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Abstract

Wireless sensor networks are characterized by multihop wireless lossy links and resource constrained nodes. En-
ergy efficiency is a major concern in such networks. In this paper, we study Geographic Routing with Environmental
Energy Supply (GREES) and propose two protocols, GREES-L and GREES-M, which combine geographic routing
and energy efficient routing techniques and take into account the realistic lossy wireless channel condition and the
renewal capability of environmental energy supply when making routing decisions. Simulation results show that
GREESs are more energy efficient than the corresponding residual energy based protocols and geographic routing
protocols without energy awareness. GREESs can maintain higher mean residual energy on nodes, and achieve
better load balancing in terms of having smaller standard deviation of residual energy on nodes. Both GREES-L
and GREES-M exhibit graceful degradation on end-to-end delay, but do not compromise the end-to-end throughput
performance.

Index Terms

wireless sensor networks, geographic routing, energy efficiency, environmental energy supply

. INTRODUCTION

Wireless sensor networks (WSNSs) are characterized by multihop lossy wireless links and severely resou
constrained nodes. Among the resource constraints, energy is probably the most crucial one since sensor n
are typically battery powered and the lifetime of the battery imposes a limitation on the operation hours of th
sensor network. Unlike the microprocessor industry or the communication hardware industry, where computati
capability or the line rate has been continuously improved (regularly doubled every 18 months), battery technolo
has been relatively unchanged for many years. Energy efficiency has been a critical concern in wireless ser
network protocol design. Researchers are investigating energy conservation at every layer in the traditional protc
stack, from the physical layer up to the network layer and application layer.

Among the energy consumption factors, communication has been identified as the major source of enel
consumption and costs significantly more than computation in WSNs [1]. Energy aware routing and geograpt
routing are two major approaches to energy efficient communications in wireless ad hoc and sensor networks.

In former energy aware routing protocols [2], [3], [4], [5], sensors/nodes are assumed to be powered by batter
with limited/fixed capacity and then routing decisions are made based on the energy consumption by ser
ing/receiving packets on the wireless links and/or residual energy on each node. The objective of those protoc
is either minimizing the energy consumption or maximizing the network lifetime. A new observation related tc
energy aware routing is the availability of the so-called energy scavengers which are devices able to harvest sr
amount of energy from ambient sources such as light, heat or vibration [6], [7], [8]. Solar-aware routing protoco
are proposed in [9], [10] that preferably route packets via solar powered nodes. The optimal paths are calcula
based on each node having global knowledge of the whole network, which is usually inapplicable in WSNs. Lin
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al. [11] addressed the problem of power-aware routing with distributed energy replenishment for multihop wirele:
networks. The distributed algorithm proposed in [11] needs to flood the whole network to get the optimal patl
More comprehensive study is necessary to design efficient localized algorithm to achieve energy efficiency wi
environmental energy supply.

In geographic routing [12], [13], [14], [15], [16], [17], [18], [19], each node makes routing decision locally based
on its own, its neighbors’ and the destination’s location information. Geographic routing technique is particularl
applicable in wireless sensor networks because almost all sensing and monitoring applications of sensor netwe
require sensors to be aware of their physical locations. The properties such as good scalability, statelessness,
low maintenance overhead make geographic routing an efficient technique especially in large-scale WSNSs.
focus of these geographic routing works was performance gain therefore none of them took into account the ene
constraint on nodes. While some geographic routing protocol accounts for nodes’ residual energy information st
as GEAR (Geographic and Energy Aware Routing) [20], which uses energy aware and geography-based neigh
selection heuristics to route a packet towards the target region, it does not take into account the realistic wirelt
channel conditions. It is shown in [18] that the factor of unreliable wireless links must be explicitly taken intc
account when designing geographic routing protocols.

It's necessary to design new local cost metrics to achieve efficient geographic routing with environmental ener
supply. In this paper, we take a cross-layer design approach and carry out a more comprehensive study on en
efficiency issue. We propose two Geographic Routing with Environmental Energy Supply (GREES) protocol:
GREES-L and GREES-M, which make routing decision locally by jointly taking into account multiple factors —
the realistic wireless channel condition, packet advancement to the destination, the residual battery energy leve
the node, and the environmental energy supply. Simulation results show that our protocols are more energy effici
than the corresponding residual energy based protocols and geographic routing protocols without considering
property of the energy renewal. In particular, given the same energy and traffic models, GREESs maintain higt
mean residual energy on nodes and achieve better load balancing in terms of having a smaller standard devia
of residual energy among nodes. Both GREES-L and GREES-M exhibit graceful degradation on end-to-end del
but do not compromise the end-to-end throughput performance.

