
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ?, NO. ?, MONTH YEAR 1

A Mobile Platform for Wireless Charging and Data
Collection in Sensor Networks

Liguang Xie, Member, IEEE, Yi Shi, Senior Member, IEEE, Y. Thomas Hou, Fellow, IEEE,
Wenjing Lou, Fellow, IEEE, Hanif D. Sherali, Huaibei Zhou, and Scott F. Midkiff, Senior Member, IEEE

Abstract—Wireless energy transfer (WET) is a new technology
that can be used to charge the batteries of sensor nodes without
wires. Although wireless, WET does require a charging station
to be brought to within reasonable range of a sensor node so
that a good energy transfer efficiency can be achieved. On the
other hand, it has been well recognized that data collection with a
mobile base station has significant advantages over a static one.
Given that a mobile platform is required for WET, a natural
approach is to employ the same mobile platform to carry the
base station for data collection. In this paper, we study the
interesting problem of co-locating a wireless charger (for WET)
and a mobile base station on the same mobile platform – the
wireless charging vehicle (WCV). The WCV travels along a pre-
planned path inside the sensor network. Our goal is to minimize
energy consumption of the entire system while ensuring that
(i) each sensor node is charged in time so that it will never
run out of energy, and (ii) all data collected from the sensor
nodes are relayed to the mobile base station. We develop a
mathematical model for this problem (OPT-t), which is time-
dependent. Instead of solving OPT-t directly, we show that it
is sufficient to study a special subproblem (OPT-s) which only
involves space-dependent variables. Subsequently, we develop a
provably near-optimal solution to OPT-s. Our results offer a
solution on how to use a single mobile platform to address both
WET and data collection in sensor networks.

Index Terms—Wireless sensor network, wireless energy trans-
fer, mobile base station, optimization.

I. INTRODUCTION

Recently, wireless energy transfer (WET) based on magnetic
resonant coupling was shown to be a promising technology
to fundamentally address energy and lifetime problems in a
wireless sensor network (WSN) [9], [10], [21], [22]. Compared
to other WET technologies such as electromagnetic radiation
[5], [18], magnetic resonant coupling enjoys significant advan-
tages. These advantages include: significantly higher energy
transfer efficiency, immunity to the neighboring environment,
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and no line-of-sight (LOS) requirement [24]. Although wire-
less, WET does require the charging station to be brought to
within reasonable range of a sensor node so that a good energy
transfer efficiency can be achieved. We call this mobile vehicle
platform (used to carry wireless charging station) as a wireless
charging vehicle (WCV).

On the other hand, it has been well recognized that data
collection with a mobile base station has significant advantages
over a static one [13], [17], [26]. Given that a mobile base
station also needs to be carried on a mobile platform, a natural
question to ask becomes: Is it possible to dual use the WCV
to carry the base station, in addition to its wireless charging
station?1 This is the main motivation of this investigation.

In this paper, we study the problem of employing a single
mobile platform (the WCV) for both WET and data collection
in a WSN. We assume the WCV follows a cyclic schedule —
its starts from its home service station, travels along a pre-
planned path and makes stops along the path for WET to
sensor nodes, and returns to its home service station after it
completes a tour. While traveling along its pre-planned path,
where the WCV should stop and how long it will charge its
neighboring sensor nodes are unknown and are part of our
problem to solve. Further, it is necessary that data collection
from all sensor nodes be relayed (via multi-hop) to the mobile
base station (on WCV) in real time. That is, the multi-hop
flow routing topology in the network is time-varying and
is again part of our problem to solve. Apparently this is
a very complex system, involving variables across multiple
dimensions — time, space, and energy. The basic constraints
in our problem are: (i) none of the sensor nodes run out of
energy (so that data collection is never interrupted), and (ii) all
data collected among the nodes is relayed to the base station
in real time. The objective of our problem is to minimize
energy consumption of the entire system. This objective will
be elaborated in Section V.

Apparently, putting both WET and data collection on
the same mobile platform is an interesting and challenging
problem. The problem involves several subproblems, each of
which is challenging on its own. First, the WCV’s movement
behavior needs to be optimized. Although the traveling path is
given, where the WCV should make stops along this path and
how long it should stay at each stop (for charging) remain to
be solved. Second, the flow routing among sensor nodes need

1Although two separate mobile platforms may be employed (one for WCV
and the other for mobile base station, the costs (both materials and energy)
and algorithmic/protocol complexity associated with these two vehicles will
be much higher.
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to be optimized, which depends on the location of WCV (and
time). Finally, the WET efficiencies depends on the stopping
locations and their distances to neighboring sensor nodes. Note
that these subproblems are tightly coupled and requires a joint
formulation and solution.

This paper addresses the above challenges by making the
following contributions:

• We develop a mathematical model for the WCV as
a mobile platform for both WET and data collection.
This model consists of energy criteria to ensure that the
energy level at each sensor node never falls below some
minimum threshold, and a general optimization problem
formulation (OPT-t) involving WCV’s stopping behavior,
energy charging, and data flow routing. For the objective
function, we show that the goal of minimizing energy
consumption associated with the WCV is equivalent to
maximizing the fraction of the WCV’s vacation time at
the service station.

• Since OPT-t has a time-dependent formulation, it is
difficult to develop a solution directly. Instead, we show
that a special case of the OPT-t, where data flow routing
and energy consumption of sensor nodes only depend
on WCV’s location, can offer the same optimal objective
value as that for OPT-t. This finding allows us to shift our
focus from OPT-t to this simpler formulation, denoted as
OPT-s, which only involves location (space)-dependent
variables.

• For problem OPT-s, we develop a (1−ϵ)-optimal solution
with any desired level of accuracy ϵ. Our solution pro-
cedure involves discretizing traveling path into a finite
number of segments and representing each segment as
a logical point. By exploiting the worst case and the
best case representation for each logical point, we can
find a lower bound and an upper bound for OPT-s by
solving two linear programs (LPs). Depending on the
required accuracy, we show how to discretize segments
into smaller segments. We prove that the gap between
the lower and upper bounds closes as the number of
iterations increases and we obtain a provably (1 − ϵ)-
optimal solution.

It is worth pointing out that data collection process and
charging process have inter-dependence on each other since
both depend on the WCV’s stopping behavior (i.e., where to
stop on the pre-planned path and how long to stay at each
stop). Therefore, the joint problem formulation in this paper
cannot be decoupled into two separate problems.

The remainder of this paper is organized as follows. In
Section II, we review related work on WET and mobile base
station, respectively. In Section III, we give models for the
WCV’s stopping behavior, flow routing, energy charging and
consumption in a WSN. Section IV presents WET criteria
to ensure that each sensor node never runs out of energy.
A general problem formulation (i.e., OPT-t) is given in Sec-
tion V. In Section VI, we show that it is sufficient to study
a special case of OPT-t that only involves space-dependent
formulation, which we denote as OPT-s. Section VII presents
a provably (1 − ϵ)-optimal solution to OPT-s. Section VIII

presents numerical results and Section IX concludes this paper.

II. RELATED WORK

WET in Sensor Networks. Existing WET technologies
can be classified into two categories: electromagnetic (EM)
radiation and magnetic resonant coupling [24].

EM radiation transfers power via a radiative (far-field)
electromagnetic field over a specified radio frequency (RF)
band [14], [15]. In this frequency band, an RF transmitter emits
radio waves, which are received by an RF receiver that tunes
to this frequency band. In this manner, radio power can be
harvested by the RF receiver. This technology has been applied
to prolong lifetime of a WSN [3], [4], [5], [18]. However, there
are a number of salient issues associated with this technology,
such as extremely low energy transfer efficiency, requiring
complicated tracking mechanisms if relative positions change,
being sensitive to obstruction between the energy source and
the receiver, and potential safety concerns.

