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ABSTRACT
Wireless power transfer is a promising technology to fundamen-
tally address energy problems in a wireless sensor network. To
make such a technology work effectively, a vehicle is needed to
carry a charger to travel inside the network. On the other hand, it
has been well recognized that a mobile base station offers signifi-
cant advantages over a fixed one. In this paper, we investigate an
interesting problem of co-locating the mobile base station on the
wireless charging vehicle. We study an optimization problem that
jointly optimizes traveling path, stopping points, charging sched-
ule, and flow routing. Our study is carried out in two steps. First,
we study an idealized problem that assumes zero traveling time,
and develop a provably near-optimal solution to this idealized prob-
lem. In the second step, we show how to develop a practical solu-
tion with non-zero traveling time and quantify the performance gap
between this solution and the unknown optimal solution to the orig-
inal problem.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; G.1.6 [Numerical
Analysis]: Optimization—Nonlinear programming, Linear program-
ming
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Modeling and optimization; nonlinear programming; wireless power
transfer; mobile base station; wireless sensor network
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1. INTRODUCTION
Recently, wireless power transfer (WPT) has been demonstrated

to be a promising technology to address energy problems in a wire-
less sensor network (WSN) [8, 10]. This new WPT technology was
based on the so-called magnetic resonant coupling [3, 4], which al-
lows electric energy to be transferred from a source to a number of
receivers via a nonradiative magnetic resonant induction. The most
attractive features of this WPT technology are high energy transfer
efficiency even under omni-direction, not requiring line-of-sight,
and being insensitive to the neighboring environment.

In [8, 10], the authors showed how a wireless charging vehicle
(WCV) can support WPT by bringing an energy source charger to
the proximity of sensor nodes and charging their batteries wire-
lessly. In those studies, the authors assumed a simple setting where
the location of the base station is fixed. On the other hand, it has
been well recognized in the sensor network community that a mo-
bile base station (MBS) offers significant advantages over a static
one (see, e.g., [1, 5, 7, 13]). Since a base station is the sink node for
all data that are collected from the sensor nodes, a mobile base sta-
tion helps alleviate the traffic relay burden from a fixed set of sensor
nodes near the base station to other sensor nodes in the network,
thus avoiding energy hot spots and prolonging network lifetime.

Allowing the base station to be mobile adds considerable com-
plexity to the underlying problem. In the most general case, the
MBS could travel separately from the WCV, which calls for a sep-
arate vehicle to carry the base station. Given that the energy con-
sumption for a vehicle is likely to be the dominant component in
the big picture of energy consumption, we do not advocate this ap-
proach and defer it to a future study. Instead, in this paper, we
consider the case where the MBS is co-located with the WCV. This
allows us to explore traveling related questions for only one vehicle
while still enjoying the benefits associated with a MBS.

Specifically, we consider the following problem in this paper.
Suppose the base station is co-located with the WCV and we call
the combines objects simply as WCV when there is no ambiguity.
There is a home service station for the WCV (see Fig. 1). The
WCV follows a periodic schedule to travel inside the network for
charging the sensor nodes. While traveling inside the network, the
WCV makes a number of stops and charge sensor nodes near those
stops. At any time, data collected from the sensor nodes are relayed
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Figure 1: An example sensor network with a mobile WCV.

to the WCV (via multi-hop). By satisfying certain constraints, we
hope that none of the sensor nodes in the network will ever run out
of energy, i.e., the WSN will remain operational indefinitely.

Apparently, the above problem brings in a number of technical
challenges. First of all, the traveling path for the WCV is unknown
and needs to be determined. Second, we need to find the optimal
stopping points along this path as well as the charging schedule of
the WCV (i.e., how long it shall stay at each stopping point). Fi-
nally, the data flow routing in the network is dynamic and depends
on where the WCV is in the network. Among these challenges, we
find that the traveling path problem is most crucial and solutions to
the other sub-problems all hinge upon the determination of a trav-
eling path. In this paper, we address these challenges by studying
an optimization problem.1

The main contributions of this paper are as follows:

• We formulate an optimization problem (TPP) that involves
joint optimization of traveling path, stopping points, charg-
ing schedule, and data flow routing. This is shown to be a
nonlinear program (NLP).

• To tackle TPP, we first consider an idealized problem (OPT-
ub) that assumes zero traveling time (i.e., infinite traveling
speed) from one point to another. The optimal solution of
OPT-ub gives an upper bound to TPP.

• Subsequently, we develop a provably near-optimal solution
to OPT-ub for any desired level of accuracy ε. Our solution
involves several novel techniques, such as discretization of
energy reception rate and energy consumption rate, double
partitioning of the smallest enclosing disk (SED) into smaller
subareas with tight upper energy consumption bounds and
lower energy reception bounds, and representation of each
subarea by a logical point as its “worst-case” energy recep-
tion and energy consumption behavior.

• Based on the near-optimal solution to the idealized problem
OPT-ub, we return to the original problem TPP by incorpo-
rating non-zero traveling time for the WCV. In particular, we
determine the traveling path in TPP by finding the shortest
Hamiltonian cycle to connect all the logical points that have

1A simpler version of bundling WPT and MBS problem was stud-
ied in [11], where the traveling path for the WCV was assumed to
be given a priori. This assumption simplifies the problem consid-
erably and the optimization problem only needs to find solutions
to stopping points, charging schedule, and data flow routing. In
contrast, this paper considers a much harder problem where the
traveling path is unknown.

non-zero stopping time in OPT-ub. Note that this Hamilto-
nian cycle is fundamentally different from the Hamiltonian
cycle that connects all sensor nodes in the network. Based
on this traveling path, we can obtain a feasible solution to the
original problem TPP. We further quantify the performance
gap between this feasible solution and optimal solution to
TPP.

The remainder of this paper is organized as follows. In Sec-
tion 2, we give some essential background and necessary mathe-
matical models for this problem. We also give a formulation for
the optimization problem TPP. In Section 3, we study an idealized
problem OPT-ub and develop a near-optimal solution. In Section 4,
we determine a traveling path based on the solution in Section 3.
From this path, we develop a feasible solution to the original prob-
lem TPP. We then quantify the performance gap between this solu-
tion and the optimal solution. Section 5 presents numerical results.
Section 6 concludes this paper.

2. MODELING AND FORMULATION
Suppose that we have a sensor network N deployed over a two-

dimensional area. A WCV is employed to recharge sensor nodes
in the network and to collect data from nodes in real time. The
WCV follows a periodic schedule: In each cycle, it starts from
its home service station, travels inside the network, and returns to
the service station. While traveling, the WCV makes a number
of stops and charges sensor nodes that are in the vicinity of those
stops (see Fig. 1). For the traveling path that we are investigating
in this paper, the WCV is allowed to visit anywhere over the two-
dimensional area, i.e., its traveling path is unconstrained and is part
of the optimization problem. At any time, the data generated from
the sensor nodes are relayed through multi-hops toward the WCV
(in real time).

