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Abstract

Cognitive radio (CR) is a revolution in radio technology and is viewed as an enabling technology for dynamic
spectrum access. This paper investigates how to design distributed algorithm for a multi-hop CR network, with
the objective of maximizing data rates for a set of user communication sessions. We study this problem via a
cross-layer optimization approach, with joint consideration of power control, scheduling, and routing. For the
centralized problem, we show that this optimization problem is in the form of mixed integer nonlinear program
(MINLP), which cannot be solved in polynomial time. To develop a performance benchmark for the distributed
optimization algorithm, we first develop a tight upper bound on the objective function via relaxation on the MINLP
problem. Subsequently, we develop a distributed optimization algorithm that iteratively increases the data rate
among user communication sessions. During each iteration, there are two separate processes, a Conservative
Iterative Process (CIP) and an Aggressive Iterative Process (AIP). Both CIP and AIP incorporates routing, min-
imalist scheduling, and power control/scheduling modules. Via simulation results, we compare the performance
of the distributed optimization algorithm with the upper bound and validate its efficacy.
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1 Introduction

Cognitive radio (CR) is a revolution in radio technology that is enabled by recent advances in RF design, signal
processing, and communications software [18]. CR is characterized by software-based signal processing. This is in
contrast to traditional hardware based radios in which signal processing is done entirely in custom-made hardware
circuitry. CR promises unprecedented flexibility in radio communications and is viewed as an enabling technology
for dynamic spectrum access. Its potential has been recognized by the commercial sector as well as the military
(e.g., JTRS program [9]) and public safety communications (e.g., SAFECOM [19]).
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Due to its software nature, a CR is capable of reconfiguring RF (on the fly) and switching to newly-selected
frequency bands (a.k.a. frequency-agile). From wireless networking perspective, the emergence of CR offers a whole
new set of research problems in algorithm design and protocol implementation. To appreciate such opportunity,
we compare CR with a closely related wireless technology called multi-channel multi-radio (MC-MR), which has
also been under intensive research in recent years (see e.g., [1, 6, 10, 11, 17] and reference therein). First, MC-
MR platform employs traditional hardware-based radio technology (i.e., signal processing, modulation etc. are
all implemented in hardware) and thus each radio can only operate on a single channel at a time and there is no
switching of channel on a per-packet basis. Thus, the number of concurrent channels that can be used at a wireless
node is limited by the number of hardware-based radios. In contrast, the radio technology in CR is software-
based; a softradio is capable of switching frequency bands on a per-packet basis and operating over a wide range of
spectrum. As a result, the number of concurrent frequency bands that can be used by a single softradio is typically
much larger than that can be supported by MC-MR. Second, due to the nature of hardware-based radio technology
in MC-MR, a common assumption in MC-MR is that there is a set of “common channels” available for every node
in the network; each channel typically has the same bandwidth. Such assumption is hardly true for CR networks,
in which each node may have a different set of frequency bands, each may of un-equal size. A CR node is capable
of working on a set of “heterogeneous” channels that are scattered on widely-separated slices of the frequency
spectrum with different bandwidths. An even more profound advance in CR technology is that a CR can work
on non-contiguous channels for transmission/reception: the radio can send packets over non-contiguous frequency
bands. These important differences between MC-MR and CR warrant that the algorithm design for a CR network
is substantially more complex than that under MC-MR. In some sense, an MC-MR network can be considered as
a special case of a CR network. Thus, algorithms designed for CR networks can be tailored to address MC-MR

networks while the converse is not true.

In this paper, we consider how to design distributed algorithm to optimize network resource utilization, with the
specific objective of maximizing data rates for a set of user communication sessions. We show such problem for
CR networks is inherently cross-layer in nature and calls for joint consideration of power control, scheduling, and
routing. Since power control directly affects the receiving power at the destination node (signal power) and at other
nodes (interference power), it has profound impact on interference relationship among the nodes. We develop a
formal mathematical model for such relationship. To set up a performance benchmark for the distributed algorithm,
we fist develop a centralized cross-layer optimization problem with joint formulation of power control, scheduling,
and routing. Since this formulation is in the form of a mixed integer nonlinear program (MINLP), we perform a
linear relaxation to find the upper bound of the objective function. This upper bound will be used to measure the

performance of a distributed algorithm.

Subsequently, we move on to develop a distributed optimization algorithm, with the specific objective of maxi-

mizing the smallest scaling factor (session rate over this session’s rate requirement) for a set of user sessions. This is



the main contribution of this paper. We give details of the iterative steps in the algorithm on how to increase the data
rate among user communication sessions. To increase the smallest scaling factor among the sessions at each itera-
tion, we employ two separate processes, a Conservative lterative Process (CIP) and an Aggressive lterative Process
(AIP). Under CIP, we aim to increase the smallest scaling factor, without affecting any other session; while under
AIP, we can decrease other sessions’ scaling factors, as long as the reduced scaling factors do not fall below the one
that is being increased. The need of AIP is easy to understand. The reason why CIP is needed is interesting and will
be discussed in Section 4.2. Both CIP and AIP incorporates three modules, namely routing, minimalist scheduling,
and power control/scheduling. In the routing module, we define link cost based on bandwidth-footprint product
(BFP), a unique metric associated with CR networks. In the minimalist scheduling module, scheduling assignments
along the minimum cost route are made only when there is no other choices (and thus follows “minimalist” ap-
proach). The reason for this minimalist approach is that power control may change the conflict relationship among
links. Therefore, scheduling assignment is best done with joint consideration of power control. Finally, the power
control/scheduling module determines all the remaining scheduling assignments, transmission powers, and flow rate
increase on the minimum cost route. We use simulation results to demonstrate the performance of this distributed

optimization algorithm and compare it to the upper bound via the centralized approach.

