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Abstract. Base station placement has significant impact on sensor network performance. Despite its significance, results on
this problem remain limited, particularly theoretical results that can provide performance guarantee. This paper proposes a
set of procedure to design (1 − ε) approximation algorithms for base station placement problems under any desired small error
bound ε > 0. It offers a general framework to transform infinite search space to a finite-element search space with performance
guarantee. We apply this procedure to solve two practical problems. In the first problem where the objective is to maximize
network lifetime, an approximation algorithm designed through this procedure offers 1/ε2 complexity reduction when compared
to a state-of-the-art algorithm. This represents the best known result to this problem. In the second problem, we apply the
design procedure to address base station placement problem when the optimization objective is to maximize network capacity.
Our (1 − ε) approximation algorithm is the first theoretical result on this problem.
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1. Introduction

An important characteristic for wireless sensor networks
is that many performance measures (e.g., lifetime, capac-
ity) are highly dependent upon the topology of the actual
physical network. For instance, the energy expenditure to
transmit data from one node to another node not only
depends on the data bit rate, but also on the physical
distance between the two nodes. Consequently, it is impor-
tant to understand the impact of location related issues on
network performance and take possible steps to optimize
performance starting from network deployment stage.

This paper focuses on the important problem of base
station placement such that certain network performance
objectives can be optimized. Although there is active re-
search on maximizing network lifetime (see, e.g., [1, 3, 9,
19]) or network capacity (see, e.g., [6, 10, 13, 15, 20]),
most of these efforts consider a sensor network under a
given physical topology. Indeed, the location problems for
base stations have been very difficult to analyze (shown to
be NP-complete in [2]) and only very special cases have
been investigated for optimal placement, e.g., single-hop
communication between sensor node and base station [11]
or special grid topology [2].

In a very recent and important work [5], Efrat et al.
developed the first (1 − ε) approximation algorithm for
base station placement (with the objective of maximiz-
ing network lifetime). Unfortunately, the computational
complexity associated with this algorithm is quite high.
Further, the proposed approximation solution procedure in
[5] is specific to the network lifetime problem, which can-
not be easily extended to address base station placement
problems for other network performance objectives.

Our efforts in this paper are inspired by the work in
[5]. In this paper, we aim to achieve the following two
objectives. First, for the base station placement problem

with network lifetime objective studied in [5], we aim to
design an approximation algorithm with significant reduc-
tion on computation complexity. Second, we aim to develop
a design procedure for (1 − ε) approximation algorithms
that can be applied to solve a broad class of optimization
problems. To keep our scope within base station placement
problems for sensor networks, we will show how such a
procedure can be used to design (1 − ε) approximation
algorithms with a different optimization objective, e.g.,
network capacity.

The proposed design procedure in this paper meets
both of the above two objectives. Our contribution in this
paper is theoretical in nature and represents fundamental
results in sensor networks. The proposed design proce-
dure consists of four phases, once successfully applied to
a specific optimization problem, can provide an (1 − ε)
approximation algorithm to some of the most difficult op-
timization problems (NP-complete). A basic idea in this
procedure is to replace an infinite search space for each
variable by a finite-element search space but with a guaran-
teed bound on possible loss in performance. To prevent the
search space (for all variables) from increasing exponen-
tially with the number of variables (as in [5]), an important
contribution in our design procedure is a complexity reduc-
tion technique, which exploits the potential overlap among
the elements in the search space. Specifically, we explore
the product relationship among the variables and design
the search space for each of them in the form of a geometric
progression.1 By identifying a common factor among these
geometric progressions, we show it is possible to reduce the
total number of elements in the search space significantly.

As applications of the design procedure, we develop
approximation algorithms for two different base station

1 A geometric progression is a sequence, such as 1, 3, 9, 27, 81,
in which any term is its previous term multiplied by a common
factor.

c© 2008 Kluwer Academic Publishers. Printed in the Netherlands.

WN.tex; 24/08/2008; 16:03; p.1



2

placement problems. The first problem is the same as the
one in [5], i.e., how to place the base stations so that
network lifetime can be maximized. Specifically, we show
how to design an approximation algorithm for base station
placement such that network lifetime is at least (1 − ε) of
the maximum network lifetime, for any desired small ap-
proximation bound ε > 0. The computational complexity
of our new approximation algorithm is 1/ε2 lower than the
algorithm proposed in [5]. This represents the best known
result on this problem.

To demonstrate the utility of the design procedure, we
show how it can be used to design approximation algo-
rithms for other difficult optimization problems. In the
second problem, we consider how to place the base stations
such that the weighted network capacity can be maxi-
mized, under the condition that each node must meet a
common lifetime requirement. Although this problem also
considers base station placement, it has different objective
function and thus requires different formulation and solu-
tion. We show that the proposed design procedure can also
be successfully applied, although the details are problem-
specific. Again, we design an approximation algorithm for
this problem such that the weighted network capacity is at
least (1− ε) times the maximum. This represents the first
theoretical result for this problem.

The rest of the paper is organized as follows. Section 2
presents the sensor network model used in this study and
describes two base station placement problems. In Sec-
tion 3, we lay a theoretical foundation for the design of
(1 − ε) approximation algorithms. In Section 4, we ap-
ply the design procedure to solve base station placement
problem with the objective of maximizing network lifetime,
while in Section 5, we apply the same design procedure to
solve base station placement problem when the objective
is to maximize network capacity. Section 6 reviews related
work and Section 7 concludes this paper.

2. Network Model and Base Station
Placement Problems

We consider a sensor network consisting of N sensor nodes
deployed over a two-dimensional area. The location of each
sensor node is fixed and the initial energy on sensor node
i is denoted as ei. We assume there are M base stations
that need to be deployed in the area to collect sensing data.
The case where M = 1 represents a single base station, is
perhaps most common. But our algorithms developed in
this paper can also handle the general case when M > 1,
i.e., multiple base stations.

In this paper, we focus on the energy consumption due
to communications (i.e., data transmission and reception).
Suppose sensor node i transmits data to sensor node j with
a rate of fij b/s. Then we model the transmission power
at sensor node i as [8]:

pt
ij = cij · fij . (1)

cij is the cost on link (i, j), and can be modeled as

cij = α+ β · dn
ij , (2)

where α and β are two constant terms, dij is the physical
distance between sensor nodes i and j, n is the path loss
index.

The power consumption at the receiving sensor node i
can be modeled as [8]:

pr
i = ρ ·

∑
k �=i

fki , (3)

where fki (also in b/s) is the incoming bit-rate received
by sensor i from sensor k. It is easy to observe from (1),
(2), and (3) that the locations for the base stations as well
as data routing in the network have a profound impact on
energy consumption behavior among the nodes.

The above transmission and reception energy model as-
sumes a contention-free MAC protocol, where interference
from simultaneous transmission can be effectively mini-
mized or avoided. For deterministic rate traffic pattern
model in this paper, a contention-free MAC protocol is
fairly easy to design (see, e.g., [14]) and its discussion is
beyond the scope of this paper.

The focus of this paper is to investigate base station
placement problems in sensor networks. Clearly, how the
base station should be placed depends on the particular
network performance objective that we wish to optimize. In
this paper, we consider the network lifetime and capacity
objectives, each of which has attracted great interest.

• In the first problem, each sensor node i produces data
rate ri that needs to be routed to the base stations.
The problem is how to place the base stations and
arrange data routing such that the network lifetime
is maximized, where network lifetime is defined as the
time until any sensor node uses up its energy.

• In the second problem, the network lifetime require-
ment is T and data rate ri at each sensor node i is an
optimization variable. The problem is how to locate
the base stations and arrange data routing such that
the weighted network capacity,

∑N
i=1 wiri, is maxi-

mized, where wi is a pre-specified weight for sensor
node i.

In addition to the above two problems, we conjecture
the design procedure outline in the next section can also
be applied to solve other hard optimization problems in-
volving infinite search space. Table I lists all notation used
in this paper.

3. A Procedure for the Design of (1-ε)
Approximation Algorithms Based on

Complexity Reduction Technique

The base station placement problems discussed in the last
section involve optimizing objectives that are dependent
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Table I. Notation

General Notation

N Number of sensor nodes in the network
M Number of base stations
Bm Denotes the m-th base station
ei Initial energy at sensor i
dij (or di,Bm ) Distance between sensor i and sensor j (or base station Bm)
ρ Power consumption coefficient for receiving data
cij (or ci,Bm ) Power consumption coefficient for transmitting data from sensor i to sensor j (or base station Bm)
α, β Constant terms in transmission power consumption
n Path loss index
T Network lifetime
TS The maximum network lifetime when base stations can only be placed at the location of a sensor node
ti Sensor i’s longevity
W Weighted capacity
wi The weight assigned to sensor i
ri Sensing data rate produced at sensor i
rmin (or rmax) The minimum (or maximum) sensing data rate produced at a sensor node
fij (or fi,Bm ) Data rate from sensor i to sensor j (or base station Bm)

f l Data rate for flow l
Vij (or Vi,Bm ) Total data volume from sensor i to sensor j (or base station Bm)
et

ij (or et
i,Bm

) Energy used for transmission by sensor i on link (i, j) (or link (i, Bm))
er

ij Energy used for reception by sensor j on link (i, j)

(el
ij)

t (or (el
i,Bm

)t) Energy used for transmission on sensor i for flow l on link (i, j) (or link (i, Bm))

(el
ij)

r Energy used for reception by sensor j for flow l on link (i, j)
θi,Bm Phase of base station Bm when sensor i is referred as origin
ε Desired small approximation error from the optimum, ε > 0

Notation Specific for the Complexity Reduction Technique

f(x) Objective function in the optimization problem
Γ A finite-element search space for x
L Total number of yk variables
g(y1, y2, · · · , yL) A function to express x in terms of yk’s
Λk A finite-element search space for yk

εk Desired small approximation error due to Λk

ĝ(z) A function used to compute x from z
Ω A finite-element search space for z

on several factors. We can view the dependency relation-
ship between the objective and those factors as a function,
which, due to its complexity, may not be explicitly ex-
pressed in a closed form. In this section, we outline a
design procedure for a class of approximation algorithms
that are particularly useful to solve such hard optimiza-
tion problems. For the ease of discussion, we only discuss
how to maximize a function f(x) with one variable x in
this section. The case where x is a vector can be easily
generalized following the same procedure.

