coefficient-
vectors of this linear system. Moreover, this system has
NA free variables and at most NA linearly independent
equations. If we can show that vector Hjiu

k
i is not a

linear combination of other vectors in DS
j ∪DI

j , then this
system is consistent. We prove this point by contradic-
tion.

Suppose that Hjiu
k
i is a linear combination of other

vectors in DS
j ∪DI

j . Since Hjiu
k
i ∈ DS

j , we have

dim(DS
j ∪DI

j) < |DS
j |+ dim(DI

j) = µj + dim(DI
j).

But this contradicts the given condition in (7). There-
fore, we conclude that the linear system is consistent.

Intuitively, Lemma 1 tells us that at each receiver Rj ,
if a data stream lies in an independent direction (i.e., not
within the subspace spanned by other data/interfering
streams), then this data stream is resolvable. Lemma 1
offers another route for checking the feasibility of a given
DoF vector: instead of checking the existence of both
precoding and decoding vectors that satisfy (6a) and (6b)
in Definition 1, one only needs to check the existence of
the precoding vectors that satisfy (7) in Lemma 1.

We give a roadmap for our proof of Theorem 1.
• Step 1 (Designing An IA Scheme): Based on the

constraints in the IA model, we propose an IA
scheme for the network. The objective of this scheme
is to ensure that at each receiver Rj , the interfering
streams in ∪i∈IjBij can be successfully aligned to
the interfering streams in ∪i∈IjAij\Bij . We achieve
this objective by addressing two questions: (i) How
to select βij interfering streams from Aij for Bij at
each transmitter Ti? (ii) How to align the interfering
streams in Bij to other interfering streams at each
receiver Rj? Details are given in Section 5.2.

• Step 2 (Constructing Precoding Vectors): Based on
the IA scheme proposed in Step 1, we present an
approach to construct the precoding vectors at the
transmitters. Specifically, we divide the precoding
vectors into two groups: B and U\B. For a pre-
coding vector uk

i in U\B, we set uk
i := ek. For the

precoding vectors in B, we construct them based
on the IA scheme in Step 1. Details are given in
Section 5.3.

• Step 3 (Resolving Intended Signals): We show that
the constructed precoding vectors in Step 2 satisfy
(7) in Lemma 1, thereby concluding that DoF vector
φ = (z1, z2, · · · , zL) is feasible. Details are given in
Section 5.4.

5.2 Step 1: Designing An IA Scheme
Based on the constraints in the IA model, we propose an
IA scheme at a transmitter and a receiver. The goal of
this IA scheme is that at each receiver Rj , the interfering
streams in ∪i∈IjBij can be successfully aligned to the
interfering streams in ∪i∈IjAij\Bij . We present the IA
scheme by addressing the following two questions: (i) At
each transmitter Ti, how to select a subset of βij inter-
fering streams for Bij from the αij interfering streams in
Aij? (ii) At each receiver Rj , how to align the interfering
streams in Bij to others interfering streams?
Selecting interfering streams for Bij . Consider trans-
mitter Ti in Fig. 4. To ensure that the interfering streams
in ∪j∈IiBij can be successfully aligned to particular
directions at their receivers, each of them must be cor-
responding to a unique precoding vector at transmitter
Ti. Mathematically, this requirement can be interpreted
as

Bij1 ∩Bij2 = ∅, j1, j2 ∈ Ii, j1 ̸= j2, 1 ≤ i ≤ NT. (8)

Then, we have the following lemma.
Lemma 2: For any βij that meets constraints (1) and (2),

we can select βij interfering streams for Bij (from the αij

interfering streams in Aij) so that (8) is satisfied.
Proof: Proving Lemma 2 is equivalent to solving

the precoding vector selection problem (PVS-Problem)
as follows:
PVS-Problem: For transmitter Ti and its neighboring
receivers as shown in Fig. 4, select βij precoding vectors
from Ui = {uk

i : 1 ≤ k ≤ λi} for Bij , j ∈ Ii, such that

Bij ⊆ Aij , j ∈ IT
i , (9a)

Bij1 ∩Bij2 = ∅, j1, j2 ∈ Ii, j1 ̸= j2. (9b)

where Ui = ∪k∈IiSik, Aij = ∪k ̸=j
k∈Ii

Sik, |Sij | = σij ,∑
j∈Ii

σij = λi, and
∑

j∈Ii
βij ≤ λi.

We solve the PVS-Problem by two steps. First, we
propose a greedy algorithm to select precoding vectors
for Bij (for each j ∈ Ii). Second, we show that the
resulting Bij satisfies constraints (9a) and (9b).