Magnetic resonant coupling transfers energy from source
to receiver by having a receiving coil operate at the same
resonant frequency as the source coil via a nonradiative (near-
field) magnetic resonant induction [9], [10]. Compared to
electromagnetic radiation, magnetic resonant coupling has the
advantages of offering much higher energy transfer efficiency
even under omni-direction, not requiring LOS, and being
insensitive to the neighboring environment. Experiments in [9]
showed that magnetic resonant coupling can transfer 60 W
with 40% efficiency over a distance of 2 meters, which is
simply not possible with EM radiation.

In [21], Xie et al. showed that by having a WCV visit and
charge each sensor node in the network with this technology,
a WSN can remain operational forever (i.e., infinite lifetime).
In [22], Xie et al. addressed the scalability problem associated
with WET in a dense sensor network by exploiting new ad-
vances in multi-node charging technology [10]. An assumption
in [21], [22] was that the location of the base station is fixed.
Mobile Base Station. The benefits of using a mobile
base station for data collection in a sensor network have
been well recognized in [1], [12], [13], [17], [27]. Due to the
complexity associated with a mobile base station, early efforts
either simplified the problem by limiting the locations of the
base station to a finite set of points and assuming negligible
traveling time between points [1], [13], or developed heuristic
solutions under some simplified assumptions (e.g., a heuristic
move of the base station toward sensor nodes with high
traffic [27] or decoupling the base station’s movement and data
routing [12]). A major result on mobile base station research
was given by Shi and Hou in [17], in which they showed a
provably (1− ϵ)-optimal solution. But it was assumed in [17]
that the time for the base station to travel from one location
to another is negligible. Further, there was no consideration of
WET in [17].

It is important to contrast the mobile base station consid-
ered in this paper to data MULEs [16], message ferry [29],
and SenCar [30]. The latter are employed in the so-called
delay-tolerant network (DTN) [8], in which frequent network
disconnectivity or partitioning is expected. Applications under
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Fig. 1. An example WSN with a mobile WCV.

DTN are expected to tolerate large delays. In contrast, the
mobile base station that we consider in this paper collects
real-time data flow from sensor nodes with negligible delays.
The mobile base station in this paper is also different from
the mobile relay mechanism in [20], which employs a mobile
node to help relay data from sensor nodes to a static base
station.

III. BASIC NETWORK AND ENERGY MODELS

In this section, we present some basic models for
WCV’s stopping behavior, flow routing, and energy consump-
tion/reception in the WSN. Table I lists our notation.

A. WCV and Travel Path

Suppose we have a sensor network N deployed over a two-
dimensional area, with the location of each node i ∈ N being
(xi, yi). A WCV is employed to travel inside the network
and charge the sensor nodes’ batteries. This WCV starts from
its home service station, travels along a pre-planned path in
the area and returns to the service station at the end of its
trip. While on its path, the WCV makes a number of stops
and charges sensor nodes near those stops (see Fig. 1). In
this paper, we assume that the WCV has sufficient amount
of energy to support its travel, data collection, and energy
transfer to sensor nodes before it returns to the service station.
The detailed energy charging model will be described in
Section III-D.

Denote P as the pre-planned traveling path and τ as the
total amount of time for the WCV to complete a cycle. Then
τ includes three components:

• The total travel time along the pre-planned path P is
DP/V , where DP is the distance along path P and V is
the traveling speed of the WCV.

• The vacation time τvac, which refers the amount of time
that the WCV remains at the service station (point pvac)
before it starts to travel.

• The total stopping (charging) time along the pre-planned
path P . Denote ω(p) as the aggregate amount of time the

TABLE I
NOTATION.

B The base station
Cij Energy consumption for transmitting one unit of

data rate from node i to node j
CiB(p) Energy consumption for transmitting one unit of

(or CiB(p(t))) data rate from node i to the WCV at location p
(or time t)

Dij Distance from node i to node j
Dδ Maximum charging distance of the WCV
DP Distance over path P
Emax Full battery capacity at a sensor node
Emin Minimum energy required in the battery to keep it

operational
ei(t) Energy level of sensor node i’s battery at time t
fij(t) Flow rate from sensor node i to sensor node j (or

(or fiB(t)) base station WCV) at time t
fij(p) Flow rate from sensor node i to sensor node j (or

(or fiB(p)) base station WCV) when the WCV is at location p
Gi Data rate generated at sensor node i

M (or Mi) Number of segments (or number of segments at i-th
iteration)

N The set of sensor nodes in the network
P Traveling path of the WCV
pm A logical point representing segment Sm,

m = 1, 2, . . . ,M
pvac Location of the WCV’s home service station
ri(t) Energy consumption rate at sensor node i at time t
ri(p) Energy consumption rate at sensor node i when the

WCV is at location p
Sm The m-th segment on path P , which has been

discretized into M segments, m = 1, . . . ,M
s(t) Distance traversed by the WCV on path P up to

time t
Umax Maximum output power from the WCV for a single

sensor node
UiB(p) Power reception rate at node i when the WCV is at p
V Traveling speed of the WCV
α Path loss index
β1 A constant in energy consumed for data transmission
β2 A coefficient in energy consumed for data

transmission
ρ Power consumption coefficient for receiving one unit

of data
δ A threshold of power reception rate
ϵ Targeted performance gap (0 < ϵ≪ 1)
ηvac The ratio of the vacation time to the entire cycle time
τ Time spent to complete a cycle
TP Time spent to travel along path P with speed V
τvac WCV’s vacation time spent at its home service

station during a cycle
ω(p) Aggregate time span for the WCV to stay at location

p ∈ P
µ(·) The efficiency function of wireless energy transfer

from the WCV to a sensor node
ψOPT-t A feasible solution (or an optimal solution) to

(or ψ∗
OPT-t

) Problem OPT-t
ψOPT-s A feasible solution (or an optimal solution) to

(or ψ∗
OPT-s

) Problem OPT-s
ηOPT-s , η∗

OPT-s
The objective value achieved by ψOPT-s and ψ∗

OPT-s

WCV stops at point p ∈ P . Since the WCV may stops
at p more than once during τ , we have:

ω(p) =

∫
{t∈[0,τ ]:(x,y)(t)=p}

1 dt , (1)

where (x, y)(t) is the location of the WCV at time t.
Then the total stopping time is

∑ω(p)>0
p∈P, p ̸=pvac

ω(p).
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Then we have:

τ =
DP

V
+ τvac +

ω(p)>0∑
p∈P, p ̸=pvac

ω(p) . (2)

B. Mobile Base Station and Data Flow Routing

As discussed, the WCV is also serving as a mobile platform
for the base station. Therefore, the base station is mobile while
it acts as the sink node for all data collected from the sensor
nodes in the network. In this paper, we assume a constant data
generation rate from each sensor node, which is then relayed in
real-time as data flow to the mobile base station. To conserve
energy, multi-hop data routing is employed among the sensor
nodes.

Suppose that each sensor node i produces its local data with
a constant rate Gi (in b/s), i ∈ N . Denote fij(t) and fiB(t)
as the flow rate from node i to node j and the base station at
time t, respectively. Then we have the following flow balance
at each sensor node i:
k ̸=i∑
k∈N

fki(t) +Gi =

j ̸=i∑
j∈N

fij(t) + fiB(t) (i ∈ N , t ≥ 0) . (3)

Note that we are modeling data collection as real-time fluid
flow routing rather than delay-tolerant data delivery as in
MULEs [16] or message ferry [29] type of communications.

C. Sensor Energy Consumption

At a sensor node, we assume communication activity is
the dominant source of the node’s energy consumption.2 We
assume that a sensor node has power control capability so
that each node can adjust its transmission power level based
on its distance to the receive node. At the MAC layer, we
assume a deterministic optimal scheduling where physical-
layer interference can be effectively avoided. Denote Cij as
the energy consumption rate for transmitting one unit of data
flow from sensor node i to sensor node j. Then Cij can be
modeled as [2], [7]:

Cij = β1 + β2D
α
ij ,

where Dij is the distance between nodes i and j, β1 and β2
are constant terms, and α is the path loss index. Suppose that
all sensor nodes are stationary, the inter-sensor distance Dij

and Cij are all constants.
Denote CiB(p(t)) as the energy consumption rate for trans-

mitting one unit of data flow from sensor node i to base station
B when B is at location p(t). Then for i ∈ N , we have

CiB(p(t)) = β1 + β2

[√
(x(t)− xi)2 + (y(t)− yi)2

]α
, (4)

where (x(t), y(t)) and (xi, yi) are the coordinates of p(t)
and node i, respectively. Note that unlike Cij’s, which are
all constants, CiB(p(t)) varies with the base station’s position
over time.