The rest of this paper is organized as follows. In Section 2, we present a mathematical model for power control,
scheduling, and routing. Subsequently, in Section 3, we formulate the cross-layer optimization problem via a cen-
tralized approach and find an upper bound for this problem via a linear relaxation. In Section 4, we give details on
the design of a distributed optimization algorithm. In Section 5, we present simulation results for the distributed al-
gorithm and demonstrate their closeness to the upper bound. Section 6 reviews related work and Section 7 concludes

this paper.

2 Problem Modeling

We consider a CR ad hoc network consisting of a set of A" nodes. Unlike MC-MR networks where the set of
available frequency bands at each node is identical, in a CR network, the set of available frequency bands at each
node depends on its location and may not be the same. Denote M; the set of available frequency bands at node
and M the union of available frequency bands among all the nodes in the network, i.e., M = J;c,r M;. For each
available frequency band at a node, we assume its bandwidth is . Consider a set of £ active user communication
(unicast) sessions, each with a rate requirement. Denote s(1) and d(!) the source and destination nodes of session
[ € £ and r(l) the rate requirement of session [. In this paper, we consider how to maximize these session rates
proportionally. That is, we aim to find a maximum scaling factor K, such that K - r(I) amount of data can be

transmitted for each session [ € L. Table 1 lists all notation in this paper.



Table 1: Notation.

Symbol Definition
Cij Remaining capacity on link i — j
d(l) Destination node of session [
fii () Data rate that is attributed to session { on link ¢ — j
f Achieved data rate on the minimum cost route for session !
9ij Propagation gain from node 7 to node j
ILC(i,7) | Incremental link cost of link ¢ — j
VAL Set of nodes that may make interference on band m at node j under full transmission power Pmax
K(1) Scaling factor of session {
K The smallest scaling factor among all sessions
L Set of user communication sessions in the network
M; Set of available bands at node ¢
M The set of frequency bands in the network, i.e, M =37, M;
M;; Set of available bands on link ¢ — j, i.e., M;; = M; [ M;
N The set of nodes in the network
iy Transmission power from node 4 to node j on band m
i)v The maximum allowed transmission power from node 3 to node j on band m
Pmax The maximum transmission power at a transmitter
Pr The minimum threshold of received transmission power on a receiver
Pg When node j is a receiver, the minimum required transmission power at transmission node ¢
Pr The maximum threshold of received interference power on a receiver
P,fj When node j is a receiver, the maximum allowed transmission power at other transmission node &
r(l) Rate requirement of session {
s(l Source node of session [
" Set of nodes that node 7 can transmit to under full transmission power Pmax on band m
T: Set of nodes that node 7 can transmit to under full transmission power Pmax, i.e., T; = UmeM,- T
w Bandwidth of a frequency band
x7; Binary indicator to mark whether or not band m is used by link ¢ — 5
n Ambient Gaussian noise density




2.1 Scheduling and Power Control

Scheduling for transmission at each node in the network can be done either in time domain or frequency domain. In
this paper, we consider scheduling in the frequency domain in the form of frequency bands. Suppose that band m is
available at both node 7 and node j, i.e., m € M; and m € M. Denote Diy the transmission power from node 7 to

node 5 in frequency band m. We now analyze the necessary and sufficient condition for successful transmission.

In aradio environment, there is a propagation gain associated with each transmission. Denote g;; the propagation
gain for transmission from node ¢ to node j. We first consider constraint on interference. Suppose there is a
transmission from node i to node j on frequency band m, then there is a limitation on the transmission power for
a concurrent transmission from a neighboring node % to another node h. Specifically, we consider the received
interference power on node j (due to concurrent transmission from node & to node k) is negligible only if the

received interference power does not exceed a threshold, say Py, i.e., p}, - gx; < Pr. From this, we can calculate

the maximum allowed transmission power at node & (which is considered as interference at node j) as P,fj = %.
J
That is, to make the interference negligible on node j, we must have
Pih < Pij - (D

With the above interference constraint, we now consider power level constraint for successful transmission. We
consider that a data transmission from node ¢ to node j on frequency band m is successful only if the received
transmission power on node j exceeds a power threshold, say Pr, i.e., pg;? - gij > Pr. From this, we can calculate
the minimum required transmission power on node 7 as

P
=" ()
Gij

That is, to make a data transmission from node ¢ to node j successful, we must have
S (©)

Both (1) and (3), when considered in isolation, are necessary conditions for successful transmission. But when
jointly considered, they become the sufficient condition. We now generalize these conditions for successful trans-

mission in a multi-hop network settings. To start with, we introduce the following binary indicator. Denote

M 1 If node 4 transmits data to node j on frequency band m,
* 0 otherwise.

As mentioned earlier, we consider scheduling in the frequency domain and thus once a band m € M, is used by

node ¢ for transmission or reception, this band cannot be used again by node ¢ for other transmission or reception.