A greedy algorithm. Without loss of generality, we
index the receivers within Ii from 1 to J , where J = |Ii|.
We select precoding vectors for Bij (1 ≤ j ≤ J)
sequentially. Specifically, we first select βi1 precoding
vectors for Bi1, and then select βi2 precoding vectors
for Bi2, and so forth. In each iteration j, we select βij

precoding vectors for Bij as follows: For each k within
j < k < J , we move (|Sik| −

∑J
k′=k+1 βik′)+ precoding

vectors from Sik to Bij , where (·)+ = max{·, 0}. After
that, if Bij does not have enough precoding vectors, we
move the precoding vectors from ∪k ̸=j

k∈Ii
Sik to Bij until

Bij has enough precoding vectors. A pseudo-code for
this algorithm is given in Fig. 6.
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Algorithm: Solving PVS-Problem at transmitter Ti.
1. J = |Ii|;
2. for j := 1 to J {
3. S̃ij = Sij ; Bij = ∅; β̃ij = βij ; σ̃ij = σij ; }
4. for j := 1 to J {
5. for k := j + 1 to J − 1 {
6. if β̃ij == 0 {break;}
7. d = (σ̃ik −

∑J
k′=k+1 β̃ik′ )+;

8. move min{β̃ij , d} precoding vectors from S̃ik to Bij ;
9. β̃ij := β̃ij −min{β̃ij , d};
10. σ̃ik := σ̃ik −min{β̃ij , d}; }
11. for k := 1 to J {
12. if β̃ij == 0 {break;}
13. if k == j {continue;}
14. move min{β̃ij , σ̃ik} precoding vectors from S̃ik to Bij ;
15. β̃ij := β̃ij −min{β̃ij , σ̃ik};
16. σ̃ik := σ̃ik −min{β̃ij , σ̃ik}; }}

Fig. 6. A pseudo-code for solving PVS-Problem at trans-
mitter Ti.

Algorithm analysis. Two observations on the algorithm
are in order. First, the resulting solution meets (9a),
because all precoding vectors in Bij are selected from
∪k ̸=j
k∈Ii

Sik and Aij = ∪k ̸=j
k∈Ii

Sik. Second, the resulting
solution meets (9b), because each precoding vector in Ui

is selected for only one Bij . Therefore, if we can show
that the algorithm can successfully select βij precoding
vectors for Bij in each iteration j, then the PVS-Problem
is solved.

Consider the precoding vector selection for Bij in
iteration j. In our algorithm (see Fig. 6), any precoding
vectors in ∪k ̸=j

k∈Ii
S̃ik can be moved to Bij . Therefore, if

we can show that β̃ij ≤
∑k ̸=j

k∈Ii
σ̃ik at the beginning of

each iteration j, then the PVS-Problem is solved. We now
argue that this is true in different cases.

Case I. σ̃ij −
∑J

k=j+1 β̃ik ≤ 0 at the beginning of
iteration j. In this case, we have

k ̸=j∑
k∈Ii

σ̃ik − β̃ij =
∑
k∈Ii

σ̃ik − σ̃ij − β̃ij

(a)
=λi−

j−1∑
k=1

βik − σ̃ij − β̃ij
(b)
= λi − σ̃ij −

j∑
k=1

βik

(c)

≥
J∑

k=j+1

βik − σ̃ij
(d)
=

J∑
k=j+1

β̃ik − σ̃ij ≥ 0,

where (a) follows from the fact that
∑

k∈Ii
σ̃ik =∑

k∈Ii
σik−

∑j−1
k=1 βik = λi−

∑j−1
k=1 βik at the beginning of

iteration j; (b) and (d) follow from the fact that β̃ik = βik

for j ≤ k ≤ J at the beginning of iteration j; (c) follows
from constraint (2).

Case II. σ̃ij −
∑J

k=j+1 β̃ik > 0 at the beginning of
iteration j. In this case, if there exists a j′ such that j′ < j
and σ̃ij′ =

∑J
k=j′+1 β̃ik, then it is easy to see that

k ̸=j∑
k∈Ii

σ̃ik − β̃ij ≥ σ̃ij′ − βij ≥ 0.

Otherwise (i.e., there does not exist such a j′), all

precoding vectors in ∪j−1
k=1Bik are from S̃ij . Then, we

have
k ̸=j∑
k∈Ii

σ̃ik − β̃ij
(a)
=

k ̸=j∑
k∈Ii

σik − β̃ij
(b)
= αij − β̃ij = αij − βij

(c)

≥ 0,

where (a) follows from the fact that σ̃ik = σik for j ∈ Ii
and k ̸= j; (b) follows from the fact that

∑k ̸=j
k∈Ii

σik =
λi − σij = αij ; (c) follows from constraint (1).

Combining the two cases, we conclude that the PVS-
Problem is solved and Lemma 2 is proved.

Lemma 2 ensures that each interfering stream in Bij

corresponds to a unique precoding vector and, therefore,
each interfering stream in Bij can be aligned to any
particular direction by constructing its corresponding
precoding vector.
Aligning the interfering streams in Bij . Consider
receiver Rj in Fig. 5. For each i ∈ Ij , we use the
following algorithm to align the interfering streams in
Bij at receiver Rj .

Algorithm 1: At receiver Rj , each interfering stream in Bij

is aligned to a unique interfering stream in ∪k ̸=i
k∈Ij

(Akj\Bkj),
i ∈ Ij .

Based on (4), we know that there are more interfering
streams in ∪k ̸=i

k∈Ij
(Akj\Bkj) than those in Bij . Therefore,

each interfering stream in Bij can be successfully aligned
to a unique interfering stream in ∪k ̸=i

k∈Ij
(Akj\Bkj).