2.1 Traveling Path and Stopping Schedule
Denote P as the traveling path and τ as the amount of time for

each cycle. Then τ includes three components:

• The total traveling time along path P , DP/V , where DP is
the distance along path P and V is the traveling speed of the
WCV.

• The total sojourn time along path P , which is defined as the
sum of all stopping time of the WCV when it travels on P .

• The vacation time for the WCV at its home service station,
τvac, which starts when the WCV returns to its home ser-
vice station (after traveling path P) and ends when the WCV
leaves for the next trip.

Then we have:

τ =
DP

V
+

ω(p)>0∑
p∈P, p �=pvac

ω(p) + τvac , (1)

where ω(p) denotes the aggregate amount of time the WCV stays
at point p ∈ P and pvac denotes the location of the home service
station.

2.2 Energy Charging Model
We assume that the WCV can only perform its charging function

when it makes a stop along path P (excluding pvac). Based on the
current charging technology [4, 10], the WCV can charge multiple
neighboring nodes simultaneously as long as they are within its
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charging range, although the power transfer rate at a sensor node
decreases over the distance.

Denote UiB(p) as the power reception rate at node i when the
WCV is located at p ∈ P . Denote the efficiency of wireless charg-
ing by μ(DiB(p)), which is a decreasing function of DiB(p), the
distance between node i and the WCV located at p. Then the wire-
less charging model is as follows [10]:

UiB(p) =

{
μ(DiB(p)) · Umax if DiB(p) ≤ Dδ

0 if DiB(p) > Dδ ,
(2)

where Umax is the maximum output power for a single sensor node
and Dδ is the charging range of the WCV, beyond which wireless
charging will not occur. In other words, Dδ is defined in a way
such that the power reception rate at a sensor node is at least over a
threshold value δ.

2.3 Dynamic Data Flow Routing
Recall that the base station is co-located at the WCV and all

data generated from the sensor nodes shall be delivered to the base
station. To conserve energy, multi-hop data routing is necessary
among the sensor nodes in the network. Due to the mobility of the
WCV, data flow routing is dynamic, with routing topology chang-
ing over time.

Suppose that each sensor node i (i ∈ N ) generates a constant
rateRi. Denote fij(p) and fiB(p) as flow rates from sensor node i
to sensor node j and to the base station when the WCV is at location
p ∈ P , respectively. Then we have the following flow balance at
each sensor node i:

k �=i∑
k∈N

fki(p) +Ri =

j �=i∑
j∈N

fij(p) + fiB(p) (i ∈ N , p ∈ P) (3)

The above flow balance equation indicates that we are dealing
with real-time flow routing, rather than DTN-like data routing (e.g.,
data MULEs [6] or message ferry [14]), where data can be delayed
and delivered till a later time.

2.4 Sensor Energy Consumption
At a sensor node, we assume data communications (transmis-

sion and reception) is the dominant source for energy consump-
tion.2 Denote Cij as the energy consumption rate for transmitting
one unit of data flow from sensor node i to sensor node j. Then
Cij (in Joule/bit) can be modeled as [2, 7]:

Cij = β1 + β2D
α
ij ,

where Dij is the distance between nodes i and j, β1 and β2 are
constant terms, and α is the path loss index. Given that all sensor
nodes are stationary, we have that Dij and Cij are all constants.

Denote CiB(p) as the energy consumption rate for transmitting
one unit of data flow from sensor node i to base stationB when the
WCV is at location p ∈ P . We have

CiB(p) = β1 + β2
[√

(xp − xi)2 + (yp − yi)2
]α
, (4)

where (xp, yp) and (xi, yi) are the coordinates of p and node i, re-
spectively. Note that unlike Cij’s, which are all constants, CiB(p)
varies with the base station’s position p.

2Energy consumption for hardware device and information pro-
cessing can be assumed to be constants and can be easily integrated
into total energy consumption without major change of the problem
structure.

Then the total energy consumption rate for both transmission and
reception at node i when the WCV is at p ∈ P , denoted as ri(p), is

ri(p) = ρ
∑k �=i

k∈N fki(p) +
∑j �=i

j∈N Cij · fij(p)
+CiB(p) · fiB(p) (i ∈ N , p ∈ P) , (5)

where ρ is a constant term associated with the rate of energy con-
sumption for receiving one unit of data.

2.5 Energy Cycle at a Sensor Node
We will develop a travel schedule (including charging schedule)

for the WCV and data flow routing among the nodes so that no
sensor node ever runs out of energy. Such travel schedule follows a
periodic cycle, as discussed in Section 2.1, with a cycle time of τ .

Suppose that each sensor node is fully charged initially. Denote
Emax as its battery capacity and Emin as the minimum energy thresh-
old for a node to be operational. We offer two energy renewable
conditions, and show that once they are met, then the energy level
at each sensor node at time t, denoted as ei(t), never falls below
Emin.

First, we split energy consumption at node i into two parts:

• Energy consumed whenever the WCV makes any stop (in-
cluding vacationing at its service station): ri(pvac) · τvac +∑ω(p)>0

p∈P, p �=pvac
ri(p) · ω(p),

• Energy consumed when the WCV is moving along P , i.e.,∫ ω(p(s))=0

s∈[0,DP ]
1
V

· ri(p(s)) ds, where s ∈ [0, DP ] and the in-
tegration is taken over the distance traversed by the WCV
along P , and p(s) is the WCV’s location corresponding to s.

Following the results in [10], it can be shown that ei(t) ≥ Emin

for all t ≥ 0, i ∈ N if the following conditions are satisfied:

Emax −
[
ri(pvac) · τvac +

∑ω(p)>0, DiB(p)>Dδ
p∈P, p �=pvac

ri(p) · ω(p)

+
∫ ω(p(s))=0

s∈[0,DP ]
1
V

· ri(p(s))ds
]
≥ Emin , (i ∈ N ) (6)

ri(pvac) · τvac +
∑ω(p)>0

p∈P, p �=pvac
ri(p) · ω(p)

+
∫ ω(p(s))=0

s∈[0,DP ]
1
V

· ri(p(s))ds
≤∑ω(p)>0, DiB(p)≤Dδ

p∈P UiB(p) · ω(p) , (i ∈ N ) (7)

In constraint (6),
∑ω(p)>0, DiB(p)>Dδ

p∈P, p �=pvac
ri(p)·ω(p) is the amount

of energy consumed at node i when the WCV is making stops near
those nodes other than i. Constraint (6) ensures that ei(t), which
starts from Emax at t = 0, will not fall below Emin at the end of the
first cycle t = τ . In constraint (7), the left hand side is the amount
of energy consumed at node i during τ while the right hand side is
maximum amount of potential energy received by node i in a cycle.
Note that the actual amount of energy received by node i in the first
cycle may be less than the right hand side due to battery overflow.3

Constraint (7) ensures that ei(t), which starts at full level Emax, will
be charged back to Emax before the end of the first cycle τ .