In Section 3.1, we outline a design procedure for (1−ε)
approximation algorithms by limiting the search space of
x into a set Γ consisting of finite elements while the max-
imum objective value f(x) among all x ∈ Γ is at least
(1 − ε) of the maximum. Since it is usually very difficult
to construct this finite-element set Γ directly, we resort
to an effective approach via divide-and-conquer. Specif-
ically, we express x in terms of some variables yk, i.e.,
x = g(y1, y2, · · · , yL), where we can construct the search
space of each yk as a finite-element set Λk under a so-called
εk-mapping criterion defined in Section 3.1. By setting

∑L
k=1 εk = ε, we show that Γ (for x) can be obtained

from these Λk (for yk’s) and the maximum objective value
f(x) among all x ∈ Γ is at least (1 − ε) of the maximum.

The procedure in Section 3.1 may have high computa-
tional complexity (the number of elements in the search
space increases exponentially with L). In Section 3.2, we
aim to reduce its computational complexity. In particular,
we propose a complexity reduction technique in algorithm
design, which explores the relationship among the finite-
element set for each yk. Specifically, we construct each Λk

as a geometric progression with factor qk, while choosing
εk’s to satisfy q1 = q2 = · · · = qL = q and

∑L
k=1 εk = ε.

We show that doing so can significantly reduce the compu-
tational complexity (the number of elements in the search
space is linear with L).

3.1. Design Procedure: Basic Idea

We now present the basic idea in the design procedure
for (1 − ε) approximation algorithms. For variable x, the
search space to find the maximum f(x) is a set with infinite
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elements. Since it is impossible to check all elements in an
infinite-element set, we aim to limit the search space to
a finite-element set, say Γ. As doing so may compromise
the optimality of the solution, the key is to show that the
finite-element set contains at least one element that is at
least (1−ε) of the maximum. Note that there is a trade-off
between performance (ε) and complexity (|Γ|), where |Γ| is
the number of elements in set Γ. The better performance
(the smaller ε) we want, the higher complexity (the larger
the search space |Γ|) the algorithm has. The basic idea in
this design procedure is the following.
1. Set up a mathematic model for the optimization prob-

lem, i.e., maximize f(x), where f(x) can be computed
in polynomial-time for any given x.

2. For a given ε > 0, construct a finite-element set Γ that
meets the following criterion: for any given x, there
exists a x̂ ∈ Γ such that f(x̂) ≥ (1 − ε)f(x). We call
this ε-mapping criterion.

3. By examining all the elements in the finite-element set
Γ, we choose x∗Γ that has the maximum objective f(x∗Γ)
as the final (1 − ε) approximation solution.
Whether or not it is possible to construct such a set is

problem specific and is the main challenge in the design of
(1− ε) approximation algorithms. Suppose we can do this
for a specific problem, then the following result holds.

Lemma 1. If Γ meets the ε-mapping criterion, then x∗Γ
is a (1 − ε) approximation solution, i.e., f(x∗Γ) ≥ (1 −
ε)f(x∗).

Proof. Since Γ meets the ε-mapping criterion, then for
the special case of x = x∗, where x∗ is the optimal solution,
we know that there exists a x̂∗ ∈ Γ such that f(x̂∗) ≥
(1 − ε)f(x∗). Since f(x∗Γ) ≥ f(x̂∗) ≥ (1 − ε)f(x∗), x∗Γ is a
(1 − ε) approximation solution.

As discussed, f(·) can be a very complex function and
even may not be explicit (as in the two problems that we
will solve in Sections 4 and 5). As a result, a direct con-
struction of a finite-element set Γ that meets the ε-mapping
criterion may be extremely difficult, if at all possible. Un-
der such circumstance, it is necessary to explore other
approach.

The approach that we use is divide-and-conquer, which
breaks up a hard problem into a number of easier sub-
problems. Specifically, although we could not construct a
finite-element set Γ for x that meets the ε-mapping cri-
terion, it may be possible to express x as a function of
some other variables, i.e., x = g(y1, y2, · · · yL), such that it
is possible to construct finite-element set Λk for each yk,
k = 1, 2 · · · , L, that meets εk-mapping criterion, which
is defined as follows.

Definition 1. (εk-Mapping Criterion) A finite-
element set Λk for yk, 1 ≤ k ≤ L, is said to meet the
εk-mapping criterion if for any given x = g(y1, y2, · · ·,
yk, · · · , yL), there exists a x̂ = g(ŷ1, ŷ2, · · · , ŷk, · · · ŷL) with
ŷj = yj for 1 ≤ j ≤ k−1, ŷk ∈ Λk, and f(x̂) ≥ (1−εk)f(x).

Note that in εk-mapping, we restrict the first k − 1
variables to be identical to those under x. As we will show,
this requirement is crucial to ensure that Lemma 2 will
hold.

As a result, we can define a finite-element set Γ based on
these sets Λk and show that it meets the ε-mapping crite-
rion. In other words, Step 2 in the above design procedure
can be further divided into the following two sub-steps.

• Express x as x = g(y1, y2, · · · , yL) such that (i) g(y1,
y2, · · · , yL) can be computed in polynomial time; and
(ii) for any given εk > 0, 1 ≤ k ≤ L, we can con-
struct a finite-element set Λk for yk that meets the
εk-mapping criterion.

• For the given ε > 0, determine the values for εk such
that

∑L
k=1 εk = ε. Let Γ = {g(y1, y2, · · · , yL) : yk ∈

Λk, 1 ≤ k ≤ L}.
The main task in the above design procedure is thus to

construct Λk, 1 ≤ k ≤ L, to meet the εk-mapping criterion.
This construction process is problem specific, i.e., whether
or not such construction is possible depends on the specific
problem. In Sections 4 and 5, we show that, for the base
station placement problems (with either network lifetime
or network capacity objective), the construction of Λk is
possible.

Now suppose that we have successfully constructed Λk

for all 1 ≤ k ≤ L, each meeting its εk-mapping criterion,
then the following lemma is true.

Lemma 2. Γ is a finite-element set with |Γ| = O(
∏L

k=1

|Λk|) and meets the ε-mapping criterion, i.e., for any given
solution x, there exists a solution x̂ ∈ Γ such that f(x̂) is
at least (1 − ε)f(x).

Proof. |Γ| is the number of distinct values of g(y1, y2, · · ·,
yL) for yk ∈ Λk, 1 ≤ k ≤ L, which is at most

∏L
k=1 |Λk|.

That is, |Γ| = O(
∏L

k=1 |Λk|).
Instead of proving that Γ meets the ε-mapping crite-

rion, we can prove an even stronger result by induction: for
all k, 1 ≤ k ≤ L, there exists a xk = g(y(k)

1 , y
(k)
2 , · · · , y(k)

L )
such that y(k)

j ∈ Λj for 1 ≤ j ≤ k and f(xk) ≥ (1 −∑k
j=1 εj)f(x). Note that the result for k = L is the above

lemma.
We prove the above result by induction. The result

for k = 1 is just the fact that Λ1 meets the ε1-mapping
criterion. Now, assume that the result is true for k = i−1.
That is, there exists a xi−1 = g(y(i−1)

1 , y
(i−1)
2 , · · · , y(i−1)

L )
with y

(i−1)
j ∈ Λj for 1 ≤ j ≤ i − 1 and f(xi−1) ≥ (1 −∑i−1

j=1 εj)f(x). Based on the εi-mapping criterion for Λi, we

have, for given solution xi−1, there exists a xi = g(y(i)
1 , y

(i)
2 ,

· · · , y(i)
L ) with y(i)

j = y
(i−1)
j ∈ Λj for 1 ≤ j ≤ i−1, y(i)

i ∈ Λi,
and f(xi) ≥ (1−εi)f(xi−1) ≥ (1−εi)·(1−

∑i−1
j=1 εj)f(x) >

(1 −∑i
j=1 εj)f(x). Thus, the result is also true for k = i.

This completes the proof.
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3.2. Complexity Reduction Technique and

Complete Design Procedure

There is one problem associated with the approximation
algorithm developed in the last section. Although the so-
lution is a (1 − ε) approximation solution, the complex-
ity increases exponentially with L. Even though L is a
small number, |Γ| may still be a very large number. In this
section, we aim to reduce such complexity.

