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Abstract—Wireless energy transfer based on magnetic resonant
coupling is a promising technology to replenish energy to a wireless
sensor network (WSN). However, charging sensor nodes one at a
time poses a serious scalability problem. Recent advances in mag-
netic resonant coupling show that multiple nodes can be charged
at the same time. In this paper, we exploit this multi-node wireless
energy transfer technology and investigate whether it is a scalable
technology to address energy issues in a WSN.We consider a wire-
less charging vehicle (WCV) periodically traveling inside a WSN
and charging sensor nodes wirelessly. Based on charging range
of the WCV, we propose a cellular structure that partitions the
two-dimensional plane into adjacent hexagonal cells. We pursue
a formal optimization framework by jointly optimizing traveling
path, flow routing, and charging time. By employing discretization
and a novel Reformulation-Linearization Technique (RLT), we de-
velop a provably near-optimal solution for any desired level of ac-
curacy. Through numerical results, we demonstrate that our solu-
tion can indeed address the charging scalability problem in aWSN.

Index Terms—Optimization, scalability, wireless energy
transfer, wireless sensor network.

I. INTRODUCTION

W IRELESS energy transfer based on magnetic resonant
coupling is widely regarded as a breakthrough tech-

nology in our time [12]. By having magnetic resonant coils
operating at the same resonant frequency, Kurs et al. demon-
strated that energy could be transferred efficiently from a source
coil to a receiver coil via nonradiative electromagnetic field
(without any physical contact, i.e., wirelessly).1 What makes
such wireless energy transfer technology particularly attractive
is that it is efficient even under omnidirection, does not require
line-of-sight (LOS), and is insensitive to the neighboring envi-
ronment. Since its inception, magnetic resonant coupling has
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1It is important to note that magnetic resonant coupling is different from an-
other technology called radiative energy transfer [17], [19]. The latter has much
lower energy transfer efficiency. See Section II for more details.

quickly found commercial applications (see, e.g., [15], [18],
and [26]).
In [25], we first applied this technology to a wireless sensor

network (WSN) and showed that through periodic wireless en-
ergy transfer, a WSN could remain operational forever, i.e., infi-
nite lifetime. Specifically, we showed that by having a wireless
charging vehicle (WCV) visit each sensor node in the network
and charge it periodically, one can ensure that each sensor node
never runs out of energy.
An open problem in [25] is scalability of wireless charging.

That is, as the node density increases in aWSN, how can aWCV
ensure that each node is charged in a timely manner before it
runs out of energy? Thewireless charging technology developed
in [12] was limited to charging one node at a time and is not
scalable as node density increases.
Kurs et al. also recognized this problem and recently de-

veloped an enhanced technology (by properly tuning coupled
resonators) that allows energy to be transferred to multiple re-
ceiving nodes simultaneously [13]. Interestingly, they showed
that the overall efficiency was larger when charging multiple
devices than charging each device individually.
Inspired by this new advance in wireless energy transfer,

in this paper, we explore how such multi-node charging tech-
nology can address the scalability problem in charging a WSN.
Following the setting in [25], we consider a WCV periodically
traveling inside the network and charging sensor nodes. Upon
completing each trip, the WCV returns to its home service
station, takes a “vacation,” and starts out for its next trip. In
contrast to [25], the WCV is now capable of charging multiple
nodes at the same time, as long as these nodes are within
its charging range. Under this setting, we ask the following
fundamental questions: 1) How will a multi-node charging
technology affect the WCV’s travel path, charging time, and
flow routing inside the network? 2) How can such multi-node
charging technology address the scalability problem in a dense
WSN?
To best address these two questions, we propose to take a

formal optimization approach. Given the limitation of a WCV’s
charging range, we propose a cellular structure that partitions a
two-dimensional plane into hexagonal cells (similar to cellular
structure for cellular telecommunications). To charge all sensor
nodes in a cell, the WCV only needs to visit the center of the
cell. Based on a general energy charging model, we formulate a
joint optimization problem for traveling path, flow routing, and
charging time, with the objective of maximizing the ratio of the
WCV’s vacation time (time spent at its home service station)
over the cycle time. We show that our optimization problem
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is a nonlinear program (NLP) and is NP-hard in general. By
employing discretization and a novel Reformulation-Lineariza-
tion Technique (RLT), we develop a provably near-optimal so-
lution for any desired level of accuracy. Using numerical re-
sults, we show that our solution can indeed improve signifi-
cantly upon single-node charging technology and effectively ad-
dress the charging scalability problem in a dense WSN.
The rest of this paper is organized as follows. In Section II,

we review related work on wireless energy transfer. In Sec-
tion III, we describe the mathematical model in our study. Sec-
tion IV presents a formulation of our optimization problem and
discusses several interesting properties associated with an op-
timal solution. In SectionV, we develop a near-optimal solution,
and in Section VI, we prove its near-optimality. In Section VII,
we present numerical results to demonstrate our solution. Sec-
tion VIII concludes this paper.