2.6 Problem Formulation
Based on the above mathematical models, a number of prob-

lems can be formulated and studied. As a case study, we consider
an optimization problem involving joint optimization of traveling
path, stopping points, charging schedule, and flow routing. For
the objective function, we consider minimizing energy consump-
tion of the entire system, which includes power used by the WCV
3Once a battery is charged to Emax, its energy cannot be further
increased.
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and the power consumed for wireless power transfer.4 Since power
used by the WCV is the dominant component in the overall energy
consumption, our objective function will focus on this component.
Specifically, we aim to minimize the fraction of time that the WCV
is at work (i.e., away from its service station) in each cycle pe-

riod, i.e.,
DP/V +

∑ω(p)>0
p∈P, p �=pvac

ω(p)

τ
.5 Note that by (1), minimizing

DP/V +
∑ω(p)>0

p∈P, p �=pvac
ω(p)

τ
is equivalent to maximizing τvac

τ
, which

is the percentage of time that the WCV is on vacation at its service
station. Therefore, we have the following optimization problem.

TPP:
maximize τvac

τ
s.t. Time constraints: (1);

Flow routing constraints: (3);
Energy consumption model: (5);
Energy renewable constraints: (6), (7).
τ, τvac, ω(p) ≥ 0 (p ∈ P)

fij(p), fiB(p), ri(p) ≥ 0 (i, j ∈ N , i �= j, p ∈ P) .

In this formulation, V , Ri, ρ, Cij , Emax, and Emin are constants,
and UiB(p) and CiB(p) can be computed by (2) and (4), respec-
tively. The path P and DP are to be determined in problem TPP.
The time intervals τ , τvac, and ω(p), the flow rates fij(p) and fiB(p),
and the power consumption rate ri(p) are also optimization vari-
ables.6 Note that problem TPP is a nonlinear program, and is NP-
hard in general.

In problem TPP, the WCV can travel anywhere in the two-dimensional
plane. It is not hard to see that the WCV’s roaming area can be nar-
rowed down to a much smaller area. In particular, it is sufficient
for the WCV to roam in the smallest enclosing disk (SED) [9],
denoted as A, which covers all the sensor nodes in the network
and the home service station. This result is stated in the following
lemma.

LEMMA 1. The optimal traveling path for the WCV must stay
inside the SED A.

A proof sketch: A proof of this lemma can be easily constructed
based on contradiction. That is, if there exists an optimal solution
that involves the WCV traveling outside of the SED, we can always
find a better solution (in terms of objective value) by bringing the
WCV inside the SED, which leads to a contradiction. A formal
proof is given in [12].

3. A NEAR-OPTIMAL SOLUTION TO AN
IDEALIZED PROBLEM

A major difficulty in problem TPP is that the traveling path P
is unknown and is part of the optimization problem. What further
complicates this matter is that it takes time for the WCV to travel
along the path. In this section, we consider an idealized problem

4Note that except their initial energy, the energy consumed at all
sensor nodes comes from the WCV.
5We assume the WCV keeps its engine running as long as it is away
from its service station.
6Note that variables in this formulation are only dependent on the
WCV’s location p and are independent of the time when the WCV
visits this location. In [7], Shi et al. showed that a time-based
formulation involving a MBS like ours can be transformed into
a location-based formulation. In light of that result, we start di-
rectly with a location-based formulation in this paper without go-
ing through the details of such transformation, which are similar to
those in [7].

Dδ

Du[1]

Du[2]

Du[Mu]

Figure 2: A sequence of circles centered at a node with decreas-
ing energy charging rates.

that ignores the time for the WCV to travel from one point to an-
other along P . We will show that it is possible to develop a prov-
ably near-optimal solution to this idealized problem. Based on this
result, in Section 4, we address the practical problem which con-
siders non-zero traveling time for the WCV.

3.1 An Idealized Problemwith Zero Traveling
Time

In the idealized problem, the traveling time of the WCV is as-
sumed to be zero. In this section, we give a formulation for this
idealized problem (denoted as OPT-ub) based on our formulation
for TPP. Since V → ∞, constraint (1) becomes

τ =
∑ω(p)>0

p∈P, p �=pvac
ω(p) + τvac . (8)

Further, since V → ∞ in OPT-ub, energy consumed at a sen-
sor node i when the WCV travels along P (i.e.,

∫ ω(p(s))=0

s∈[0,DP ]
1
V

·
ri(p(s)) ds) degenerates to 0. Hence, (7) can be simplified to

ri(pvac) · τvac +
∑ω(p)>0

p∈P, p �=pvac
ri(p) · ω(p)

≤∑ω(p)>0, DiB(p)≤Dδ
p∈P UiB(p) · ω(p) (i ∈ N ) , (9)

and (6) can be simplified to

ri(pvac) · τvac +
∑ω(p)>0, DiB(p)>Dδ

p∈P, p �=pvac
ri(p) · ω(p)

≤ Emax − Emin (i ∈ N ) . (10)

Summarizing all these updates, OPT-ub can be written as fol-
lows:

OPT-ub:
maximize τvac

τ
s.t. Time constraints: (8);

Flow routing constraints: (3);
Energy consumption model: (5);
Energy renewable constraints: (9), (10) .
τ, τvac, ω(p) ≥ 0 (p ∈ P)

fij(p), fiB(p), ri(p) ≥ 0 (i, j ∈ N , i �= j, p ∈ P) .

Denote ψ∗
TPP and ψ∗

OPT-ub
as an optimal solution to problem TPP

and problem OPT-ub, respectively. Denote η∗
TPP

as the objective
value achieved byψ∗

TPP and η∗
OPT-ub

as the objective value achieved by
ψ∗

OPT-ub
, respectively. The following lemma shows the relationship

between η∗
OPT-ub

and η∗TPP .

LEMMA 2. η∗
OPT-ub

is an upper bound of η∗
TPP
, i.e., η∗

OPT-ub
> η∗

TPP
.

A proof sketch: The proof of Lemma 2 can be constructed as
follows. Suppose ψ∗

TPP is given. Then we can construct a solution

112



Node 1

Node 2

Node 3

p2

p1
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(b) Phase II.
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(c) Phase III.

Figure 3: An example three-node sensor network illustrating area partition in three phases. The gray region is the SED of the three
nodes.