2Energy consumption for hardware device and information processing can
be assumed to be constants and can be therefore easily integrated into total
energy consumption if needed.

Denote ρ as the rate of energy consumption for receiving
one unit of data flow rate. Then the total energy consumption
rate for both transmission and reception at node i, denoted as
ri(t), is

ri(t) = ρ
∑k ̸=i

k∈N fki(t) +
∑j ̸=i

j∈N Cij · fij(t)
+CiB(p(t)) · fiB(t) (i ∈ N , t ≥ 0). (5)

D. WET Charging Model

In this paper, we adopt a multi-node, distance-dependent
charging model.3 For simplicity, we assume that the WCV
performs its charging function only when it stops at some
point along the pre-planned path P . Denote UiB(p) as the
power reception rate at node i when the WCV is located at
p ∈ P . Denote the efficiency of WET as µ(DiB(p)), which
is a decreasing function of distance DiB(p). Then the WET
model is given as follows:

UiB(p) =

{
µ(DiB(p)) · Umax if DiB(p) ≤ Dδ

0 if DiB(p) > Dδ ,
(6)

where Umax is the maximum output power for a single sensor
node and Dδ is the charging range of the WCV, beyond which
WET is not effective. In other words, Dδ is defined in such a
way that the power reception rate at a sensor node is at least
over a threshold value δ. We assume that every sensor node
is within a distance of Dδ to the path P .

IV. ENERGY CYCLES FOR SENSOR NODES

We assume the WCV follows a fixed travel schedule along
pre-planned P with a period of τ . Then we have p(t) = p(t+
kτ) for 0 ≤ t ≤ τ , k = 1, 2, · · · . Further, we assume the
flow routing in the network also follows a periodic cycle, i.e.,
fij(t) = fij(t+ kτ) and fiB(t) = fiB(t+ kτ) for 0 ≤ t ≤ τ ,
k = 1, 2, · · · . Then by (5), the energy consumption rate at each
node also follows a periodic cycle, i.e., ri(t) = ri(t+ kτ) for
0 ≤ t ≤ τ , i ∈ N . Since the WCV can charge its neighboring
sensor nodes only when it stops, its charging behavior also
follows a periodic cycle. In summary, the travel schedule of the
WCV, WCV’s charging behavior along its path, flow routing
among the nodes, and energy consumption at each node are
all periodic and repeats themselves for every period τ .

Suppose that each sensor node has a battery capacity of
Emax and is fully charged initially. Denote Emin as the minimum
energy at a sensor node battery for it to be operational. We
are interested in developing a particular travel cycle so that
the energy at each sensor node at time t, denoted as ei(t),
i ∈ N , never falls below Emin. In the following, we offer two
constraints for the first cycle. We show that once these two
constraints hold for the first cycle, then ei(t) ≥ Emin for t ≥ τ ,
i.e., the energy level at each sensor node never falls below Emin

for all future cycles.

3This model does not incorporate the effect of obstacles between a
source coil and a receiver coil. It is a good abstraction for an obstacle-free
environment.
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The first constraint ensures that ei(t), which starts from Emax

at t = 0, will not fall below Emin at t = τ ,

Emax −
{∫

{t∈[0,τ ]:ω(p(t))=0}ri(t) dt+∫
{t∈[0,τ ]:ω(p(t))>0, DiB(p(t))>Dδ}ri(t) dt

}
≥ Emin (i ∈ N ),(7)

where
∫
{t∈[0,τ ]:ω(p(t))=0}ri(t) dt is the amount of energy

consumed at node i when the WCV is moving along path P
while

∫
{t∈[0,τ ]:ω(p(t))>0, DiB(p(t))>Dδ}ri(t) dt is the amount

of energy consumed at node i when the WCV is making stops
to charge other nodes (not including i in its charging range).

The second constraint ensures that ei(t), which starts from
Emax at t = 0, will be charged back to Emax before the end of
the first cycle τ . We have∫ τ

0
ri(t) dt ≤

∑ω(p)>0, DiB(p)≤Dδ

p∈P UiB(p) · ω(p) (i ∈ N ), (8)

where the left hand side is the amount of energy consumed
at node i during τ and the right hand side is the maximum
possible amount of energy received by node i in a cycle. Note
that the actual amount of energy received by node i in the
first cycle may be less than the right hand side due to battery
overflow.4

Note that (7) and (8) characterize the energy consumption
and reception in the first cycle. The following lemma says
that if both (7) and (8) hold for the first cycle, then we have
e(t) ≥ Emin for all subsequent cycles.

Lemma 1 (Energy Criteria): If both (7) and (8) are satisfied
for the first cycle, then ei(t) ≥ Emin for all t ≥ 0, i ∈ N .

A proof sketch: To prove Lemma 1, we consider the
first cycle and the subsequent cycles, separately. The first
cycle (i.e., t ∈ [0, τ ]) is considered separately since it starts
with Emax, and the subsequent cycles (i.e., t ∈ [kτ, (k + 1)τ ],
k ∈ N+) may start with a energy level lower than Emax. For
the subsequent cycles, we can show that ei(t) ≥ Emin for the
second cycle and a node’s energy behavior repeats from cycle
to cycle. To show that ei(t) ≥ Emin, t ∈ [τ, 2τ ], i ∈ N , we need
to show that node i can be charged back to Emax in the first and
the second cycles. Based on this result, we can further exploit
the cyclic behavior of traveling, energy charging and energy
consumption among the cycles. Since ei(t) ≥ Emin for the first
cycle, we can have ei(t) ≥ Emin for the second cycle. Then,
we can show that ei(2τ) = ei(τ), which yields ei(t) ≥ Emin

for all subsequent cycles due to periodicity. A formal proof of
Lemma 1 is given in [23].

V. PROBLEM FORMULATION

In Section IV, we discussed constraints to form energy cy-
cles at a sensor node. Under Lemma 1, we showed that under
certain conditions, ei(t) ≥ Emin for all t ≥ 0, i ∈ N . Based
on these constraints, we would like to optimize some global
performance objective. In particular, we want to minimize the
rate of energy consumption for the entire system, including:5

4Once a battery is charged to Emax, its energy level cannot be further
increased.

5Note that except its initial energy, the energy consumed by each sensor
node in the WSN comes from the WCV.

• The energy consumption rate for carrying the WCV to
move along the pre-planned path P during τ :

Rv ·
[
DP
V +

∑ω(p)>0
p∈P, p ̸=pvac

ω(p)
]

τ
, (9)

where DP/V +
∑ω(p)>0

p∈P, p ̸=pvac
ω(p) is the time that the

WCV is at work during τ (i.e., outside its service station),
and Rv denotes the average energy consumption rate by
the mobile vehicle in this period. Note that the energy
consumed by the mobile vehicle when it makes stops
along P should be included as the vehicle’s engine is
still on.

• The rate of energy transferred from the WCV to the
sensor nodes in the network is at most

∑
i∈N ri

δ/Umax
, where∑

i∈N ri is the sum of energy consumption rates at the
sensor nodes, and δ/Umax is the minimum efficiency for
effective wireless charging.6

To date, the most efficient electric passenger vehicle has an
average energy consumption of 17.4 kW-h per 100 km [19],
which indicates that Rv is on the order of 1 kW.7 In contrast,
the rate of energy transferred to sensor nodes is roughly on
the order of 0.1 to 1 W (see Section VIII). Since the energy
consumed by the mobile vehicle is the dominant source of
energy consumption, we only need to focus on this dominant
part, i.e., minimizing (9). Since Rv is a constant factor, we
can drop it from the objective function.