II. RELATED WORK

Current wireless energy transfer technologies can be classi-
fied into three categories, namely, inductive coupling, electro-
magnetic radiation, and magnetic resonant coupling. Inductive
coupling works by having a primary coil at a source generate a
varying magnetic field that induces a voltage across the termi-
nals of a secondary coil at the receiver. Although this wireless
energy transfer technology has found a number of successful
applications in portable electronic devices (e.g., electric tooth-
brush, RFID tags [6], [11], medical implants [24]), it is not suit-
able for charging a wireless sensor node. This is because it has
stringent requirements such as close contact and accurate align-
ment in charging direction, etc.
Electromagnetic radiation is a radiative technology that trans-

fers power on a radio frequency (e.g., 850–950 MHz [17] or
902–928 MHz [19], both with a center frequency of 915 MHz).
Under such radiative technology, an RF transmitter broadcasts
radio waves in the 915-MHz ISMband, and an RF receiver tunes
to the same frequency band to harvest radio power. Radiative
technology has a number of difficulties in transferring energy.
First, it requires uninterrupted LOS and is sensitive to any ob-
struction between an energy source and a receiver. Second, for
omnidirectional radiation, the energy transfer efficiency is very
low. Radiative technology has been explored for energy har-
vesting in a WSN [8], [16], [23]. In [8], He et al. found that a
receiver could can only obtain about 1.5 mW power when it is
30 cm away from the RF transmitter, with about 1.5% energy
transfer efficiency. Similar experimental findings were also re-
ported in [16] and [23]. Although this technology may alleviate
the energy problem in aWSN to some extent, its applications are
very limited, mainly due to its low energy transfer efficiency.
The third category of wireless energy transfer technology

is magnetic resonant coupling [12], which is regarded as a
major breakthrough in our time and is the technology that we
explore in this paper. This technology works by having mag-
netic resonant coils operating at the same resonant frequency
(i.e., 9.9 MHz [12] or 6.5 MHz [13]), so that energy can be
transferred efficiently from a source coil to a receiver coil
via nonradiative magnetic resonant induction. Compared to
electromagnetic radiation, magnetic resonant coupling has the
advantages of offering much higher energy transfer efficiency

even under omnidirection, not requiring LOS, and being in-
sensitive to the neighboring environment. Although efficient
energy transfer in the preliminary experiments by Kurs et al. is
still limited by meter-range (e.g., 2 m with 60% efficiency [13]),
there have been rapid advances in magnetic resonant coupling
to make it suitable for commercial applications [26] such as
mobile devices (e.g., cell phones, tablets, laptops) and elec-
tric/hybrid vehicles.
In [25], we presented a study on how to exploit magnetic

resonant coupling for aWSN.We showed that by having aWCV
visit and charge each sensor node individually in the network,
a WSN can remain operational forever (i.e., infinite lifetime).
An open problem that remained in [25] is scalability, i.e., how
can this wireless charging technology cope with growing node
density of a WSN? This is the focus of this paper.
The scope of this paper has fundamental differences from

those in [7] and [20], which studied base-station movement
problem. First, the WCV discussed in this paper serves a com-
pletely different purpose from a mobile base station. The WCV
is employed to charge sensor nodes, while a mobile base station
is used as a sink node for all data that is collected from sensor
nodes. Note that in this paper, we have both a mobileWCV and
a fixed base station. Second, the goal of this paper is to have
each sensor node in the network never run out of energy, i.e.,
infinite lifetime. On the other hand, the goal of [7] and [20] is
to maximize lifetime, under a finite energy constraint at each
sensor node. Due to these differences, existing solution ap-
proaches for a mobile base station such as those in [7] and [20]
cannot be applied to the problem in this paper.

III. MATHEMATICAL MODELING

A. Cellular Structure and Energy Charging Behavior

We consider a set of sensor nodes distributed over a two-
dimensional area (see Fig. 1). Each sensor node has a battery
capacity of and is fully charged initially. Denote as
the minimum energy at a sensor node battery for it to be opera-
tional. To support wireless power transfer, we assume that a re-
ceiver coil is installed on each sensor node.2 Each sensor node
generates sensing data with a rate (in b/s), . Within the
sensor network, there is a fixed base station , which is the
sink node for all data generated by all sensor nodes. Multihop
data routing is employed for forwarding all data streams to the
base station.
To recharge the battery at each sensor node, a mobile WCV

is employed. The WCV starts at the service station , and
travels (at a speed of m/s) to various spots inside the network
to charge batteries of sensor nodes. As discussed, the WCV can
charge multiple nodes simultaneously as long as they are within
its charging range, denoted as . The charging range is deter-
mined by having the power reception rate at a sensor node be at
least over a threshold (denoted as ). The power reception rate at
a sensor node , denoted as , is a distance-dependent param-
eter and decreases with distance between itself and the WCV.
When a sensor node is more than a distance of away from the
WCV, we assume its power reception rate is too low to make

2To install receiver coils, there is one-time device cost. Note that a receiver
coil receives energy passively, and thus no energy will be consumed for running
a receiver coil on sensor nodes.
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Fig. 1. Example sensor network with a mobile WCV.

