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Abstract. A location proximity test service allows mobile users to de-
termine whether they are in close proximity to each other, and has found
numerous applications in mobile social networks. Unfortunately, existing
solutions usually reveal much of users’ private location information dur-
ing proximity test. They are also vulnerable to location cheating where an
attacker reports false locations to gain advantage. Moreover, the initial
trust establishment among unfamiliar users in large scale mobile social
networks has been a challenging task. In this paper, we propose a novel
scheme that enables a user to perform (1) privacy-preserving proximity
test without revealing her actual location to the server or other users not
within the proximity, and (2) secure handshake that establishes secure
communications among stranger users within the proximity who do not
have pre-shared secret. The proposed scheme is based on a novel con-
cept, i.e. location tags, and we put forward a location tag construction
method using environmental signals that provides location unforgeabil-
ity. Bloom filters are used to represent the location tags efficiently and a
fuzzy extractor is exploited to extract shared secrets between matching
location tags. Our solution also allows users to tune their desired location
privacy level and range of proximity. We conduct extensive analysis and
real experiments to demonstrate the feasibility, security, and efficiency
of our scheme.

1 Introduction

The proliferation of smartphones has given rise to location-based service (LBS),
which has drawn considerable research attention in recent years. The key enabler
of LBS is the availability of user locations, which can be easily measured and
reported by a smartphone today. With LBS, users report their locations in real-
time to a location server, which allows users to ubiquitously query places of
interest around them, or test if their friends are within certain physical proximity.
Especially, the latter is called “proximity test” [17] and has found numerous
mobile applications, for example, to locate nearby friends (e.g., in a mobile social
network [8]), or in an emergency situation to find nearby medical personnel (e.g.,
in mobile healthcare [9, 10]), only to name a few. The former is representative
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for proximity test between friends, while the latter is an example of proximity
test between strangers, who may not share any secret a prior.

Similar to many LBS services, there are many security and privacy concerns
associated with proximity test that may prevent its widespread adoption. One of
the major security concerns is that the reported locations could be easily forged
by malicious users in order to exploit the benefits of proximity test service.
There are many incentives for users to not report their locations truthfully. For
example, in [7], a location cheating attack has been discovered in which the
attacker reports false locations to gain revenue by acquiring shopping coupons.
In addition, a curious user may try to profile other users’ locations by setting
hers to any desired place. Thus, it is essential to provide location unforgeability

in proximity match, so as to ensure the social welfare of LBS. On the other
hand, the location privacy is also an important concern for common users. The
primary reason is that the location servers are often operated by third-party
service provider such as a cloud platform, which tends to be not fully trusted by
people since the location data could be leaked to the server or outsider attackers
[23]. Meanwhile, users also do not want to simply let all her friends or even
strangers in the system know about her location and track her down.

To design a privacy-preserving proximity test scheme that is also cheat-proof

involves several challenges. First and foremost, given the mobile and distributed
nature of LBS users, how can we make sure that a user’s reported location
is truthful without involving a trusted authority? Some researchers suggest a
distributed proof approach using presence evidences from peer devices [25].
However, the proof generation involves the use of digital signature which fur-
ther requires a public-key infrastructure (PKI). This would require significant
modifications to the existing security architecture. In addition, the traditional
cryptography-based methods do not guard against stolen/compromised keys or
credentials. Ideally, each device should extract unforgeable location tags relying
on its own. Second, shared keys are usually required for preserving privacy dur-
ing proximity test and secure communications between matched users. However,
the initial trust establishment among users in a large-scale mobile social network
remains a difficult task, simply because managing shared keys with everyone else
is not scalable without a trusted authority. Most existing solutions to date have
relied on a-priori shared secrets between each pair of users [17, 21], which severely
limits their applicability and scalability. Finally, efficiency and usability need to
be achieved simultaneously. To achieve strong privacy guarantee, previous pro-
tocols either rely on computational intensive cryptographic primitives, or do so
at a cost of high communication overhead.

In this paper, we propose a novel proximity test scheme that is secure against
location cheating, and also performs secure handshakes between matched users
to secure their subsequent communication without relying on pre-shared secrets.
We focus on a general one-to-many proximity match setting, that is, user Alice
can find out from a group of users the one(s) that are within certain proximity to
her with the help of a semi-trusted server. In order to defeat location cheating,
we propose a novel form of location representation – spatial-temporal location
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tag that is constructed from wireless signals captured in a device’s surrounding
environment, such as WiFi and cell tower signals. An attacker cannot forge a
location tag if she is not at the corresponding location and time, due to the high
freshness (entropy) and spatial variety of environmental signals. Our proposed
privacy-preserving proximity test protocol is then based on the location tags.
We exploit fuzzy extractor [3], a lightweight crypto primitive, to extract secret
keys automatically between users within certain proximity, while ensuring that
a user’s location is revealed to neither the server nor users not within proximity.
We also make use of bloom filter to efficiently represent users’ location tags.