ψOPT-ub to problem OPT-ub with strictly greater objective value than
η∗TPP . Such construction of ψOPT-ub is straightforward as OPT-ub is an
ideal (or relaxed) case of TPP assuming zero traveling time. Since
the obtained solution ψOPT-ub is only feasible to OPT-ub, η∗

OPT-ub
(for

ψ∗
OPT-ub

) must be greater than η∗TPP . A formal proof is given in [12].
In the rest of this section, we develop a near-optimal solution to

OPT-ub. In Section 3.2, we partition the SED A into a number of
smaller subareas. In Section 3.3, we employ the so-called logical
point as a “worst-case” representation for each subarea in terms
of energy reception and energy consumption. The logical point
concept that we propose here generalizes the “fictitious cost point”
proposed in [7], which only considered energy consumption. In
Section 3.4, we propose an approximation algorithm to problem
OPT-ub, and prove it near-optimality.

3.2 Area Partitioning
In this section, we partition the SED A into a number of smaller

subareas. The partition is performed in a special way such that
some lower and upper bounds can be derived regarding energy
charging and consumption at each sensor node.
Phase I: Area Partition based on WPT. First, we discretize en-
ergy reception rate. Due to one-to-one mapping between distance
and energy reception rate (see (2)), a discretization of energy re-
ception rate also corresponds to a discretization of distance.

We discretize energy reception rates U [1], U [2], . . . , U [Mu] as
follows:

U [h] =

{
Umax(1− ε

W
)h if 0 ≤ h ≤Mu

0 otherwise ,
(11)

where Mu is the largest integer such that U [Mu] > δ, ε is the
allowed error margin for the near-optimal solution, W is a param-
eter controlling the granularity of the discretization (i.e., a large W
leads to a large Mu).

Corresponding toU [1], U [2], . . . , U [Mu], we can discretize dis-
tance into Du[1], Du[2], . . . , Du[Mu], and define Du[h] as fol-
lows:

Du[h] = μ−1

(
U [h]

Umax

)
, 1 ≤ h ≤Mu ,

where μ−1(·) denotes the inverse function of (2).
To determine Mu, recall that Mu is the largest integer such that

U [Mu] > δ. By (11), we have

Mu =
⌊ ln ( δ

Umax
)

ln (1− ε
W

)

⌋
. (12)

For each node i ∈ N , we draw Mu circles centered at node i,
with each circle having an increasing radius Du[h], 1 ≤ h ≤ Mu.
Based on (2), there is a circle with a radius of Dδ that cuts off the
charging area for node i. That is, whenDiB(p) = Dδ ,UiB(p) = δ
(see Fig. 2). Note that this last cut-off circle, along with the Mu-th
inner circle (i.e. the second outermost circle) partition A into three
regions:

(i). A disk with a radius ofDu[Mu], whereU [Mu] ≤ UiB(p) ≤
Umax.

(ii). A ring bounded by these two circles with radiuses ofDu[Mu]
and Dδ , respectively, where δ ≤ UiB(p) < U [Mu].

(iii). The area outside of the cut-off circle, in which UiB(p) = 0.

Since we have (Mu+1) circles for each node i, the intersections
of these circles partition disk A into a number of irregular subar-
eas. As an example, for the 3-node network in Fig. 3(a), suppose
that Mu = 2. Then we draw 3 circles for each node. Disk A in
Fig. 3(a) is partitioned into 19 irregular subareas. For the subarea
of white color with corner points p1 and p2, any point p in this sub-
area satisfies U [2] ≤ U1B(p) ≤ U [1] with respect to node 1. With
respect to nodes 2 and 3, for any point p in this same subarea, we
have δ ≤ U2B(p) ≤ U [2], and U3B(p) = 0.

As shown in the example, the proposed area partition gives tight
lower and upper bounds for each subarea. In particular, for a sub-
area Au with DiB(p) ≤ Du[Mu] where p ∈ Au, we have

U [hu
i (Au)] ≤ UiB(p) ≤ U [hu

i (Au)− 1] , p ∈ Au , (13)

where hu
i (Au) denotes the index of the outer circle (centered at

node i), and hu
i (Au) ≤Mu. For a given subarea Au, hu

i (Au) can
be determined by (11) and (13). We have

hu
i (Au) =

⌈
ln (UiB(p)/Umax)

ln (1− ε/W )

⌉
, p ∈ Au , (14)

Therefore, for any p ∈ Au, we have the lower bound for energy
reception UiB(p) as follows:

U [hu
i (Au)] =

⎧⎪⎨
⎪⎩
Umax(1− ε

W
)h

u
i (Au), if DiB(p) ≤ Du[Mu],

δ, if Du[Mu] < DiB(p) ≤ Dδ,

0, otherwise.
(15)

where hu
i (Au) is determined by (14).

Phase II: Area Partition based on Energy Consumption. Fol-
lowing a similar token to that in Phase I, we discretize energy con-
sumption rate, which also corresponds to a discretization of dis-
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tance. Specifically, for each node i ∈ N , we define a sequence of
increasing energy costs C[1], C[2], . . . , C[Mc

i ] as follows:

C[h] = β1

(
1 +

ε

W

)h

, (16)

where Mc
i is the largest number of elements in the sequence of

C[h]. Corresponding toC[h], h = 1, 2, . . . ,Mc
i , we can discretize

distance into Dc[1], Dc[2], . . . , Dc[Mc
i ], where

Dc[h] =
(C[h] − β1

β2

)−α

, 0 ≤ h ≤Mc
i + 1 .

For each node i ∈ N , we can draw Mc
i circles centered at node

i, with increasing radii Dc[1], Dc[2], . . . , Dc[Mc
i ]. To determine

Mc
i , denoteOA andRA as the origin and radius of A, respectively.

Denote Di,OA as the distance from node i to OA. As DiB(p) ∈
[0, Di,OA +RA], by (4), we have CiB ∈ [β1, β1 + β2 · (Di,OA +
RA)α]. Since the WCV can only travel within A, Mc

i is the largest
integer such that C[Mc

i ] < β1 + β2 · (Di,OA + RA)α. By (16),
we have

Mc
i =

⌊ ln (1 + β2
β1

· (Di,OA +RA)α)

ln (1 + ε
W

)

⌋
.

Since we have Mc
i circles for i ∈ N , the intersections of these

circles partition A into a number of subareas (see Fig. 3(b)). For a
subarea Ac, we have

C[hc
i (Ac)− 1] ≤ CiB(p) ≤ C[hc

i (Ac)] , p ∈ Ac , (17)

where hc
i (Ac) denotes the index of the outer circle (centered at

node i) that contains Ac. Given a subarea Ac, hc
i (Ac) can be de-

termined by (16) and (17). Thus, we have

hc
i (Ac) =

⌈ ln (1 + β2
β1

·DiB(p)α)

ln (1 + ε
W

)

⌉
. (18)

Therefore, for any p ∈ Ac, a tight upper bound of CiB(p) is:

C[hc
i (Ac)] = β1

(
1 +

ε

W

)hc
i (Ac)

, (19)

where hc
i (Ac) is determined by (18).