The rest of the paper is organized as follows. The related work is introduced in Section Il. We explain GREES-
and GREES-M in detail in Section lll, and present and analyze our simulation results in Section IV. Section
presents our conclusions.

Il. RELATED WORK

Our work is inspired and related to prior works on energy-aware routing and geographic routing, and rece
works on feasibility of using environmental energy resources in wireless sensor networks.

A. Energy Aware Ad-hoc routing

Energy-aware routing has received significant attention over the past few years [2], [3], [4], [5]. Woo et al
[2] proposed five energy aware metrics suchmaximizing time to partitiorand minimizing maximum node cost
These are important metrics for energy efficient routing, however, it is difficult to directly implement them in a
local algorithm when even the global version of the same problem is NP-complete. Chang et al. [3] proposed
class of flow augmentation algorithms and a flow redirection algorithm which balance the energy consumption ra
among the nodes in proportion to the energy reserves. The limitation of this approach is that it requires the pr
knowledge of the information generation rates at the origin nodes. Li et al. [4] proposed an “online” power-awal
routing and a zone based routing algorithms which maximize the network lifetime without knowing the messac
generation rate. Following [4], another “online” routing algorithm was proposed in [5] aiming to maximize the total
number of successfully delivered messages.

All of these works were based on the assumption that nodes have limited/fixed energy supply and did not te
into account the nodes’ capabilities of extracting energy from the environment, which will be studied in this pape

B. Geographic Ad-hoc Routing

The appeal of geographic routing protocol lies in the fact that it is scalable and the process of making routir
decision is localized. The node holding the packets only needs to be aware of the location of itself, its one hi



neighbors, and the destination. For traditional geographic routing schemes, packets are routed/forwarded loc
and greedily to the one-hop neighbor that provides most positive advancement to the destination. In greedy mo
Cartesian routing [12] chooses the neighbor closest to the destination as the next hop while MFR (Most Forwe
within Radius) [13] prefers the neighbor with the shortest projected distance (on the straight line joining the curre
node and the destination) to the destination.

Several recent experimental studies on wireless ad-hoc and sensor networks [21], [22] have shown that wirel
links can be highly unreliable and that this must be explicitly taken into account when considering higher
layer protocols. [23] showed the existence of a large “transitional region” where link quality has high variance
including both good and highly unreliable links. The existence of such links exposes a key weakness in gree
forwarding schemes that the neighbors closest to the destination (also likely to be farthest from the forwardii
node) may have poor links with the forwarding node. The weak links would result in a high packet droppin
rate and drastic reduction of delivery ratio or increased energy wastage if retransmissions are employed. M
recent works on geographic routing are aware of this realistic lossy channel situation. Seada, et al. [18] articula
the distance—hop energy trade-off for geographic routing. They concluded that the expected packet advancem
PRR (Packet Reception Rate) x Advancement, is an optimal metric for making localized geographic routing
decisions in lossy wireless networks with ARQ (Automatic Repeat reQuest) mechanisms. Zorzi and Armarc
also independently proposed the same link metric [24]. Lee, et al. [19] presented a more general framework cal
normalized advance (NADV) to normalize various types of link cost. The focus of the above works was performan
gain therefore none of them took into account the energy constraint on nodes. Although GEAR (Geographic a
Energy Aware Routing)[20] accounts for nodes’ residual energy information, it does not take into account tt
realistic wireless channel conditions.

C. Routing in Environmentally Powered Sensor Networks

There is significant interest in energy harvesting for wireless sensor networks in order to improve its sustainal
lifetime and performance [25]. Several technologies to extract energy from the environment have been demonstre
including solar light, heat or vibrational sources [6], [7], [8].

Environmental energy is distinct from battery status in two ways. First it is a continued supply which if
appropriately used can allow the system to last forever, unlike the battery which is a limited resource. Secor
there is an uncertainty associated with its availability and measurement, compared to the energy stored in
battery. Thus, methods based on residual energy in batteries are not always applicable to environmental ene
aware decisions [26].