For an interfering stream skij ∈ Bij , in order to align it
to an interfering stream sk

′

i′j ∈ ∪k ̸=i
k∈Ij

(Akj\Bkj) at receiver
Rj , we should construct its corresponding precoding
vector by uk

i := H−1
ji Hji′u

k′

i′ , which we denote as uk
i

j−→
uk′

i′ . The following lemma shows that there is a unique
mapping for each precoding vector in Bij .

Lemma 3: For each uk
i in Bij , there exists one and only one

uk′

i′ , such that uk
i

j−→ uk′

i′ with uk′

i′ ∈ Ai′j\Bi′j and i′ ̸= i.
Lemma 3 is proved by the following two facts. First,

each interfering stream in Bij is associated with a unique
precoding vector (Lemma 2). Second, each interfering
stream in Bij is aligned to an interfering stream in
∪k ̸=i
k∈Ij

(Akj\Bkj) (according to Alg. 1).

5.3 Step 2: Constructing Precoding Vectors

We now explain how to construct the precoding vector
for each stream based on the IA scheme in Section 5.2.
Denote U as the set of all precoding vectors in the
network. Denote B as the set of the precoding vectors
that correspond to the interfering streams for alignment.
Mathematically, we have

U = {uk
i : 1 ≤ k ≤ λi, 1 ≤ i ≤ NT},

B = ∪j∈Ii,1≤i≤NTBij .

To construct the precoding vectors in U, we divide
U into two groups: B and U\B. We first construct
the precoding vectors in U\B and then construct the
precoding vectors in B.

For each precoding vector in U\B, we construct it as
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follows:

uk
i := ek, for uk

i ∈ U\B, (10)

where ek is a vector with the k-th element being 1 and
all the others being 0.

For the precoding vectors in B, their construction is
more complicated. We describe their construction as fol-
lows. Based on Lemma 3, we know that if uk1

i1
∈ B, then

there exists a precoding vector uk2
i2

such that uk1
i1

j1−→ uk2
i2

(i.e., uk1
i1

:= H−1
j1i1

Hj1i2u
k2
i2

). To construct uk1
i1

, we first
need to construct uk2

i2
. If uk2

i2
∈ U\B, we know that uk2

i2
has already been constructed by (10). Otherwise (i.e.,
uk2
i2

∈ B), we construct uk2
i2

in the same way as uk1
i1

, i.e.,

there exists a precoding vector uk3
i3

such that uk2
i2

j2−→ uk3
i3

.
Following the same token, we can establish a chain as
follows:

C : uk1
i1

j1−→ uk2
i2

j2−→ · · · · · · jM−2−−−→ u
kM−1

iM−1

jM−1−−−→ ukM
iM

, (11)

where im ̸= im+1 for m = 1, 2, · · · ,M − 1.
Chain C terminates if any of the following two cases

occurs.
• Case I: ukM

iM
has already been constructed.

• Case II: ukM
iM

appears twice in chain C.
It is easy to see that chain C will terminate, either

by case I or case II. We now show how to construct
the precoding vectors in chain C for the two cases,
respectively.

Case I. In this case, chain C terminates because
ukM
iM

has already been constructed. We can conclude: (i)
All other precoding vectors in chain C have not been
constructed. (ii) All precoding vectors in this chain are
unique. Thus, we can construct the precoding vectors in
chain C sequentially in the backward direction as follows:

u
kM−1

iM−1
:= H−1

jM−1iM−1
HjM−1iMukM

iM
.

u
kM−2

iM−2
:= H−1

jM−2iM−2
HjM−2iM−1

u
kM−1

iM−1
.

Following the same token, we construct all the pre-
coding vectors in chain C.

Case II. In this case, chain C terminates because ukM
iM

appears twice. We can conclude: (i) All precoding vectors
in chain C have not been constructed. (ii) All precoding
vectors in chain C are unique except ukM

iM
. (iii) There

exists m̂ such that (im̂, km̂) = (iM , kM ) and 1 ≤ m̂ < M .
To construct the precoding vectors in chain C, we

divide chain C into two sub-chains C1 and C2:

C1 : uk1
i1

j1−→ uk2
i2

j2−→ · · · jm̂−2−−−→ u
km̂−1

im̂−1

jm̂−1−−−→ ukm̂
im̂

,

C2 : ukm̂
im̂

jm̂−−→ u
km̂+1

im̂+1

jm̂+1−−−→ · · · jM−2−−−→ u
kM−1

iM−1

jM−1−−−→ ukM
iM

,

where (im̂, km̂) = (iM , kM ).
For these two sub-chains, we first construct the pre-

coding vectors in C2 and then construct the precoding
vectors in C1.

Based on the relationships among the vectors in chain
C2, we have:

ukm̂
im̂

:= H−1
jm̂im̂

Hjm̂im̂+1
u
km̂+1

im̂+1
,

u
km̂+1

im̂+1
:= H−1

jm̂+1im̂+1
Hjm̂+1im̂+2

u
km̂+2

im̂+2
,

... (12)

u
kM−2

iM−2
:= H−1

jM−2iM−2
HjM−2iM−1u

kM−1

iM−1
,

u
kM−1

iM−1
:= H−1

jM−1iM−1
HjM−1iMukM

iM
.