Then we have

DT+ ) i<, )
JjeT™ keT™
where 7. is the set of nodes to which node ¢ can transmit under full power Pnay on band m, i.e., 7, = {j :p,iTj <
Prax,j # t,m € Mj}.l Similarly, denote Z7™ the set of nodes that can produce interference on node j on band
m under full power Prax, i.e., Z7" = {k : Pkfj < Pmax,m € My}. Based on (1) and (3), we have the following

conditions for successful transmission on link ¢« — 5 and interfering link k& — h:

pm € .P,L,I‘;, Pmax] If IZL - ].,
Y1 =0 If 27 = 0.

Pl fa =1
m kj ] ! m ; m
pkhS{Pmax If 27 = 0. (keI k#i,heT").

Mathematically, these conditions can be re-written as

pij € [Pz]%n;a Pmax-TZ'L] ®)
Pih < Prax — (Prax — Pz} (k€ Ik £i,h € TI™) . (6)

2.2 Flow Routing under Link Capacity Constraint

Recall that the objective of optimization problem is to maximize the scaling factor K so that K - r(l) amount of data
can be transmitted for each session I € £. Due to limited transmission range of a node, it is necessary to employ
multi-hop for data routing. Further, to achieve optimality, it is also necessary to employ multi-path (i.e., allow flow
splitting), due to its ability for load balancing and flexibility.

Mathematically, this can be modeled as follows. Denote f;;(l) the data rate on link ¢ — j that is attributed to

session I, where i € N, j € T; = U, pq, 7™ 1T n0de 4 is the source node of session £, i.e., i = s(I), then

) =K-r(). (7)

J€Ts

If node 7 is the destination node of session /, i.e., 1 = d(I), then

> k) =K -r(l). (8)

kET;

"We assume the peak power at each node (Pmax) is identical. Further, we assume that g;; = gj;. As a result, 7;™ is also the set of nodes
from which node ¢ can receive under full power Pmax on band m.



If node 7 is an intermediate relay node for session [, i.e., ¢ # s(l) and 7 # d(l), then

i#s(l) k#£d(1)
M fi) =" frill)- 9)
JE€T; keT;

It can be easily verified that if (7) and (9) are satisfied, (8) must be satisfied. As a result, it is sufficient to list (7) and

(9) in the formulation.

In addition to the above flow balance equations at each node i € N for session [ € L, the aggregated flow rates

on each radio link cannot exceed this link’s capacity. Under pi on each band m, we have Zfé%#’d(l#i fij (1) <

ZmEMH W log, (1 %‘%pm> where 7 is the ambient Gaussian noise density.

3 A Centralized Problem Formulation and Upper Bound

With the mathematical modeling in the last section, we first formulate the cross-layer optimization problem in

Section 3.1 via a centralized approach. In Section 3.2, we find an upper bound for this problem via a linear relaxation.

3.1 Problem Formulation

Putting together all the constraints for power control, scheduling, and routing, we have the following formulation:

Max K
s.t. Y jerm Tig + Dperm Ty <1 (ieN,meM,)
P — PE;?;>0 (ieN,meM;,jeT™) (10)
P — Praxall <0 (ieN,meM;jeT™ (11)
Yoherm Pith + (Pmax — i)z} < Prax (ieN,meM;,jeT", keI, k#i) (12)
SO F5(0) = Snenny Wloge (1+ 507 ) <0 (i€ N,j €Ty (13)
Sier i) — K -r(1) =0 (lecL,i=s(l)
S 1) = SRR f)) =0 (L€ LieN,i#s(l),d()
zf € {0,1},p} >0 (ieN,meM;jeT™)
fiz(1), K >0 (eLieN,i#d(l),j€Tj#s(),

where PZ?,P,CJ,PmaX, W, gi;,n, and r(1) are all constants and T, Py fi; (1), and K are all optimization variables.

In this formulation, (10) and (11) come from (5). Constraint (12) is based on (6) by noting that in (4), there is at



y=f(x)

Figure 1: lllustration of three tangential supports to approximate a log function.

most one =7} = 1 for h € T,. As aresult, based on (11), there is at most one p7;, > 0 for h € 7;™. Thus, (6) can

be rewritten as Zhe’rkm Pi < Prmax — (Pmax — Pk]) o™ fork € Im and k # ¢, which is equivalent to (12).

This optimization problem is in the form of mixed-integer non-linear program (MINLP), which is NP-hard in
general [8]. Since we are not able to solve it exactly, we develop an upper bound to this problem, which can be used
as a measure of the performance of the distributed optimization algorithm that we aim to develop in a later section.
In particular, if our distributed optimization algorithm provides a solution that is close to this upper bound, we can

conclude that this solution must be even closer to the actual optimal solution, hence validating its performance.

3.2 An Upper Bound for Optimal Solution

We now develop an upper bound for the MINLP problem via a linear relaxation. This process involves two com-
ponents. First, for integer variables x;7, We can simply relax them as continuous variables defined over [0, 1].
Second, for log term in (13), we propose to employ three tangential supports as its approximation (see Fig. 1),

which is a convex envelope linear relaxation. That is, for each p;7, we introduce a new variable v;7 and let v} =

log, (1 + i p”) A linear relaxation can be obtained by replacing log, (1 + 3 p”) by v and adding some lin-

ear constraints on pj and v77. In particular, we consider an arc of points (z,y), where y = f(z) = log, (1 + ng—v{,x)

and z € [0, Pmax]. This arc can be bounded by four segments (or a convex envelope), where segments I, Il, and 111

are tangential supports and segment 1V is the chord (see Fig. 1). Three tangent segments are at (0,0), (3, f(5)), and