It is interesting that, by (2), minimizing
DP/V+

∑ω(p)>0
p∈P, p ̸=pvac

ω(p)

τ is equivalent to maximizing τvac
τ ,

which is the percentage of time that the WCV is on vacation
at its service station. Therefore, we have the following
optimization problem:

OPT-t:
maximize τvac

τ
s.t. Time constraints: (1), (2);

Flow routing constraints: (3);
Energy consumption model: (4), (5);
Energy criteria constraints: (7), (8).

τ, τvac, ω(p) ≥ 0, (x, y)(t) ∈ P (p ∈ P, 0 ≤ t ≤ τ)
fij(t), fiB(t), CiB(t), ri(t) ≥ 0, (i, j ∈ N , i ̸= j, 0 ≤ t ≤ τ).

In this formulation, P , DP , V , Gi, β1, β2, α, xi, yi, ρ,
Cij , Emax, and Emin are given a priori, and UiB(p) can be
computed by (6). The time intervals τ , τvac, and ω(p), the
location (x, y)(t), the flow rates fij(t) and fiB(t), the unit
cost rate CiB(t), and the power consumption rate ri(t) are
optimization variables. Among these variables, there are three
sets of variables that constitute the solution space: (i) the
WCV’s location (i.e., (x, y)(t)); (ii) the WCV’s sojourn time
at each location p ∈ P and p ̸= pvac (i.e., ω(p)) or vacation
time at the service station (i.e., τvac); (iii) the corresponding

6From experimental results in [10], the ratio of δ to Umax can be set as
20% (see Section VIII).

7Note that this number was taken from data for an electric passenger vehicle
with a maximum speed of 100+ km/h. For wireless charging in a sensor
network, a much smaller autonomous vehicle traveling at a much lower speed
and consuming much less energy would be enough, although we do not have
exact data available in the literature.
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Problem OPT−t

One optimal solution of Problem OPT−t

Problem OPT−s

Fig. 2. Solution space for problems OPT-t and OPT-s.

flow routing (i.e., fij(t) and fiB(t)). Problem OPT-t exhibits
a continuous-time nonlinear program [28], and is NP-hard in
general.

VI. DOWNSIZING SOLUTION SPACE: A LOCATION-BASED
FORMULATION

Roadmap. OPT-t is a general formulation of our problem.
It is difficult to solve as its variables are time-dependent (e.g.,
(x, y)(t), fij(t)). In this general formulation, OPT-t allows that
data flow routing and energy consumption of sensor nodes vary
over time, even when the WCV visits the same location.

In this section, we consider a special case of problem OPT-t,
where data flow routing and energy consumption of sensor
nodes only depend on the WCV’s location. That is, regardless
when the WCV visits a location p ∈ P , the data flow routing
and energy consumption of sensor nodes are the same as long
as the WCV is at this location. We call this special case
of problem OPT-t as location (space)-dependent problem and
denote it as OPT-s. The solution space for OPT-s and OPT-t is
shown in Fig. 2, where solution space for OPT-s is completely
contained in OPT-t.

We now show that the optimal objective value for OPT-s
is the same as that for OPT-t, despite that its solution space
is smaller (Theorem 1). This result is significant as it allows
us to study OPT-s, which is a subproblem of OPT-t and has
a simpler formulation that just involves location-dependent
variables.
Location-dependent Formulation. We now formulate OPT-
s. First, we need some new notation. Denote fij(p) and fiB(p)
as flow rates from sensor node i to sensor node j and to the
base station when the WCV is at location p ∈ P , respectively.
Then (3) is rewritten as
k ̸=i∑
k∈N

fki(p) +Gi =

j ̸=i∑
j∈N

fij(p) + fiB(p) (i ∈ N , p ∈ P) . (10)

Similarly, denote CiB(p) and ri(p) as the energy consumption
for transmitting one unit of data rate from node i to the base
station and the energy consumption rate at node i when the
WCV is at location p ∈ P , respectively. Then (5) can be
rewritten as:

ri(p) = ρ
∑k ̸=i

k∈N fki(p) +
∑j ̸=i

j∈N Cij · fij(p)
+CiB(p) · fiB(p) (i ∈ N , p ∈ P) . (11)

Now we rewrite (7) and (8) into location-based constraints.
We start with (8). In (8),

∫ τ

0
ri(t) dt can be split into two parts:

• Energy consumed when the WCV makes stops (including
vacation at the service station), which is, ri(pvac) · τvac +∑ω(p)>0

p∈P, p ̸=pvac
ri(p) · ω(p);

• Energy consumed when WCV travels along P , i.e.,∫ ω(p(t))=0

t∈[0,τ ]

ri(t) dt =

∫ ω(p(s))=0

s∈[0,DP ]

ri(p(s))
dt

ds
ds , (12)

where s ∈ [0, DP ] is the distance traversed by the WCV
along P (starting from its service station), and p(s) is
the WCV’s location corresponding to s. Denote W =
lim∆→0

∆t
∆s . Then W = 1

V . Thus, (12) can be rewritten
as:∫ ω(p(t))=0

t∈[0,τ ]

ri(t) dt =

∫ ω(p(s))=0

s∈[0,DP ]

W · ri(p(s)) ds .

Based on the above discussion, (8) can be rewritten as :

ri(pvac) · τvac +
∑ω(p)>0

p∈P, p ̸=pvac
ri(p) · ω(p)

+
∫ ω(p(s))=0

s∈[0,DP ]
W · ri(p(s)) ds

≤
∑ω(p)>0, DiB(p)≤Dδ

p∈P UiB(p) · ω(p) , (i ∈ N ) , (13)

which is a location-dependent formulation. Similarly, (7) can
be rewritten as follows:

ri(pvac) · τvac +
∑ω(p)>0, DiB(p)>Dδ

p∈P, p ̸=pvac
ri(p) · ω(p)

+
∫ ω(p(s))=0

s∈[0,DP ]
W · ri(p(s)) ds ≤ Emax − Emin (i ∈ N ) .(14)

We now have a formulation for OPT-s, which only involves
location-dependent variables.

OPT-s:
maximize τvac

τ
s.t. Time constraints: (2);

Flow routing constraints: (10);
Energy consumption model: (11);
Energy criteria constraints: (13), (14).
τ, τvac, ω(p) ≥ 0 (p ∈ P)

fij(p), fiB(p), ri(p) ≥ 0 (i, j ∈ N , i ̸= j, p ∈ P).

Proof of Equivalence. We now show that the optimal
objective value of OPT-s is the same as that for OPT-s. For
Problem OPT-t, denote ψOPT-t and ψ∗

OPT-t
as a feasible solution

and an optimal solution, respectively. Similarly, for Problem
OPT-s, denote ψOPT-s and ψ∗

OPT-s
as a feasible solution and an

optimal solution, respectively.
Theorem 1: The optimal objectives by ψ∗

OPT-s
and ψ∗

OPT-t
are

identical.
The proof of this theorem is based on two results. First,

we show the optimal objective of ψ∗
OPT-t

is no less than
that in solution ψ∗

OPT-s
. This is straightforward as OPT-s is

a subproblem of OPT-t. Second, we show that the converse
is also true. Instead of considering an optimal solution, we
will show that for any objective value achieved by a feasible
solution ψOPT-t , we can always find a feasible solution ψOPT-s

that has the same objective value (Lemma 2). If this is true, in
the special case when the feasible solution ψOPT-t is the optimal
solution ψ∗

OPT-t
, the objective by ψ∗

OPT-t
can also be achieved by

some feasible solution ψOPT-s .
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Fig. 3. A flow-chart of our algorithm.

Lemma 2: Given a feasible ψOPT-t , we can construct a feasible
ψOPT-s with the same objective value.

A formal proof of Lemma 2 is given in the appendix. Based
on Theorem 1, we conclude that as far as our objective is
concerned, it is sufficient to study OPT-s, which has a simpler
formulation than OPT-t.