1.1 Our Contributions

The main contributions of this paper are as follows.
(1)We propose a novel form of user location representation – spatial-temporal

location tag, to defeat location cheating attacks in LBS. We demonstrate our
concept using collected real-world WiFi and cellular signal traces, and employ
entropy analysis to show the feasibility of generating unforgeable location tags
in practice.

(2) We propose a novel private proximity test scheme based on spatial-
temporal location tags, which performs proximity test and establishes secure
handshake between one user and many others at the same time. We uniquely
combine bloom filter and fuzzy extractor to meet the stringent privacy and ef-
ficiency requirements. Our scheme also supports user-defined privacy level, and
avoids the complexity of key management among users as it does not rely on
prior-shared secrets.

(3) We carry out both thorough security analysis and performance evalua-
tion. We first quantitatively characterize the security level of our protocol using
entropy analysis. Then, using a proof-of-concept implementation, we study the
system functionality and overhead, and show its superiority over existing pro-
tocols in efficiency. To the best of our knowledge, this is the first work that
systematically studies unforgeable location tag and its use in location-based ser-
vices.

1.2 Related Work

For privacy in location-based services, most previous works have been focusing on
privacy in location queries, i.e., a model in which users report their “encrypted”
location data to a central database server to perform range or k-nearest-neighbor
(kNN)) queries [15, 22, 6, 2]. Note that in this model the database stored in the
server is assumed to be public. In contrast, the recently emerged proximity test

is a different model where location-based matching is done only between users,
while the users’ locations are private information. In this paper we focus on
proximity test.

Proximity Test: Proximity test is a special form of location sharing [23],
where the information being shared is whether or not two users are within a
certain range or in the same geographic region. The main privacy concern in
proximity test is that user’s actual location may be involuntarily revealed to
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either the server or other users. To this end, a privacy-preserving proximity test
solution is proposed in [21], using a grid-based encryption algorithm. In [14],
Mascetti et. al. proposed proximity detection schemes based on service provider
(SP) filtering, in which privacy protection is achieved by user-chosen location
representation that controls its granularity. However, their protocol leaks coarse-
grained location information to the server. In [17], Narayanan et. al. proposed a
suite of private proximity test protocols. The possibility of constructing location
tags from environmental signals was noted; however, their protocols either re-
quire pre-shared secret key between users, or is not scalable and efficient enough
to handle one-to-many proximity test as studied in our paper. Another proximity
test scheme was proposed in [20], where users can also control their privacy lev-
els via leveled publishing. The protocol is based on keyed hashing which suffers
from dictionary attack. In [11], Lin et. al. proposed a proximity test scheme by
applying shingling technique [1] on GSM cellular message. However, they did not
thoroughly analyze its security. In this paper, we carry out a systematic study
of unforgeable location tags and its use in proximity test, and formally analyze
the security using entropy theory.

Private Matching: Our proposed scheme constructs location tags and takes
the location tags as the inputs to private matching scheme to realize proxim-
ity test. Different location tag construction methods will yield different types
of location tags with different data structure representation, which in turn de-
mand different secure matching algorithms. Secure inner product computation
has been proposed to compute the number of matching keywords between two
binary-valued vector inputs, where each bit in the vector represents the presence
or absence of a keyword [24]. Secure multi-party computation (SMC) techniques
have also been used in private matching. For example, in [5], Freeman et. al. pro-
posed a private set intersection protocol using homomorphic encryption, where
the inputs to be matched are two sets of elements. In this paper, we are matching
two location tags, which are environmental signals represented using bloom filter
and further coded using BCH coding. The method used to realize the private
matching is also very different from previous known private matching meth-
ods. Essentially our matching method is based on polynomial reconstruction.
Compared to previous private matching algorithm, our scheme is more efficient
because it does not involve any public key cryptography operations.

2 System Model and Design Challenges

2.1 System Overview

Our system model consists of two types of entities: a server and a large number of
users. Users are subscribers of the proximity test service provided by the server.
For convenience, we use Alice to refer to the user who initiates the proximity
test, and Bob/Charlie/David et al to refer to the testees upon Alice’s request.
The centralized online server that provides the service is only responsible for
assisting participants relay messages. The selection of the testee group is based
on certain criteria specified in each test request. At the end of the proximity test,
the testee(s) that are within the proximity of Alice will establish a secret key
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with Alice, while the testees faraway will learn nothing about Alice’s location.
The server also remains oblivious to the result of the proximity test.