5 Pm ii Py i i
(PmaX>f(Pmax))a where ﬁ = [lOgZ (1 + 9] ax) B (nW—I‘—qgjijlg‘qs;(x) 1n2] / [nvgfnZ B (nW—|—gijI§max) ln2] COfreSpondS
to the x-position of the intersecting point between tangential segments | and I11; segment IV is the segment that joins
the two end points (0,0) and (Pnmax, f (Pmax))- The convex region defined by the four segments can be described by

the following four linear constraints:

_ 9
Y~ w2z <0



V= et < log (14 5) - G
Y — st < logy (14 S5Re) — oo e
y— 10g2[1+g%ﬂH£(aX/(WW)]x >0
where the first three constraints force (z,y) lie under segments I, I, and Il1, the last constraint force (z,y) stay

above segment IV. As a result, the non-polynomial (log) term can be relaxed into linear objective and constraints.

We have the following linear relaxation.

Max K
s.t. Yjerm oy <1 (i e Nym e M;)
pfy — Phall >0 (teN,meM;jeT™)
Pi7 — Praxa]} <0 (ieN,meM;jeT™)
> herm P+ (Pmax — Pij) 2 < Prnax (ieN,meMjeT™ keIl k+i

leg%#j,d(l)#i fii(l) — ZmeM“ Wol <0 (ieN,jET)

Three tangential supports’ constraints for (pf?,v[}) (i € N,m € M,,j5 € T;™)

ier fi() =K -r() =0 (e L,i=s(l)
S0 £50) = SR fra(l) = 0 (1 €L,ieN,i#s(l),dl)
z? € [0,1], pf?, v > 0 (ieN,meM;jeT™)
fij (1), K >0 (leLlieN,i#d{l),j€Tj#s()

The above is an LP and its solution corresponds to an upper bound to the MINLP problem.

4 Design of A Distributed Optimization Algorithm

In this section, we present a distributed optimization algorithm for our problem. This algorithm increases the scaling
factor K iteratively and terminates when K cannot be further increased. The main idea of this algorithm is given in
Section 4.1, which includes two separate processes, the Conservative Iterative Process (CIP) and the Aggressive It-
erative Process (AIP). Both CIP and AIP incorporates routing, minimalist scheduling, and power control/scheduling

modules. The details of each module are presented in Section 4.2.



Session Selection
CIP AIP

CIP-Routin infeasible AIP-Routin infeasible (&
| CiP-Routing | | Ay | End)
feasible feasible
infeasible| CIP—Minimalist infeasible| AIP—Minimalist

Scheduling Scheduling
‘feasible feasible
infeasible | CIP—Power Control infeasible | AIP-Power Control
and Scheduling and Scheduling
feasible feasible

Figure 2: Flow chart of our algorithm.
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Our distributed algorithm increases the scaling factor K iteratively and terminates when K cannot be further in-
creased. In a distributed network, each session I € £ maintains its own current scaling factor K (I), which may
be different from other sessions. During each iteration, we find the smallest scaling factor among all sessions in
L and attempt to increase it. When there are multiple sessions with the same smallest scaling factor, we break the
tie deterministically based on their source node IDs. For example, we could choose the session with the smallest
source node ID among tied sessions. For implementation, this session selection step can be done via broadcast by

the source node of each session ] € L.

Upon identifying the session [ with the smallest current scaling factor K(I), we move onto iteration process
shown in Fig. 2. There are two separate processes, namely, a Conservative Iterative Process (CIP) on the left and
an Aggressive Iterative Process (AIP) on the right. Although both processes contain routing, minimalist scheduling,
and power control and scheduling modules, they differ in both objectives as well as details. The objective of CIP
is to increase K (I) without affecting (decreasing) the current scaling factors of other sessions in £. On the other
hand, the objective of AIP is to increase K (1) aggressively by decreasing the current scaling factors of some other
sessions in £ as long as they do not fall below the newly increased K (I). The need of AIP is easy to understand.
So the question becomes why CIP is necessary. The answer to this question lies in the way we define link cost in
AIP-Routing module, which must be different from that in CIP-Routing module for obvious reason. We will explain

in detail how the definition of link cost in AIP-Routing module mandates the need of CIP in Section 4.2 (Remark 1).

We first present the ideas in the routing module under CIP and AIP. During an iteration, the routing, scheduling,
and power control for session [ in the previous iterations are intact. The CIP-Routing module aims to find an

additional route (which could overlap with previous routes) for session [ onto which there is a potential to push more

10



data rate. This routing module is based on minimum cost, which can be implemented distributedly. The key step
in CIP-Routing is the definition of incremental link cost (ILC) for pushing more data rate onto a link. Obviously,
such link cost must capture network resource in terms of both frequency usage (bandwidth) and spatial occupancy
(footprint). In light of this spirit, we use the so-called bandwidth-footprint product (BFP) [20] to represent cost. So
the incremental link cost for pushing more data rate onto a link can be defined as the incremental BFP per additional
data rate. This metric only requires local information and can be computed distributedly. On the other hand, under
the AIP-Routing module, all links carrying sessions whose current scaling factors are greater than K (1) will be
marked. The cost on these links will be redefined so that session / has the potential of pushing more data rate at the

expense of decreasing the data rate of those sessions current with larger scaling factors.