VII. A NEAR-OPTIMAL SOLUTION TO PROBLEM OPT-S

Although OPT-s is simpler than OPT-t, path P still has
infinite number of points. In this section, by discretizing path
P into a finite number of segments and representing each
segment as a logical point, we develop a provably (1 − ϵ)
near-optimal solution.

A. Basic Idea

Fig. 3 shows the flow chart of our proposed algorithm. In
Step 1, we discretize path P into M1 segments of equal length,
i.e., DP/M1. For each segment, we represent it as a logical
point. Once the WCV is within a segment, we say that it is
visiting the corresponding logical point, regardless the specific
location within this segment. Note that the time that the WCV
spends at a logical point includes both its traveling time on this
segment as well as stopping time at any point in this segment
for charging.

Since each sensor node’s energy consumption and charging
behavior depend on the specific location of the WCV within a
segment, it is not obvious how we should characterize its en-
ergy behavior for the corresponding logical point. Fortunately,
we find that for the purpose of developing a (1 − ϵ)-optimal
algorithm, it is sufficient to use the worst case behavior. That
is, to characterize a sensor node’s energy consumption and
charging behavior when the WCV is at a logical point, it
is sufficient to consider maximum energy consumption and
minimum energy reception.

Once we have a worst case representation for each logical
point, in Step 3, we can find a lower bound for OPT-s by
solving a LP. Also in Step 3, by developing a best case
representation for each logical point (following the same token
for the worst case representation), we can find an upper bound
for OPT-s by solving another LP.

In Step 4, we check the gap between objective values from
the lower and upper bounds. If the gap is within ϵ of the upper
bound, we have a (1 − ϵ)-optimal solution (corresponding to
the lower bound solution, which is feasible); otherwise, we
increase the number of segments (Step 5) linearly and return
to Step 2.

As the iteration continues, we expect the gap between lower
and upper bounds get closer and closer and we shall have a
(1 − ϵ) solution (when the lower bound is within (1 − ϵ) of
upper bound). From the solution corresponding to the final
lower bound, we can construct a feasible solution to Problem
OPT-s (Step 6).

In the remainder of this section, we give details of each
step of our algorithm, prove its (1− ϵ) optimality and discuss
algorithm’s complexity.

B. Path Discretization (Step 1) and Logical Point Represen-
tation (Step 2)

In this section, we elaborate how to discretize the traveling
path into a finite number of segments, and represent each
segment as a logical point.
Path Discretization (Step 1). In the first iteration, path
P is equally divided into M1 segments, each of which is
indexed in increasing order following the WCV’s traveling
direction. Denote Sm and D(Sm), m = 1, 2, . . . ,M1, as
the m-th segment and its length, with D(Sm) = DP/M1,
m = 1, 2, . . . ,M1.
Logical Point Representation (Step 2). For segment
Sm, m = 1, 2, . . . ,M1, we represent it as a logical point
pm. The traveling time spent by the WCV on segment Sm

(excluding stopping time) is D(Sm)/V . Denote ω(pm) as
the total stopping time that the WCV is in segment Sm, i.e.,
ω(pm) =

∑ω(p)>0
p∈Sm

ω(p). Denote τ(pm) as the total time that
the WCV spends at pm, which includes traveling time and
stopping time. Then,

τ(pm) =
D(Sm)

V
+

ω(p)>0∑
p∈Sm

ω(p) .

Note that energy consumption rate CiB(p) and energy
reception rate UiB(p) may vary at different point in the same
segment. To develop a (1 − ϵ)-optimal solution, we use the
worst case values of energy consumption rate and energy
reception rate within the segment to characterize a logical
point. That is, for i ∈ N , define UiB(pm) and CiB(pm) as

UiB(pm) , min
p∈Sm

{UiB(p)} , (15)

CiB(pm) , max
p∈Sm

{CiB(p)} . (16)

Since there are |N | sensor nodes in the network, a logical
point pm is represented by 2|N |-tuple vector [U1B(pm),
. . . , U|N |B(pm), C1B(pm), . . . , C|N |B(pm)].



8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ?, NO. ?, MONTH YEAR

C. Find Lower and Upper Bounds (Step 3)

Once we have a worst case representation for each logical
point, we can obtain a formulation for a lower bound to OPT-s,
which we denote as OPT-lb. Through a systematic change-of-
variable technique, OPT-lb can be reformulated into an LP and
can be solved in polynomial time (see [23] for more details).

Following the same token, we can find an upper bound to
OPT-s by developing a best case representation for each logical
point. This is done by defining

ŪiB(pm) , max
p∈pm

{UiB(p)} , C̄iB(pm) , min
p∈Sm

{CiB(p)} .

Based on this best-case representation, we obtain a formulation
for an upper bound to OPT-s, denoted as OPT-ub. Similar to
OPT-lb, OPT-ub can be reformulated into an LP and can be
solved in polynomial time.

D. Termination Condition (Step 4) and Further Discretization
(Step 5)

We can check the gap between the lower and upper bounds.
If the gap is within desired accuracy (denoted by ϵ), the
algorithm terminates and returns a (1 − ϵ)-optimal solution;
otherwise, we further discretize existing segments into smaller
ones and perform another iteration and so forth.

For discretization, we denote Mi, i = 1, 2, · · · , as the
number of segments in the i-th iteration. By intuition, among
all variables, ω(pm)’s directly determine the WCV’s stopping
behavior at pm and thus the final objective value. Thus, we sort
segments pm, m = 1, 2, . . . ,Mi, in the decreasing value of
ω(pm) (a tie is broken randomly). From the ordered segments,
we pick the first |N | segments and equally subdivide each of
them into two segments.8 As a result, at most |N | segments
are added at each iteration, i.e., a linear increase in the number
of segments.

Denote ψ(Mi)
OPT-lb

and ψ(Mi)
OPT-ub

as the optimal solutions to OPT-lb
and OPT-ub at the end of the i-th iteration, respectively.
Denote η(Mi)

vac and η̄(Mi)
vac as the objective values in ψ(Mi)

OPT-lb
and

ψ(Mi)
OPT-ub

, respectively. Then we have the following lemma:

Lemma 3: For i ≥ 1, η(Mi+1)
vac > η(Mi)

vac , and η̄(Mi+1)
vac <

η̄(Mi)
vac .

Lemma 3 says that as the number of segments increases
with the number of iterations, the lower bound to OPT-s
strictly increases while the upper bound strictly decreases.
Lemma 3 can be proved by construction, and we give a
proof sketch as follows. By a finer path segmentation, we can
always construct an improved solution (in terms of objective
function value) for the lower bound to OPT-s. The basic
idea is that dividing a segment into smaller pieces can offer
improved worst case bound (on energy consumption and/or
energy charging), which leads to less charging time (than that
in the coarser segmentation) and increased objective function
value. Similarly, we can show that for the upper bound to
OPT-s, the solution gets worse with a finer path segmentation.
Therefore, as the number of segments increases with the

8As there are |N | sensor nodes, the number of stops by the WCV (for
charging) should be on the same order of |N |. If Mi < |N |, then we just
divide all Mi segments.

number of iterations, we have a strictly increasing lower bound
to OPT-s and a strictly decreasing upper bound. A complete
proof is given in [23].

E. Recover a Feasible Solution to OPT-s (Step 6)

Once the lower bound is within (1 − ϵ) of the upper
bound, the algorithm terminates. With the current lower bound
solution to OPT-lb (denoted as ψOPT-lb ), we can construct a
feasible solution to OPT-s (denoted as ψOPT-s ). Solution ψOPT-s

consists of several components, including (i) cycle time τ ;
(ii) for p ∈ P , p ̸= pvac, stopping time ω(p), flow routing
fij(p) and fiB(p), and energy consumption rate ri(p); and
(iii) vacation time at the service station τvac, and corresponding
flow routing fij(pvac) and fiB(pvac), and energy consumption
rate ri(pvac). From ψOPT-lb , ψOPT-s can be constructed as follows:

• It has the same cycle time τ as that in ψOPT-lb .
• For p ∈ P but p ̸= pvac, the WCV may traverse segment

Sm with or without any stop. To see if the WCV makes
any stop in Sm, we calculate τ(pm)−D(Sm)/V . If the
difference is greater than 0, then the WCV stops within
Sm and in ψOPT-s we may choose any point p ∈ Sm. For
this p, the WCV will stay for τ(pm)−D(Sm)/V amount
of time. Otherwise (i.e., τ(pm) − D(Sm)/V = 0), the
WCV does not stop within Sm. Regardless of stopping
or not, the flow routing solution at a point p ∈ Sm is:
fij(p) = fij(pm) and fiB(p) = fiB(pm). Corresponding
to p ∈ Sm, ri(p) is defined by (11).