Given that (im̂, km̂) = (iM , kM ), we have

ukm̂
im̂

= ukM
iM

. (13)

(12) and (13) form a linear equation system, where
H’s are given matricies and u’s are variables. It can be
verified that a solution to ukM

iM
in the system is

ukM
iM

:= eigvec

(
M−1∏
m=m̂

(H−1
jmim

Hjmim+1)

)
, (14)

where eigvec(·) is an eigenvector of the square matrix.
Once we obtain ukM

iM
, we can sequentially construct all

of the other precoding vectors in sub-chain C2 by (12).
After constructing the precoding vectors in sub-chain

C2, we construct the precoding vectors in sub-chain C1.
Since ukm̂

im̂
has already been constructed, we can construct

the other precoding vectors in sub-chain C1 following the
same token in Case I.

It is easy to see that, in the end, all precoding vectors
in U will be constructed.

5.4 Step 3: Resolving Intended Signals

We now show that the constructed precoding vectors
in Step 2 satisfy (7) in Lemma 1. First, we present the
following lemma.

Lemma 4: The constructed precoding vectors at each trans-
mitter are linearly independent, i.e., dim{uk

i : 1 ≤ k ≤ λi} =
λi for 1 ≤ i ≤ NT.

Proof: Consider transmitter Ti and its neighboring
receivers in Fig. 4. Let Ui = {uk

i : 1 ≤ k ≤ λi}
and Bi = ∪j∈IiBij . Then we divide the precoding
vectors in Ui into two groups: Ui\Bi and Bi. Recall
that in our precoding vector construction, we construct
uk
i by uk

i := ek if uk
i ∈ Ui\Bi and construct uk

i by
uk
i := H−1

ji Hji′u
k′

i′ (i ̸= i′) if uk
i ∈ Bi. This indicates

that the precoding vectors in Ui\Bi are independent
of the channel matrices and the precoding vectors in
Bi are dependent on the channel matrices. Given that
the channel matrices are independent Gaussian random
matrices, we have

dim(Ui) = dim(Ui\Bi) + dim(Bi)

= |Ui\Bi|+ dim(∪j∈IiBij), (15)

almost surely.
Now we analyze the dimension of ∪j∈IiBij . Consider

two precoding vectors uk
i ∈ Bij1 and uk′

i ∈ Bij2 with
j1 ̸= j2. In our precoding vector construction, uk

i is set to
uk
i := H−1

j1i
Hj1i1u

k1
i1

and uk′

i is set to uk′

i := H−1
j2i

Hj2i2u
k2
i2

for some i1, k1, i2, and k2. Hence, uk
i is dependent on

Hj1i and uk′

i is dependent on Hj2i. Given that Hj1i and
Hj2i are two independent Gaussian random matrices, we



9

have
dim(∪j∈IiBij) =

∑
j∈Ii

dim(Bij), (16)

almost surely.
We now analyze the dimension of Bij . Based on (11),

each precoding vector uk
i ∈ Bij is constructed in the

form of

uk
i =

(
M−1∏
m=1

(H−1
jmim

Hjmim+1)

)
ukM
iM

,

where (i1, k1) = (i, k), M ≥ 2, and ukM
iM

is constructed
either by (10) or (14). Let Gk

i =
∏M−1

m=1 (H
−1
jmim

Hjmim+1).
We call Gk

i the “effective channel” for uk
i . We divide

the precoding vectors in Bij into subsets such that the
precoding vectors in the same subset have the same “ef-
fective channel”. Denote the subsets as Bn

ij , 1 ≤ n ≤ Nij .
Since Hij ’s are independent Gaussian random matrices,
any the “effective channels” are independent random
matrices. Thus, we have

dim(Bij) =

Nij∑
n=1

dim(Bn
ij). (17)

For each uk
i ∈ Bn

ij , it is determined by its corre-
sponding precoding vector ukM

iM
and ukM

iM
is constructed

either by (10) or (14). Denote B̃n
ij as the set of precoding

vectors ukM
iM

corresponding to the precoding vectors in
Bn

ij . Then we have dim(B̃n
ij) = |B̃n

ij | based on three
facts: (i) the precoding vectors in B̃n

ij are at the same
transmitter; (ii) the precoding vectors constructed by
(10) are linearly independent; (iii) there are NA linearly
independent solutions (eigenvectors) to (14). Thus, we
have

dim(Bn
ij) = dim(B̃n

ij) = |B̃n
ij | = |Bn

ij |, (18)

where the first equation follows from the fact that the
“effective channel” has full rank.

Based on (17) and (18), we have

dim(Bij) =

Nij∑
n=1

dim(Bn
ij) =

Nij∑
n=1

|Bn
ij | = |Bij |. (19)

Based on (15), (16), and (19), we have

dim(Ui) = |Ui\Bi|+ dim(∪j∈IiBij)

= |Ui\Bi|+ ∪j∈Ii
dim(Bij)

= |Ui\Bi|+ ∪j∈Ii |Bij |
= λi.