The works take environmental energy into account for routing are [9], [10], [27], [28]. A distributed framework
for the sensor network to adaptively learn its energy environment was presented in [9]. An example study of routil
in [9] showed that the proposed framework is able to utilize the extra knowledge about the environment to increa
system lifetime. Voigt, et al. [10] designed two solar-aware routing protocols that preferably route packets vi
solar powered nodes and showed that the routing protocols provide significant energy savings. The optimal pa
calculated in [9], [10] is based on each node having global knowledge of the whole network, which is usuall
inapplicable in WSNs. Although Lin et al. proposed a distributed algorithm that considers energy replenishmel
it still [11] needs to flood the whole network to get the optimal path. An energy-aware geographic blacklistin
routing was proposed in [28]. More comprehensive study is necessary to design efficient localized algorithm
achieve energy efficiency with environmental energy supply.

I1l. GEOGRAPHICROUTING WITH ENVIRONMENTAL ENERGY SUPPLY(GREES)

Our objective is to design routing protocols that efficiently direct the packets along low cost links and at the san
time balance the residual energy on nodes with environmental energy supply. Although the expected advancen
is a good link energy cost metric, we can not simply forward the packet to the neighbor giving largest expecte
advancement, as in this condition some nodes will be overused and die out fast then result in network disconnect
We also can not simply forward the packet to the nodes that have the highest residual energy, because the resi
energy status may not represent the energy availability on nodes in some situation. The example shown in Fig
illustrates this situation.
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Fig. 1. Comparision of battery status of intermediate nodes between residual energy based protocol and environmental energy aware pro

In Fig.1 (a), nodeA has two neighbor®? andC, and A has five packets to send to a remote destinafiowith
one packet per second. The energy consumption per packet delivery ohfirdnd AC' are the same. Assume that
B andC have the same battery capacity Bf units, andF, — 4 and E, — 2 units of residual energy respectively;
their energy harvesting rates are 2 and 1 units per second respectively; they consume the same energy, say 2
to relay (receive and forward) a packet to their next hop. For energy aware routing that only considers the residt
energy information on nodes} will send the packets t@' becauseC has larger residual energy. As shown in
Fig.1 (b), after relaying the five packetS, has residual energy af, — 7 units since it consumes 10 units for
relaying the packets meanwhile harvesting 5 units, & fully recharged since it harvests 4 units of energy.
Although B can harvest 10 units of energy in five seconds, the residual energy on it can not exceed the batte
capacity, E,. For environmental energy aware protocol, assume we define the energy availability as the sum
the battery residual energy and the harvesting energy during the routing period (5 seébhds)higher energy
availability thanC, then B will be selected as the next hop df. As shown in Fig.1 (c), after relaying the five
packets,B has residual energy di, —4 units since it consumes 10 units for relaying packets meanwhile harvesting
the same amount of energy, attdwas fully recharged since it harvests 2 units of energy. In this example, using
environmental energy aware routing results in more residual energy remained on nodes on average and sm:
variance of the residual energy which indicates better load balancing.

A. System Model

We first describe the system model, the observations and the assumptions, on which our routing protocol des
is based.

We assume that each network node is aware of its own and its one-hop neighbors’ positions and the source
a message knows the position of the destination. This assumption is reasonable in a wireless sensor network
to its sensing and monitoring application nature; nodes need to be aware of their own locations when reporti
their sensing data; the data are usually sent back to a known “sink” location. The node location information c:
be obtained by prior configuration, by the Global Positioning System (GPS) receiver, or through some sens
self-configuring localization mechanisms such as [29], [30], [31].

Each network node is equipped with energy renewable batteries that can harvest energies from their work
environment [6], [7], [8], [32].

A MAC protocol that allows retransmission is used, suct8@&11 [33]. The 802.11 ACK mechanism resends
lost data frames, making all but the worst 802.11 links appear loss-free to the network layer.

Each node is informed with its own and its one-hop neighbors’ battery residual energy level and the short-ter
energy harvesting rate, periodically. The residual energy in a battery can be estimated from its discharge funct
and measured voltage supplied [2]. Neighbor nodes exchange these information with each other by piggyback
them in the periodically broadcast “Hello” messages.



For nodej:
When H event happens
N = currentseq — lastseq — 1
lastseq = currentgeq
lastHello = current time
l = Max(Np, — Ng,0)
Ng=0
FDR;; = FDR;; - '™ + (1 —7)
WhenT event happens
Ny = (current time — lastHello) x £
=N,
FDR;; = FDR;; -~

TABLE |
Pseubocobe oFEWMA

The network is dense enough so that no communication veixist. Mechanisms such as FACE routing [15] or
perimeter forwarding in GPSR [16] can be applied to deal with the communication void problem but it is beyon
the scope of this paper.