Our security goal is to prevent location forgery from all users and the privacy
goal is to prevent unnecessary leakage of users’ location information against both
other users and the server.

2.2 Design Challenges and Goals

We noticed that proximity test between strangers is usually one-to-many. Con-
sider the following example. A patient in an emergency situation may only wish
to grant nearby emergency medical technicians (EMT) access to her personal
health data on her phone. Since the patient can not specify which EMT she
wants to test, she can only select a group of EMTs based on certain searching
criteria, e.g. EMTs from organization A. Previous client-server based solution
[17] becomes inefficient in such circumstances because the test has to be done
one-to-one. To cope with this problem, we choose a broadcast system model
since it allows non-interactive proximity testing [17] while using less bandwidth
than client-server model. Some particular challenges and our design goals based
on the broadcast system model are as follows.

Distance-Bounded Key Establishment: The main motivation of our
study is to address the situation when Alice wishes to test the proximity with a
group of users she has not met. Hence, if a proximity test yields a positive result
(i.e., two users are close by), a secure handshake protocol shall follow, allowing
Alice and Bob to establish a secure channel to communicate subsequently. If the
proximity test needs to be carried out between each pair of users, it will be more
communication-efficient if the handshake can be performed in non-interactive
fashion.

Tunable Granularity Level: One main drawback of broadcast model is
users’ loss of granularity control of proximity testing, since Alice can not im-
plement different granularities for different users in the broadcast messages. In
order to achieve fine-grained privacy control, our design should allow users to
negotiate a mutually agreed granularity level before proximity test.

Security: The main security goal for proximity test is to design unforgeable

location tags so that the protocol is robust against location cheating. A location
cheating happens when one party is able to convince the other party with an
untruthful location. In our case, if Bob can trick Alice into believing that he is
within her proximity while he actually is not, he has successfully launched a lo-
cation cheating attack. Unforgeable location is extremely important for location
based services. To the best of our knowledge, we are among the first to address
the location unforgeability in proximity test.

Privacy: From the server perspective, the privacy goal of the protocol is to
conceal users’ location information from the server. Specifically, after the prox-
imity test, the server can not infer users’ locations. From the users’ perspective,
users should have location privacy against each other when they are far away.
When they are nearby, user should learn nothing except the fact that they are
close.
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Efficiency: Existing private proximity test protocols [17, 21] operate on pairs
of users. If Alice wants to test a group of n users, she has to run the protocol n
times with each and every user in the group. This results in a bandwidth com-
plexity of O(n) and a computation complexity of O(n) at Alice side. Our goal is
to design an efficient protocol where Alice and each participant only submit their
location tags once to the server. This leads to a communication complexity of
O(1) at user’s side. This represents significant efficiency improvement comparing
to the existing schemes.

3 Location Tags from Environmental Signals

Introduced in [17], a location tag can be regarded as a token of proof associated
with a point in space and time. It is a collection of signals presented at a certain
location at a certain time. From the functionality point of view, a good location
tag should at least have the reproducibility property: If two measurements at
the same space and time yield tags T1 and T2, then T1 and T2 match with
high probability. On the other hand, from the security point of view, in order
to be cheat-proof, a good location tag must have unpredictability property: An
adversary not at a specific place and time is unable to produce a tag that matches
the tag constructed at that location at that time. Note that this feature basically
requires a location tag carries high entropy.

3.1 Sources of Location Tags

...

...

Fig. 1. Features, observa-
tions of location tag

In our study, we have explored two possible sources
of location tags: (1) using 802.11 frames in WiFi
network. (2) using control messages in 4G LTE net-
work. We consider 802.11 frame headers as a per-
fect location tag source with appropriate length
and sufficient entropy. In our early design, we also
tried using frame bodies as location tag sources.
Though the resulting location tags pass the en-
tropy and unpredictability evaluation, the low re-
producibility quality rendered the location tag un-
usable. The shortcoming of WiFi-based location
tag is its limited range. To provide wider coverage,
we also study the possibility of generating location
tags through cellular network traffic. The control
messages, such as the temporary cell radio-network
temporary identifier (TC-RNTI), are messages sent
between LTE eNodeB (i.e., base station) and users’
terminals for identification and resource allocation.
They are usually locally assigned by the eNodeB
and can be captured by all terminals. For example, the TC-RNTI is a 16-bit
random number assigned to mobile terminal. Therefore, users who observe sim-
ilar set of TC-RNTIs are likely under the same region.