Therefore, Lemma 4 is proved.
Denote DI,eff

j as the set of “effective” interfering stream
directions at receiver Rj . Denote DI,algn

j as the set of
interfering stream directions for alignment at receiver
Rj . Mathematically, we have

DI,eff
j = ∪i∈Ij{Hjiu

k
i : uk

i ∈ Aij\Bij},
DI,algn

j = ∪i∈Ij{Hjiu
k
i : uk

i ∈ Bij}.

Based on the precoding vector construction procedure,
we know that for each Hjiu

k
i ∈ DI,algn

j , there exists a
Hji′u

k′

i′ ∈ DI,eff
j such that Hjiu

k
i := Hji′u

k′

i′ . Thus we
have

span(DI,algn
j ) ⊆ span(DI,eff

j ). (20)

For the number of vectors in DS
j ∪DI,eff

j , we have

|DS
j ∪DI,eff

j | = µj +
∑
i∈Ij

(αij − βij) ≤ NA, (21)

where the inequality follows from (5).
The dimension of signal and interference space at

receiver Rj is:

dim(DS
j ∪DI

j)
(a)
= dim(DS

j ∪DI,eff
j )

= dim ∪i∈Ij {Hjiu
k
i : uk

i ∈ Sij ∪Aij\Bij}
(b)
=
∑
i∈Ij

dim{Hjiu
k
i : uk

i ∈ Sij ∪Aij\Bij}

(c)
=
∑
i∈Ij

dim(Sij ∪Aij\Bij)

(d)
=
∑
i∈Ij

|Sij ∪Aij\Bij |

(e)
=
∑
i∈Ij

|Sij |+
∑
i∈Ij

|Aij\Bij |

= µj +
∑
i∈Ij

(αij − βij), (22)

where (a) follows from (20); (b) follows from two facts:
(i) The number of elements in DS

j ∪DI,eff
j is bounded by

NA as shown in (21); (ii) The matrices in {Hji : i ∈ Ij}
are Gaussian random matrices and are independent of
each other; (c) follows from our assumption that Hji is of
full rank, which is usually the case in practical networks;
(d) follows from Lemma 4; (e) follows from Sij∩Aij = ∅
and Bij ⊆ Aij .

Similarly, the dimension of interference subspace at
receiver Rj is:

dim(DI
j) = dim(DI,eff

j ) =
∑
i∈Ij

(αij − βij). (23)

Based on (22) and (23), we have

dim(DS
j ∪DI

j) = µj + dim(DI
j), (24)

which indicates that the constructed precoding vectors
satisfy (7) in Lemma 1.

6 AN IA DESIGN SPACE FOR MULTI-HOP NET-
WORKS

In this section, we apply this new analytical IA model
to develop a set of cross-layer constraints that can char-
acterize an IA design space for a multi-hop MIMO net-
work. Denote N as the set of nodes in the network with
N = |N |, each of which is equipped with NA antennas.
Denote F the set of sessions in the network with F = |F|.
Denote r(f) as the data rate of session f ∈ F . Denote
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src(f) and dst(f) as the source and the destination nodes
of session f ∈ F , respectively. To transport data flow f
from src(f) to dst(f), we allow flow splitting inside the
network for better load balancing and network resource
utilization. We assume that a time frame consists of K
time slots.
Half Duplex Constraints. We assume that a node
cannot transmit and receive in the same time slot. Denote
xi(t) as a binary variable to indicate whether node i ∈ N
is a transmitter in time slot t, i.e., xi(t) = 1 if node i is
a transmitter in time slot t and 0 otherwise. Similarly,
denote yi(t) as a binary variable to indicate whether
node i ∈ N is a receiver in time slot t. Then the half
duplex constraints can be written as

xi(t) + yi(t) ≤ 1, (1 ≤ i ≤ N, 1 ≤ t ≤ K). (25)

Node Activity Constraints. Denote zl(t) as the number
of data streams on link l ∈ L in time slot t. If node i is a
transmitter, we have 1 ≤

∑
l∈Lout

i
zl(t) ≤ NA. Otherwise

(i.e., node i is either a receiver or inactive), we have∑
l∈Lout

i
zl(t) = 0. Combining the two cases, we have

the following constraints:

xi(t) ≤
∑

l∈Lout
i

zl(t) ≤ NA ·xi(t), (1 ≤ i ≤ N, 1 ≤ t ≤ K).

(26)
Similarly, by considering whether or not node i is a

receiver, we have the following constraints:

yj(t) ≤
∑
l∈Lin

j

zl(t) ≤ NA · yj(t), (1 ≤ j ≤ N, 1 ≤ t ≤ K).

(27)
General IA Constraints at a Node. In Section 4 and
5, we developed IA constraints at a transmitter and a
receiver. Here, we can rewrite these constraints at a node
based on the node status variables.