B. Link Quality Estimation

We denote the Frame Delivery Ratio (F3Ryom a nodei to its neighborj, FDR;;. It is measured using
“Hello” message$ which are broadcast periodically everytime unit. Because the probes are broadcast, 802.11
does not acknowledge or retransmit them.

Two events will drive the updating of DR;; on nodej: one is the periodical updating event set by the node, for
example, every, secondsj will update FDR;;. We denote this event &&; the other is the event thatreceives
a “Hello” packet from:. We denote this event ag.

Exponentially Weighted Moving Average (EWMA) function [34] is used as the link quality estimation algorithm
which is often used in statistical process control applications.HB1R;; be the current estimation made by node
7, lastHello be the time stamp of the last evefit N,, be the number of known missed “Hello” packets between
the current event! and last evenf! based on sequence number difference, Aijdbe a guess on the number of
missed packets based on “Hello” message broadcast freq@emzyr a time window between the curréfitevent
and lastd or T event.N,,, and N, are initialized to be 0, and'DR;; is initialized to be 1.

This technique allowg to measureF’ DR;; and: to measureF’DR;;. Each probe sent by a nodecontains
FDR measured by from each of its neighbor#/; during the last period of time. Then each neighboti,olV;,
gets theF'DR to i whenever it receives a probe froin

The pseudocode of EWMA algorithm for nogeto estimateF’'DR;; is described in table I, wher@urrents.,
andlastse, denote the sequence numbers of the current received “Hello” message and the last received “Hell
message respectively, afdk v < 1 be the tunable parameter.

C. Energy Consumption Model

In this paper, the cost for a node to send or receive a packet is modelled as a linear function similar to [3-
There is a fixed cost associated with channel acquisition and an incremental cost proportional to the size of 1
packet:

Cost = c x Spit + b 1)

When the forwarding node is distance-wise closest to the destination than any of its neighbors, but has no direct connection to
destination to deliver the packets, a communication void happens.

2\We use Frame Delivery Ratio instead of Packet Delivery Ratio here to differentiate the data delivery ratio observed from the MAC lay
and the network layer. As mentioned before, due to the lossy links, some MAC protocols such as 802.11 retransmit lost data frames
guarantee high delivery ratio at the network layer. That is, a successful packet transmission at the network layer may cause a numbe
transmissions (including retransmissions) at the MAC layer.

%In our proposed protocols, “Hello” message is used for both exchanging neighbor nodes’ information and probing link quality.



Wherec denotes the energy needed for sending or receiving one byte of$jatajenotes the size of the data
in bytes and is a constant. In this paper, we only consider the energy consumption when a node sends or recei
data as most energy aware routing protocols do.

D. Energy Harvesting Model

Depending on the deployment conditions, such as whether or not directly exposed to sun light, the intens
of the sun light, the speed of air flow and so on, there is an uncertainty associated with environmental ener
harvesting capability. We use a random process to model the energy harvesting rate of\Wedaodel the mean
harvesting rate with a uniformly distributed random variable with megrvarying betweer?;, . andP; . The
energy harvesting capability is not homogeneous at all nodes. In addition, energy collected by the scavengers
be stored in some energy reservoirs such as batteries, fuel cells, capacitors, etc. However there is a capacity |
of such an energy reservoir, beyond which environmentally available energy cannot be stored. We use Igpnstant
to denote such a capacity limit for each node.

E. Protocol Description

In our routing protocols, each node locally maintains its one-hop neighbors’ information such as the neighbot
location, residual energy, energy harvesting rate, energy consuming rate, wireless link quality (in terms of FDR). \
assume that nodgis forwarding a packef\/, whose destination i®. Node: forwards M progressively towards
the destination, while at the same time tries to balance the energy consumption across all its forwarding candidz
N;. We propose two local cost metric based protocols to achieve the goals.