Fig. 2. Example sensor network with a mobile WCV. Solid dots represent cell
centers, and empty circles represent sensor nodes.

magnetic resonant coupling work properly at the sensor node’s
battery. is determined by the state of the art in wireless en-
ergy transfer research [13], which will be given in Section VII.
Ideally, we would like to solve a problemwhere theWCV can

stop anywhere within the two-dimensional plane and charges
sensor nodes wirelessly. However, this problem has an infinite
number of possible locations, thus leading to an infinite size
of search space. To make a concrete step in understanding the
multi-node charging technology, we simplify the problem by
introducing a logical cellular structure and assume the WCV
can only stop at the center of a cell. Specifically, we partition the
two-dimensional plane with hexagonal cells with a side length
of (see Fig. 2). Therefore, when the WCV makes a stop at
the center of a cell, all sensor nodes in the cell can be charged
simultaneously. We ignore the edge effect where a sensor node
residing outside the cell but inside a circle with a radius of
can still be charged from this cell. Note that such omission of
overcharging will not affect the feasibility of our solution.
Under the cellular structure, denote the distance from node
to its cell center. Then, node ’s power reception rate is

, where is the full output power from WCV
for a single sensor node and is the efficiency of wire-
less power transfer. Note that is a decreasing function
of and . Although mutual coupling among

TABLE I
NOTATION

receiving coils at sensor nodes may produce interference that
affects , it has been shown in [1] that such effect can be prop-
erly handled by adjusting the resonant and driving frequencies
according to the couplings among the receiving coils.
Under this setting, we are interested in finding out how the

WCV should travel and charge from these cell centers so that:
1) none of the sensor nodes run out of energy; and 2) some
performance objective can be optimized. In the rest of this sec-
tion, we present a mathematical characterization of the WCV’s
traveling path and cycle time (Section III-B), data flow routing
and energy consumption model (Section III-C), and energy dy-
namics at a sensor node (Section III-D). Table I lists notation
used in this paper.

B. WCV Traveling Path and Cycle Time

Denote as the set of hexagonal cells containing at least
one sensor node (see Fig. 3). Re-index these cells in as
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Fig. 3. Example sensor network with a WCV. Only those cells with sensor
nodes are shown in this figure.

and denote the set of sensor nodes in the
th cell. Then, .
Denote as the time that the WCV stays at the center of

cell . Throughout , the WCV recharges all sensor
nodes within this cell simultaneously via multi-node charging
technology [13]. After , the WCV leaves the current cell and
travels to the next cell on its path. In our formulation, we as-
sume that the WCV visits a cell only once during a cycle. De-
note as the physical path traversed
by the WCV during a cycle, which starts from and ends at the
service station (i.e., ), and the th cell traversed by the
WCV along path is . Denote as the
physical distance of path and as the time spent
for traveling over distance .
After the WCV visits the cells in the network, it will re-

turn to its service station to be serviced (e.g., replacing its bat-
tery, taking a vacation) and get ready for the next trip. We call
this resting period vacation time, denoted by . Denote as
the time of a cycle spent by the WCV. Then, this cycle time
can be written as

(1)

where is the total amount of time theWCV spends for
battery charging.We assume that theWCV has sufficient energy
to charge all sensor nodes in a cycle.

C. Data Flow Routing and Energy Consumption

To model multihop data routing, denote and the flow
rates from sensor node to sensor node and the base station ,
respectively. Then, we have the following flow balance con-
straint at each sensor node :

(2)

Although both flow routing and flow rates are part of our opti-
mization problem, we assume they do not change with time.
In this paper, we use the following energy consumptionmodel

at each sensor node [9]. To transmit a flow rate of from
node to node , the transmission power is , where

is the rate of energy consumption for transmitting one unit of
data from node to node . is modeled as

where is the distance between nodes and is a dis-
tance-independent constant term, is a coefficient of the dis-
tance-dependent term, and is the path-loss index. Similarly,
denote as the rate of energy consumption for transmitting
one unit of data from node to the base station . Then, the
aggregate energy consumption rate for transmission at node is

.
The energy consumption rate for reception at node is mod-

eled as , where is the rate of energy consumption
for receiving one unit of data.
Denote as the energy consumption rate at sensor node
, which includes energy consumption for transmission and

reception. We have

(3)

D. Energy Dynamics at a Sensor Node

In Section III-B, we discussed the WCV’s behavior over a
cycle time , during which the WCV starts from the service
station, travels to those cells with sensor nodes, and returns to
the service station (see Fig. 3).
Multi-Node Charging Versus Single-Node Charging: In our

previous work in [25], we considered aWCV visiting each node
and charging it individually. In that context, we introduced a
concept called renewable energy cycle, during which the en-
ergy level at each node exhibits a periodic behavior with a cycle
time . Specifically, the energy level of a sensor node exhibits
a renewable energy cycle if it meets the following two require-
ments: 1) it starts and ends with the same energy level over a
period of ; and 2) it never falls below . A central idea in
achieving a renewable energy cycle in [25] is that the amount of
energy being charged to a node is equal to the amount of energy
that the node expends in a cycle. However, such an idea cannot
be extended to our multi-node charging context here. This is be-
cause, for each node in the same cell, its remaining energy level
(when theWCV arrives at the cell) differs, as do energy charging
rate and consumption rate at each node. As a result, nodes in the
same cell will not complete their battery charging at the same
time, and those nodes that finish early will run into a “satura-
tion” state (i.e., battery level remains at ) until the WCV
departs this cell (see Fig. 4). Due to such this “saturation” phe-
nomena, the idea of achieving a renewable energy cycle cannot
be applied here.
Cell-Based Energy Constraints:We now develop constraints