Based on (1) in our IA model, if node i is a transmitter
and node j is a receiver in time slot t, we have βij(t) ≤
αij(t) for each j ∈ Ii. Otherwise (i.e., xi(t) = 0 or yj(t) =
0), we have βij(t) = 0 and αij(t) = 0. Combining these
two cases, constraint (1) can be rewritten as

βij(t) ≤ αij(t), (j ∈ Ii, 1 ≤ i ≤ N, 1 ≤ t ≤ K). (28)

Based on (2) in our IA model, if node i is a transmitter
in time slot t, we have

∑
j∈Ii

βij(t) ≤
∑

l∈Lout
i

zl(t) as
λi =

∑
l∈Lout

i
zl(t). Otherwise (i.e., xi = 0), we have∑

j∈Ii
βij(t) = 0 and

∑
l∈Lout

i
zl(t) = 0. Combining these

two cases, constraint (2) can be rewritten as∑
j∈Ii

βij(t) ≤
∑

l∈Lout
i

zl(t), (1 ≤ i ≤ N, 1 ≤ t ≤ K). (29)

Based on (3) in our IA model, if node i is a trans-
mitter in time slot t, we have

∑
l∈Lout

i
zl(t) ≤ NA as

λi =
∑

l∈Lout
i

zl(t). Otherwise (i.e., xi = 0), we have∑
l∈Lout

i
zl(t) = 0. Combining these two cases, constraint

(3) can be rewritten as∑
l∈Lout

i

zl(t) ≤ NA ·xi(t), (1 ≤ i ≤ N, 1 ≤ t ≤ K). (30)

Based on (4) in our IA model, if node j is a receiver
in time slot t, we have βij(t) ≤

∑k ̸=i
k∈Ij

[αkj(t)−βkj(t)] for
each i ∈ Ij . Otherwise (i.e., yj = 0), we have βij(t) = 0
and αij(t) = 0 for each i ∈ Ij . Combining these two
cases, constraint (4) can be rewritten as

βij(t) ≤
k ̸=i∑
k∈Ij

[αkj(t)− βkj(t)] , (i ∈ Ij , 1 ≤ j ≤ N,

1 ≤ t ≤ K).

(31)

Based on (5) in our IA model, if node j is
a receiver in time slot t, we have

∑
l∈Lin

j
zl(t) +∑

i∈Ij
[αij(t)− βij(t)] ≤ NA. Otherwise (i.e., yj = 0), we

have zl(t) = 0 for l ∈ Lin
j and αij(t) = βij(t) = 0 for each

i ∈ Ij . Combining these two cases, constraint (5) can be
rewritten as∑

l∈Lin
j

zl(t) +
∑
i∈Ij

[αij(t)− βij(t)] ≤ NA · yj(t),

(1 ≤ j ≤ N, 1 ≤ t ≤ K).
(32)

Finally, we characterize the relationship between αij(t)
and zl(t). If node i is a transmitter and node j is a
receiver in time slot t, we have αij(t) =

∑Rx(l)̸=j

l∈Lout
i

zl(t),
where Rx(l) is the receiver of link l. Otherwise (i.e.,
xi(t) = 0 or yj(t) = 0), we have αij(t) = 0. In general,
we have the following constraints:

αij(t) = yj(t)·
Rx(l) ̸=j∑
l∈Lout

i

zl(t), (j ∈ Ii, 1 ≤ i ≤ N, 1 ≤ t ≤ K).

(33)
Link Capacity Constraints. Denote rl(f) as the amount
of data rate on link l that is attributed to session f ∈ F .
For ease of calculation, we assume that fixed modulation
and coding scheme (MCS) is used for data transmission
and one data stream in one time slot corresponds to one
unit data rate. Then the average rate of link l over K

time slots is 1
K

∑K
t=1 zl(t). Since the aggregate data rates

cannot exceed the average link rate, we have

F∑
f=1

rl(f) ≤
1

K

K∑
t=1

zl(t), (1 ≤ l ≤ L). (34)

Flow Routing Constraints. At each node, flow con-
servation must be observed. At a source node, we have∑

l∈Lout
i

rl(f) = r(f), (i = src(f), 1 ≤ f ≤ F ). (35)

At an intermediate relay node, we have∑
l∈Lin

i

rl(f) =
∑

l∈Lout
i

rl(f), (1 ≤ i ≤ N, i ̸= src(f),

i ̸= dst(f), 1 ≤ f ≤ F ).
(36)

At a destination node, we have∑
l∈Lin

i

rl(f) = r(f), (i = dst(f), 1 ≤ f ≤ F ). (37)

It can be easily verified that if (35) and (36) are
satisfied, then (37) is also satisfied. Therefore, it suffices
to include only (35) and (36).
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Fig. 7. A 50-node network topology.

Collectively, constraints (25)–(36) define an IA design
space for cross-layer throughput maximization problems
in a multi-hop MIMO network. In particular, (29), (32),
and (33) are coupling constraints that involve both the
physical layer and the link layer; (34) is coupling con-
straints that involve the physical layer, the link layer, and
the network layer.

7 PERFORMANCE EVALUATION

In this section, we apply our IA design space devel-
oped in Section 6 to study a throughput maximization
problem in a multi-hop MIMO network. Our goals are
twofold. First, we want to see how IA is performed
in a network setting through a case study. Second, we
want to have a quantitative comparison between our IA
design space and the case when IA is not used, thereby
affirming the significant advantage of exploiting IA in a
network environment.