Phase III: Joint Area Partition. By combining the partitions in
both Phases I and II, the disk A is partitioned into smaller subareas
Au+c

k , k = 1, 2, . . . ,K (see Fig. 3(c)). For each subarea Au+c
k ,

both the energy reception and consumption can be tightly bounded.
Now we give an upper bound on the number of subareas K. By

(12), we have

Mu =
⌊ ln ( δ

Umax
)

ln (1− ε
W

)

⌋
= O

(⌊ 1
ε
W

⌋)
= O

(
W

ε

)
,

where the second equality holds since ln (δ/Umax) is a negative
constant and ln(1− ε/W ) ≈ −ε/W for small ε/W . Similarly, we
have

Mc
i =

⌊ ln (1 + β2
β1

· (Di,OA +RA)α)

ln (1 + ε
W

)

⌋

= O

(⌊ 1
ε
W

⌋)
= O

(
W

ε

)
.

For each sensor node, there are (Mu+1) circles from Phase I and
Mc

i circles from Phase II. Putting these circles and one more circle
for A together, the total number of circles isB = 1+

∑
i∈N (Mu+

Mc
i +1). Given B circles, the maximum number of subareas K is

upper bounded by K ≤ B2 −B + 2 (which can be easily verified
by induction). That is

K = O(B2) = O

([
1 +

∑
i∈N

(Mu +Mc
i + 1)

]2)

= O

((W |N |
ε

)2)
. (20)

3.3 Logical Point Representation
For each subarea Au+c

k , k = 1, 2, . . . ,K, we represent it as a
logical point Lk. Denote ω(Lk) as the total stopping time when
the WCV is in subarea Au+c

k . Then we have,

ω(Lk) =

ω(p)>0∑
p∈Au+c

k

ω(p) .

To characterize a logical point Lk, we use the worst case bounds
of energy charging and energy consumption rates within the sub-
area Au+c

k . Specifically, for a logical point Lk, we use a |2N|-tuple
to represent a logical point, where the first |N | components are
for energy charging and the other |N | components are for energy
consumption, i.e.,

[
U1(Lk), U2(Lk), . . . , U|N|(Lk), C1B(Lk),

C2B(Lk), . . . , C|N|B(Lk)
]
. In this vector, the first |N | compo-

nents are

Ui(Lk) = U [hu
i (Au+c

k )] , (21)

where U [hu
i (Au+c

k )] is the lower bound of UiB(p) for any p ∈
Au+c

k and is determined by (15), while the next |N | components
are

CiB(Lk) = C[hc
i (Au+c

k )] , (22)

where C[hc
i (Au+c

k )] is the upper bound of CiB(p) for any p ∈
Au+c

k and is determined by (19).

3.4 A Near-Optimal Solution
Based on these logical points, we can develop a provably near-

optimal solution to problem OPT-ub. Recall that ψ∗
OPT-ub

is an opti-
mal solution to problem OPT-ub, and η∗

OPT-ub
is the objective value

achieved by ψ∗
OPT-ub

. Our goal is to find a feasible solution to prob-
lem OPT-ub, denoted as ψOPT-ub , so that ηOPT-ub ≥ η∗

OPT-ub
− ε.

A Worst-Case Formulation and Its Solution. Note that a log-
ical point is a worst-case representation of the subarea in terms of
energy charging and energy consumption. Based on these logical
points, we can have a formulation, denoted as OPT-L, that can be
used to derive a lower bound to OPT-ub. Problems OPT-L and
OPT-ub are similar to each other except the following differences:

• OPT-L is based on a finite number of logical points while
OPT-ub is based on an infinite number of physical points.

• For p �= pvac, we have ω(Lk), fij(Lk), fiB(Lk), ri(Lk) in
OPT-L rather than ω(p), fij(p), fiB(p), ri(p) in OPT-ub.

• We have Ui(Lk) and CiB(Lk) in OPT-L rather than Ui(p)
and CiB(p) in OPT-ub.

Through a number of changes of variables, OPT-L can be refor-
mulated into a linear program (LP), which can be solved in poly-
nomial time (see Appendix A for more details).

Recover a Feasible Solution to OPT-ub. After we obtain an
optimal solution to problem OPT-L, denoted as ψOPT-L , we need
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to recover a solution to OPT-ub (denoted by ψOPT-ub ). Suppose
that ψOPT-ub = (τ, τvac , ω(p), fij(p), fiB(p), ri(p)). From ψOPT-L ,
ψOPT-ub can be constructed as follows:

• τ and τvac are the same as their counterparts in ψOPT-L .

• For p = pvac, fij(pvac), fiB(pvac), ri(pvac) are the same as
their counterparts in ψOPT-L .

• For any ω(Lk) > 0, choose a point pk ∈ Au+c
k and set

ω(pk) = ω(Lk). Further, set flow routing fij(pk) = fij(Lk)
and fiB(pk) = fiB(Lk). Determine ri(pk) by (5).

Denote ηOPT-L and ηOPT-ub as the objective values achieved by
ψOPT-L and ψOPT-ub , respectively. Since τ and τvac are unchanged
in the foregoing solution construction, we have

ηOPT-ub = ηOPT-L . (23)

The following lemma affirms the feasibility of the constructed
solution ψOPT-ub to problem OPT-ub.

LEMMA 3. ψOPT-ub is a feasible solution to problem OPT-ub.

A proof of Lemma 3 is given in Appendix B.

Proof of Near-Optimality. The near-optimality of ψOPT-ub is
stated in the following theorem.

THEOREM 1. For a given ε > 0, ηOPT-ub ≥ η∗
OPT-ub

− ε.

A proof sketch: Theorem 1 can be proved based on solution
construction. First, we show that given a feasible solution ψ̂OPT-ub

to OPT-ub with an objective value η̂OPT-ub , we can construct a solu-
tion ψ̂OPT-L to OPT-L with an objective value η̂OPT-L ≥ η̂OPT-ub − ε.
Second, we consider a special case that the given solution ψ̂OPT-ub

is an optimal solution ψ∗
OPT-ub

to OPT-ub with an objective value
η∗

OPT-ub
. Based on this construction, we can obtain a solution to

OPT-L with an objective value at least η∗
OPT-ub

− ε. Since this so-
lution is only a feasible solution to OPT-L while ψOPT-L is an op-
timal solution, we have ηOPT-L ≥ η∗

OPT-ub
− ε. Further, we have

ηOPT-ub = ηOPT-L ≥ η∗
OPT-ub

− ε, where the first equality holds by (23).