to capture the saturation phenomena while ensuring that the en-
ergy level of each node never falls below . Denote as
node ’s energy level at time . The energy curve of node
in a cell for the first three cycles is shown in Fig. 4. For any
cycle, we see that there can be only three possible slopes: 1) a
slope of when the WCV is not in node ’s cell; 2) a slope
of when the WCV is at node ’s cell and is charging
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Fig. 4. Energy level of node during the first three cycles.

node at rate 3; and 3) a slope of 0 (i.e., saturation period)
when node stays at while the WCV is still charging.
Denote as the arrival time of the WCV at cell in the first

cycle. Denote as the distance between the service station
and the first cell visited along and as the distance
between the th and th cells, respectively. Then, we have

Note that , is a local minimum for .
To have for all , it is sufficient to have

for all .
When .

For , we must have

(4)

When

(5)

where the last inequality holds since cannot exceed .
For (5), if for all , then we must
have

(6)

Nowwe show that once (6) holds, (4) must also hold. Therefore,
we can remove (4) in the formulation. To see this, we have

, which leads to .
Note that (6) is a necessary condition for . The

following is a second necessary condition for :

(7)

3Note that it is necessary to have for to achieve a feasible
solution.

which says that , the amount of energy being charged
to node during the time period of , must be greater
than or equal to , the amount of energy consumed during
the cycle. Equation (7) can be easily proved by showing that if

, then will fall below eventually
at some time .
We have shown that (6) and (7) are necessary conditions for

. It turns out that they are also sufficient condi-
tions. We state this result in the following lemma.
Lemma 1: for all , if and only if

both constraints (6) and (7) are satisfied.
The proof of Lemma 1 is given in the Appendix.
The following corollary follows from the proof of Lemma 1.
Corollary 1.1: When the WCV departs cell , each

sensor node is fully charged to .

IV. PROBLEM FORMULATION AND PROPERTIES

Based on the constraints that we have discussed in Section III,
we consider optimizing some global performance objective. In
particular, we would like to minimize energy consumption of
the entire system, which encompasses all energy consumption
at the WCV.4 Since the energy consumed to carry the WCV
to move along is the dominant source of energy consump-
tion (when compared to its wireless charging to sensor nodes),
we aim to minimize the fraction of time that the WCV is out-

side its service station, i.e., .5 It is interesting that,

by (1), minimizing is equivalent to maximizing
, which is the percentage of time that the WCV is on vaca-

tion at its service station.
Mathematically, this is a very challenging objective, as it in-

volves a ratio of two variables. Therefore, a successful solution
to this optimization problem will help pave the way to solve
many other optimization problems with simpler objectives.
We now summarize our optimization problem as follows:

s.t. Time constraint: (1)

Flow routing constraints: (2)

Energy consumption model: (3)

Cell-based energy constraints: (6), (7)

In this problem, time intervals , and , flow rates
and , and power consumption rate are optimization

variables; , and are constants.
Note that can be determined once the traveling path is
determined.
This problem is an NLP, with nonlinear objective and

nonlinear terms ( and ) in constraints (6) and (7).

4Note that except for their initial energy, the energy consumed in the sensor
network comes from the WCV.
5We include the energy consumed at a WCV when it makes stops at a cell

because the WCV’s engine may be still on.
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An NLP is NP-hard in general. Nevertheless, we can still find
several useful properties associated with an optimal solution.
Property 1: In an optimal solution with the maximal ,

the WCV must move along the shortest Hamiltonian cycle that
connects the service station and the centers of cells . If
the shortest Hamiltonian cycle is not unique, then any shortest
Hamiltonian cycle can achieve the same optimal objective. Fur-
thermore, the WCV can follow either clockwise or counter-
clockwise direction of the shortest Hamiltonian cycle, both of
which will achieve the same optimal objective.
A proof of this property can be developed based on contradic-

tion. That is, if there is an optimal solution where theWCV does
not move along the shortest Hamiltonian cycle, then we can con-
struct a new solution with the WCV moving along the shortest
Hamiltonian cycle and with an improved objective. Since it
shares a similar idea to a proof in [25], we omit it here to con-
serve space.
The shortest Hamiltonian cycle can be obtained by solving

the well known Traveling Salesman Problem (TSP) [2], [4]. De-
note as the total path distance for the shortest Hamiltonian
cycle and . Then, (1) becomes

(8)

The solution to our problem becomes
. Since the optimal traveling path

is determined, we simplify the notation for as
.

For (8), we divide both sides by and have
. We define , where represents

the ratio of the vacation time to the entire cycle time and is our
objective function in the optimization problem. Similarly, we
define , for , and , where represents the
ratio of the charging time at cell to the entire cycle time. Then,
(8) is written as , or equivalently,

.
Similarly, by dividing both sides by , replacing with ,

and replacing with , (6) and (7) can be refor-
mulated as

(9)

We can rewrite (9) as

Now our problem is reformulated as follows:

s.t.