Note that the search space (Γ) derived in the last sec-
tion follows a “brute force” product of Λk’s. This is because
the construction of Λk’s are done independently. As a re-
sult, any set of y1, y2, · · · , yL may produce a distinct value
of x = g(y1, y2, · · · , yL) and we will have to check a set Γ
of size O(

∏L
k=1 |Λk|).

The main idea in our complexity reduction technique is
as follows. If we could construct all the Λk’s intelligently
by synthesizing some common factor among the yk’s, then
we could reduce the size of the search space. Specifically,
we exploit the relationship between x and certain polyno-
mial product of all yk’s, 1 ≤ k ≤ L, and design each Λk

as a geometric progression such that all these geometric
progressions for Λk’s share a common factor. That is, we
construct the finite-element set Λk for yk into the following
geometric progression form: {akq

hk

k : hk = 0, 1, · · · , Hk}
(i.e., {ak, akqk, · · · , akq

Hk

k }), where ak > 0 and qk > 1. It
is important to choose the values for εk’s so that not only∑L

k=1 εk = ε but also q1 = q2 = · · · = qL = q (i.e., a
common factor among all Λk’s). As a result, the number
of elements in |Γ| can be reduced significantly, i.e., from
the previous |Γ| = O(

∏L
k=1 |Λk|) down to O(

∑L
k=1 |Λk|) as

we will prove shortly.
The complete steps for the design procedure can be

summarized as follows.

Procedure 1. (Design Procedure for (1 − ε) Ap-
proximation Algorithm)

• Phase 1 Set up a mathematic model for the op-
timization problem, i.e., maximize f(x), where f(x)
can be computed in polynomial-time for any given x.
• Phase 2 Express x as x = ĝ(z) and z =

∏L
k=1 y

pk

k ,
where yk are all non-negative variables and pk are all
constant integers, 1 ≤ k ≤ L, such that (i) ĝ(z) can
be computed in polynomial time for any given z; and
(ii) for any given εk > 0, 1 ≤ k ≤ L, we can construct
a finite-element set Λk = {akq

hk

k : hk = 0, 1, · · · , Hk}
for yk to meet the εk-mapping criterion, where ak > 0
and qk > 1.
• Phase 3 For the given ε > 0, assign the values
for εi such that (i) q1 = q2 = · · · = qL = q (Note
that qk is a function of εk) and (ii)

∑L
k=1 εk = ε. Let

Γ = {ĝ(z) : z ∈ Ω}, where Ω = {∏L
k=1 y

pk

k : yk ∈
Λk, 1 ≤ k ≤ L}.
• Phase 4 By examining all the elements in the
finite-element set Γ, we choose x∗Γ that has the max-
imum objective f(x∗Γ) as the (1 − ε) approximation
solution.

Again, whether or not it is possible to construct Λk,
1 ≤ k ≤ L, that meets the εk-mapping criterion is problem-
specific and is the main task in applying the above design
procedure. In Sections 4 and 5, we show that, for the
base station placement problems (with either network life-
time or network capacity objective), the construction of Λk

that meets the εk-mapping criterion is possible. Once we
construct Λk successfully, we have the following theorem.

Theorem 1. Γ is a finite-element set with size |Γ| =
O(|Ω|) = O(

∑L
k=1 |Λk|) and x∗Γ is a (1 − ε) approximation

solution, i.e., f(x∗Γ) ≥ (1 − ε)f(x∗).

Proof. We first show |Γ| = O(|Ω|) = O(
∑L

k=1 |Λk|).
Since Γ = {ĝ(z) : z ∈ Ω}, it is clear that |Γ| = O(|Ω|). Note
that q1 = q2 = · · · = qL = q, we can express yk as akq

hk ,
where hk is an integer and 0 ≤ hk ≤ Hk. Thus, we have

z =
∏L

k=1 y
pk

k =
∏L

k=1(akq
hk)pk =

∏L
k=1 a

pk

k · q
∑

L

k=1
pkhk .

For different sets of {y1, y2, · · ·, yL},
∏L

k=1 a
pk

k is a con-
stant term and z only depends on

∑L
k=1 pkhk. Since 0 ≤∑L

k=1 pkhk ≤ ∑L
k=1(maxL

j=1 {pj}) · Hk = maxL
k=1{pk} ·∑L

k=1(|Λk| − 1) and
∑L

k=1 pkhk is an integer, we have
|Ω| ≤ 1 + maxL

k=1{pk} ·
∑L

k=1(|Λk| −1) = O(
∑L

k=1 |Λk|).
We then show that x∗Γ is a (1 − ε) approximation solu-

tion. Note that the four-phase design procedure is a special
case of the design procedure discussed in Section 3.1. Based
on Lemma 2, we know that Γ meets the ε-mapping cri-
terion. Then, based on Lemma 1, we know that x∗Γ is
ε-optimal, i.e., f(x∗Γ) ≥ (1 − ε)f(x∗). This completes our
proof.

Remark 1. For many hard optimization problems in
practice, e.g., two problems to be discussed in Sections 4
and 5, it may be impossible to identify z as a single poly-
nomial product of all yk’s. In this case, among all the yk’s,
we group as many yk’s as possible in the definition of z
(in order to take advantage of the complexity reduction
technique). For the rest of yk’s that cannot be put into
the polynomial product in the definition of z, we can apply
the basic idea described in Section 3.1, i.e., constructing
a search space Λk for each of these yk’s independently to
meet the εk-mapping criterion. As a result, |Γ| is in the
order of the product of |Ω| discussed in Theorem 1 (for
those yk’s in the definition of z) and |Λk|’s (for those yk’s
not in the definition of z). Obviously, the more yk’s that
we can put into the polynomial product definition for z, the
lower complexity we can achieve.

We emphasize that a proper definition of yk’s and the
construction of finite-element sets Λk’s are challenging and,
for some problems, may not be even possible. For the latter
case, we declare that this design procedure is not applicable
to the underlying problem. This should not come as a big
disappointment, as no single design procedure can solve all
hard optimization problems. But, if we are able to over-
come the challenge, then the algorithm designed following
this procedure is a (1 − ε) approximation algorithm.
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4. A (1-ε) Approximation Algorithm for
Maximizing Network Lifetime

We now apply the design procedure in the last section
to address our first base station placement problem. The
network model for this problem is given in Section 2. Re-
call that for this problem, we consider each sensor node i
producing data rate ri that needs to be routed to the base
stations. The problem is how to place the base stations
and arrange data routing such that the network lifetime is
maximized, where network lifetime is defined as the time
until any sensor node uses up its energy.

In Sections 4.1, 4.2, and 4.3, we follow the four phases
in the design procedure to construct a (1 − ε) approxi-
mation algorithm. Two numerical examples are given in
Section 4.4.

4.1. Phase 1

In this phase, we need to set up a mathematic model for the
maximum network lifetime problem, i.e., identify x vari-
able and f(x) function. For this specific problem, x is actu-
ally a vector representing the locations of M base stations
(denote xm as the m-th component of x, 1 ≤ m ≤ M).
The objective here is the network lifetime T , which cor-
responds to the objective function f(x). For any given x,
we will show that f(x) can be obtained by solving a linear
programming (LP) problem (polynomial complexity).

For each sensor node i = 1, 2, · · · , N , we have the follow-
ing incoming/outgoing flow balance equations and energy
constraints.

ri +
k �=i∑

1≤k≤N

fki =
j �=i∑

1≤j≤N

fij +
M∑

m=1

fi,Bm , (4)

ρ

k �=i∑
1≤k≤N

fkiT+
j �=i∑

1≤j≤N

cijfijT+
M∑

m=1

ci,Bmfi,BmT ≤ei, (5)

where fij (or fi,Bm) denotes the bit rate from sensor node
i to sensor node j (or base station Bm). The first N equa-
tions in (4) state that, at each sensor node i, the bit rate
ri (generated by sensor node i), plus the total bit rate of
incoming flows from other sensors, is equal to the total bit
rate of outgoing flows. The second N inequalities in (5)
state that the energy required for reception and transmis-
sion at each sensor node i, at the end of network lifetime
T , cannot exceed its initial energy. Our objective is to
maximize T while both (4) and (5) are satisfied.

When the M base stations’ locations are given, i.e.,
ci,Bm ’s are constants, we can formulate the following LP.
Maximize T
subject to

riT +
k �=i∑

1≤k≤N

Vki −
j �=i∑

1≤j≤N

Vij −
M∑

m=1

Vi,Bm = 0

(1 ≤ i ≤ N)

k �=i∑
1≤k≤N

ρVki +
j �=i∑

1≤j≤N

cijVij +
M∑

m=1

ci,BmVi,Bm ≤ ei

(1 ≤ i ≤ N)
T, Vij , Vi,Bm ≥ 0

(1 ≤ i, j ≤ N, i �= j, 1 ≤ m ≤M) .

where Vij = fijT and Vi,Bm = fi,BmT , and Vij (or Vi,Bm) is
the bit volume being sent from sensor node i to sensor node
j (or base station Bm). Note that T , Vki, Vij , and Vi,Bm are
variables, and that ri, ρ, cij , ci,Bm , and ei are all constants.
We now have an optimization problem in the form of an
LP formulation, which can be solved in polynomial time.
In other words, we have shown a mathematical model for
the optimization problem, where the objective f(x) (the
maximum network lifetime) can be computed from any
given x (the locations of the base stations) in polynomial
time.