We now present the ideas in the minimalist scheduling module under CIP and AIP. Our approach is of “min-
imalist,” in the sense that we only make necessary scheduling decisions (i.e., frequency band assignments) when
there is no alternative options. Specifically, under the CIP-Minimalist Scheduling, if there is no remaining capacity
on a hop and current transmission powers on used bands have already reached their maximum allowed transmission
power, then it is necessary to assign a new band. If there is only one unassigned band on this link, we will make an
assignment of this band (as there is no other options) subject to scheduling constraint at the node. On the other hand,
when there are multiple unassigned bands available, the minimalist approach calls for deferring band assignment in
the power control/scheduling module (to be discussed in the next paragraph). The reason for this deferring is that
power control may change the conflict relationship among the nodes. Therefore, scheduling decision (band assign-
ment among multiple unassigned bands) is best done with joint consideration of power control. The AIP-Minimalist
Scheduling module follows a similar process, with the difference being when a new band should be assigned. This
is because under AIP-Minimalist Scheduling, if a hop carries sessions with their current scaling factors greater than
K (1), then there is no need to assign a new band since the rates of these sessions can be reduced and thus leave more

room for increasing the rate of session /.

Finally, we discuss the power control/scheduling module under CIP and AIP. This module sets the transmission
power on a currently active band or some new band along the minimum cost route chosen in the routing module.
The objective is to allow some additional flow rate f(I) to be transmitted on this route for session /. The specific
value of f(I) can be determined hop by hop along the minimum cost route. Under CIP-Power Control/Scheduling,
at each node along the route, it tries the following strategies to accommodate f(I): (i) use the remaining capacity on
this hop if possible; (ii) increase power on a currently active band so as to increase link capacity; and (iii) activate
a new frequency band (previously unassigned). Band selection in the last strategy is one that is missing for new
band assignment (when there are multiple unassigned bands) in the minimalist scheduling approach discussed in the
last paragraph. It is also important to realize that when a new band is assigned, the maximum allowed transmission
power at a nearby node on this band may need to be reduced by (6). The AIP-Power Control/Scheduling module is

similar to CIP-Power Control/Scheduling module, but with one more strategy to accommodate f (). That is, after (i)

11



and before (ii), AIP-Power Control/Scheduling will check whether f () can be accommodated by the newly released

capacity from sessions currently with larger scaling factors.

It should be clear that after either CIP or AIP is completed successfully after an iteration, the smallest scaling

factor among the active sessions will be increased.

4.2 Algorithm Details of Each Module

Before we present the details in our algorithm, we first introduce the following notation that we use in the distributed

algorithm. For the distributed algorithm, we re-define T} as follows.

1 Ifband m is used (assigned) on link ¢ — j.
zi7 =< 0  Ifband m is unassigned on link : — j.
—1 If band m cannot be used on link i — j.

Another notation we need in the iteration of the distributed algorithm is the maximum allowed transmission power
(pZ-‘)U. Recall that Pnay is the maximum transmission power at a node. During an iteration, we may find that, under
various constraints, the current maximum allowed transmission power may be smaller than Ppax. We use (p;?)U for
this purpose, where subscript U indicates the current upper bound on the transmission power.

Routing Module.  As discussed in Section 4.1, the key step in the routing module is the definition of link cost
that captures network resource usage. We use bandwidth-footprint product (BFP) for this purpose, which is a unique
metric for CR networks [20]. For our problem, since each band has the same bandwidth, BFP reduces to footprint,
which is the interference area for a transmission. Therefore, the definition of incremental link cost (ILC) becomes

the additional required footprint over the increase of flow rate for the session with the smallest scaling factor.

To compute footprint area, we use the widely-used propagation gain model g;; = di‘ja, where d;; is the physical

distance between nodes 7 and j and « is the path loss index. For a transmission from node 4 to node j on band m,

based on (6), a node A is interfered when p77 > PZ.% = %. Thus, the interference range of node 7 on band m is

m\ 1/
(%) / , Which is band-dependent.

Since a wireless link in a CR network is associated with multiple frequency bands, the computation of ILC must
be somehow related to the cost of each frequency band. We give some details here on how ILC is computed. Initially,
for band m on link < — 7, since pj; = 0 (zero transmission power), both the capacity on this band and the footprint
area are 0. We define the incremental band cost (IBC) as the incremental footprint area over increased band capacity

when the transmission power is increased to the minimum required transmission power Pg (see (2)). That is, the

12



Determine link cost for link 2 — j in CIP-Routing
if node < finds that the remaining capacity c;; > 0
node ¢ sets ILC(,5) = 0;
else, if there is at least one band rn with 27 = 1 and pi} < (p7})u {
node ¢ computes I BC for each of these bands by (15);
node ¢ defines TLC(%, 5) by the smallest I BC of these bands; }
else, if there is at least one band m with =0
node ¢ computes I LC(i, j) by (14);
else, node ¢ sets ILC(i, j) = oo;

©NoOO~ wWN R

Figure 3: Link cost computation in CIP-Routing.

IBC for band m on link 1 — 7 is
(P} /Pr)*®

IBC(i,j,m) = N
W log, (1 + gz—W”>

(14)

Since the above IBC is identical on all bands initially, we can define ILC as the IBC on any band.