Fig. 5. Energy level of an equilibrium node in the first three cycles.

(10)

(11)

In this problem, , and are optimization
variables; , and are con-
stants. Once we obtain a solution to problem OPT, we can re-
cover , and as follows:

(12)

(13)

(14)

In an optimal solution to OPT, we show that there exists at
least one bottleneck node, which is defined as the node whose
energy level drops exactly to upon WCV’s arrival.
Property 2: In an optimal solution to OPT, there exists at least

one bottleneck node in the network.
The proof of Property 2 is given in the Appendix. Based on

Corollary 1.1, we know that when theWCV departs a cell
, each sensor node in this cell is fully charged to . Fur-

thermore, some nodes may experience saturation state during
each cycle. The following property says that in an optimal so-
lution, at least one sensor node in each cell will have
saturation-free cycles except its initial first cycle (see Fig. 5).
Property 3: In an optimal solution to OPT, there exists at least

one node in each cell such that, starting from the second
cycle, the amount of energy reception at the node is the same as
the amount of energy consumption in the cycle.
The proof of Property 3 is given in the Appendix. We call the

node in Property 3 an equilibrium node. Note that the definition
of equilibrium node is different from the bottleneck node.

V. NEAR-OPTIMAL SOLUTION

A. Approach

Problem OPT is an NLP, with bilinear terms in con-
straints (10). This nonlinear (bilinear) program is nonconvex [5]
and cannot be solved by existing off-the-shelf solvers.
In this section, we convert the NLP to a mixed-integer linear

program (MILP), which can then be solved efficiently by an
off-the-shelf solver such as CPLEX [10]. First, we discretize
variable in the bilinear term using binary variables.
This converts problem OPT to a 0-1 mixed-integer nonlinear
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Fig. 6. Flowchart of our solution roadmap.

program (MINLP). By exploiting the special structures of the
0-1 MINLP, we employ a powerful technique called Reformu-
lation-Linearization Technique [21] to eliminate all bilinear
terms. Subsequently, we have a 0-1 MILP, and we show that
this new 0-1 MILP and the 0-1 MINLP have zero performance
gap. This MILP has special ordered sets (SOSs), which can be
efficiently solved by CPLEX solver [10]. We quantify perfor-
mance gap (due to discretization) and prove near-optimality of
our solution. A flowchart of our solution roadmap is given in
Fig. 6.

B. Discretization

As a first step to reformulate the NLP to MILP, we consider
the bilinear term . Since is a continuous variable within

, we discretize it by using discrete points
. Then, we write

(15)

(16)

where is a binary variable that indicates whether or not
is chosen. By (15), the term in (10) can be rewritten as

, which remains a bilinear term
involving binary variables . This makes the
problem a 0-1 MINLP, which is formulated as follows:

-

s.t.

(17)

(18)

C. Reformulation and Linearization

To remove the nonlinear terms in the 0-1 MINLP, we
employ a powerful technique called RLT as follows. Define

(19)

Then, can be is rewritten as
.

To replace the nonlinear constraint (19), we need to add RLT
constraints, which are linear. The new linear constraints are gen-
erated by multiplying existing linear constraints for variables
and , which are and

. It is worth pointing out that RLT in [22] typically
refers to multiplying each pair of these constraints (i.e., refor-
mulation) and generating linear constraints via variable substi-
tution (i.e., linearization). For our problem, this will produce
several redundant or null constraints. To reduce such redun-
dancy, we exploit a special structure of our problem, i.e., the
presence of equality constraints . It is only
necessary to multiply these constraints (and ) by
and . Multiplying by
gives us

which can be written as

(20)

Multiplying by simply pro-
duces constraint (20), or if , or

, none of which is new.
Multiplying and by , respectively,

we have the following RLT constraints:

which can be written as

(21)

In summary, the new RLT constraints are (20) and (21). By sub-
stituting (19) for , and adding the new RLT constraints
(20) and (21), we obtain the following 0-1 MILP:

-

s.t.
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(22)

In this problem, , and are continuous
variables; are binary variables;

, and are constants. The integer variables
, are constrained by (16) and form an SOS of

type 1 (meaning that at most one of the variables in the set may
be nonzero) [3]. It turns out that such a special type of MILP
is particularly suitable for CPLEX solver as CPLEX can use
special branching strategies to improve performance [10].
Through RLT, we have eliminated all bilinear terms in the

0-1 MINLP and have obtained a 0-1 MILP. A natural question
to ask is how much the performance gap is between the optimal
solutions under MINLP and MILP. The following lemma says
that the performance gap between the two is zero, thus substan-
tiating the benefits of employing RLT in our solution approach.
By zero performance gap, we mean there is a bijection from
the feasible region of problem OPT-D to the feasible region of
problem OPT-RLT, and vice versa; any two feasible solutions
corresponding to this one-to-one mapping achieve the same ob-
jective value.
Lemma 2: ProblemOPT-RLT and problemOPT-D have zero

performance gap.
Proof: Our proof consists of two parts.