To reduce the variable space and the computational
complexity of the above LP, we perform the following pre-
processing before running a full-scale LP. For sensor node
i, denote Qi the set containing the nearest base-station
to sensor i and all other the sensors that are within the
radius from sensor i to this nearest base-station. In the
case where there is a tie when more than one base stations
have the same smallest distance to sensor node i, we break
the tie randomly. For one-hop data transmission from node
i, it is only necessary to consider nodes in Qi as possible
destination. That is, any other node outside Qi should not
be a one-hop destination since node i can otherwise send
to its nearest base station (in Qi) directly in one hop. That
is, we can remove variable fij and fi,Bm when j, Bm �∈ Qi

in the LP formulation.
The following property follows the above discussion and

will be used repeatedly in the Phase 2 design of the approx-
imation algorithm.

Property 1. To be energy efficient, if a sensor node
needs to transmit to some base stations in one hop, it
is sufficient to consider the case where this sensor node
transmits (in one hop) to only one base station, i.e., its
nearest base station.

4.2. Phase 2

Phase 2 in the design procedure is the most challenging
part. Specifically, whether or not it is possible to construct
Λk, 1 ≤ k ≤ L, such that each Λk meets the εk-mapping
criterion, is problem specific. In this part, we fill in all the
details and show that it is indeed possible for our base
station placement problem.
A New Notion of Lifetime. For our problem, the
network lifetime is so far defined as the time instance until
any node uses up its energy. It turns out such network
lifetime definition is not quite convenient in our algorithm
design. Instead, we introduce a new definition, which we
call “longevity” to distinguish from lifetime. Longevity def-
inition is heavily data-centric (in contrast to lifetime, which
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is energy-based) and refers to either the time instance
when data can no longer be forwarded over a link or a
flow path. Under the longevity definition, we imagine that
the energy at a node is logically partitioned into differ-
ent pieces, with each piece pre-assigned (or dedicated) for
either transmission to another node or receiving from a
different node.

Definition 2. (Link Longevity) For link (i, j), de-
note the transmission energy allocated for this link at node
i as et

ij and the receiving energy allocated for this link
at node j as er

ij . Then the link longevity is defined as

min
{

et
ij

cijfij
,

er
ij

ρfij

}
.

In the above definition, for the special case when node j
is a base station Bm, the receiving energy on Bm is defined
as ∞. Following the link longevity definition (or more pre-
cisely, when energy at a node is allocated based on links),
node longevity is defined as the minimum longevity among
all links at this node while network longevity is defined as
the minimum longevity among all the nodes.

Definition 3. (Flow Longevity) Define f l the bit
rate for a flow originating from a sensor node to a base
station by traversing a path l. For each link (i, j) that
is traversed by this flow, denote the transmission energy
allocated to this flow at node i as (el

ij)
t and the receiving

energy allocated to this flow at node j as (el
ij)

r . The flow

longevity is defined as min(i,j)∈l

{
(el

ij)t

cijf l ,
(el

ij)r

ρf l

}
.

Following the flow longevity definition (or more pre-
cisely, when energy at a node is allocated based on flows),
the corresponding node longevity can be defined as the
minimum longevity among all flows originating from this
node while network longevity is defined as the minimum
longevity among all the nodes.

The following property states the relationship between
the data-based network longevity definition and the (energy-
based) network lifetime definition.

Property 2. For any given solution (base station lo-
cations and data routing), the network longevity is no
more than the network lifetime. Under an optimal solution,
the maximum network longevity is equal to the maximum
network lifetime.

It should be note that a solution under longevity def-
inition includes not only base station locations and data
routing but also energy allocation on links or flows. Under
a given solution (base station locations and data routing),
if the energy allocation is chosen properly, the network
longevity can be equal to the network lifetime. Otherwise,
the network longevity is less than the network lifetime.
Based on this property, we have the following lemma.

Lemma 3. If an algorithm is a (1 − ε) approximation
algorithm under network longevity criterion, then this al-
gorithm is also a (1 − ε) approximation algorithm under
the network lifetime criterion.

Determination of z, ĝ(z), and yk. We now identify
zm, ĝm(zm), and y

(k)
m for each xm (the location of base

station Bm). We choose zm as a vector of the transmission
cost ci,Bm from each sensor node i = 1, 2, · · · , N to base
station Bm. Denote zim as the i-th component of zm, we
have

zim = ci,Bm .

For each zim, we choose

y
(1)
im = θi,Bm ,

where θi,Bm is the phase of the base station Bm (measured
from the horizontal axis) when the origin is sensor node
i. We now show that there is a function ĝm(·) such that
xm = ĝm(zim, y

(1)
im ), 1 ≤ i ≤ N , and ĝm(·) can be computed

in polynomial time for any given zim and y(1)
im . That is, the

location of base station Bm (i.e., xm) can be computed in
polynomial time if we know a transmission cost ci,Bm and
the corresponding phase θi,Bm (i.e., zim and y(1)

im ). Specifi-
cally, given a transmission cost ci,Bm , we can calculate the
distance di,Bm from sensor node i to base station Bm via
(2). After we know the values of the distances di,Bm , as
well as the phase θi,Bm , we can determine the location for
base station Bm based on the location of sensor node i.

We now identify the rest of y(k)
im variables so that zim

can be expressed as a polynomial product of these y(k)
im ’s,

2 ≤ k ≤ L. Denote node i’s longevity as ti. We define

y
(2)
im = et

i,Bm
, y

(3)
im = fi,Bm , y

(4)
im = ti , L = 4 .

We now show that zim can be defined as

zim = y
(2)
im (y(3)

im )−1(y(4)
im )−1 . (6)

Under link longevity definition, we have ti ≤ et
i,Bm

ci,Bm fi,Bm
,

i.e., ci,Bm ≤ et
i,Bm

fi,Bm ti
, for each link (i, Bm). It turns out that

it is sufficient to consider only the case for ci,Bm = et
i,Bm

fi,Bm ti
,

i.e., (6). The details are explained in the next paragraph.
Note that ci,Bm ’s, 1 ≤ i ≤ N , are used to determine the

location for base station Bm. Assume we have
et

i,Bm

fi,Bm ti
in

a solution. Since
et

i,Bm

fi,Bm ti
is an upper bound of each ci,Bm ,

then the possible locations for base station Bm is the com-
mon region of several intersecting disks. We argue that it
is sufficient to search only a boundary point for this entire
region, where ci,Bm =

et
i,Bm

fi,Bm ti
. Note that if we move base

station Bm to such a point, under the same data routing
and link energy allocation, the new longevity of each link
(i, Bm) remains at least ti, 1 ≤ i ≤ N , while all other link
longevities remain unchanged. Therefore, the correspond-
ing node longevity for each node as well as the network
longevity are all the same as before. We have thus obtained
another solution with the same network longevity where
the base station Bm is now at a boundary point of the com-
mon region. Thus, it is sufficient to search only a boundary
point for solutions to maximize network longevity.
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Bm
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v1
v2

Case 1: w on arck

Case 2: wkoutside arc

Figure 1. Constructing solution ψ̂ by relocating base station
Bm in solution ψ.

For the ease of mathematical notation, in the rest of
this section, we omit the subscript im when there is no
confusion. For example, we will use yk to express y(k)

im .
Construction of Λk. Recall that whether or not it
is possible to construct Λk that meets εk-mapping crite-
rion is problem-specific and is the main task in the design
procedure described in Section 3.2. In this part, we show
how to construct a finite-element set Λk for each yk and
show the εk-mapping criterion is satisfied in a series of four
claims. In each claim, we construct Λk for yk, k = 1, 2, 3, 4,
such that the performance bound will decrease by no more
than 1−εk when the search space for variable yk is limited
to the finite-element set Λk. Note that we must construct
the finite-element sets Λ2,Λ3, and Λ4 as geometric pro-
gressions, while Λ1 does not have this requirement since
y1 is not in the definition of z (see Remark 1). We first
construct Λ1 for y1 = θi,Bm as follows.

Claim 1. (Λ1) For y1 = θi,Bm and an arbitrarily
small given ε1 > 0, we can construct a set Λ1 = {h1a1 :
h1 = 1, 2, · · · , H1}, with H1 = �nπ/ε1� (where n is the
path loss index) and a1 = 2π/H1 such that for any given
solution ψ for base station placement, data routing, and
energy allocation (on links) with a network longevity T ,
there exists a solution ψ̂ and a sensor node i with θi,Bm ∈
Λ1 and the network longevity is T̂ ≥ (1 − ε1)T .

Proof. The proof is based on construction. That is, we
will move base station Bm in solution ψ and construct ψ̂
to satisfy all requirements.

Under solution ψ, for base station Bm, we consider
et

j,Bm

fj,Bm tj
for each sensor node j, 1 ≤ j ≤ N . These et

j,Bm

fj,Bm tj
’s

define a common region by intersecting disks from different
node j. As discussed, we can move Bm to any boundary
point of this region while the network longevity remains
unchanged. For the purpose of this proof, we only consider
moving base station Bm to a point on the arc (v1, v2) of the
region’s boundary that is part of the smallest circle (i.e.,
circle with the smallest radius d) (see Fig. 1). Assume the
center of this circle is sensor node i and denote wk the point
on this circle that is closet to Bm among these points have
a phase h1a1. We now move Bm to point wk. There are
two cases.