For each location tag source, the amount of traffic necessary to generate a
distinct and secure location tag is significant. Consequently, it consumes storage
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space and computing power of mobile devices to store and process the data. To
cope with this problem, we propose to divide the traffic into different groups
based on the types of frames and store them using a space-efficient data struc-
ture. As shown in figure 1, each type of 802.11 frames or cellular messages forms
a feature of the signal source. A location tag, therefore, can be represented by
a collection of features {f1, f2, ..., fz} of the signal source. Each feature consists
of many elements, or observations, which corresponding to data capture from
one 802.11 frame or cellular message. For storage efficiency, we utilize a bloom
filter to represent the many observations for each feature, which we will discuss
in detail in section 4.

3.2 Entropy and Unpredictability

A good location tag should be time-variant and have sufficiently high entropy
in order to satisfy the unpredictability requirement. The most straight forward
way to measure the entropy of location tags is by measuring the length of the
random values contained in the location tag. However, it is not difficult to see
that not all sources we used are truly random. Hence, the traditional method
tends to overestimate the entropy amount. In order to estimate the entropy more
accurately, we use techniques from statistical language processing [13], namely
n-gram Markov model, to evaluate the entropy contained in location tags.

The idea is that, if a feature of a location tag is a sequence of observations,
the randomness of the feature can be interpreted as the probability that an
adversary successfully predicts the next observation based on previous n obser-
vations. This probability can be modeled using an n-gram Markov model. For a
feature consists of N observations w1, ..., wN , the probability that the adversary
successfully predicts the entire sequence is

P (w1, ..., wN ) =

N∏

i=1

P (wi|wi−n+1, ..., wi−1) (1)

where the conditional probabilities can be computed from the following formula

P (wi|wi−n+1, ..., wi−1) =
C(wi−n+1, ..., wi−1, wi)∑
x∈V C(wi−n+1, ..., wi−1, x)

(2)

where C(w1, ..., wn) represents the frequency of n-gram w1, ..., wn in the initial
sequence. In our experiment, the size of the captured observations for each fea-
ture is between 2000 to 5000 depending on the type of features. Due to the
computation capability of our workstation, we use a trigram model to estimate
the entropy of the sequence. According to the definition of Shannon entropy, the
entropy of the feature is calculated as

H(w1, ..., wN ) = P (w1, ..., wN ) logP (w1, ..., wN ) (3)

We show the entropy of 802.11 frame headers in figure 2. The beacon frames
contain the least amount of entropy since they are transmitted at a regular 1,024
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microseconds (µs) intervals with consecutive sequence numbers. The probing
request frames, on the other hand, contain the most amount of entropy since
the algorithm used to scan for access points is not explicitly defined in 802.11
standard. The interval and format of probing frames are different depending on
the device drivers and user’s access pattern [4]. In figure 3, we show the entropy
of LTE control messages. Among them, the TC-RNTI and UL-Grant messages
contain the highest entropy since the eNodeB issues different TC-RNTI and
UL-Grant for the same terminal during each random access session. Compared
to that, the entropy in random access preamble and C-RNTI is significantly
lower due to limited formats or timing variations. Heuristic results show that
location tags with entropy higher than 64 bits is considered ”unpredictable”
[17]. Therefore, only by including multiple features we can construct location
tags that are unpredictable to adversaries.

Fig. 2. 802.11 frame headers entropy Fig. 3. LTE control messages entropy

4 SHARP: Private Proximity Test and Secure Handshake

Protocol

Our private proximity test and secure handshake protocol, SHARP, is a two-step
protocol designed for one-to-many proximity test between users that share no
prior-secrets. During the first step, upon receiving the request from Alice, the
server identifies a group of users designated by Alice and notifies users to con-
struct their location tags simultaneously. Alice embeds a temporary session key
K in her location tag and sends it to the group. During the second step, users in
the group first try to extract K. Only those within a coarse-grained proximity
of Alice can succeed, who then return a keyed hash of their current locations
using grid map representation to Alice for fine-grained matching. We exploit
bloom filter, a space-efficient randomized data structure, to compactly represent
everyone’s location tag while using fuzzy extractor technique to accomplish se-
cure handshake. The protocol has the following main advantages: (1) it is far
more scalable in that it effectively filters out users who are far away during key
establishment without letting Alice interact with each and every one of them.
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(2) it allows users to control granularity by negotiating the size of cells on the
grid map.