(i) If a solution is feasible
to problem OPT-D, then the solution

is also feasible to problem OPT-RLT,
where .

(ii) If a solution
is feasible to problem OPT-RLT, then the solution

is also feasible to problem
OPT-D.

We shall prove that if both (i) and (ii) hold, then there is
a bijection from the feasible region of problem OPT-D to the
feasible region of problem OPT-RLT, and vice versa; for any
one-to-one solution mapping between and , their ob-
jective values are the same.
For the first part, suppose we have a solution

that is feasible to problem OPT-D.
To show that is feasible
to problem OPT-RLT, we need to show that satisfies
constraints (2), (3), (16), (18), and (20)–(22). Since is fea-
sible to problem OPT-D, satisfies constraints (2), (3), and
(16)–(18). For , since the values of and

Fig. 7. Summary of the proposed near-optimal solution procedure.

are the same as those in must also satisfy constraints
(2), (3), (16), and (18). To verify constraint (20), we multiply
(16) by on both sides and have , or
equivalently, . Similarly, we can verify (21) by
multiplying by on both sides. From (17), since

, (22) holds. This completes the proof of (i).
For the second part, suppose we have a solution

that is feasible to problem
OPT-RLT. To show that is a feasible solution to problem
OPT-D, we need to show that satisfies constraints (2), (3),
and (16)–(18). Since is feasible to problem OPT-RLT,

satisfies constraints (2), (3), (16), (18), and (20)–(22).
For , since the value of and are the same as
those in must also satisfy constraints (2), (3), (16),
and (18). Now we show that satisfies (17). Since
satisfies (22), it is sufficient to show that . To
have , we need to show that if
and if . These are assured by (16), (20), and
(21). By (16), for each , there is only one

, and other equal 0. By (21), the
corresponding must be 0, for all . Then, by
(20), the single that equals 1 suggests , for all

. This completes the proof of (ii).

D. Recovering a Solution to the Original Problem

By now, we have obtained a solvable 0-1 MILP. Once we
have an optimal solution to this MILP, the question to ask is how
to recover a feasible solution to the original problem (OPT). As-
suming we have a solution
that is optimal to problem OPT-RLT, by Lemma 2, the
solution is also feasible to
problem OPT-D. Based on , we can construct a solu-
tion to problem OPT by letting

, and , , and unchanged from
. Note that is a feasible solution to problem OPT since the

constraints in problem OPT are the same as those in problem
OPT-D after we replace by . Since is only
a feasible solution to problem OPT, its objective value is a
lower bound for problem OPT. We summarize our discussion
in the following lemma.
Lemma 3: For a given optimal solution

to problem OPT-RLT, we can
construct a solution that is feasible
to Problem OPT by letting . Furthermore,

is a lower bound for the optimal objective value of Problem
OPT.
We summarize our near-optimal solution procedure to OPT

in Fig. 7.
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Fig. 8. Illustration of main idea in the proof of Lemma 4. is the objec-
tive value under an optimal (unknown) solution to problem OPT. is
the objective value under an optimal solution to problem OPT-RLT that
is obtained by solving the 0-1 MILP (OPT-RLT). is the objective value
obtained by the constructed feasible solution to problem OPT-RLT.

VI. PROOF OF NEAR-OPTIMALITY

Recall that our original problem is OPT, which is an NLP.
We converted this NLP to a 0-1 MINLP via discretization
(problem OPT-D) and then to a 0-1 MILP via RLT (problem
OPT-RLT). We proved that problem OPT-D and problem
OPT-RLT have zero performance gap. Hence, the performance
gap between problems OPT and OPT-RLT could only occur
during discretization.
Quantifying Performance Gap: By solving problem OPT-

RLT, we obtain an optimal solution to problem OPT-RLT.
Denote the optimal (unknown) solution to problemOPT. De-
note the optimal objective value obtained by and
the optimal objective value obtained by , respectively. Natu-
rally, the gap between and is closely tied to , which is
the number of discrete points used in discretization. We quan-
tify this gap in the following lemma.
Lemma 4: For a given , we have .
Proof: We consider two cases, depending on whether

or .
Case i: Suppose . This is the trivial case. Since

, we have .
Case ii: Suppose . This is the most common

case. The rest of the proof is devoted to this case, and its main
idea is illustrated in Fig. 8. Denote as a feasible solution to
problem OPT-RLT and as the objective value under .
Since is the objective value of an optimal solution
to OPT-RLT, we have . To show that

, it is sufficient to show that for
some feasible solution . In the following proof, we will
construct such a feasible solution to problem OPT-RLT
so that .
Recall that an optimal (unknown) solution to problem

OPT consists of . For a given , we
construct a solution for
problem OPT-RLT based on as
follows. We let , and . Then, for
the rest of the solution (i.e., , and ), we do
the following. First, we round “up” to the nearest discrete
point , where . The rounding error for
each is

(23)

For , we set and , for .
Then, for , we set , for

. Finally, for , based on (22), we set it to

(24)

Now we prove that the above newly constructed
is indeed a feasible solution to

problem OPT-RLT. That is, we will show that sat-
isfies constraints (2), (3), (16), (18), and (20)–(22). Since

is an optimal solution to problem OPT, satisfies
(2), (3), (10), and (11). Since ,
and also satisfies (2) and (3). From the
construction of and , we know that satisfies
constraints (16) and (20). Now we consider (18). We have