Case 1: We first consider the case that point wk is on
arc (v1, v2). As discussed, after we move Bm to this point,
under the same data routing and energy allocation, the
network longevity is at least T .

Case 2: We now consider the case that point wk is
outside the arc (v1, v2). In this case, we move base sta-
tion Bm in two steps. In the first step, we move Bm to
the end point v1 of this arc toward wk. Again, under the
same data routing and energy allocation, this move will
not decrease the network longevity. In the second step,
we move Bm from v1 to wk. Since wk is the closet point
to Bm among those points that have a phase h1a1, the
phase difference of wk and v1 is at most a1/2, which is
π/H1 ≤ ε1/n by the definition of a1. Thus, the length of
arc (v1, wk) is at most d · a1/2. Due to this change, the
distance from any sensor node j to base station Bm can
increase at most d ·a1/2 ≤ dj,Bm · ε1/n. Thus, the distance
from any sensor node j to base station Bm can increase at
most to (dj,Bm +dj,Bm ·ε1/n)/dj,Bm = 1+ε1/n. By (2), the
cost cj,Bm can increase at most to α+β[(1+ε1/n)dj,Bm ]n

α+βdn
j,Bm

<

α(1+ε1/n)n+β[(1+ε1/n)dj,Bm ]n

α+βdn
j,Bm

= (1 + ε1/n)n. Therefore, un-
der the same data routing and energy allocation in solution
ψ, the new longevity of link (j, Bm) from any sensor node
j after this move decreases at most to 1/(1 + ε1/n)n =
[1/(1 + ε1/n)]n > (1 − ε1/n)n > 1 − ε1, while all other
link longevities remain unchanged. Therefore, the network
longevity is T̂ ≥ (1 − ε1)T .

We now construct a finite-element set Λ2 for y2 = et
i,Bm

,
such that the decrease in performance bound is at most ε2
when we narrow the search space for variable y2 into a
finite-element set Λ2.

Claim 2. (Λ2) For y2 = et
i,Bm

and an arbitrarily
small given ε2 > 0, we can construct a set Λ2 = {a2q

h2
2 :

h2 = 0, 1, · · · , H2}, where a2 = ε2ei, q2 = 1 + ε2, and
H2 =

⌊
ln(1/ε2)
ln(1+ε2)

⌋
, such that for any given solution ψ for base

station placement, data routing, and energy allocation (on
links) with a network longevity T , there exists a solution
ψ̂ with θ̂i,Bm = θi,Bm , êt

i,Bm
∈ Λ2 when êt

i,Bm
> 0, and the

network longevity is T̂ ≥ (1 − ε2)T .

Proof. The proof is based on construction. That is, we
will revise energy allocation in solution ψ and construct
ψ̂ to satisfy all requirements. Note that we keep θ̂i,Bm =
θi,Bm .

For each sensor i with et
i,Bm

> 0, we can revise energy
allocation in ψ and construct ψ̂ as follows.

êt
i,Bm

=
{
ε2ei 0 < et

i,Bm
< ε2ei

ε2ei(1+ε2)h2 et
i,Bm

≥ ε2ei
(7)

where h2 =
⌊
ln

et
i,Bm

ε2ei
/ ln(1 + ε2)

⌋
. For each link (i, j), 1 ≤

i, j ≤ N, i �= j, we revise et
ij (allocated transmission energy

on node i) and et
ij (allocated receiving energy on node i)
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as

êt
ij = (1 − ε2)et

ij , (8)
êr

ij = (1 − ε2)er
ij . (9)

Since et
i,Bm

≤ ei, we have h2 ≤ H2 =
⌊

ln(1/ε2)
ln(1+ε2)

⌋
. That is,

êt
i,Bm

is indeed within the set Λ2.
We now show that this new energy allocation is feasible,

i.e., the total allocated energy on each node i is no more
than ei. When 0 < et

i,Bm
< ε2ei, we have

M∑
m=1

êt
i,Bm

≤ ε2ei , (10)

by (7) and Property 1. Therefore,

M∑
m=1

êt
i,Bm

+
j �=i∑

1≤j≤N

êt
ij +

k �=i∑
1≤k≤N

êr
ki

≤ ε2ei + (1 − ε2)

⎛
⎝ j �=i∑

1≤j≤N

et
ij +

k �=i∑
1≤k≤N

er
ki

⎞
⎠

≤ ε2ei + (1 − ε2)ei = ei

The first inequality holds by (8), (9), and (10). The sec-
ond inequality holds since the energy allocation in solu-
tion ψ is feasible. Thus, the energy feasibility holds when
0 < et

i,Bm
< ε2ei. The proof of energy feasibility for the

case when et
i,Bm

≥ ε2ei is trivial since in the revised en-
ergy allocation, the allocated energy on each link has been
decreased.

We now show that the new network longevity under
the revised energy allocation is T̂ ≥ (1 − ε2)T . For link
longevity, there are three cases by (7), (8), and (9): (1)
when 0 < et

i,Bm
< ε2ei, the link longevity of link (i, Bm)

increases; (2) when et
i,Bm

≥ ε2ei, the link longevity of link
(i, Bm) decreases at most to 1/(1+ε2) > 1−ε2; (3) for link
(i, j) other than (i, Bm), its link longevity is decreased to
1 − ε2. Taking all three cases into consideration, the new
network longevity is T̂ ≥ (1 − ε2)T .

We now construct a finite-element set Λ3 for y3 = fi,Bm ,
such that the decrease in performance bound is at most ε3
when we narrow the search space for variable y3 into a
finite-element set Λ3.

Claim 3. (Λ3) For y3 = fi,Bm and an arbitrarily small
given ε3 > 0, we can construct a set Λ3 = {a3q

h3
3 : h3 =

0, 1, · · · , H3}, with a3 = ε3ri

(N2−N+2) , q3 = 1 + ε3
2 , and H3 =⌈

ln
(N2−N+2)

∑N

j=1
rj

ε3ri
/ ln

(
1 + ε3

2

)⌉
, such that for any given

solution ψ for base station placement and data routing
with a network longevity T , there exists a solution ψ̂ with
θ̂i,Bm = θi,Bm , êt

i,Bm
= et

i,Bm
, f̂i,Bm ∈ Λ3 when f̂i,Bm > 0,

and the network longevity is T̂ ≥ (1 − ε3)T .

Proof. Again, the proof is based on construction. That
is, we will revise the data routing in solution ψ and con-
struct ψ̂ to satisfy all requirements. Note that we keep
θ̂i,Bm = θi,Bm and êt

i,Bm
= et

i,Bm
.

This construction has two steps. In the first step, we
construct a solution ψ† from ψ with f †

i,Bm
≥ a3 when

f †
i,Bm

> 0 and the network longevity is T † ≥ (1 − ε3/2)T .
That is, link rate from a sensor node i to base station
Bm, i.e., f †

i,Bm
, is no less than a3 when it is not zero. In

the second step, we construct a solution ψ̂ from ψ† with
f̂i,Bm ∈ Λ3 when f̂i,Bm > 0 and the network longevity is
T̂ ≥ (1 − ε3/2)T † > (1 − ε3)T .

(i) We can revise the data routing in solution ψ and
construct ψ†. Our objective is to ensure that in solution
ψ†, f †

i,Bm
≥ a3 when f †

i,Bm
> 0. This will make necessary

preparation for our efforts in (ii) to further revise the data
routing in solution ψ† and construct ψ̂.

Since the revision of ψ will be done on flow level (each
involving a source sensor node and a destination base sta-
tion), we first decompose the data routing in ψ into flows
as follows by repeatedly checking whether there is a link
with the remaining rate. If the answer is yes, there must
be a path from a sensor node to a base station and each
link in this path has a positive remaining rate. We can
identify a flow on this path with the minimum link rate
among all links that belongs to this path and remove it
from future flow classification in ψ. Eventually, when the
remaining rates on any links become zero, we are done with
flow classification on ψ. Under this flow classification, it is
easy to re-allocate energy for flows on each node to achieve
the same network longevity T .

We show that the number of flows is at most (N2 +
N)/2. Based on Property 1, there is at most one fi,Bm >
0 for each sensor node i in ψ. Thus, there are at most
N+ (N−1)N

2 = (N2 +N)/2 links. Since classifying one flow
will remove at least one link from future classifications, the
data traffic under ψ can be classified (or decomposed) into
at most (N2 +N)/2 flows.

We are now ready to revise this flow-based data routing
in solution ψ and construct ψ†. The basic idea is that at
each sensor node i, we shift small flows with rate fi,Bm <

ε3ri

N2−N+2 onto the largest flow originates from this node.
We now show that the new network longevity under

the revised data routing is T † ≥ (1 − ε3/2)T . Consider
the flow with largest rate from sensor i. Since there is at
least one flow from each sensor node and there are at most
(N2 + N)/2 flows in the network, at sensor node i, there
are at most (N2 + N)/2 − (N − 1) = (N2 − N + 2)/2
flows from sensor i. Thus, the rate of the largest flow from
sensor i is at least ri/

(
N2−N+2

2

)
= 2ri

N2−N+2 in ψ. Since
for each sensor node i, there is at most one fi,Bm > 0
in solution ψ (Property 1), we move at most one flow to
the largest flow that originates from sensor node i. After
this move, the rate of the largest flow increases at most
by a fraction of

(
ε3ri

N2−N+2

)
/
(

2ri

N2−N+2

)
= ε3/2. Thus,

the flow longevity of this largest flow decreases to at most
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1/(1 + ε3/2) > 1 − ε3/2. Since the flow longevities of all
other flows remain unchanged, solution ψ† has a network
longevity T † ≥ (1 − ε3/2)T .