4.1 Bloom Filter and Fuzzy Extractor

A Bloom filter is a space-efficient probabilistic data structure that is used to suc-
cinctly represent a set in order to support membership queries [16]. A bloom filter
is a bit array of lengthm, and k independent hash functions H1(), H2(), ..., Hk() :
{0, 1}∗ → {0, 1}logm are used to insert and query the original data elements in
the array by their hashed locations. In a bloom filter based membership test,
false positives are possible, but false negatives are not. In our case, we represent
each feature of a location tag with a bloom filter by adding all the observations
into the bloom filter.

A fuzzy extractor [3] is a pair of randomized procedures, generate and repro-

duce, that allow one to extract some randomness value from an input and then
successfully reproduce it from any inputs that is similar to the original input. In
our case, the randomness value represents the temporary session key K, whereas
the input represents the location tag. In other words, only a user with a similar
location tag can reproduce K. In [3], Dodis et. al. proposed using error correct-

ing code as a building block of fuzzy extractor. Particularly, we use the BCH
error correcting code in our implementation. It has been shown that BCH code
can be decoded in polynomial time w.r.t. the weight of the received corrupted
codeword using syndrome decoding. The details of syndrome decoding can be
found in [12, 3].

4.2 System Setup

L(0)

L(1)

L(2)

Fig. 4. Grid reference
system

As shown in figure 4, the system adopts a grid ref-

erence to represent locations, where grid indices rep-
resent areas covered by grid cells. Users share a list
of coordinate-axis aligned grid system G = {g0, ..., gl}
of different levels. At each level l, the grid cell size,
i.e., width and height, is fixed and equal to L(l). Let
L(0) > L(1) > ... > L(l). Additionally, the system de-
fines a security parameter κ, a cryptographic hash func-
tion H(·) : {0, 1}∗ → {0, 1}s, and a keyed cryptographic
hash function H′(·, ·) : {0, 1}s × {0, 1}∗ → {0, 1}s (can
be an HMAC instantiated by SHA-256). Note that, H,
H′ and G are known by all users and the server.

4.3 Proximity-based Filtering

The protocol starts by Alice sending her test request to the server, declaring the
user group she wants to test. Upon receiving the request, the server broadcasts
a synchronization signal to Alice and her intended testing group, and all users
construct their location tags by collecting observations from a set of features
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{f1, f2, ..., fz}. For each f , Alice constructs a bloom filter bit array Bf with a
given false positive rate p.

Alice adds each observation w of f into Bf by hashing it to k positions in the
bit array using H1(), H2(), ..., Hk(). Alice then computes t “syndromes”3 using
the following equation, where t is the number of errors that the BCH code can
correct:

Si =
∑

x∈Bf

xi i ∈ {1, 3, ..., 2t− 1} (4)

where x represents the index of those positions in Bf that are set to 1. The
computations are done within a Galois Field. Assume the resulting syndrome
set for each Bf is syn(Bf ) = (S1, S3, ..., S2t−1). Alice generates a location tag T
that can tolerate up to t errors in each feature:

T = {syn(Bf1 ), ..., syn(Bfz )} (5)

Next, in order to embed a secret session key in the location tag, Alice cre-
ates a fuzzy extractor by hashing all the location features by computing B0 =
H(Bf1 ||Bf2 || · · · ||Bfz ). Alice then generates a κ-bit random number (helper
string) y, and computes K = H′(B0, y) as the temporary session key. Alice
can control testing granularity by choosing a subset GAlice ⊂ G. Let |B| =
{|Bf1 |, ..., |Bfz |}, representing the length of all bloom filters. Together, Alice
sends a messagema = {“Alice”, T, |B|, y, GAlice} to the server. The server broad-
casts ma to the testing user group.

(a) Initial Proximity-based Filtering:
Alice embeds a secret key in her loca-
tion tag

(b) Fine-Grained Proximity Test: Al-
ice learns users’ locations by evaluating
the grid indices

Fig. 5. Two steps of SHARP.