1) GREES-L:Node forwards the packet to the neighbor that minimizes the €§stV;, D) which is defined
as follows:

1
a-NPRO(i,N;, D) + (1 — o) - NE(N;)
where0 < « < 1 is a tunable weightN PRO(i, N;, D) is the normalized progressive distance per data frame from

i to N; towardsD, and NE(N;) is the normalized effective energy on nodge. N PRO(i, N;, D) is defined as
follows:

CrL(N;, D) = (2)

NPRO(i,N;, D) = Maz{PRO(i, N;, D)} K

where
PRO(i, N;, D) = (Dist(i, D) — Dist(N;, D)) - FDR;n, - FDRN,; 4)

andMaz{PRO(i, N;, D)} is the maximumP RO achieved by the forwarding candidates of ned€he Dist(i, D)
and Dist(N;, D) are the Euclidean distances betweeand D and N; and D respectively. SaDist(i, D) —
Dist(N;, D)) is the packet advancement to the destination when the packet is forwarded fooivj .

NE(N;) is defined as follows:

NE(N;) = J\ME{(E% (5)
where
E(N;) =B+ (un, —¥n,) - (te — 1) + Er(N;) (6)

and Maz{E(N;)} is the maximumE achieved by the forwarding candidates of nade

In Eq. (6), 3 is a tunable weightu y, is the last received expected energy harvesting rate information on node
N; by nodei. ¢y, is the last received expected energy consuming rate information onxobg nodes. ¢. is the
time when the node is forwarding the packet; is the last time when “Hello” message broadcastMyyis heard
by i, anduy, and E,.(N;) are updatedyy, is updated every (“Hello” interval) at nodeN; according to Eq. (7)
when it broadcasts “Hello” message.
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where E._(N;) is the energy consumed in the last interval

Note that due to the lossy wireless channel, the updated information, such a8y, and E,.(NN;), may not be
received by nodeé every . So the energy availability estimatiafi(/N;) to the neighbor with worsé’DRy;,; is
less accurate than the neighbor with befidp Ry ;. However this inaccuracy will not affect the next hop selection
much if 4, andyy, do not change much between the interféal-¢;). Furthermore the worse theDRy,; is, the
smaller thePRO(i, N;, D) is. So the probability of choosingy/; with low FDRy.,; as the next hop will become
lower according to Eq. (2).

The rationale to define and minimize the cost function in Eq. (2) is as follows. Minimizing the cost in Eq. (2)
is equivalent to maximizing the denominator. The denominator is a linear combination of two parts. The first pa
is NPRO(i, N;, D) which represents how much progress one frame can make towards the destination. In Eq. (4
the factorE’ DR;y, - FDRy,; is the inverse of the ETX (expected transmission count) defined in [21]. The physical
meaning of Eq. (4) is the expected progress towards the destination per packet transmission. Maximizing it me:
maximizing the efficiency of transmitting a packet. When the transmission power is fixed, maximizing Eq. (4
also decreases the energy consumed per packet, as each transmission or retransmission increases a node’s ¢
consumption. The second part dE(V;) which represents the estimated energy availability on n¥geFrom
Eq. (6), we know the energy availability is represented by the linear combination of harvesting energy, consumi
energy and the residual energy on the battery. The key difference from the traditional energy aware routing propo
in [2] which only considers the residual energy on nodes is that we also consider the environmental energy.
Eq. (2) is one way to balance the importance of progress per packet transmission (related to delay and ene
consumption), energy replenishment and residual energy (related to load balancing).

Suppose that each neighbor of nadeas the same energy harvesting rate and the same residual energy, node
will forward the packets to the neighbor with largBRO to the destination.

In an environment where the energy source distribution is heterogeneous, the defined cost function in Eq. (2) v
direct traffic to nodes with a faster energy renewal rate. Consider imdeighbors having similar residual energy
as well as similarP RO to the destination. Among these neighbors, the one which can replenish their batteries ¢
a higher rate will advertise a cheaper cost and will be selected as the next hop af node

When a=1, GREES-L degenerates to geographic routing similar to [19]. Whe#=0, GREES-L degenerates
to traditional energy aware routing based on residual energy only similar to [2].

In this paper, we assume there is no communication voids, so there is always at least one neighbor; of noc
satisfying PRO(i, N;, D) > 0. We only consider the neighbors withDR;y, > 0.2 and FDRy,; > 0.2 as the
candidates of nodgés next hop, since it will cause a lot of retransmissions if we choose neighbors having bad link
quality from/to nodei. Retransmissions will not only consume sender’s energy but also increase the interferenc
to other nodes. Whei’(N;) in Eq. (6) is smaller than2(- Cost) in Eqg. (1), N; will not be selected as the next
hop of nodei, since it does not have enough energy to receive and transmit a packet.