• For p = pvac, we have that τvac, fij(pvac), fiB(pvac), and
ri(pvac) are the same as those in ψOPT-lb .

Denote ηOPT-lb and ηOPT-s as the objective values achieved by
ψOPT-lb and ψOPT-s , respectively. Since τ and τvac are unchanged
in the foregoing solution construction, we have

ηOPT-s = ηOPT-lb . (17)

Lemma 4: ψOPT-s is feasible to Problem OPT-s.

A proof of Lemma 4 is based on the fact that OPT-lb is a worst
case representation of OPT-s. By (15), we have UiB(pm) ≤
UiB(p), and by (16), we have CiB(pm) ≥ CiB(p), p ∈ Sm.
In other words, a logical point in OPT-lb is subject to stricter
requirements (in term of energy charging and consumption)
than any physical point within the corresponding segment in
OPT-s. Thus, if a solution meets such stricter requirements
enforced by a logical point, it must meet the looser require-
ments by its physical points, which yields a feasible solution
to Problem OPT-s. A complete proof of Lemma 4 is given in
[23].

F. Proof of (1− ϵ) Optimality and Algorithm Complexity

Let η∗
OPT-s

be the (unknown) optimal objective value to OPT-
s. The following theorem says that the constructed solution
ψOPT-s is (1− ϵ)-optimal.

Theorem 2: For any 0 < ϵ≪ 1, ηOPT-s ≥ (1− ϵ)η∗
OPT-s

.

Proof: Upon termination, we have ηOPT-lb ≥ (1− ϵ)ηOPT-ub ,
where ηOPT-lb and ηOPT-ub are the objective values achieved by the
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Fig. 4. Drillfield driveway in Virginia Tech campus. The solid line with arrows
represent the WCV’s traveling path. A star represents the WCV’s home service
station. A flag represents a stopping point in the case study (Section VIII-B).

lower bound solution to OPT-lb and the upper bound solution
to OPT-ub, respectively. Therefore, we have

ηOPT-s = ηOPT-lb ≥ (1− ϵ)ηOPT-ub ≥ (1− ϵ)η∗
OPT-s

,

where the first equality holds by (17), and the last inequality
holds since ηOPT-ub is an upper bound for OPT-s. This completes
the proof.

Regarding algorithmic complexity, each iteration in the
algorithm solves two LPs (in Step 3), which can be done in
polynomial time. Since at most |N | new segments are added
at the end of each iteration, the number of segments as well as
the problem size increases linearly. Although we do not have
a worst case bound for the maximum number of iterations, it
turns out that the convergence to optimality is extremely fast
(typically only a few iterations) in practice (see Section VIII).

VIII. NUMERICAL RESULTS

In this section, we use numerical results to demonstrate how
our algorithm solves the OPT-s problem.

A. Network and Parameter Settings

We use Virginia Tech’s Drillfield (see Fig. 4) for sensor
network deployment. Sensor nodes are deployed within a
distance of the charging range along the side of the Drillfield
driveway, which is roughly an ellipse. The home service
station (marked as a star in Fig. 4) is located at (540,160) (in
m) along the driveway. For the Drillfield path P , DP = 1228
m. We assume the WCV travels at a speed of V = 5 m/s
along the Drillfield driveway.

The number of sensor nodes in the network will be specified
later for different results. The data rate Gi, i ∈ N for each
node is randomly generated within [1, 10] Kb/s. Suppose a
sensor node uses a rechargeable NiMH battery (connected
to an energy receiving coil). Assume Emax = 10.8 KJ [11],
and Emin = 0.05 · Emax = 540 J. The power consumption
coefficients are β1 = 50 nJ/b, β2 = 0.0013 pJ/(b ·m4),

TABLE II
LOCATION AND DATA RATE Gi FOR EACH NODE IN A 25-NODE NETWORK.

Node Location Gi Node Location Gi

Index (m) (Kb/s) Index (m) (Kb/s)
1 (626.0, 236.1) 1 14 (247.6, 181.6) 7
2 (623.3, 235.6) 7 15 (245.9, 180.4) 4
3 (624.0, 237.2) 1 16 (247.7, 181.0) 10
4 (625.6, 237.1) 1 17 (220.5, 118.0) 5
5 (460.8, 357.8) 1 18 (220.5, 121.1) 2
6 (462.6, 361.9) 4 19 (219.5, 119.8) 7
7 (459.8, 359.0) 2 20 (220.7, 118.3) 6
8 (461.1, 359.0) 3 21 (328.8, 12.2) 2
9 (435.7, 337.8) 2 22 (335.2, 13.2) 9
10 (433.3, 337.7) 4 23 (334.2, 13.0) 4
11 (435.2, 338.5) 5 24 (333.2, 13.9) 8
12 (434.8, 337.4) 5 25 (331.5, 13.7) 8
13 (245.1, 180.3) 1

TABLE III
INDEX OF STOPPING POINT ALONG THE PATH, LOCATION AND TIME SPENT

AT EACH STOPPING POINT FOR THE 25-NODE NETWORK.

Visit Location ω(p) Visit Location ω(p)
Order (m) (s) Order (m) (s)

1 (625.7, 235.3) 23 6 (221.0, 119.4) 219
2 (461.1, 357.4) 358 7 (329.3, 11.9) 2
3 (464.5, 360.2) 9 8 (332.4, 12.1) 9
4 (435.4, 336.2) 98 9 (333.9, 12.4) 2318
5 (247.3, 179.3) 42

and ρ = 50 nJ/b [6], [21]. Assume the path loss index
is α = 4. For the charging efficiency function µ(DiB),
through curve fitting to [10, Fig. 3], we obtain µ(DiB) =
−0.0958D2

iB − 0.0377DiB + 1.0. Letting Umax = 5 W and
δ = 1 W, we have Dδ = 2.7 m for a maximum distance of
effective charging. For ϵ, we set it to 0.05.

B. Case Study

25-node Network. We first present results for a 25-node
sensor network. The location of each node and its data rate are
given in Table II. Applying our (1− ϵ)-optimal algorithm, we
find that the algorithm finds a solution after the third iteration.
In this solution, we have τ = 17.29 h, τvac = 16.29 h, and the
objective value is 94.21%.9 Since the total traveling time along
path P is 1228/5 = 245.6 s ≈ 0.07 h, we have that the total
stopping time for charging is 17.29− 16.29− 0.07 = 0.93 h.

Upon termination, there are a total of 316 segments (corre-
sponding to 316 logical points). However, the WCV only made
9 stops among these segments, and merely traversed all the
other segments without stopping. For illustration purpose, we
use a physical point (x, y) within the corresponding segment
to represent the segment where the WCV made a stop. These
stopping points are marked with flags in Fig. 4, and the
location and the amount of time at each stop are given in
Table III. Note that the number of stops for the WCV is much
fewer than the number of sensor nodes due to multi-node
charging. For example, the WCV charges nodes 1, 2, 3, and 4
at the same time when it stops at the first point (625.7, 235.3).
Also, it is possible that a node may be charged more than once

9The objective value achieved by the upper bound solution is 95.91%.
This means that our solution achieves an objective value that is at least
0.9421/0.9591 = 99.0% of the optimum.
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TABLE IV
LOCATION AND DATA RATE Gi FOR EACH NODE IN A 50-NODE NETWORK.