(ii) In the second step, we further revise the data rout-
ing in solution ψ† and construct ψ̂ as follows.

f̂i,Bm =
ε3ri

N2−N+2

(
1+

ε3
2

)h3

(1≤ i≤N, 1≤m≤M) (11)

f̂ij = f †
ij (1 ≤ i, j ≤ N, i �= j) ,

where h3 =
⌈
ln

(N2−N+2)f†
i,Bm

riε3
/ ln

(
1 + ε3

2

)⌉
. Due to the

ceiling function used for h3, f̂i,Bm could be larger than
required by flow balance. In this case, for the purpose of
understanding, we can imagine that node i transmits some
fictitious data (in addition to ri) to fill up this gap. Since

f †
i,Bm

≤ ∑N
j=1 rj , we have h3 ≤ H3 =

⌈
ln

(N2−N+2)
∑

N

j=1
rj

ε3ri

/ ln
(
1 + ε3

2

)⌉
. That is, f̂i,Bm is indeed within the set Λ3.

We now show that the new network longevity under the
revised data routing is T̂ ≥ (1 − ε3/2)T †. Since the link
rate of link (i, Bm) increases at most to 1 + ε3/2 by (11),
the link longevity decreases at most to 1/(1 + ε3/2) > 1−
ε3/2. Note that the link longevities of all other links remain
unchanged, ψ̂ has a network longevity T̂ ≥ (1− ε3/2)T † ≥
(1 − ε3/2) · (1 − ε3/2)T > (1 − ε3)T . This completes the
proof.

We now construct a finite-element set Λ4 for y4 = ti,
such that the decrease in performance bound is no more
than ε4 when we narrow the search space for y4 into this
finite-element set Λ4.

Claim 4. (Λ4) Denote TS as the maximum network
longevity obtained by placing base stations only at the
same locations for sensor nodes. For y4 = ti and an arbi-
trarily small given ε4 > 0, we can construct a set Λ4 =
{a4q

h4
4 : h4 = 0, 1, · · · , H4}, with a4 = TS , q4 = 1+ ε4, and

H4 =
⌊

n ln 2
ln(1+ε4)

⌋
, where n is the path loss index, such that

for any given solution ψ for base station placement and
data routing with a network longevity T , there exists a so-
lution ψ̂ with θ̂i,Bm = θi,Bm , êt

i,Bm
= et

i,Bm
, f̂i,Bm = fi,Bm ,

t̂i ∈ Λ4, and the network longevity is T̂ ≥ (1 − ε4)T .

Proof. The proof is based on construction. That is, we
will revise node longevity in solution ψ and construct ψ̂ to
satisfy all requirements. Note that we keep θ̂i,Bm = θi,Bm ,
êt

i,Bm
= et

i,Bm
, and f̂i,Bm = fi,Bm .

We first bound the search space of ti. In Lemma 4 (see
appendix), we show that TS ≥ 2−nT ∗, i.e., T ∗ ≤ 2nTS ,
where T ∗ is the maximum network longevity under optimal
solution. It is obvious that TS ≤ T ∗. Thus, we only need
to check [TS , 2nTS ] for each ti, since ti < TS cannot yield
an optimal solution and there is no need to make ti >
2nTS . By decreasing the energy allocation on certain link
(e.g., incoming link (k, i)), we can revise node longevity in
solution ψ and construct ψ̂ as follows.

t̂i = TS(1 + ε4)h4 (1 ≤ i ≤ N) ,

where h4 =
⌊
ln ti

TS
/ ln(1 + ε4)

⌋
. Since we only consider the

case for ti ≤ 2nTS , we have h4 ≤ H4 =
⌊

n ln 2
ln(1+ε4)

⌋
. That

is, t̂i is indeed within the set Λ4.
We now show that the new network longevity under

the revised node longevity is T̂ ≥ (1 − ε4)T . Since node
longevity of each node i decreases at most to 1/(1 + ε4) >
1 − ε4, ψ̂ has a network longevity T̂ ≥ (1 − ε4)T . This
completes the proof. �

4.3. Phases 3 and 4

We now proceed to Phase 3 and Phase 4 of the design
procedure. We first determine ε1, ε2, ε3, and ε4 such that
ε1 + ε2 + ε3 + ε4 = ε and q2 = q3 = q4 = q. From Claims 2,
3, and 4, q2 = 1 + ε2, q3 = 1 + ε3/2, and q4 = 1 + ε4, we
choose ε1 = ε2 = ε4 = ε/5, and ε3 = 2ε/5.

For each z = ci,Bm , we have

Ω = {y2y−1
3 y−1

4 : yk ∈ Λk, 2 ≤ k ≤ 4}

=

{
ε2ei(1+ε2)h2

[
ε3ri

(N2−N+2)

(
1+

ε3
2

)h3
]−1

[
TS(1+ε4)h4

]−1
}

=

{
εei

5

(
1+

ε

5

)h2
[

2εri
5(N2−N+2)

(
1+

ε

5

)h3
]−1

[
TS

(
1+

ε

5

)h4
]−1

}

=
{(

1 +
ε

5

)h2−h3−h4 (N2 −N + 2)ei

2riTS

}
,

where hk = 0, 1, · · · , Hk, 2 ≤ k ≤ 4, and thus

|Ω| = O

(
4∑

k=2

|Λk|
)

= O

(
4∑

k=2

(Hk + 1)

)

= O

(⌈
ln

(N2 −N + 2)
∑N

j=1 rj

ε3ri
/ ln

(
1 +

ε3
2

)⌉

+
⌊

ln(1/ε2)
ln(1 + ε2)

⌋
+
⌊

n ln 2
ln(1 + ε4)

⌋
+ 3

)

= O

(⌈
ln

5(N2 −N + 2)
∑N

j=1 rj

2εri
/ ln

(
1 +

ε

5

)⌉

+
⌊

ln(5/ε)
ln(1 + ε/5)

⌋
+
⌊

n ln 2
ln(1 + ε/5)

⌋)

= O

(
ln(1/ε)

ε
+

ln(N/ε)
ε

+
1
ε

)
= O

(
ln(N/ε)

ε

)
,

where we have used the fact that ln(1 + ε/5) ≈ ε/5 for
small ε > 0.

The set Γ for the locations of base station Bm is defined
as all points with θi,Bm ∈ Λ1 and ci,Bm ∈ Ω (or ei,Bm ∈ Λ2,
fi,Bm ∈ Λ3, and ti ∈ Λ4), 1 ≤ i ≤ N . Based on Claims 1, 2,
3, and 4, we know that the maximum network longevity by
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Figure 2. Base station placement to maximize network lifetime.

checking all locations in Γ is at least (1−ε) of the optimum
and |Γ| = O(N |Ω||Λ1|) = O(N

ε2 ln N
ε ).

In Phase 4, a (1−ε) approximation solution is obtained
by examining all locations in Γ. For M base stations, the
search space is O((N

ε2 ln N
ε )M ).

4.4. Numerical Examples

As examples, we apply our (1−ε) approximation algorithm
to solve base station placement problem for M = 1 (single
base station) and M = 2 (two base stations). We randomly
generate a 30-node sensor network in a 10x10 area (see
Fig. 2). All units are normalized in consistent to those
defined in (1), (2), and (3). For the power consumption
model, we set α = 1, β = 3, ρ = 1, and n = 4. The initial
energy at a node is chosen from a uniform distribution
within [50, 100] and the data rate is chosen from another
uniform distribution within [1, 10].

For a given ε = 0.1, the base station placements for
M = 1 and M = 2 calculated by our approximation al-

gorithm are shown in Figs. 2(a) and (b), respectively. The
corresponding network lifetimes are T = 13.50 for M = 1
and T = 30.09 for M = 2.

5. A (1-ε) Approximation Algorithm for
Maximizing Weighted Network Capacity

We now show that the design procedure in Section 3 can
be used to address base station placement problem when
the optimization objective is network capacity. In this new
problem, we assume there is a weight wi associated with
each sensor node i. For a given network lifetime require-
ment T , we investigate how to place the base stations
and perform data routing such that the weighted capacity,∑N

i=1 wiri, is maximized, where ri’s are variables.
Note that although the weighted capacity problem here

and the network lifetime problem discussed in the last sec-
tion both consider base station placement and data rout-
ing, there does not appear any duality relationship between
the two problems and thus they must be solved indepen-
dently. We point out that the approximation algorithm
presented in this section is the first theoretical result to
this problem.

In Section 4, we have given detailed exposition on how
to apply the design procedure for the network lifetime
problem. The development in this section builds upon the
knowledge and experience in the last section and we will
strive to keep our discussion as concise as possible. Read-
ers are advised to review the last two sections to refresh
their understanding and the details of the algorithm de-
sign procedure. The focus in this section will be on how
to construct the finite-element sets Λk.2 As discussed in
Section 3, constructing such sets is problem-specific and is
the most challenging part in applying the design procedure
to solve a specific optimization problem.