2) GREES-M: GREES-L uses linear combination to balance the geographical advance efficiency per pack
transmission and the energy availability on receiving nodes, while GREES-M uses multiplication to balance the
factors. The local cost functio@'y;(V;, D) is defined as follows:

Ey(Ni) - s
N (8)
logn - (un, +€) - PRO(i, N;, D)

wheree andn are appropriately chosen constanig(N;) is the battery capacity? RO(i, N;, D) is defined in Eq.
(4) and Ay, is the fraction of energy used at nod& defined in Eq. (9).

Cy(N;, D) =

Ey(Ni) — Ep(N:)
9
Ey(N:) ©)
Node: forwards the packet to the neighbor that minimizes the local €ast/N;, D). Note that the cost function

is different from the one in [11] in that we take into account the link quality and packet progress efficiency b
using the factorPRO(i, N;, D).

Ay, =



High | Medium | Low
P, (Mmw) | 10 1 0.1
Pio, (MW) | 20 5 1
TABLE I

LEVEL OF ENERGY HARVESTING RATE

The rationale for minimizing the cost function Eq.(8) is as follows. Note that the cost function is an exponentic
function of the nodal residual energy, an inversely linear function of the replenishment rate and the expect
geographical progress per packet transmission. So Eq. (8) is another way to balance the importance of progress
packet transmission (related to delay and energy consumption), energy replenishment and residual energy (rel
to load balancing).

This cost function also directs traffic to the neighbor with largRO to the destination when neighbors have
similar residual battery energy and environmental energy harvesting rate, and directs traffic to the neighbor w
larger environmental energy harvesting rate when neighbors have similar residual battery energy |é¥BlCand

Note that even thougli,(NV;) is in the numerator in Eqg. (8), it does not imply that nodes with larger battery
capacity are assigned a higher cost. The reason ig#{a¥;) is also embedded in the exponential cost mejric
where \y. is defined in Eq. (9). The introduction efaccounts for the situation when nodes are not harvesting
energy anduy, = 0.

The cost should be positive, which meaR®0O should be larger than zero. Then this cost function implicitly
eliminates the neighbors that give negative progress to the destination. The candidate neighbor selection criteri
the same as GREES-L.

IV. PERFORMANCEEVALUATION
A. Simulation Setup

All the simulations are implemented within the GloMoSim library [36], which is a scalable simulation environment
for wireless network systems. The simulated sensor networkMas 196 stationary nodes uniformly distributed
in ad x d m? square region, with nodes having identical fixed transmission power. We #s250, 210, 180, 160
to achieve various node densities in termd@f15, 20, 25 neighbors per node on average. To simulate a randomly
lossy channel, we assume Ground Reflection (Two-Ray) path loss model and Ricean fading model [37] for sig!
propagation. The packet reception decision is based on the SNR threshold. When the SNR is larger than a defi
threshold, the signal is received without error. Otherwise the packet is dropped. We set proper parameters to make
maximum transmission range 3sm. EWMA, described in section IlI-B, is used as the link estimation algorithm,
where~ is chosen to b®.9. IEEE 802.11 [33] is used as the MAC layer protocol. Each node was initialized with
a fixed amount of energy/battery resenig, (mJ) before network deployment. The energy consumption model is
described in section 1lI-C, where= 1.9u.J/byte andb = 450u.J for sending packets artd= 260..J for receiving
packets. The energy harvesting model is described in section 11I-D. Three nodal energy harvesting rates are assu
in Table Il. Each node’s harvesting rate is randomly chosen to be one of the three levels and is fixed on the le
in one simulation run. We apply two types of application traffic: (1) peer-to-peer application traffic, which consist:
of fifteen randomly chosen communication pairs in the simulation area, and (2) multiple-to-one application traffi
which consists of fifteen application sessions from randomly selected 15 nodes to the sink node at the centelr
the simulation area. The sources are CBR (constant bit rate) with one packet per second and each packet b
512 bytes long. Each point in the plotted results represents an average of ten simulation runs with different see

B. Evaluation Metrics

We define the following two metrics to evaluate the energy efficiency performance of the proposed routin
protocols.
« Mean residual energyThis metric calculates the average residual energy at the end of simulation for all the
sensor nodes. It is an indicator of energy efficiency in the sense that it represents the level of remainil
energy in the network. The higher the value is, the more the energy remains in the network, and the better
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Fig. 3. Normalized end-to-end delay and throughput under randomly distributed peer-to-peer traffic vs. network density

performance is. Note that due to the presence of the renewable energy sources, this metric cannot be repl:
by a metric that measures the total energy consumed. A better routing protocol with renewable energy sup
should achieve better residual energy when total energy consumption is the same or even higher.