7.1 A Throughput Maximization Problem
We define the objective function to be maximization
of the minimum rate among all sessions.3 Denote the
objective variable as rmin. Then we have

rmin ≤ r(f), 1 ≤ f ≤ F. (38)

We have the following formulation:

OPT-IAraw: Max rmin

S.t. Half duplex constraints: (25);
Node activity constraints: (26), (27);
General IA constraints: (28)–(33);
Link capacity constraints: (34);
Flow routing constraints: (35), (36);
Min rate constraints: (38);

3. Other objective functions such as maximizing sum of weighted
rates or a proportional scaling of all session rates belongs to the same
category of linear function and can be solved following the same token.

where xi(t) and yi(t) are binary variables; zl(t), αij(t),
and βij(t) are non-negative integer variables; r(f) and
rl(f) are non-negative variables; NA, N , L, F , K, and B
are constants.

Among the constraints, (33) is nonlinear. We can apply
the Reformulation Linearization Technique (RLT) [20] to
linearize (33). By analyzing the relationship between
αij(t) and

∑Rx(l)̸=j

l∈Lout
i

zl(t) in (33), we construct two new
sets of constraints (39) and (40) to replace (33):

0 ≤
Rx(l)̸=j∑
l∈Lout

i

zl(t)− αij(t) ≤ (1− yj(t)) ·B,

(j ∈ Ii, 1 ≤ i ≤ N, 1 ≤ t ≤ K),

(39)

0 ≤ αij(t) ≤ yj(t) ·B, (j ∈ Ii, 1 ≤ i ≤ N, 1 ≤ t ≤ K),
(40)

where B is a fixed integer (e.g., B = NA). It can be ver-
ified that the combination of (39) and (40) is equivalent
to (33) in terms of maximizing rmin.

By replacing nonlinear constraint (33) with (39) and
(40), we have the following problem formulation:

OPT-IA: Max rmin

S.t. (25)–(32), (34)–(36), (38)–(40);

where xi(t) and yi(t) are binary variables; zl(t), αij(t),
and βij(t) are non-negative integer variables; r(f) and
rl(f) are non-negative variables; NA, N , L, F , K, and B
are constants.

OPT-IA is a mixed integer linear programming
(MILP). Although the theoretical worst-case complexi-
ty of solving a general MILP problem is exponential
[5], [18], there exist highly efficient approximation al-
gorithms (e.g., branch-and-bound with cutting planes
[19]) and heuristic algorithms (e.g., sequential fixing
algorithm [9], [10]). For small to moderate network size,
an off-the-shelf solver such as CPLEX [30] may also be
effective. Since the main goal of this paper is to present
a new analytical IA model multi-hop MIMO networks
(rather than developing a solution procedure), we will
employ CPLEX solver for numerical results.

7.2 A Case Study
Without loss of generality, we normalize all units for
distance, data rate, bandwidth, time and power with
appropriate dimensions. We consider a randomly gen-
erated multi-hop MIMO network with 50 nodes (see
Fig. 7), which are distributed in a 1000× 1000 square
region. Each node in the network is equipped with
4 antennas. We assume that all nodes have the same
transmission range 250 and interference range 500.

In this network, there are 4 active sessions: N10 to N43,
N23 to N47, N30 to N16, and N2 to N7 in Fig. 7. For ease
of illustration, we assume that there are 4 time slots in
a time frame. By solving OPT-IA, we obtain the optimal
objective (i.e., the maximum throughput) of 0.50.

Fig. 8 shows the transmission/reception pattern, in-
terference pattern, and IA scheme in each time slot.
Specifically, a solid line with arrow represents a directed
link (with the number of data streams on this link shown
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(a) Time slot 1.
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(b) Time slot 2.
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(c) Time slot 3.
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Fig. 8. Transmission/reception pattern, interference pattern, and IA scheme in each time slot. A solid arrow line
represents a directed link (with the number of data streams on this link (i.e., zl) shown in a box). A dashed arrow
link represents interference, with the total number of interfering streams and the number of subset interfering streams
chosen for IA shown in a box, i.e., (αij , βij).

in a box, i.e., zl). A dashed line with arrow represents
interference, with the total number of interfering streams
and the number of subset interfering streams chosen
for IA shown in a box, i.e., (αij , βij). For example, in
Fig. 8(a), on the dashed line between N5 and N37, (2, 2)
in the box represents that α5,37 = 2 and β5,37 = 2, i.e.,
there are two interfering streams from node N5 to node
N37 and both of them are selected for IA at node N37 in
our solution.

As an example to illustrate how IA is performed in
the network, let’s take a look at N37 in time slot 1 (see
Fig. 8(a)). At node N37, there is a total of 7 interfering
streams (from transmitting nodes N5, N18, N23, and N28).
In our solution, we find that for the 2 interfering streams
from node N5, both of them are aligned to the interfering
streams from node N28. Similarly, for the interfering
stream from node N18, it has been aligned to an in-
terfering stream from node N28. For the 2 interfering

streams from node N23, one of them has been aligned
to the interfering streams from node N28. That is, for
the 7 interfering streams at node N37, 4 of them have
been successfully aligned to the remaining 3 interfering
streams. As a result, node N37 only needs to consume 3
DoFs to cancel the 7 interfering streams.