5.1. Algorithm Design

Phase 1. We choose x as a vector of locations of all
base stations (denote xm as the m-th component of x, 1 ≤
m ≤M). The objective function f(x) here is the weighted
capacity

∑N
i=1 wiri. When x is given, f(x) can be obtained

by solving the following LP (polynomial complexity).
Maximize

∑N
i=1 wiri

subject to

k �=i∑
1≤k≤N

fki + ri −
j �=i∑

1≤j≤N

fij −
M∑

m=1

fi,Bm = 0

(1 ≤ i ≤ N)

2 The notations used in this section are self-contained and
do not relate to those in Section 4. For example, Λk’s in this
section are for the network capacity problem here and have no
relationship to Λk’s discussed in the last section for the network
lifetime problem.
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k �=i∑
1≤k≤N

ρTfki +
j �=i∑

1≤j≤N

cijTfij +
M∑

m=1

ci,BmTfi,Bm ≤ ei

(1 ≤ i ≤ N)
rmin ≤ ri ≤ rmax, fij , fi,Bm ≥ 0

(1≤ i, j≤N, j �= i, 1≤m≤M) ,

where rmin and rmax denote the lower and upper bounds
for the rate that a sensor can generate, respectively. Un-
like the network lifetime problem in Section 4, now ri are
variables and T is a constant.
Phase 2. We now identify zm, ĝm(zm), and y(k)

m for each
xm (the location of base station Bm). We choose zm as a
vector of ci,BmT for i = 1, 2, · · · , N . Denote zim as the i-th
component of zm, i.e.,

zim = ci,BmT .

For each zim, we define

y
(1)
im = θi,Bm ,

where θi,Bm is the corresponding phase of the base station
Bm when the origin is sensor node i. For the rest of y(k)

im

variables, we choose

y
(2)
im = et

i,Bm
, y

(3)
im = fi,Bm , L = 3 ,

and we can define zim as

zim = y
(2)
im · (y(3)

im )−1 .

Similar to what we discussed in Section 4.2, it is sufficient
to search only the locations that have ci,BmT =

et
i,Bm

fi,Bm
,

where et
i,Bm

is the allocated transmission energy on link
(i, Bm). We again omit the subscript im when there is no
confusion.

Note that we must construct the finite-element sets Λ2

and Λ3 as geometric progressions, while Λ1 does not have
this requirement since y1 is not used in the definition of z.

Claim 5. (Λ1) For y1 = θi,Bm and an arbitrarily small
given ε1 > 0, we can construct a set Λ1 = {h1a1 : h1 =
1, 2, · · · , H1}, with H1 = �nπ/ε1� (where n is the path loss
index) and a1 = 2π/H1 such that for any given solution
ψ for base station placement, data routing, and energy
allocation (on links) with a weighted capacity W , there
exists a solution ψ̂ and a sensor node i with θi,Bm ∈ Λ1

and the weighted capacity is Ŵ ≥ (1 − ε1)W .

Proof. The proof is based on construction. That is, we
will move base station Bm in solution ψ and construct ψ̂
to satisfy all requirements.

Under solution ψ, for base station Bm, we consider
et

j,Bm

fj,Bm
for each sensor node j, 1 ≤ j ≤ N . These

et
j,Bm

fj,Bm
’s

define a common region by intersecting disks from different
node j. As discussed, we can move Bm to any boundary
point of this region while the weighted capacity remains
unchanged. For the purpose of this proof, we only consider

moving base station Bm to a point on the arc (v1, v2) of
the region’s boundary that is part of the circle with the
smallest radius (see Fig. 1 as an example). Assume the
center of this circle is sensor node i and denote the point
on this circle with phase ka1 as wk, k = 1, 2, · · · , H1. We
now move Bm to a point wk so that the new position for
Bm has a phase ka1 within the finite-element set Λ1 while
the weighted capacity will be decreased by no more than
ε1.

We consider two cases.
(i) We first consider the case that point wk is on arc

(v1, v2). After we move Bm to this point, under the same
energy allocation, the new maximum allowed link rate of
each link (i, Bm), which is

et
i,Bm

ci,BmT , remains at least fi,Bm ,
while the maximum allowed link rates of all other links
remain unchanged. Therefore, the data routing in ψ is
still feasible. Under the same data routing, the weighted
capacity remains as W .

(ii) We now consider the case that none of these points
wk’s is on arc (v1, v2) . In this case, we will move base
station Bm to point wk that is closet to this arc (see
Fig. 1). We move base station Bm in two steps. In the
first step, we move Bm to the end point v1 of this arc
toward wk. Again this move will not change the weighted
capacity. In the second step, we move Bm from vertex v1
to wk. As we discussed in the proof for Claim 1, for any
sensor node j, the cost cj,Bm can increase at most to 1+ε1.
Therefore, under the same energy allocation in solution ψ,
the maximum link rate of link (j, Bm) decreases at most
to 1/(1 + ε1) > 1 − ε1, while the maximum link rates of
all other links remain unchanged. Therefore, the weighted
capacity is at least (1 − ε1)W .

Claim 6. (Λ2) For y2 = et
i,Bm

and an arbitrarily
small given ε2 > 0, we can construct a set Λ2 = {a2q

h2
2 :

h2 = 0, 1, · · · , H2}, where a2 = ε2ei, q2 = 1 + ε2, and
H2 =

⌊
ln(1/ε2)
ln(1+ε2)

⌋
, such that for any given solution ψ for base

station placement, data routing, and energy allocation (on
links) with a weighted capacity W , there exists a solution
ψ̂ with θ̂i,Bm = θi,Bm , êt

i,Bm
∈ Λ1 (when êt

i,Bm
> 0), and

the weighted capacity is Ŵ ≥ (1 − ε2)W .

Proof. The proof is based on construction. That is, we
will revise energy allocation in solution ψ and construct
ψ̂ to satisfy all requirements. Note that we keep the same
base station placement, i.e., θ̂ = θ.

We can revise energy allocation in ψ and construct en-
ergy allocation in ψ̂ by (7), (8), and (9). The feasibility for
energy allocation in ψ̂, i.e., the total allocated energy on
each node i in ψ̂ is no more than ei, is proved in Claim 2.

We now show that the new weighted capacity is at least
(1 − ε2)W . Note that the maximum allowed link rate of

link (i, Bm) is et
i,Bm

ci,BmT and the maximum allowed link rate

of link (i, j) is min
{

et
ij

cijT ,
er

ij

ρT

}
, we have: (1) when 0 <

et
i,Bm

< ε2ei, the maximum allowed link rate of link (i, Bm)
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is increased; (2) when et
i,Bm

≥ ε2ei, the maximum allowed
link rate of link (i, Bm) is decreased at most to 1/(1+ε2) >
1− ε2; (3) for link (i, j) other than (i, Bm), the maximum
allowed link rate is decreased to 1 − ε2. Therefore, the
maximum allowed link rate for each link in ψ̂ is at least
(1 − ε2) of the maximum allowed link rate in ψ. To make
data routing feasible, each link’s rate as well as each node’s
rate need to decrease at most to 1 − ε2. Therefore, the
weighted capacity is at least (1 − ε2) ·W .

Claim 7. (Λ3) For y3 = fi,Bm and an arbitrarily
small given ε3 > 0, we can construct a set Λ3 = {a3q

h3
3 :

h3 = 0, 1, · · · , H3}, with a3 = rminε3/2, q3 = 1 + ε3/2, and
H3 =

⌊
ln 2Nrmax

ε3rmin
/ ln

(
1 + ε3

2

)⌋
, such that for any given

solution ψ for base station placement and data routing
with a weighted capacity W , there exists a solution ψ̂ with
θ̂i,Bm = θi,Bm , êt

i,Bm
= et

i,Bm
, fi,Bm ∈ Λ2 when fi,Bm > 0,

and the weighted capacity is Ŵ ≥ (1 − ε3)W .

Proof. Again, the proof is based on construction. That
is, we will revise the data routing in solution ψ and con-
struct ψ̂ to satisfy all requirements. Note that we keep
θ̂i,Bm = θi,Bm and êt

i,Bm
= et

i,Bm
.

This construction has two steps. In the first step, we
construct a solution ψ† from ψ with f †

i,Bm
≥ a3 when

f †
i,Bm

> 0 and the weighted capacity is W † ≥ (1−ε3/2)W .
In the second step, we construct a solution ψ̂ from ψ† with
f̂i,Bm ∈ Λ3 when f̂i,Bm > 0 and the weighted capacity is
Ŵ ≥ (1 − ε3/2)W † > (1 − ε3)W .

(i) We can revise the data routing in solution ψ and
construct ψ†. Our objective is to ensure that in solution
ψ†, f †

i,Bm
≥ a3 when f †

i,Bm
> 0.

Since this revision will be done on flow level, we first
decompose the data routing in ψ into flows as we discussed
in the proof for Claim 3. We then revise the data routing
for ψ† by removing each flow fi,Bm if fi,Bm <

ε3rmin
2 for

each node i. This removing is allowed, as node i’s rate is
a variable (i.e., adjustable). Based on Property 1, for each
sensor node i, there is at most one fi,Bm > 0 in ψ. Thus,
we remove at most one flow from sensor i. Remove this flow
will decrease node i’s rate by ε3rmin

2 /ri ≤ ε3/2. Therefore,
ψ† has the weighted capacity W † ≥ (1 − ε3/2)W .