In subsequent iterations, the definition of ILC is case specific. For the simple case where link i — 3 has a
positive remaining capacity (the remaining capacity c;; is the sum of capacity on each band minus the total session
flow rates on this link), the ILC is defined as 0, since this link can support additional flow rate without increasing its
transmission power (or its footprint). For other cases (i.e., no remaining capacity), the computation of IBC depends

on whether or not the band is currently used.

e Case I: If band m is already used but pi? < (p;})v, then pj? may be increased to (p})y and IBC is now

defined as

wl(pm 2/ _ p(pm 2/a
IBC(Z,_],m): [ z])U/PI] (p’Lj/PI) . (15)

W log, [1 + o (pZL)U] — W log, (1 + ng{,{,p{?)

e Case II: If band m is not yet used, then IBC can be defined by (14).

e Case III: If band m is already fully utilized (i.e., (pg’})U = pj}), the IBC is then defined as oo, since the

capacity on this band cannot be further increased.

Since on link 7 — 3, different band may have different IBC, we need to have a band selection policy to decide which
band to use and subsequently to define ILC based on the chosen band. The key idea on our band selection policy
is to use a band that has already been used to its fullest extent before considering deploying any new band. Under
this spirit, when there exists a Case | band, we will choose such a band with the smallest IBC. As a result, ILC will
be defined the same as the IBC of such band. Otherwise, we examine if there exist a Case Il band and will use it

if available. As a result, ILC will be defined as the IBC of such a Case Il band. When neither Case | nor Case |l
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band exists, ILC will be defined as oo, since this link’s capacity cannot be further increased. Clearly, ILC can be
computed locally, since (14) and (15) can be computed locally at node <. The pseudo-code for ILC computation in

CIP-Routing is shown in Fig. 3.

For the AIP-Routing module, we have the additional flexibility of reducing flow rates of some sessions with
larger scaling factors so as to increase the smallest scaling factor of a session under consideration. As a result, the
ILC definition needs to consider such scenario. For a session with a larger scaling factor, we need to make sure that,
after a reduction, its scaling factor will no fall below the scaling factor of the session that has been increased. Under
this constraint, we can compute the capacity that can be released. In the case when there exist multiple sessions with
larger scaling factors, we will choose the session with the largest releasable capacity. Note that in this scenario, there
is no need to increase the transmission power (and footprint) of any band on this link. Thus, ILC will be 0 since

there is no change in footprint.

Under both CIP-Routing and AIP-Routing, ILC of a link may be different during each iteration. As a result,
the minimum cost route at each iteration could be different for the same session. The union of these routes for all
the iterations will lead to a multi-path routing solution for a session, which is important in terms of maximizing our

objective K.

Remark 1 With link cost definitions in CIP and AIP, we can now explain our earlier question of why CIP is needed
in our algorithm (see Fig. 2). Note that under AIP, any link that has sessions with larger scaling factors than
the session under optimization will have a 0 link cost. If AIP is used alone, then many sessions may attempt to
traverse such 0-cost link, making such links bottleneck in the network. By using CIP before AIP, we are able to
distribute sessions more evenly among the network without getting into such bottleneck situation. Therefore, CIP is
an essential mechanism for the proper operation of the distributed optimization algorithm while AIP is only used as

an enhancement mechanism. O

Minimalist Scheduling Module.  As described in Section 4.1, we follow a minimalist approach in scheduling

(band assignments), i.e., a band is assigned only when there is no other alternatives.

An important observation is that when we perform scheduling, only those nodes that are within one hop away
(under Pnax) along the minimum cost route may be affected. This is because that once we assign a new band m on
a link 4 — 7, this band can no longer be used again by either node ¢ or node j for transmission/reception. Further,
for nodes that are one-hop neighbors of node 7 or node j, band m can no longer be used for transmission to node %
or node j. Thus, the effect of scheduling assignment at node 2 on band m is limited to those nodes that are within
one hop from either node ¢ or node 5. Note that the fact that band m is a new band (previously unassigned), i.e.,
available for assignment on link ¢+ — 4, infers that band m must be an unassigned band on the neighboring nodes.
Thus, assigning band m to —1 (i.e., unusable) is always feasible. By applying the same scheduling approach to all

the nodes along the route, it is not hard to see that only those nodes that are within one hop away from the nodes
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CIP-Minimalist Scheduling

1. int MinScheduling(int ) {

2 From the first hop to the last hop in the minimum cost route {

3. Assume the current hop is ¢ — j.

4, if (CheckLink(z, j,1)==—1) {

5. Node ¢ sets ILC(4,j) = oo;

6 Revoke all scheduling assignments done in this iteration;

7 return —1; } } //Minimalist Scheduling infeasible

8 return 1; /IMinimalist Scheduling feasible

9.

10. //If this link may carry more data rate for session Z, return 1, else return —1
11. /lmode = 1: need to check backward direction; mode = 2: need to check forward direction; mode = 3: need to check both directions
12. int CheckLink(int ¢, int 7, int {, int mode = 3)

13. {

14. if (c;; > 0) return 1;

15. if there is at least one band m with =1 and iy < (pg})U, return 1;
16. Node ¢ counts the number of bands with z} =0;

17. if there is no unassigned band, return —1;

18. else, if there are multiple unassigned bands, return 1;

19. else {

20. Assume band m is the only unassigned band;

21 Node i sets 7 = 1;

22. if (mode%2==1)&&(:'=s(1))) {

23. Suppose the previous hop is k — 4;

24, if (z}2==0) {

25. Node k sets 7y = —1;

26. if we have not assigned a new band on link & — %, CheckLink(k, ,1,1); } }
217. if (mode/2==1)&&(j'=d(1))) {

28. Suppose the next hop is j — h;

29. if (273,==0) {

30. Node & sets w;’}L = -1

3L if (CheckLink(j, h,1,2)==—1) return —1; } }

32. return 1; }

3.}

Figure 4: The CIP-Minimalist Scheduling module.

along the minimum cost route may be affected.