Node Location Gi Node Location Gi

Index (m) (Kb/s) Index (m) (Kb/s)
1 (608.8, 384.8) 9 26 (229.4, 69.6) 5
2 (225.1, 145.9) 10 27 (260.9, 31.7) 10
3 (229.8, 158.0) 5 28 (546.9, 402.6) 4
4 (306.2, 232.5) 3 29 (649.1, 322.7) 2
5 (519.4, 397.8) 9 30 (650.8, 305.6) 1
6 (333.5, 14.3) 1 31 (582.4, 398.5) 2
7 (234.5, 60.6) 2 32 (566.6, 402.1) 7
8 (634.3, 358.6) 8 33 (650.0, 303.3) 7
9 (230.9, 67.3) 8 34 (523.7, 151.6) 9
10 (515.8, 397.5) 1 35 (279.4, 21.2) 5
11 (575.6, 400.2) 8 36 (587.9, 396.3) 5
12 (222.4, 90.0) 6 37 (456.8, 354.8) 4
13 (219.5, 113.4) 10 38 (315.8, 13.4) 10
14 (494.6, 385.8) 2 39 (482.3, 116.8) 3
15 (296.8, 15.5) 4 40 (232.7, 63.7) 4
16 (639.0, 257.0) 9 41 (434.3, 76.0) 1
17 (649.6, 288.1) 10 42 (311.8, 13.7) 2
18 (352.5, 19.3) 2 43 (646.4, 331.7) 2
19 (322.2, 11.9) 2 44 (629.4, 365.5) 9
20 (620.1, 230.2) 1 45 (614.0, 381.0) 8
21 (380.7, 34.0) 5 46 (305.9, 231.2) 2
22 (599.5, 391.3) 4 47 (531.0, 400.6) 2
23 (307.9, 12.8) 4 48 (229.5, 70.1) 7
24 (277.4, 22.0) 4 49 (235.2, 59.2) 8
25 (332.6, 12.8) 2 50 (528.7, 401.3) 5

TABLE V
INDEX OF STOPPING POINT ALONG THE PATH, LOCATION AND TIME SPENT

AT EACH STOPPING POINT FOR THE 50-NODE NETWORK.

Visit Location ω(p) Visit Location ω(p)
Order (m) (s) Order (m) (s)

1 (651.7, 303.1) 178 23 (615.0, 380.1) 78
2 (628.9, 366.4) 236 24 (223.1, 90.2) 27
3 (590.2, 394.9) 96 25 (353.3, 17.0) 22
4 (576.7, 399.5) 56 26 (547.6, 402.5) 38
5 (566.4, 401.6) 260 27 (308.3, 12.3) 19
6 (515.0, 395.6) 7 28 (647.3, 332.0) 10
7 (229.9, 69.8) 254 29 (649.6, 322.9) 9
8 (232.1, 65.1) 24 30 (619.3, 229.0) 2675
9 (295.8, 14.5) 18 31 (332.8, 12.3) 2041
10 (310.5, 12.1) 23 32 (482.1, 115.2) 1591
11 (316.5, 11.5) 59 33 (634.6, 358.8) 529
12 (433.9, 75.3) 1067 34 (226.7, 145.5) 175
13 (608.6, 384.8) 48 35 (584.5, 397.1) 28
14 (277.9, 21.1) 406 36 (230.4, 68.6) 50
15 (524.7, 150.4) 177 37 (234.7, 60.7) 49
16 (307.8, 230.5) 130 38 (220.8, 114.4) 106
17 (381.8, 32.4) 107 39 (650.6, 287.4) 871
18 (260.8, 31.5) 76 40 (458.2, 355.0) 27
19 (519.6, 397.2) 45 41 (600.2, 390.0) 20
20 (640.3, 256.3) 51 42 (495.7, 385.4) 47
21 (231.8, 157.1) 40 43 (322.3, 11.6) 33
22 (531.0, 400.3) 55

in a cycle. For example, node 25 is charged when the WCV
stops at both the eighth point (332.4, 12.1) and the ninth point
(333.9, 12.4).

For illustration, we show flow routing (and rates) at node
12 and node 22 when the WCV stays at the second segment:

(i) At node 12, self-generated rate R12 = 5.0; incoming
flow rates: f13,12(p2) = 3.0, f14,12(p2) = 7.0,
f15,12(p2) = 9.0, and f16,12(p2) = 23.0; outgoing
flow rates: f12,8(p2) = 47, all in kb/s.

(ii) At node 22, self-generated rate R22 = 9.0; incoming
flow rates: f21,22(p2) = 2.0 and f25,22(p2) = 8.0;

TABLE VI
THE NUMBER OF ITERATIONS FOR 20 RANDOMLY GENERATED 25-NODE

NETWORKS AND 20 RANDOMLY GENERATED 50-NODE NETWORKS.

Network Number of iterations Network Number of iterations
instance 25-node 50-node instance 25-node 50-node

1 4 5 11 4 5
2 1 4 12 7 4
3 3 3 13 4 6
4 3 7 14 4 4
5 2 6 15 3 4
6 3 5 16 3 6
7 5 4 17 5 5
8 3 4 18 4 3
9 4 5 19 5 3

10 3 3 20 2 4

outgoing flow rate: f22,B(p2) = 19.0, all in kb/s.
Due to space limitation, we cannot list data flows among all
sensor nodes and the mobile base station. Additional results
can be found in [23].
50-node Network. We next present results for a 50-node
sensor network. The location of each node and its data rate
are given in Table IV. Our (1 − ϵ)-optimal algorithm finds a
solution after the third iteration. In this solution, we have τ =
90.16 h, τvac = 86.81 h, and the objective value is 96.28%.10

Since the total traveling time along path P is approximately
0.07 h, we have that the total stopping time for charging is
90.16− 86.81− 0.07 = 3.28 h.

Upon termination, there are a total of 300 segments (cor-
responding to 300 logical points). Among these segments,
the WCV made 43 stops among these segments, and merely
traversed all the other segments without stopping. The location
of a physical point (x, y) within the corresponding segment
and the amount of time at each stop are given in Table V.
Data flow routing is not included here due to space limitation.

C. Convergence Speed

To see the convergence speed of our algorithm, we study
20 randomly generated 25-node networks and 20 randomly
generated 50-node networks, respectively. Table VI shows the
number of iterations for each instance. For 25-node networks,
the average number of iterations and standard deviation are
3.60 and 1.31, respectively. For 50-node networks, they are
4.50 and 1.15, respectively.

IX. CONCLUSIONS

This paper explored the interesting and challenging problem
of using a single mobile platform (WCV) to carry both wire-
less charger (for WET) and base station (for data collection) in
a sensor network. The goal was to minimize energy consump-
tion of the entire system under the constraints that (i) none of
the sensor nodes runs out of energy, and (ii) all data collected
by the sensor nodes are relayed to the base station in real
time. We developed a mathematical model for this problem
and found that it is a highly complex problem involving time-
dependent variables. Instead of studying the original problem

10The objective value achieved by the upper bound solution is 97.10%,
which shows that our solution achieves an objective value that is at least
0.9628/0.9710 = 99.2% of the optimum.
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formulation (OPT-t), we showed that it is sufficient to study
a special subproblem (OPT-s) that only involves location-
dependent variables. Subsequently, we developed a provably
near-optimal solution to OPT-s.

A noticeable limitation of this work is that the traveling
path P for the WCV is pre-planned. Finding an optimal path
P will add another degree of freedom in problem space and
make the problem even more difficult. Nevertheless, this is
an important problem to consider and we will investigate this
problem in our future research.