4.4 Fine-Grained Proximity Test

Upon receiving ma, Bob tries to extract Alice’s temporary session key using his
observations of the features set. For each feature, Bob creates a bloom filter bit

3 Intuitively, a syndrome is an error checking value of a codeword (here, Bf is consid-
ered as a codeword).
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array B′

f of the same length as Bf and uses syn(Bf ) to correct the difference be-
tween Bf and B′

f . Assume the syndromes of B′

f is syn(B′

f ) = (S′

1, S
′

3, ..., S
′

2t−1),
Let σi = S′

i − Si. The error detecting vector [3] of B′

f is:

syn(B′

f ) = (σ1, σ3, ..., σ2t−1) (6)

The corresponding error correcting vector supp(B′

f ) , which represents the
difference of Bf and B′

f , can only be computed correctly from syn(B′

f ) when
supp(B′

f ) < t [3].

supp(B′

f ) = Bf ∆ B′

f , {x ∈ Bf ∪B′

f |x /∈ Bf ∩B′

f} (7)

When Bob and Alice are nearby, the difference between Bf and B′

f is smaller
than t. Bob succeeds in computing syn(B′

f ) and obtains the original Bf through

Bf = B′

f ∆ supp(B′

f ) (8)

Once Bob reconstructed all the Bf s, he can derive the original B0 and recover
K = H′(B0, y). Bob can control the testing granularity by searching through
GAlice to find a reasonable granularity level and blind his grid index b with K, by
computing B = H′(K, b||“Bob”). If Bob does not agree on any of the granularity
levels, he has two choices: (1) submit nothing indicating he does not allow Alice to
carry out fine-grained proximity test. (2) submit multiple location index numbers
to mask his actual location. Finally, Bob sends the message mb = {“Bob”, B}
back to server.

The server forwards mb to Alice. Alice can then searches through all the grid
cells that she regarded as in her proximity; if she can find one b that is within
one of her nearby cells and satisfies H′(K, b||“Bob”) = B, then Alice learns that
Bob is located in b. After that, Alice knows a list of users within her proximity
range, and she can choose to securely communicate with one (or more) of them
using the session key K.

Note that, an attacker may try to send back multiple malformed responses to
Alice to exhaust her resources. However, dealing with denial-of-service attack is
out of the scope of this paper. We can use existing methods, for example, IPSec
or TLS where the server can authenticate the users.

5 Security and Privacy Analysis

5.1 Entropy Loss and Location Unforgeability

SHARP provides unforgeable (unpredictable) location tags. In section 3 we eval-
uated the entropy contained in location tag sources. However, best practices
mandate that we also consider the entropy loss during data processing. In this
section, we derive the total entropy loss in our design. Consequently, we show
that total amount of entropy loss is limited and the remaining guessing entropy
of location tag remains high.

Assuming the location source contains h0 bits of entropy. In our protocol, the
entropy loss happens in two places: (1) when we pack the location tag sources
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(a) Create Location Tag

Bloom filters

. . .

. . .

. . .

. . .

.

.

.

(b) Embed Ephemeral Key

Fig. 6. Construct location tag using fuzzy extractor and bloom filter

into bloom filters. (2) when we generate the fuzzy extractor from bloom filters.
Note that when packing a set of elements into a bloom filter, the entropy loss
is related to the probability rate of false positive [16]. Consider a bloom filter of
length m is used to represent a set of nb elements. From [16], the probability of
a false positive is

p = (1− (1 −
1

m
)knb )k ≈ (1− e−knb/m)k = (1− v)k (9)

where v = 1−p1/k is probability of a bit being set to 1 in the bloom filter. Hence
the entropy loss during bloom filter construction is

h1 = (1 + v log v + (1− v) log(1− v))h0 (10)

By taking the derivative of the formula, p has a global minimum value (1/2)k =
(0.6185)m/n) when k = (ln 2) · (m/n). However, we shall explicitly note that
in our design, balancing among m, n, k to achieve minimum p is not our main
focus.

The second entropy loss happens during fuzzy extractor construction. In
general, [18] shows that the entropy loss of a fuzzy extractor is upper-bounded
by its entropy loss on the uniform distribution of inputs. In particular, the input
of the fuzzy extractor in our design is the bloom filter bit array of length m.
Assuming we apply BCH code with code length nB to the bit array. Since the
BCH code family is optimal for t ≪ nB by the Hamming bound [12]. the entropy
loss of syndrome fuzzy extractor with a BCH code is

h2 =
t(h0 − h1)

nB
log(nB + 1) (11)

The overall entropy loss of our design is thus

h = h1 + h2 (12)

Particularly, in Table 1, we show the entropy loss using a location tag source of
entropy equal to 64 bits. In our evaluation, the average length of the bloom filter
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is m = 210 = 1024(bits). The total entropy loss is around 7.8 bits. Therefore, the
remaining guessing entropy remains high to secure the protocol against location
cheating attack.