We now describe how the minimalist scheduling is done along the minimum cost route from source to desti-
nation. In the CIP-Minimalist Scheduling module, for each hop ¢ — j, if node ¢ finds that there is no remaining
capacity on link 4 — 4 and transmission power on all used bands cannot be increased, then it is necessary to assign
a new band on this link. In this case, if there is only one remaining band for assignment, then this band must be

assigned now, i.e., ;7 = 1.

Upon the assignment of a new band on link ¢ — 7, it is necessary to make updates in both backward (toward the
source) and forward (toward the destination) directions. In the backward direction, based on scheduling constraint,
this band must not be used on the last hop, say £ — 4. If band m is an unassigned band on this link, then node &
assigns band m to be unusable, i.e., z}; = —1. Due to this operation (removable of band m on link k& — %), we may
have the situation that we can now make a band assignment on link & — 4. If so, we will make this assignment.
Subsequently after such new band assignment along backward route, it is necessary to further go backward to make

new updates.
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In the forward direction, the update follows the same token, except that we may encounter the infeasible situation.
In this case, link 2 — 5 should be removed from future minimum cost routing by setting its ILC as co. Further, all the
scheduling assignments done previously from the source node to the current node will be revoked. The pseudo-code

for CIP-Minimalist Scheduling is shown in Fig. 4.

For the AIP-Minimalist Scheduling module, since we have the additional flexibility of reducing the flow rate of
some other sessions with larger scaling factors, the decision of when a new band must be assigned will thus differ
from that in the CIP-Minimalist Scheduling module. Recall that in CIP-Minimalist Scheduling, a new band should
be assigned if there is no remaining capacity on a link and transmission power on all used bands cannot be increased.
In contrast, in AIP-Minimalist Scheduling, we will consider the assignment of a new band only when the link does
not have any other sessions with larger scaling factors, in addition to those conditions in CIP-Minimalist Scheduling.
Power Control/Scheduling Module.  The last module in either CIP or AIP is power control/scheduling. In this
module, we will determine all the remaining scheduling assignments (that are not determined in the minimalist
scheduling module), transmission powers, and flow rate increase on the minimum cost route.

Again, power control/scheduling are perform on a hop by hop basis along the route from source to destina-
tion. The potential increase in session flow rate f(I) can also be computed hop by hop. Under CIP-Power Con-

trol/Scheduling, this is accomplished with the following steps.

Step 1 For link s — j, if there is positive remaining capacity c;; on this link, then node ¢ updates the flow rate f({)
with min{c;;, f(I)}.

Step 2 Else, if a band m is assigned in the minimalist scheduling module, then node ¢ will first check whether or

not this band remains available (after power control operation along the route).

(2A) If this band is still available, then node 7 uses the transmission power Pg Node i also needs to update

either flow rate or the remaining capacity on this link.

(2B) If this band is no longer available, then we come to an infeasible situation. In this case, link 7 — j should
be removed from future minimum cost routing. This can be done by setting its ILC as oo. Further, all

the power control/scheduling done previously from the source node to the current node will be revoked.

Step 3 Else, if it is possible to increase the transmission power on bands that are already used, then node ¢ chooses a
band mm among such bands with the smallest IBC. On band m, node 4 will increase its transmission power, to
a level that can support current flow rate f(Z) or the maximum allowed transmission power (p7}), whichever

is smaller.

Step 4 Else, node 7 will use a new band with the largest maximum allowed transmission power under the condition

that such band is still available for assignment at this point. This band assignment fills the gap in the previous
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CIP-Power Control/Scheduling

1. //If power control/scheduling is feasible, return 1, else return —1

2. int PowerControl(int 7) {

3 Node s(1) initializes f(1) = oo;

4 From the first hop to the last hop in the minimum cost route {

5. Assume the current hop is¢ — j.

6 For each band m with 7 changed from 0 to —1 in MinScheduling(), Node ¢ sets (p N =0;
7 if (ci; > 0){

8. Node ¢ sets f(I) = min{c;;, f(l)}; continue; }

9. if there is a band m with z7 changed from 0 to 1 in MinScheduling() {

10. if (Active(s, 5, m, f(l ))--—1) {

11. Node ¢ sets LC(%, j) =

12. Revoke all power control/schedullng decisions done in this iteration;

13. return —1; }

14. continue; }

15. if there is at least one band with 77 = 1 and p7} < (pf})v {

16. Suppose band m has smallest I BC' among these bands;

17. if the increased capacity under (p}})u is smaller than f (1)

18. Node ¢ computes the increased capacity and updates the flow rate f(Z) by this capacity;
19. continue; }

20. found = 0;

21. Node ¢ tries each band with 7} = 0 in the non-decreasing order of (p)v {

22. if (Active(z, 5, m, f(1))==1), {

23. found = 1; break; } }

24, if (found==0) {

25. Node i sets LC (¢, j) =

26. Revoke all power control/schedullng decisions done in this iteration;

217. return —1; } }

28. From the first hop to the last hop in the minimum cost route {

29. Assume the current hop isz — j.

30. Node 4 sets f;; (1) = fs; (1) + f(1);

31. if (ci; > 0){

32. Node i sets ¢;; = ¢;; — f(1); continue; }

33. if band m is chosen among bands with z7% = 1 and p}} < (p)v {

34. Node i increases the transmission power to a suitable value to support f(1); continue; }
35. if band rn is chosen among bands with 77 = 0 {

36. Node ¢ sets :c:? =1, P = P}J" and computes the remaining capacity ¢;;; } }
37. return 1;

38. }

Figure 5: The CIP-Power Control/Scheduling module.
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1. /lIf band m can be used on link 2 — 3, return 1, else return —1
2. int Active(int ¢, int j, int m, double f(1))

3.