(ii) In the second step, we further revise the data rout-
ing in solution ψ† and construct ψ̂ as follows.

f̂i,Bm = ε3rmin
2 (1 + ε3

2 )h3 (1 ≤ i ≤ N, 1 ≤ m ≤M)

where h3 =
⌊
ln

2f†
i,Bm

ε3rmin
/ ln

(
1 + ε3

2

)⌋
. Since f †

i,Bm
≤ ∑N

j=1 rj

≤ Nrmax, we have h3 ≤ H3 =
⌊
ln 2Nrmax

ε3rmin
/ ln

(
1 + ε3

2

)⌋
.

That is, f̂i,Bm is indeed within the set Λ3.
Since the link rate of link (i, Bm) decreases at most to

1/(1 + ε3/2) > 1 − ε3/2, to make data routing feasible,
each node’s rate need to decrease at most to 1 − ε3/2.
Therefore, ψ̂ has weighted capacity Ŵ ≥ (1 − ε3/2)W † ≥
(1 − ε3/2)(1 − ε3/2)W > (1 − ε3)W .

Phase 3. We now proceed to Phase 3. We first determine
ε1, ε2, and ε3, such that ε1 + ε2 + ε3 = ε and q2 = q3 = q.
From Claims 6 and 7, q2 = 1 + ε2 and q3 = 1 + ε3/2, we
choose ε1 = ε2 = ε/4 and ε3 = ε/2.

For each z = ci,BmT , we have

Ω = {y2y−1
3 : yk ∈ Λk, 2 ≤ k ≤ 3}

=

{
ε2ei(1 + ε2)h2

[
ε3rmin

2

(
1 +

ε3
2

)h3
]−1

}

=

{
εei

4

(
1 +

ε

4

)h2
[
εrmin

4

(
1 +

ε

4

)h3
]−1

}

=
{(

1 +
ε

4

)h2−h3 ei

rmin

}
,

where hk = 0, 1, · · · , Hk, k = 2, 3, and

|Ω| = O

(
3∑

k=2

|Λk|
)

= O

(
3∑

k=2

(Hk + 1)

)

= O

(⌊
ln(1/ε2)

ln(1 + ε2)

⌋
+
⌊
ln

2Nrmax

ε3rmin
/ ln

(
1 +

ε3
2

)⌋
+ 2

)

= O

(⌊
ln(4/ε)

ln(1 + ε/4)

⌋
+
⌊
ln

4Nrmax

rminε
/ ln

(
1 +

ε

4

)⌋)

= O

(
ln(1/ε)
ε

+
ln(N/ε)

ε

)
= O

(
ln(N/ε)

ε

)
.

The set Γ for the locations of base station Bm is defined
as all points with θi,Bm ∈ Λ1 and ci,BmT ∈ Ω (or ei,Bm ∈
Λ2 and fi,Bm ∈ Λ3), 1 ≤ i ≤ N . Based on Claims 5, 6,
and 7, we know that the maximum network longevity by
checking all locations in Γ is at least (1 − ε) times the
optimum and |Γ| = O(N |Ω||Λ1|) = O(N

ε2 ln N
ε ).

Phase 4. In Phase 4, we check all locations in Γ for
each base station and find the maximum weighted capacity
among them. Since there are M base stations, the search
space is O((N2

ε2 ln2 N
ε )M ).

5.2. Numerical Examples

Again, we apply this (1 − ε) approximation algorithm to
solve base station placement problem for M = 1 (single
base station) and M = 2 (two base stations). We randomly
generate a 30-node network in a 10x10 area (see Fig. 3).
All units are normalized in consistent to those defined in
(1), (2), and (3). For the power consumption model, we set
α = 1, β = 3, ρ = 1, and n = 4. The initial energy at a
node is set from a uniform distribution within [50, 100].
The required network lifetime is 10 for all nodes. The
weight for each node is set from a uniform distribution
within [1, 5]. The minimum and maximum data rate are 1
and 100, respectively.

For a given ε = 0.1, the base station placements for
M = 1 and M = 2 calculated by our approximation al-
gorithm are shown in Figs. 3(a) and (b), respectively. The
corresponding weighted network capacities are 3602.26 for
M = 1 and 5767.96 for M = 2.
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Figure 3. Base station placement to maximize the weighted
capacity.

6. Related Work

Due to energy constraint, the lifetime expectancy and net-
work capacity for wireless sensor networks are limited. As
a result, there is a flourish of research activities in this area
in recent years. Many of these efforts (see, e.g., [1, 3, 9, 19]
for network lifetime and [6, 10, 13, 15, 20] for network
capacity) studied lifetime or capacity problems under given
network topology and without explicit consideration on the
impact of node placement on network performance.

Node placement problems in sensor networks include
sensor node placement [4, 16, 17, 21], relay node place-
ment [7, 18], and base station placement [2, 5, 11]. The
main focus of sensor node placement has been on cover-
age in order to have either better geographical coverage
of the area or better connectivity in the network. Relay
node placement deals with how to place special auxiliary
nodes within a sensor network so that network performance
(e.g., connectivity, lifetime) can be improved. Related work

on relay node placement (e.g., [7, 18]) have been limited
on heuristic algorithm development without being able to
provide performance guarantee.

Related work on base station placement include [2, 5,
11]. In [2], Bogdanov et al. studied how to place base sta-
tion so that the network flow is proportionally maximized
subject to link capacity. The authors show that although
it is possible to find optimal solutions for special network
topology (e.g., grid), the base station placement problem
for an arbitrary network is NP-complete. The authors also
pointed out that an approximation algorithm with any
guarantee was not known and subsequently proposed two
heuristic algorithms. In [11], Pan et al. studied single base
station placement problem to maximize network lifetime
(i.e., M = 1 case for our first problem). The optimal lo-
cation is determined for the very special case when only
single-hop routing between a sensor node and the base
station is allowed. The more difficult problem for base
station placement where multi-hop routing is allowed was
not addressed.

The most relevant work to this paper is [5] by Efrat,
Har-Peled, and Mitchell. In this work, the authors studied
two location problems in sensor networks. The first prob-
lem addresses optimal location for a single base station
placement, which is the same as the first problem dis-
cussed in this paper when M = 1. The authors proposed
a (1 − ε) approximation algorithm that has O

(
N
ε4 ln N

ε

)
computational complexity. In comparison, for single base
station placement (M = 1), the computational complexity
in the approximation algorithm developed in this paper is
O
(

N
ε2 ln N

ε

)
, which is order of 1/ε2 reduction in complexity.

Such reduced complexity is mainly attributed to our devel-
opment of the complexity reduction technique discussed in
Section 3.2. More important, we have made a theoretical
contribution by synthesizing a systematic design procedure
in Section 3.2, which has the potential to be applied for
the design of (1 − ε) approximation algorithms to solve a
broader class of problems.

7. Conclusions

Our efforts in this work were motivated by base station
placement problems in sensor networks. Prior to this work,
there was only one (1 − ε) approximation algorithm for
base station placement but unfortunately with high com-
plexity. In this paper, we developed a procedure to design
(1−ε) approximation algorithms that not only produce an
approximation algorithm with much lower complexity, but
also can be applied to address other difficult problems for
base station placement with other objectives (i.e., network
capacity). The proposed procedure offers a general frame-
work to the design of (1−ε) approximation. The key ideas
are to transform infinite search space to a finite-element
search space with performance guarantee and to exploit
overlap among the elements to further reduce the size of
the search space. We believe this approach has the poten-
tial to solve other difficult optimization problems involving
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continuous search space and we are currently further ex-
ploring its applications beyond the two problems discussed
in this paper.
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Appendix

Lemma 4. For the maximum network longevity prob-
lem discussed in Section 4, if the search space for the
locations of the M base stations is limited to the loca-
tions of the N sensor nodes, then the maximum network
longevity TS is at least 2−nT ∗, where T ∗ is the maximum
network longevity.

Proof. We first prove the following result. For any given
solution ψ for base station placement, data routing, and
energy allocation (on links) with the network longevity T ,
there exists a solution ψ̂, where each base stations is lo-
cated at the same place of a sensor node, with the network
longevity T̂ ≥ 2−nT .

For each base station Bm, 1 ≤ m ≤ M , we move it
from its location in solution ψ to its nearest sensor node,
which we denote as B̂m. We call this newly constructed
solution as ψ̂. For each sensor node i, 1 ≤ i ≤ N , we have
di,B̂m

≤ di,Bm + dBm,B̂m
and dBm,B̂m

≤ di,Bm (otherwise,
base station Bm will be relocated to sensor node i). Thus,
di,B̂m

≤ 2di,Bm . By (2), we have ci,B̂m
= α + βd̂n

i,Bm
≤

α + β(2di,Bm)n < 2nα + β(2di,Bm)n = 2nci,Bm . The link
longevity for link (i, Bm) decreases at most by a factor of
2−n, i.e., the network longevity under ψ̂ is at least T̂ ≥
2−nT .

For the special case that ψ = ψ∗, i.e., an optimal solu-
tion, with the network longevity T ∗, we know that there ex-
ists a solution ψ̂∗, where each base stations is re-located to
the location of its nearest sensor with a network longevity
T̂ ∗ ≥ 2−nT ∗. Note that TS ≥ T̂ ∗, we have TS ≥ 2−nT ∗.
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