false positive rate error tolerance entropy loss

0.01 10/1024 3.7 bits

0.01 30/1024 7.1 bits

0.1 10/1024 4.3 bits

0.1 30/1024 8.7 bits

Table 1. Entropy Loss

5.2 Location Privacy

When Alice and Bob are far apart, the set difference between their location
tags, A and B, will be greater than t. This means Bob can not correct all the
errors using BCH syndrome, and therefore his view of Alice’s location tag is
indistinguishable from random. Next, when multiple users b1, ..., bn outside of
Alice’s proximity range collude, denoting their location tags by B1, ...Bn, we
have

A ∆ Bi > t 1 ≤ i ≤ n (13)

Assuming Bis are pairwise disjoint. It is easy to see that the symmetric difference
between the joint location tags B = B1

⋃
B2, ...,

⋃
Bn and A is still greater than

t. Hence, Alice has privacy when multiple unmatched users collude. The server
can not learn Alice’s location or secret session key, since it is infeasible to record
the environmental signal of all locations at all times.

We should note that unlike previous work [17] in our protocol, when Alice
and Bob are nearby, Alice still has location privacy against Bob. The reasons is:
Bob only gains knowledge of Alice’s rough whereabouts during the key estab-
lishment step. In the second step, Bob does not receive any message from Alice,
therefore can not know Alice’s exact location even if the matching result is posi-
tive. Bob, too, can protect his location privacy against Alice by hiding his actual
location within multiple grid indices. Compared with protocol using expensive
PTSI operation, we achieve the same privacy level with less computational cost.

6 Experimental Evaluation

6.1 Experiment Setup

To test our design, we carry out a proof-of-concept experiment on the 802.11g
WLAN network on campus. We use Dell inspiron 5100 with a 32-bit, 533MHz
Pentium 4 CPU to log the WLAN traffic at varying distances. Using the logged
data, we evaluate the performance of SHARP from the following aspects: (1)
we measured the success probability of extracting temporary key using location
tags. (2) we evaluated how the success rate is affected by the size of the bloom
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filter, clock synchronization error, and user mobility. (3) we measured the CPU
time required to generate the location tag and to extract the temporary key.
The detailed experiment configuration is as follows.

Fig. 7. Experiment configuration Fig. 8. Traffic Summary

1. We deployed three client laptops at different locations running Wireshark
in the promiscuous mode. All three laptops are loosely synchronized before the
test.

2. We configured one of the laptop to act as Alice. Before each capture,
Alice sends out the synchronization signal to state the starting time of next
capture. The other two laptops were configured as testees who participate in the
proximity test. They receive the synchronization signal and schedule the next
capture. Each capture is carried out for ten seconds. Captures are repeated for
multiple times at the radius of 0meter, 5meter, 10meter, 15meter, 20meter,
25meter, 30meter and 35meter.

3. After each capture, the program running on Alice reads frames from the
capture (.pcap) file and sorts them according to the frame type of the packets.
It generates the location tags based on captured packets and sends the size of
the bloom filters to the other two laptops. Upon receiving these parameters, the
other two laptops generate their location tags.

In figure 8, we show the histogram of various frame types from traffic anal-
ysis. During the test, we saw an average of 8432 packets on channel one. Half
of them are 802.11 beacon packets. The rest of the packets are ACK, Probe
response, Probe request, etc. In table 2, we show that an average of 105 differ-
ent MAC addresses was detected during the test. 95 of them are 802.11 client
stations whereas 10 of them are 802.11 access points. According to [19], our
testing environment can be considered as a typical WLAN networks scenario in
metropolitan areas.

6.2 Location Tag Reproducibility

Figure 9(a) shows users’ success probability of extracting Alice’s temporary ses-
sion key at various distances. Interestingly, there is a clear cut-off distance in
the graph. Within 30 meters, the difference between location tags is fairly small



SHARP: P-P-T & S-H with C-P Location Tags 15

Wireless Stations Access Points

avg max min avg max min
95 121 73 10 13 9

Table 2. Number of 802.11 station and access points detected during the test.

which indicates Bob can successfully reproduce Alice’s location tag. Beyond 30
meters, with quickly increased probability Bob won’t be able to reproduce Alice’s
location tag due to the larger difference between location tags. In other words,
the location tags we tested are either nearly disjoint or nearly identical. Thus,
an efficient test that can accept near-identical sets and reject near-disjoint set is
sufficient for our purpose. In [11], Lin et al. showed similar result using paging
channel messages in GSM cellular networks. Hence, with all these findings, we
argue that BCH error correcting coding approach with small t is superior to
private cardinality threshold set matching approach [5] for our purpose in term
of practicality and usability.