, where the first
inequality holds due to and
(because and ), and
the second inequality holds since satisfies (11). To verify
constraint (21), we multiply by , and have

, or equivalently, .
Constraint (22) can be verified directly from (24). Thus, the
newly constructed solution is indeed a feasible solution
to problem OPT-RLT.
Now we show that . Since is an optimal

solution to problem OPT, constraint (10) must be binding for
some under . That is

(25)

We have
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where the first equality holds by (25) and (24), the third equality
holds due to (since only and

) and , the fourth
equality holds due to and , the
sixth inequality holds due to for , and the last
inequality holds by (23). This completes the proof.
Performance Guarantee: Lemma 4 gives an upper bound of

the performance gap between and for a given . The
following lemma shows how to choose so that this perfor-
mance gap is no more than .
Lemma 5: For a given , if , we have

.
Proof: By Lemma 4, we know . To have

, it is sufficient to have , or .
This completes the proof.

VII. NUMERICAL RESULTS

In this section, we present some numerical results to demon-
strate our proposed solution.We also demonstrate how our solu-
tion can address the scalability issue when the density of sensor
nodes increases.

A. Simulation Settings

We assume sensor nodes are deployed over a
1000 1000-m area. The number of nodes in the net-
work will be specified for each instance in the study. The
base station is at (500, 500) (in meters), and the WCV’s
home service station is assumed to be at the origin. The
traveling speed of the WCV is m/s. The data rate

, from each node is randomly generated within [1,10]
kb/s. The power consumption coefficients are nJ/b,

pJ/ b m , and nJ/b [25]. The path-loss
index is .
For the battery at a sensor node, we choose a regular NiMH

battery, and its nominal cell voltage and electricity volume is
1.2 V/2.5 Ah. We have V A s

kJ [14]. We let J. For ,
we refer to the experimental data on wireless energy transfer ef-
ficiency in [13]. Through curve fitting to [13, Fig. 3], we obtain

. Assuming W
and W, we have m for a cell’s side length. We
set for the numerical results.

B. Results for a 100-Node Network

We first present complete results for a 100-node network.
Table II gives the location of each node and its data rate for the
100-node network. These 100 nodes are distributed in
selected cells, and Table III gives the location of each cell as
well as the number of sensor nodes it contains. The shortest
Hamiltonian cycle that threads all cells and the ser-
vice station is found by the Concorde TSP solver [4], which

TABLE II
LOCATION AND DATA RATE FOR EACH NODE IN A 100-NODE NETWORK

is shown in Fig. 9. For this optimal cycle, m
and s h. For the target performance
gap , we have cycle time h, vacation time

h, total charing time h,
and the objective %.
Due to the large number of sensor nodes (i.e., 100) and the

potential large number of different outgoing subflows from each
sensor node (up to 100), it will take too much space to show
these subflows in the network (up to 10 000). For illustration,
we show flow routing (and rates) at nodes 1 and 4:
1) At node 1: Self-generated rate , outgoing flow
rates , all in kb/s;

2) At node 4: Self-generated rate , incoming flow
rates , outgoing flow rates

, all in kb/s.
Corollary 1.1 says that each sensor node in the network is

fully charged to when the WCV departs its cell, which is
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Fig. 9. Optimal traveling path (assuming counterclockwise direction) for the
100-node sensor network. The 100 nodes are distributed in 32 cells, with the
center of each cell being represented as a point in the figure.

TABLE III
CELLS INDEX, LOCATION OF CELL CENTER, SENSOR NODES IN EACH CELL,

CELL TRAVELING ORDER ALONG THE PATH, AND CHARGING TIME
AT EACH CELL FOR THE 100-NODE NETWORK

confirmed by our numerical results. By Property 3, we find that
in an optimal solution, there exists at least one equilibrium node
in each cell . In our numerical results, all 32 cells contain
equilibrium nodes.

Fig. 10. Energy cycle behavior of an equilibrium node (node 24, in solid curve)
and a nonequilibrium node (node 89, in dashed curve) in the 100-node network.
Node 89 is also a bottleneck node.

Fig. 11. Achievable objective value as a function of node density under multi-
node and single-node charging technologies.

To examine energy behavior at sensor nodes, consider sensor
nodes in cell 10. There are four sensor nodes in this cell,
nodes 24 and 46 are equilibrium nodes, while nodes 89 and 100
are not. Fig. 10 shows the energy behavior of node 24 (solid
curve) and node 89 (dashed curve). Note that node 24 does not
have any saturation period except in the initial first cycle, while
node 89 has saturation period in every cycle.
By Property 2, we find that there exists an energy bottleneck

node in the network with its energy dropping to during a
cycle. This property is also confirmed in our numerical results.
This bottleneck node is the 89th node, whose energy behavior
is shown in Fig. 10.