APPENDIX

Proof of Lemma 2: Our proof is based on construc-
tion. Given a pre-planned path P and ψOPT-t = (τ, τvac, ω(p),
(x, y)(t), fij(t), fiB(t), CiB(t), ri(t)), we let the WCV follow
the same path P and construct a solution ψOPT-s = (τ̂ , τ̂vac, ω̂(p),
f̂ij(p), f̂iB(p), r̂i(p)) by letting τ̂ = τ , τ̂vac = τvac, ω̂(p) =
ω(p). For the rest of the solution, we consider two cases:

• If ω(p) > 0, i.e., the WCV makes a stop at point p, we
set

f̂ij(p) =

∫
{t∈[0,τ ]:(x,y)(t)=p}fij(t) dt

ω̂(p)
(18)

f̂iB(p) =

∫
{t∈[0,τ ]:(x,y)(t)=p}fiB(t) dt

ω̂(p)
. (19)

• If ω(p) = 0, i.e., the WCV merely traverses p (even
multiple times) without stopping, we set

f̂ij(p) =

∑
s∈Z(p) fij(t(s))

|Z(p)|
(20)

f̂iB(p) =

∑
s∈Z(p) fiB(t(s))

|Z(p)|
, (21)

where Z(p) denotes the set of distances s ∈ [0, DP ] that
correspond to the same location p, and t(s) denoted time
instance at distance s.

For either ω(p) > 0 or ω(p) = 0, we set r̂i(p) by (11).
Now, all we need to do is to verify that ψOPT-s is a feasible

solution to Problem OPT-s and to show that the objective value
of ψOPT-s is the same as that of ψOPT-t . To show the feasibility
of ψOPT-s , we need to verify that ψOPT-s satisfies constraints (2),
(10), (11), (13), and (14). Since (2) is unchanged, and τ̂ = τ ,
τ̂vac = τvac, ω̂(p) = ω(p), we have that ψOPT-s satisfies (2). To
verify (10) for those p ∈ P with ω(p) > 0, we have

k ̸=i∑
k∈N

f̂ki(p) +Gi

=

k ̸=i∑
k∈N

∫
{t∈[0,τ]:(x,y)(t)=p}

fki(t) dt

ω̂(p)

+

∫
{t∈[0,τ]:(x,y)(t)=p}

Gi dt

ω̂(p)

=

∫
{t∈[0,τ]:(x,y)(t)=p}

[∑k ̸=i

k∈N fki(t) +Gi

]
dt

ω̂(p)

=

∫
{t∈[0,τ]:(x,y)(t)=p}

[∑j ̸=i

j∈N fij(t) + fiB(t)
]
dt

ω̂(p)

=

j ̸=i∑
j∈N

∫
{t∈[0,τ]:(x,y)(t)=p}

fij(t) dt

ω̂(p)

+

∫
{t∈[0,τ]:(x,y)(t)=p}

fiB(t) dt

ω̂(p)

=

j ̸=i∑
j∈N

f̂ij(p) + f̂iB(p) ,

where the first equality holds by (18), the third equality holds
since ψOPT-t satisfies (3), and the last equality holds by (18) and
(19).

Similarly, to verify (10) for those p ∈ P with ω(p) = 0, we
have

k ̸=i∑
k∈N

f̂ki(p) +Gi

=

k ̸=i∑
k∈N

∑
s∈Z(p)

fki(t(s))

|Z(p)|
+

∑
s∈Z(p)

Gi

|Z(p)|

=

∑
s∈Z(p)

[∑k ̸=i

k∈N fki(t(s)) +Gi

]
|Z(p)|

=

∑
s∈Z(p)

[∑j ̸=i

j∈N fij(t(s)) + fiB(t(s))
]

|Z(p)|

=

j ̸=i∑
j∈N

∑
s∈Z(p)

fij(t(s))

|Z(p)|
+

∑
s∈Z(p)

fiB(t(s))

|Z(p)|

=

j ̸=i∑
j∈N

f̂ij(p) + f̂iB(p) ,

where the first equality holds by (20), the third equality holds
since ψOPT-t satisfies (3), and the last equality holds by (20) and
(21).

Since r̂i(p) is set by (11), ψOPT-s must satisfy constraint (11).
To verify that ψOPT-s satisfies constraints (13) and (14), we first
show that, for p ∈ P with ω(p) > 0, we have

r̂i(p) = ρ

k ̸=i∑
k∈N

f̂ki(p) +

j ̸=i∑
j∈N

Cij · f̂ij(p) + CiB(p) · f̂iB(p)

= ρ

k ̸=i∑
k∈N

∫
{t∈[0,τ]:(x,y)(t)=p}

fki(t) dt

ω̂(p)

+

j ̸=i∑
j∈N

Cij ·
∫
{t∈[0,τ]:(x,y)(t)=p}

fij(t) dt

ω̂(p)

+CiB(p) ·
∫
{t∈[0,τ]:(x,y)(t)=p}

fiB(t) dt

ω̂(p)

=

∫
{t∈[0,τ]:(x,y)(t)=p}

[ρ ·
∑k ̸=i

k∈N fki(t)

ω̂(p)

+
∑j ̸=i

j∈N Cij · fij(t) + CiB(p) · fiB(t)] dt
ω̂(p)

=

∫
{t∈[0,τ]:(x,y)(t)=p}

ri(t) dt

ω̂(p)
, (22)

where the first equality holds since r̂i(p) is set by (11), the
second equality holds by (18) and (19), and the last equality
holds since ψOPT-t satisfies (5). Similarly, for p ∈ P with ω(p) =
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0, we have

r̂i(p) =

∑
s∈Z(p) ri(t(s))

|Z(p)|
. (23)

By (22) and (23), we can verify (13) as follows:

r̂i(pvac) · τ̂vac +

ω̂(p)>0∑
p∈P, p ̸=pvac

r̂i(p) · ω̂(p)

+

∫ ω̂(p(s))=0

s∈[0,DP ]

W · r̂i(p(s)) ds

=

∫
{t∈[0,τ]:(x,y)(t)=pvac}

ri(t) dt

τ̂vac

· τ̂vac

+

ω̂(p)>0∑
p∈P, p ̸=pvac

∫
{t∈[0,τ]:(x,y)(t)=p}

ri(t) dt

ω̂(p)
· ω̂(p)

+

∫ τ̂B(p(s))=0

s∈[0,DP ]

W ·
∑

s∈Z(p)
ri(t(s))

|Z(p)|
ds

=

∫
{t∈[0,τ]:(x,y)(t)=pvac}

ri(t) dt

+

ω(p)>0∑
p∈P, p ̸=pvac

∫
{t∈[0,τ]:(x,y)(t)=p}

ri(t) dt

+

∫ ω(p)=0

p∈P

∑
s∈Z(p)

W ·
∑

s∈Z(p)
ri(t(s))

|Z(p)|
ds

=

∫
{t∈[0,τ]:(x,y)(t)=pvac}

ri(t) dt

+

ω(p)>0∑
p∈P, p ̸=pvac

∫
{t∈[0,τ]:(x,y)(t)=p}

ri(t) dt

+

∫ ω(p)=0

p∈P

∫
{t∈[0,τ]:(x,y)(t)=p}

ri(t) dt

=

∫ τ

0

ri(t) dt ≤
ω(p)>0∑
p∈P

UiB(p) · ω(p)

=

ω̂(p)>0∑
p∈P

UiB(p) · ω̂(p) ,

where the first equality holds by (22) and (23), the second
equality holds due to ω(p) = ω̂(p), the third equality holds
due to the following equation:∑

s∈Z(p)

W ·
∑

s∈Z(p)
ri(t(s))

|Z(p)|
ds

= |Z(p)| · dt
ds

·
∑

s∈Z(p)
ri(t(s))

|Z(p)|
ds

=
∑

s∈Z(p)

ri(t(s)) dt

=

∫
{t∈[0,τ]:(x,y)(t)=p}

ri(t) dt ,

the fourth equality holds since every possible location along
P is covered, the fifth inequality holds since ψOPT-t satisfies (8),
and the last equality holds due to ω̂(p) = ω(p). The proof for
(14) is very similar to the above proof for (13) and thus is
omitted to conserve space.

We have thus shown that ψOPT-s is a feasible solution to
problem OPT-s. We also have

τ̂vac

τ̂
=
τvac

τ
,

where the equality holds simply due to τ̂ = τ and τ̂vac = τvac.
That is, the objective value of ψOPT-s is equal to that of ψOPT-t .
This completes our proof.
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