4. A PRACTICALSOLUTIONANDPERFOR-
MANCE GAP ANALYSIS

In Section 3, we have developed a near-optimal solution to an
idealized problem, in which a WCV’s traveling time is assumed to
be zero. In this section, we incorporate traveling time and develop
a practical solution to our original problem (TPP). We also quantify
the performance gap between this solution and optimal (unknown)
solution to TPP.

4.1 Fixing a Traveling Path
The near-optimal solution ψOPT-ub to the idealized problem OPT-

ub in Section 3 offers us several tools in designing a solution to the
original problem TPP. First, the objective value ηOPT-ub of ψOPT-ub is
at least η∗

OPT-ub
− ε while η∗

OPT-ub
is an upper bound for the unknown

objective value η∗TPP of TPP. This can be used as a performance
benchmark to measure the quality of the practical solution (which
includes traveling time) to the original problem TPP. Second, the
logical point concept in the near-optimal solution ψOPT-ub offers a
hint on where the WCV should make stops and charge the sensor
nodes. We will exploit these stops in ψOPT-ub to design a solution to
problem TPP.

For the stopping points (any physical point within a logical point
that has non-zero stopping time) in ψOPT-ub , we propose to find a

Node 1

Node 3

Node 2

Service Station p3

p1

p4

p2

Figure 4: Comparison between a Hamiltonian cycle connect-
ing the logical points and the service station and a Hamiltonian
cycle connecting the sensor nodes and the service station.

shortest Hamiltonian cycle to connect them. Note that the service
station is also included in this shortest Hamiltonian cycle. Denote
this path by POPT-lb . The decision of using shortest Hamiltonian
cycle is obvious as it corresponds to the least amount of traveling
time (not including stopping time).

It is important to realize that the shortest Hamiltonian cycle that
we find here is based on the connection of logical points, rather
than the actual sensor nodes. A Hamiltonian cycle for the latter
would be fundamentally different from the former. As an example,
in Fig. 4, the solid triangle is a Hamiltonian cycle connecting two
logical points (with corner points (p1, p2) and (p3, p4)) and the
service station while the dotted quadrangle is a Hamiltonian cycle
connecting three sensor nodes and the service station.

4.2 Incorporating Traveling Time
Under the selected traveling path POPT-lb , denote G as the total

number of physical points with positive stopping time. We re-
index these points by traveling order under POPT-lb , and let POPT-lb =
(pvac, p1 , . . . , pG , pvac), with the starting and ending point being
the service station (pvac) and the j-th stop along the path being pj ,
1 ≤ j ≤ G.

To find flow routing when the WCV travels along POPT-lb , we
discretize POPT-lb into a sequence of segments based on POPT-lb ’s in-
tersection with the subareas (see Figs. 3(c) and 4). Based on this
path discretization, we can rewrite TPP into a new formulation (de-
noted as OPT-lb), in which we can obtain flow routing when the
WCV is traveling on each segment along path POPT-lb .

Note that each segment is contained by one subarea. Among
these traversed subareas, the WCV makes stops at some of them
while only traversing others without making any stop. Denote Q
as the set of indexes for all the traversed subareas and Qs as the
set of indexes for those subareas that the WCV makes stops, re-
spectively. For m ∈ Q, the WCV’s traveling time (not including
stopping time) in this subarea is D(Lm)/V , where Lm is the log-
ical point corresponding to this subarea, and D(Lm) denotes the
distance traversed within Lm along POPT-lb .

For m ∈ Qs, since the WCV makes a stop only at one point, we
have |Qs| = G. The total time that the WCV spends in Lm is

D(Lm)

V
+ ω(Lm) ,

where ω(Lm) is the stopping time within Lm. Based on POPT-lb and
Lm, m ∈ Q, we rewrite problem TPP to OPT-lb as follows:
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OPT-lb

maximize τvac
τ

s.t. τ = τvac +
∑

m∈Qs
ω(Lm) +

∑
m∈Q

D(Lm)
V

(24)∑k �=i
k∈N fki(Lm) +Ri =

∑j �=i
j∈N fij(Lm) + fiB(Lm)

(i ∈ N ,m ∈ Q)

ri(Lm) = ρ
∑k �=i

k∈N fki(Lm) +
∑j �=i

j∈N Cij · fij(Lm)

+CiB(Lm) · fiB(Lm) (i ∈ N , m ∈ Q)

ri(pvac) · τvac +
∑

m∈Qs
ri(Lm) · ω(Lm)

+
∑

m∈Q
D(Lm)

V
· ri(Lm)

≤∑DiB(p)≤Dδ,p∈Au+c
m

m∈Qs
UiB(Lm) · ω(Lm) (i ∈ N ) (25)

ri(pvac) · τvac +
∑DiB(p)>Dδ,p∈Au+c

m
m∈Qs

ri(Lm) · ω(Lm)

+
∑

m∈Q
D(Lm)

V
· ri(Lm) ≤ Emax − Emin (i ∈ N ) (26)

τ, τvac , ω(Lm) ≥ 0 (m ∈ Qs)

fij(Lm), fiB(Lm), ri(Lm) ≥ 0 (i, j ∈ N , i �= j,m ∈ Q)

fij(pvac), fiB(pvac), ri(pvac) ≥ 0 (i, j ∈ N , i �= j)

In problem OPT-lb, time constraint (24) incorporates traveling
time along POPT-lb . Also, constraints (25) and (26) incorporate en-
ergy consumption when the WCV is traveling.

Through a similar change-of-variable procedure to that in Ap-
pendix A for OPT-L, we can reformulate OPT-lb to an LP. By solv-
ing this LP, we can obtain a feasible solution to problem TPP. De-
note ψOPT-lb as this feasible solution and ηOPT-lb as the objective value
achieved by ψOPT-lb . The relationship between ηOPT-lb and the opti-
mum objective value η∗TPP is given in the following lemma.

LEMMA 4. ηOPT-lb is a lower bound of η
∗
TPP
, i.e., ηOPT-lb ≤ η∗

TPP
.

Clearly, Lemma 4 holds since OPT-lb is based on a specified path
POPT-lb and thus ψOPT-lb is only a feasible solution to problem TPP.

4.3 Analysis of Performance Gap and Algo-
rithm Complexity

Denote θ as the performance gap between ηOPT-lb and the un-
known optimal objective η∗TPP . We have the following lemma.

LEMMA 5. θ ≤ ε+ ηOPT-ub − ηOPT-lb .

PROOF. By definition, θ = η∗TPP − ηOPT-lb , we have

θ ≤ η∗
OPT-ub

− ηOPT-lb ≤ ε+ ηOPT-ub − ηOPT-lb ,

where the first inequality holds by Lemma 2, and the second in-
equality holds by Theorem 1.