Table 1 summarizes the savings of DoFs in IC due
to IA at each receiving node in each time slot. To
abbreviate notation in the table, denote P (Nj) as the
total number of interfering streams at node Nj , i.e.,
P (Nj) =

∑
i∈Ij

αij . Denote Q(Nj) as the total number
of DoFs that are consumed by node Nj for IC, i.e.,
Q(Nj) =

∑
i∈Ij

(αij − βij). Then the difference between
P (Nj) and Q(Nj) is the saving in DoFs at node Nj due
to IA. Note that savings in DoFs are directly translated
into improvement of network throughput.

To compare to the case when IA is not applied in
the network, we formulate a throughput maximization



13

TABLE 1
A comparison between P (Nj) and Q(Nj). P (Nj) is the
number of interfering streams at node Nj and Q(Nj) is
the total number of DoFs consumed for IC at node Nj .

Time slot 1 Time slot 2
Rx P (Rx) Q(Rx) Rx P (Rx) Q(Rx)
N7 2 2 N6 3 1
N16 0 0 N19 4 3
N19 5 3 N37 4 3
N29 2 2 N43 3 3
N37 7 3

Time slot 3 Time slot 4
Rx P (Rx) Q(Rx) Rx P (Rx) Q(Rx)
N18 2 2 N5 4 2
N20 2 2 N31 5 2
N28 4 2 N43 0 0
N32 4 2 N47 2 2
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Fig. 9. CDF of the comparison between OPT-IA and OPT-
base.

problem and denote it as OPT-base (see supplemental
material for details). By solving OPT-base with CPLEX,
we find that the objective is only 0.25 (comparing to 0.50
under OPT-IA).

7.3 Complete Results

The case study discussed in the last section gives results
from one 50-node network instance. In this section,
we perform the same drill for 100 network instances.
Here, a time frame has 6 time slots. For each network
instance, we compute the throughput gain of IA by
(r̂∗min − r̃∗min)/r̃

∗
min, where r̂∗min and r̃∗min are the optimal

objective values of OPT-IA and OPT-base, respectively.
Fig. 9 presents the CDF of the throughput gain of IA.
We see that the CDF curve is not smooth but follows
staircase shape. This is because the optimal objective
values of OPT-IA and OPT-base are discrete. On average
over the 100 random network instances, the throughput
gain of IA is about 48%.

It is worth pointing out that it is unfair to compare our
results with the K/2 DoF result in [3]. This is because the
K/2 result in [3] was achieved based on the assumption

of infinitely large time or frequency diversity while the
IA design in our paper is based on practical (finite)
spatial diversity from multiple antennas (with no symbol
extensions). It was shown by Bresler et al. in [2] that the
total DoFs available in the K-user interference channel,
using only spatial diversity from multiple antennas, is
at most 2, which is in sharp contrast to the K/2 result
in [3].

8 RELATED WORK

The concept of IA was coined in a seminar paper by
Jafar and Shamai for the two-user X channel [12]. Since
then, results for IA have been developed for a variety
of channels and networks in increasingly sophisticated
forms, such as the K-user interference channel [2], [3],
the cellular network [22], [23], the MIMO Y channel [14],
ergodic capacity in fading channel [17], the X network
with arbitrary number of users, and the complex inter-
ference channel. A distributed IA scheme was proposed
by Gomadam et al. in [7]. The feasibility of IA in signal
vector space for K-user MIMO interference channel was
studied by Yetis et al. in [26], and blind IA (no CSI at
transmitter) was studied in [25]. A tutorial on IA from
information theory perspective is [11].

In wireless communications and networking commu-
nities, efforts on IA have been mainly invested in vali-
dations on small toy networks [1], [4], [6], [16]. In [1],
Al-Ali et al. studied IA in vehicular cognitive radio
networks with the objectives of reducing the overhead
of direct database queries and improving the accuracy
of spectrum sensing for mobile vehicles. In [4], El Ayach
et al. did an experimental study of IA in MIMO-OFDM
interference channels and showed that IA achieves the
theoretical throughput gains. In [6], Gollakotta et al.
demonstrated that the combination of IA and IC in-
creases the average throughput by 1.5 times on the
downlink and 2 times on the uplink in a 2 × 2 MIMO
WLAN. In [16], Lin et al. proposed a distributed ran-
dom access protocol (called 802.11n+) based on IA and
demonstrated that the system can double the average
network throughput in a small network with three pairs
of nodes. None of these prior efforts have made advances
to extend IA technique in a network setting as we have
done in this paper.

9 CONCLUSIONS

The goal of this paper is to make a concrete step forward
in advancing IA technique in multi-hop MIMO net-
works. We developed an analytical IA model consisting
of a set of constraints at a transmitter and a receiver. We
also proved the feasibility of the IA model by showing
that each DoF vector satisfying the constraints in the
IA model is feasible at the physical layer. We anticipate
that this IA model or its variants will be adopted by
the networking community to study IA in a multi-hop
network environment.

Based on this IA model, we characterized an IA design
space for cross-layer throughput maximization problems
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in a multi-hop MIMO network. As an application of this
IA design space, we studied a network throughput opti-
mization problem and compared performance objective
with our IA model against that without IA. Simulation
results showed that the use of IA in a multi-hop MIMO
network can significantly reduce DoF consumption for
IC at the receivers, thereby improving network through-
put.
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