C. Scalability Comparison

In this section, we demonstrate how multi-node charging can
address the scalability problem in wireless energy transfer. We
consider cells and increase node density in these cells
from 1 to 8 per cell. For each density, we compare multi-node
charging with single-node charging. Fig. 11 shows the numer-
ical results. We have two observations.
1) The achievable objective value under multi-node charging
remains steady when node density increases from 1 to 8,
with only slight decrease. On the other hand, the achiev-
able objective value under single-node charging drops very
quickly when node density increases, and a feasible solu-
tion does not exist when node density is beyond 5.
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TABLE IV
DETAILS OF COMPARISON BETWEEN MULTI-NODE CHARGING AND

SINGLE-NODE CHARGING

2) Over the entire density range (from 1 to 8), the objec-
tive value under multi-node charging is always higher than
that under single-node charging, and the gap between them
widens as density increases.

Table IV gives more details for the study shown in Fig. 11.
Note that under multi-node charging, the achievable objective
value at density 6 is slightly larger than that at density 5. This
local fluctuation is due to more possibilities for routing when
density increases. However, this is only a local fluctuation. The
prevailing trend is that decreases as density increases.

VIII. CONCLUSION

In this paper, we exploited recent advances in multi-node
wireless energy transfer technology to charge the batteries of
sensor nodes in a WSN. Our approach was to develop a formal
optimization framework by jointly optimizing traveling path,
flow routing, and charging time at each cell. By employing dis-
cretization and a novel reformulation-linearization technique,
we developed a provably near-optimal solution for any desired
level of accuracy. Using numerical results, we demonstrated
the advantage of multi-node wireless energy transfer technology
and showed how it addressed the charging scalability problem
in a dense wireless sensor network.

APPENDIX

Proof of Lemma 1: The “only if” part of the lemma [i.e.,
(6) and (7) are necessary conditions] was already proved in the
discussion in Section III-D. We now prove the “if” part of the
lemma, i.e., if (6) and (7) hold, then for all

.
Recall that, to have , it is sufficient to

have , for . We consider
and for , respectively. The first cycle

(i.e., ) is solely considered since it starts with ,
and the succeeding cycle (i.e., ) starts with a nonfull
energy level. Note that for all cycles, the traveling path , time
intervals , and , the flow rates and , and
power consumption are identical.
When , we show that . We see that

where the second equality holds due to , the third
inequality holds due to , and the last inequality holds

due to (6). That is, each sensor has sufficient energy to support
itself until the WCV’s first arrival.
Now we show . It is sufficient to show

and . It follows that
for all due to periodicity.

To show , we have

where
considering that node may be under saturation state
during . We find that

where the second equality holds due to , the third
inequality holds due to , and the last inequality
holds due to (7). We then have

(26)

Therefore

(27)

where the last inequality holds by (6).
We also show that . We find that

(28)

where the second equality holds by (26). We also have

where .
It follows that

where the first equality holds by (27), and the last inequality
holds due to (7). We then have

(29)
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and it follows that

where the second equality holds by (29), and the last equality
holds by (28).
Therefore, if both constraints (6) and (7) are satisfied,
for all .

Proof of Property 2: The proof is based on contra-
diction. Suppose there exists an optimal solution

, where none of the nodes in the
network have their energy level ever drop to , i.e.,

for all . Then, we can construct
a new solution by choosing

and letting

, and .
Now we show . Since for all

, we have for
all , i.e., .
It follows

, or . Thus,

.
The feasibility of can be verified similarly as that in the

proof of Property 3.We now show that this new feasible solution
can offer a better (increased) objective value. By (8), we have

. Since

, it follows that

, i.e., . This contra-
dicts the assumption that is an optimal solution. The proof is
complete.
Proof of Property 3: The proof is based on contra-

diction. Suppose there exists an optimal solution
to problem OPT, where there is no

equilibrium node in some cell , i.e., for
all . Let be the set
of these cells. We show how to construct a new solution with
a better objective value, thus leading to contradiction. Define

by letting

(30)
if
if

(31)

(32)

Now we show that is feasible to problem OPT. By
feasibility, we mean that it meets the flow conservation con-
straint (2) and the energy constraints (3), (10), and (11). Since

is a feasible solution, it satisfies (2), (3), (10), and (11). By (30),
also satisfies constraints (2) and (3). Constraints (10) can be

verified directly from (32). Now we consider constraint (11),
which can be easily verified for due to and
(31). For ,
where the equality holds due to and (31). Therefore,
is feasible to problem OPT.
We now show that this new feasible solution can

offer a better (increased) objective value, i.e., .
Let

and assume that
is a particular cell such that

. Then, we have

if
otherwise

We show is a decreasing function of variables for
. It is sufficient to show that for . Clearly,

we only need to consider the case of . We see
, where the first inequality

holds due to , and the second inequality due
to (6) [which is a reformulation reversely from (10)]. We have

, or for the case of
.

Now we are ready to show . For , we
have , where the equality holds by
(31) and the inequality holds by the definition of . By (31),

for . Since is a decreasing function
of variables and , we have

. Therefore,
, where the equality holds due to (32),

and the last inequality holds since satisfies (10). This contra-
dicts the assumption that is an optimal solution. Therefore,
there exists at least one equilibrium node in any hexagonal cell

in an optimal solution. This completes the proof.
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