In the above solution, solving two LPs (i.e., problems OPT-L
and OPT-lb) has the highest complexity. The problem size of either
LP is decided by the maximum number of subareas, which is a
polynomial in |N | (see (20)). Thus, both LPs have polynomial size
and the algorithm complexity is polynomial.

5. NUMERICAL RESULTS
Network and Parameter Settings. In the numerical results, the
units of distance, time, data rate, and energy are all normalized ap-
propriately. We assume sensor nodes are randomly deployed over
a unit square area. The data rate Ri, i ∈ N , is randomly gener-
ated within [0.1, 1]. The home service station is assumed to be at
(0.5,0.5), and the WCV travels at a speed V = 0.1.

Table 1: Location and data rate Ri for each node in a 50-node
network.

Node Index Location Ri Node Index Location Ri

1 (0.547,0.644) 0.1 26 (0.833,0.115) 0.2
2 (0.662,0.757) 0.7 27 (0.639,0.658) 0.1
3 (0.037,0.859) 0.4 28 (0.704,0.930) 0.6
4 (0.723,0.741) 1.0 29 (0.977,0.306) 0.8
5 (0.529,0.778) 0.9 30 (0.673,0.386) 0.5
6 (0.316,0.035) 0.4 31 (0.021,0.745) 0.7
7 (0.190,0.842) 0.8 32 (0.924,0.072) 0.6
8 (0.288,0.106) 0.8 33 (0.270,0.829) 0.1
9 (0.040,0.942) 0.2 34 (0.777,0.573) 0.8

10 (0.264,0.648) 0.4 35 (0.097,0.512) 0.9
11 (0.446,0.805) 0.5 36 (0.986,0.290) 0.2
12 (0.890,0.729) 0.5 37 (0.161,0.636) 0.7
13 (0.370,0.350) 0.1 38 (0.355,0.767) 0.9
14 (0.006,0.101) 0.7 39 (0.655,0.574) 0.5
15 (0.393,0.548) 0.1 40 (0.031,0.052) 0.4
16 (0.629,0.623) 0.1 41 (0.350,0.150) 0.3
17 (0.084,0.954) 0.5 42 (0.941,0.724) 0.1
18 (0.756,0.840) 0.2 43 (0.966,0.430) 0.2
19 (0.966,0.376) 0.7 44 (0.107,0.191) 0.3
20 (0.931,0.308) 0.6 45 (0.007,0.337) 0.3
21 (0.944,0.439) 0.1 46 (0.457,0.287) 0.4
22 (0.626,0.323) 0.4 47 (0.753,0.383) 0.1
23 (0.537,0.538) 0.2 48 (0.945,0.909) 0.1
24 (0.118,0.082) 0.3 49 (0.209,0.758) 0.3
25 (0.929,0.541) 0.2 50 (0.221,0.588) 0.8

Table 2: Index of stopping points along the path, location and
stopping time at each stopping point for the 50-node network.

Stopping Location τk Stopping Location τk
point point

1 (0.575,0.550) 0.3 18 (0.525,0.775) 179.3
2 (0.600,0.575) 77.2 19 (0.375,0.775) 69.8
3 (0.750,0.575) 179.4 20 (0.350,0.775) 117.9
4 (0.675,0.375) 50.9 21 (0.200,0.825) 175.9
5 (0.650,0.350) 66.2 22 (0.075,0.950) 110.0
6 (0.900,0.075) 98.6 23 (0.025,0.775) 166.6
7 (0.925,0.075) 38.8 24 (0.025,0.750) 3.1
8 (0.975,0.300) 12.2 25 (0.200,0.625) 86.5
9 (0.975,0.325) 81.8 26 (0.225,0.625) 43.5
10 (0.975,0.350) 102.9 27 (0.150,0.550) 136.8
11 (0.925,0.525) 42.3 28 (0.100,0.525) 105.1
12 (0.900,0.725) 103.6 29 (0.000,0.325) 64.7
13 (0.950,0.900) 21.8 30 (0.000,0.100) 26.4
14 (0.700,0.925) 124.2 31 (0.050,0.125) 180.6
15 (0.725,0.750) 160.6 32 (0.300,0.100) 173.3
16 (0.700,0.750) 32.4 33 (0.450,0.300) 84.3
17 (0.675,0.750) 18.9 34 (0.400,0.550) 19.8
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Figure 5: A traveling path for the WCV in the 50-node sensor
network.
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Figure 6: The energy behavior of the 35th sensor node in the 50-node network during the first three cycles.

Suppose that a sensor node uses a rechargeable battery withEmax
= 10, 000, and Emin = 500. For the charging efficiency function
μ(DiB), we assume a decreasing function μ(DiB) = −40 ·D2

iB−
4 ·DiB +1.0. Letting Umax = 50 and δ = 10, we have Dδ = 0.10
for a maximum distance of effective charging. The normalized pa-
rameters in energy consumption model are β1 = β2 = ρ = 1. The
path loss index is α = 4. We set W = 3 and ε = 0.05 for the
numerical results.

We consider a 50-node network. The normalized location of
each node and its data rate are given in Table 1.

Results. Table 2 gives the stopping points (each within a logical
point with a non-zero stopping time) along the travel path for the
WCV. The traveling path is shown in Fig. 5. For POPT-lb , DPOPT-lb

=

4.89 and the traveling time DPOPT-lb
/V = 48.9. Table 2 shows

the charging schedule at each stopping point on POPT-lb . Following
POPT-lb and this charging schedule, our solution ensures that any
sensor node never runs out of energy. As an example, Fig. 6 shows
the energy behavior of a sensor node (the 35th node) during the first
three cycles. During each cycle, this node is charged by the WCV
when it makes stops at two stopping points (i.e., the 27th and 28th
points). Starting from the second cycle, the node’s energy behavior
repeats from cycle to cycle.

For the given ε = 0.05, we have ηOPT-ub = 68.62%. For the ob-
tained practical solution ψOPT-lb , the cycle time τ = 9414, the vaca-
tion time τvac = 6410, and the objective value is ηOPT-lb = 68.09%.
By Lemma 5, the performance gap θ ≤ ε + ηOPT-ub − ηOPT-lb =
0.05 + 0.6862 − 0.6809 = 0.0553, where the given ε is the dom-
inant part. This shows that the objective value by the lower bound
feasible solution is very close to that by the upper bound solution.