« Standard deviation of residual energyhis metric measures the standard deviation of the residual energy of all
nodes. This quantity indicates how well the traffic load/energy consumption is distributed among nodes. T|
smaller the value is, the better the capability the routing protocol has in balancing the energy consumptior

The following performance metrics are also measured to evaluate the quality of service provided by the propo:s

routing protocols.

« Normalized end-to-end throughputhis metric is measured in bit-meters per second (bmps) as in [38]. It is
calculated as in Eqg. (10),

Ndelivered : Spkt : DZSt(S> D)
tsession

where T'(S, D) denotes the normalized throughput from source nSd® destination nodeD, Ngeivered
denotes the number of packets successfully delivered #dmD in the communication sessiofi,;; denotes
the packet size in bitDist(S, D) denotes the Euclidean distance betweemnd D, and t,cssion, denotes
the communication session duration fragnto D in second. We account for the distance factor, because the
throughput is indeed relative to the distance between the communication pair due to the lossy property
multi-hop wireless links in wireless sensor networks.

« Normalized end-to-end delajt is measured as per packet delay fréiio D over Dist(S, D) in second per
packet-meter (sppm), as the delay is also proportional to the distance between the communication pair.

T(S, D) =

(10)

C. Simulation Results and Analysis
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1) Peer-to-peer traffic:Fig. 2 and 3 show the simulation results under randomly distributed peer-to-peer appli-
cation traffic. In this simulation, we set the “Hello” intervalto 50s, « in EqQ. (2) to 0.5 for GREES-L, the battery
capacity E, to 5,000mJ, § in Eg. (6) to 40,n to 100,000 ande to 0.3 in Eq. (8) for GREES-M. In the figures,
“Greedy” denotes the geographic routing without energy awareness but taking into account the wireless chan
conditions, which is an extreme situation for GREES-L by settintp 1 in Eqg. (2). “Residual-based-L" denotes
the energy aware routing protocol that only considers the residual energy level on nodes, which is also an extre
situation of GREES-L by setting in Eq. (6) to 0. “Residual-based-M", corresponding to GREES-M, denotes the
energy aware routing protocol that only considers the residual energy level on nodes, which is just by eliminatil
the factor(un, + €) in EQ. (8).

Fig. 2 shows that under randomly distributed peer-to-peer application traffic, a) Both GREES-L and GREES-I
are more energy efficient than the corresponding residual energy based protocols in terms of having higher mi
residual energy and smaller standard deviation of residual energy; b) GREES-M performs better than GREES
on efficiency and load balancing; c) The “Greedy” routing without energy awareness has the lowest mean resid
energy and largest standard deviation of residual energy.

This results can be explained by the fact that GREES-L and GREES-M take into account the environmental enel
harvesting rate as well as the residual energy on node, so they have more accurate energy availability estima
than the corresponding residual energy based protocols, therefore they are able to distribute the load better base
the energy level. Since “Greedy” routing considers neither the residual energy on node nor environmental enel
harvesting, it has the worst performance on energy efficiency and load balancing. It is worth to mention that
there is no environmental energy supply, “Greedy” routing may achieve high mean residual energy, since it loca
maximizesP RO to the destination. In our model, the transmission power is fixed, so maximizing the progress pe
packet transmission is equivalent to maximizing the progress per packet per unit of energy consumption. Howeyv
when there is environmental energy supply, it is not necessary to maximiz® fiie for every packet. Some
packets can be routed to the neighbor that makes smiali&p but has more energy availability in order to avoid
overusing some node and make good use of the environmental energy on some other nodes.

Another observation from Fig. 2 is that the more densely the nodes are deployed, the more energy remair
on nodes, and the smaller the standard deviation is. Because when the nodes are closer to each other, the
counts between the source and destination pairs become smaller, then the required energy for delivering one pa
from the source to the destination is reduced, so the mean residual energy on nodes increases. Furthermore, \
network is denser, the number of paths between the communication pairs increases, each node has more choic
the next hop to distribute traffic load, and the result is the decreased energy consumption variance among all
nodes.