Bloom Filter and Reproducibility In figure 9(b), we show how the
size of the bloom filter affects location tag reproducibility. It appears that when
we increase the false positive rate of the bloom filter, the success probability
at the far side increases. The reason is that increasing the false positive rate
f is equivalent to reducing the length of the bit array. When the length of a
bloom filter is small, the probability that each bit in the bit array being set
to 1 increases. If the probability increases to 100%, the bloom filter contains
no information entropy. The corresponding location tag becomes independent
of location. Hence the difference between location tags is always 0 regardless
of the distance. Clearly, there is a balance between the entropy loss versus the
location tag reproducibility. When bloom filter is large, the entropy loss is small,
yet it requires Bob to have stronger error correcting capability to reproduce the
location tag. When the bloom filter is small, the location tag reproducibility is
high, yet, the location tag itself become less distinct.

Clock Synchronization Error and Reproducibility We tested the pro-
tocol’s performance against clock synchronization error. As shown in figure 9(c),
when users did not start the location feature extraction process simultaneously,
the average difference between location tags increased. Yet, the cut-off distance
stays the same. Hence, our protocol only requires very loose time synchronization
between users.

Mobility and Reproducibility We evaluated how the users’ mobility
affects the performance of the protocol. In the experiment, we let Bob randomly
move slowly around Alice. Compared with the stationary case, Bob’s chance of
successfully extracting Alice’s secret key slightly increases. The reason is when
Bob is moving, he is able to see more access points and wireless stations compare
to a stationary testee. However, the advantage Bob gains by moving is minimal
since each capture window is only 10 seconds.
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6.3 Storage and Communication Efficiency

The use of the bloom filter and BCH encoding during location feature extraction
reduces the communication cost of the protocol. In this section, we show the
location tag size and location generation time of our protocol.

Location Tag Size We compared the size of the location tag of our design
and the location tag generated through other polynomial based reconstruction
[17]. We defined the fuzzy match threshold as follows. Assume a total number
of n packets are captured. For our protocol, in order to generate a total of
(n, t) fuzzy match, the number of t is distributed into each location tag source
according to the total number of observations from that source. For example, if
a location feature contains m packets, we create a (m, tm

n ) fuzzy match. In [17],
the location tag is generated by create a n− t degree polynomial.

As shown in figure 9(e), if the size of each packet’s hash value is k bit, the
size of the location tag generated in [17] is approximately 2(n− t)k, whereas the

location tag generated with SHARP is approximately t ln(n ln(p)
m ). SHARP clearly

shows superior performance to polynomial based location tag construction. This
is due to the usage of bloom filter and the fact that the location tag in SHARP

only consists of the syndromes of the BCH code.
Location Tag Generation Time In Figure 9(f), we show the location

tag generation time of our design. The main part of the generation time is con-
tributed by: (1) Adding element to the bloom filter, and (2) calculating BCH
syndromes. In (1), in order to add one element to the bloom filter, k hash func-
tions are used. In our implementation, we use a 160 bit SHA-1 hash function
which costs around 0.5ms to finish on the laptop. The total time of part (1)
will grow linearly with the number of observations. In (2) the time consumption
of BCH encoding is polynomial in logn, where n is the size of the bloom filter
[3]. Therefore, the time consumption of (1) dominates the overall location tag
generation time.

7 Conclusion

In this paper, we address the privacy and security issues of proximity test in
location based services. We aim at letting users to find others who are within a
certain geographical region or range with a help of a oblivious server, without pre-
established secret keys while hiding user location information from the server. In
order to prevent location cheating, we propose to use multiple types of real-time
and location-dependent environmental signals to construct location tag. The
location tag is the key to proximity matching, where fuzzy extractor is exploited
to extract a secret key from two matching users. In addition, the location tag
is organized in a bloom filter, such that users can choose their own matching
sensitivity at ease via tuning the parameter of the bloom filter. Furthermore,
we also improve the accuracy and fine-grainedness of the proximity test using
geographical grid and keyed hashing. We allow user to control granularity by
negotiating between different grid cell sizes. Through both theoretical analysis
and experimental evaluation, we show that our location tag has enough freshness
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(a) Probability of suc-
cessful key establishment
versus distance

(b) Probability of suc-
cessful key establishment
versus false positive rate
of bloom filters

(c) Probability of suc-
cessful key establishment
versus clock synchroniza-
tion error

(d) Probability of suc-
cessful key establishment
versus mobility

(e) Location tag size ver-
sus sniffing time

(f) Location tag genera-
tion time versus number
of observations

and entropy to defend against location cheating. Our scheme is mostly non-
interactive, does not require strict synchronization, and enjoys high scalability
and efficiency.
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