6. CONCLUSIONS
In this paper, we studied the problem of co-locating the MBS

on the WCV in a WSN, with a focus on the traveling path prob-
lem of the WCV. The goal was to minimize energy consumption
of the the entire system while ensuring none of the sensor nodes
runs out of energy. We formulated an optimization problem (TPP)
that involved joint optimization of traveling path, stopping points,
charging schedule, and data flow routing. We first considered an
idealized problem (OPT-ub) that assumed zero traveling time. For
OPT-ub, we developed a provably near-optimal solution which in-
volves several novel techniques, such as discretization of energy
reception rate and energy consumption rate, double partitioning of
the SED into smaller subareas with tight energy bounds, and rep-
resentation of each subarea by a logical point as its “worst-case”
energy reception and consumption behavior. Based on the near-
optimal solution to the idealized problem OPT-ub, we set the trav-

eling path as the shortest Hamiltonian cycle connecting the logical
points and the service station. We then obtained a practical solu-
tion (with non-zero traveling time) to the original problem TPP, and
quantified the performance gap between this feasible solution and
an optimal (unknown) solution to TPP.
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APPENDIX

A. REFORMULATION
We show how to reformulate problem OPT-L to an LP via a

change-of-variable technique. For the fractional objective function
τvac
τ

, we define ηvac =
τvac
τ

. We also define η(Lk) = ω(Lk)
τ

and
q = 1

τ
. For time constraint (8), we divide both sides by τ , and

rewrite it as ηvac +
∑K

k=1 η(Lk) = 1.
For (3) and (5), we consider logical points Lk, k = 1, 2, · · · ,K,

and pvac separately. First, for Lk, we multiple both sides of (3) by
η(Lk) and define gij(Lk) = fij(Lk) · η(Lk) and giB(Lk) =
fiB(Lk) · η(Lk). For the new nonlinear terms ri(Lk) · η(Lk), we
define Ei(Lk) = ri(Lk) · η(Lk). By the new variables gij(Lk),
giB(Lk), and Ei(Lk), (3) is reformulated as∑k �=i

k∈N gki(Lk) +Ri · η(Lk) =
∑j �=i

j∈N gij(Lk) + giB(Lk) ,

and (5) is rewritten as

Ei(Lk) = ρ
∑k �=i

k∈N gki(Lk) +
∑j �=i

j∈N Cij · gij(Lk)

+CiB(Lk) · giB(Lk) .

Second, for pvac, we multiply both sides of (3) and (5) by ηvac ,
and define gij(pvac) = fij(pvac) ·ηvac , giB(pvac) = fiB(pvac) ·ηvac ,
and Ei(pvac) = ri(pvac) ·ηvac . Then (3) and (5) can be reformulated
as∑k �=i

k∈N gki(pvac) +Ri · ηvac =
∑j �=i

j∈N gij(pvac) + giB(pvac)

Ei(pvac) = ρ
∑k �=i

k∈N gki(pvac) +
∑j �=i

j∈N Cij · gij(pvac)

+CiB(pvac) · giB(pvac)

By dividing both sides by τ , constraint (9) can be rewritten as

ri(pvac) · ηvac +
∑K

k=1 ri(Lk) · η(Lk) ≤ ∑DiB(p)≤Dδ,p∈Au+c
k

k=1,...,K

UiB(Lk) · η(Lk), or equivalently,

Ei(pvac) +
K∑

m=1

Ei(Lk) ≤
DiB(p)≤Dδ,p∈Au+c

k∑
k=1,...,K

UiB(Lk) · η(Lk)

Similarly, by dividing both sides by τ , (10) can be rewritten as

ri(pvac)·ηvac +
∑DiB(p)>Dδ,p∈Au+c

k
k=1,...,K ri(Lk)·η(Lk) ≤ Emax−Emin

τ
,

or equivalently,

Ei(pvac) +

DiB(p)>Dδ,p∈Au+c
k∑

k=1,...,K

Ei(Lk) ≤ (Emax − Emin) · q .

Now the new objective function and new constraints are linear,
which makes an LP.

B. PROOF OF LEMMA 3

PROOF. To show that ψOPT-ub = (τ, τvac, ω(p), fij(p), fiB(p),
ri(p)) is feasible to problem OPT-ub, we need to verify that ψOPT-ub

satisfies constraints (3), (5), (8), (9), and (10). To do this, we exploit
the worst case bounds that are inherited in a logical point represen-
tation.

Since ψOPT-L is feasible to problem OPT-L (based on the K log-
ical points), we know that ψOPT-L satisfies constraints (3), (5), (8),
(9), and (10). We now verify each of these constraints for ψOPT-ub .
Since τ and τvac remain unchanged and ω(pk) = ω(Lk), where
pk ∈ Au+c

k , 1 ≤ k ≤ K, ψOPT-ub satisfies constraint (8). ψOPT-ub

also satisfies constraints (3) and (5) since fij(pvac), fiB(pvac) and
ri(pvac) remain unchanged, fij(pk) = fij(Lk), fiB(pk) = fiB(Lk),
and ri(pk) is determined by (5).

To verify two remaining energy constraints (9) and (10), by (19)
and (22), we first have CiB(pk) ≤ CiB(Lk), 1 ≤ k ≤ K. As a re-

sult, ri(pk) = ρ
∑k �=i

k∈N fki(pk)+
∑j �=i

j∈N Cij ·fij(pk)+CiB(pk)·
fiB(pk) ≤ ρ

∑n�=i
n∈N fni(Lk)+

∑j �=i
j∈N Cij · fij(Lk)+CiB(Lk) ·

fiB(Lk) = ri(Lk), where the first equality holds since ψOPT-ub

satisfies (5), the second equality holds since fij(pk) = fij(Lk),
fiB(pk) = fiB(Lk) and CiB(pk) ≤ CiB(Lk), and the last equal-
ity holds since ψOPT-L satisfies (5). By the same token, we have that
ri(pvac) is unchanged since CiB(pvac) is unchanged.

Since ri(pk) ≤ ri(Lk) and ri(pvac) is unchanged, we have

ri(pvac) · τvac +
∑K

k=1 ri(pk) · τ (pk)
≤ ri(pvac) · τvac +

∑K
k=1 ri(Lk) · τ (Lk)

≤ ∑DiB(p)≤Dδ,p∈Au+c
k

k=1,...,K UiB(Lk) · τ (Lk)

≤ ∑DiB(pk)≤Dδ
k=1,...,K UiB(pk) · τ (pk)

where the first inequality holds since ri(pvac) and τvac are unchanged,

ri(pk) ≤ ri(Lk) and τ (pk) = τ (Lk), the second inequality holds
since ψOPT-L meets (9), the third inequality holds by UiB(Lk) ≤
UiB(pk) (see (15) and (21)) and τ (pk) = τ (Lk). Thus, constraint
(9) holds for ψOPT-ub . Similarly, we can show that constraint (10)
holds for ψOPT-ub . Therefore, the constructed solution ψOPT-ub is fea-
sible to problem OPT-ub. This completes the proof.
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