The QoS performance of the five protocols under different network densities are shown in Fig. 3. We can see tl
GREES-L and GREES-M have longer delay than the corresponding residual energy based protocols since in or
to achieve better load balancing, some packets may travel along some links of worse quality or travel longer hc
to get to the destination. However the delay performance is not compromised much. In our simulation, GREES
has 19% longer delay than the Residual-based-L and GREES-M has 14% longer delay than the Residual-basec
The delay performance is not changed much with network density, as we already normalized the delay by dividi
it by distance. The throughput performance is nearly the same for all the five protocols under different netwo
density. It indicates that although some packets spend a little more time travelling to the destination, the pacl
delivery ratio is not compromised at all. Throughput is smaller when nodes are closer (denser) since the through
is normalized by multiplying the source-destination distance.

2) Multiple-to-one traffic: Fig. 4 and 5 show the simulation results under randomly distributed multiple-to-one
application traffic. The simulation settings are the same as the peer-to-peer case, except that the communica
pattern is from sensor nodes to the sink which is located at the center of the network, and the battery capacity
set to7,000m.J to accommodate the more demanding energy consumption of nodes close to the sink. The sink
not energy constrained.

Fig. 4 shows the same trend as Fig. 2 that both GREES-L and GREES-M achieve better energy efficiency &
load balancing than the corresponding residual energy based protocols under multiple-to-one application traf
The reason is the same as explained in section IV-C.1.

Fig. 5 also shows the same trend as in Fig. 3 that both GREES-L and GREES-M exhibit graceful degradatit
on end-to-end delay but do not compromise the end-to-end throughput performance.
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3) The effect of “Hello” interval: The results shown in this section are for uniformly distributed peer-to-peer
application traffic. The simulation settings are similar to the simulation in section IV-C.1, except that the avera
number of neighbors per node is fixed on 15, battery capacity 80m.J and 5 = 60. We vary the “Hello”
interval from 2s to 50s. As shown in Fig. 6(a), the mean residual energy on nodes increases when the “Hello
interval increases. When the “Hello” interval is small, the energy efficiency and load balancing performance
GREES-L and GREES-M are nearly the same as the corresponding residual energy based protocols, especially \
“Hello” interval is smaller tharss, as the residual energy information on nodes reflects the energy availability more
accurately when the nodal information is exchanged more frequently. The reasoning also applies to the observatic
Fig. 6(b) that when the “Hello” interval is small, the performance difference between GREESs and the correspondi
residual energy based protocols is not obvious. Fig. 6(c) shows the end-to-end delay performance. Generally
delay decreases as the “Hello” interval increases, except for GREES-L when “Hello” interval is largdiOthan
The reason behind this result is that the energy availability estimation in Eq. (6) may play a more important rc
when the “Hello” interval is larger than a threshold, then the packets are distributed more evenly and travel long
hops. This can be seen in Fig. 6(a) that the mean residual energy is till increasing when “Hello” interval is larg
than 10s for GREES-L while other protocols remains nearly unchanged. Fig. 6(b) also shows that the standa
deviation of residual energy is still decreasing for GREES-L when “Hello” interval is larger thamvhile other
protocols remains nearly unchanged. The throughput performance is not shown here since all the five protoc
exhibit almost the same throughput performance. These results imply that the information from neighbors does
need to be exchanged too frequently. The reduced broadcast frequency may help to reduce interference from |
broadcast as well as to reduce energy consumption for transmitting and receiving broadcast messages.
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V. CONCLUSION AND FUTURE WORK

We proposed two energy aware geographic routing protocols, GREES-L and GREES-M, which make routir
decision locally by jointly taking into account the realistic wireless channel condition, packet progress to th
destination, the residual battery energy level of the node, and the environmental energy supply. The performatr
of the proposed protocols are evaluated and compared with the corresponding residual energy based protocols
“Greedy” routing protocols under different traffic patterns. Simulation results show that GREES-L and GREES-N
are more energy efficient than the corresponding residual energy based protocols and “Greedy” routing protoc
in terms of achieving higher mean residual energy on nodes, and achieve better load balancing in terms of hav
smaller standard deviation of residual energy on nodes. GREES-L and GREES-M have graceful degradation
the performance of end-to-end delay, but do not compromise the end-to-end throughput performance. GREES
performs better than GREES-L on energy efficiency and load balancing. Our future work is the theoretical analys
of the two protocols and a more comprehensive simulation study which will be focusing on the understanding al
optimization of the tunable parameters under various practical situations.
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