4. Foreachk € 7)™ {

5. if (p7% > 0) return —1;

6. Node k sets z7; = —1 and (p7%)v = 0; }

7. Foreachh € 7)™ and h # j {

8. if (p7}, > 0) return —1;

9. Node i sets z7} = —1and (p[})uv =0; }

10. For each k € " and k # 4 {

11. if (pk’"j > 0) return —1;

12. Node & sets Ty =1 and (pZ;.)U =0;}

13. Foreach h € T;™ {

14. if (p% > 0) return —1;

15. Node j sets 27} = —1and (p}7})u = 0; }

16. Foreachk € Z7",k # i,and h € T,™

17. it (P < (0)0) {

18. Node  sets (p};, )u = Py;;

19. if (3, < P {

20. Node & sets (p7} )v = O0and 7}, = —1;}
21. if (073, > (p73,)v) retun —1; }

22. Node i sets pf? = P%;

23. if the increased capacity is smaller than flow rate f(I)

24, Node ¢ updates flow rate f(1) by the increased capacity;
25. else

26. Node i updates the remaining capacity c;;;

27. return 1,

28. }

Figure 6: Auxiliary function in power control/scheduling module.

minimalist scheduling module. Subsequently, we perform the same tasks in Step 2A (if an available band is
found) or 2B (if no available band).

The pseudo-code for CIP-Power Control/Scheduling is shown in Figs. 5 and 6. We emphasize the benefit of
keep tracking of the maximum allowed transmission power at each node. As long as power level does not exceed

this limit, each node is guaranteed not to cause non-negligible interference at any other active receiver.

For the AIP-Power Control/Scheduling module, we have one more strategy to explore in order to accommodate
the additional flow rate f(I). That is, after Step 1 and before Step 2, if there are other sessions with larger scaling
factors on this link, then we can obtain some additional capacity by reducing the scaling factor of one of these
sessions. Among these sessions, we choose the one with the largest releasable capacity. For this session, we also
need to reduce its flow rate on other links along its paths. The transmission power and scheduling on these links may

also need to be updated. The details are given in Fig. 7.

4.3 Complexity

We now analyze the complexity of our distributed algorithm, where the complexity is measured by communication

overhead.
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14. }

void ReleaseFlowBackward(int i, int I, double rate)

if (5==s(1")), then return;
while (rate > 0) {
Suppose fx; (1) is the smallest in-coming flow rate to node ;
if (Frs (') > rate) {
DecreasePower(k, i, rate);
ReleaseFlowBackward(k, I, rate);
Node & sets fx; (') = fx:(l') — rate and rate = 0; }
else {
DecreasePower(k, %, fx;(l'));
ReleaseFlowBackward(k, I, fx;(1"));
Node & sets fx; (') = 0 and rate = rate — fr;('); } }

15. void ReleaseFlowForward(int 7, int i’, double rate)

if (j==d(1")), then return;
while (rate > 0) {
Suppose f;p(1") is the smallest out-going flow rate from node i;
if (f;jn(l') > rate) {
DecreasePower(j, h, rate);
ReleaseFlowBackward(j, I/, rate);
Node j sets f;n(I') = fjn(l') — rate and rate = 0; }
else {
DecreasePower(j, h, f;,(I));
ReleaseFlowBackward(j, I', £ (I'));
Node j sets f;5(I') = 0 and rate = rate — fjn(I'); } }

29. void DecreasePower(int 4, int 5, double rate)

while (rate > 0) {
Suppose p} >0 is the smallest transmission power among all bands;
Node ¢ computes the capacity capa under pZ-‘ and the capacity mincapa under pg;
if (capa — mincapa > rate)
Node 7 decreases the transmission power to a suitable value such that the capacity is decreased by rate;
else if (capa > rate)
Node 4 sets = PiTj and updates the remaining capacity c;;;
else {
Node ¢ sets P} =027 =0, and rate = rate — capa;
For each k € 7;™, node k updates z7% and p}%;
Foreach h € 7™ and h # 5, node i updates z7} and p7};
Foreach k € 7}’" and k # 4, node k updates Ty and Pis
Foreach h € 77", node j updates z7 and P
Foreach k € ik #4,and h € 7,7, node k updates =7, and p}%; } }

Figure 7: Auxiliary function in AIP-Power Control/Scheduling.
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First, the session selection can be performed by each source node broadcast its session information. The com-
plexity is O(JN]|L£]). Note that the broadcast for session selection can be combined with the broadcast for routing

(will be discussed in the next paragraph). Thus, there is no additional overhead for session selection.

For both CIP-Routing and AlIP-Routing, the minimum cost routing can be done by each node broadcast its cost
to its one-hop neighbors. Then the source node of the chosen session can compute the minimum cost route. The
complexity is O(|NV]?).

The complexity of CIP-Minimalist Scheduling depends on the complexity of CheckLink() at each hop (see
Fig. 4). Note that we check a link’s previous or next link only if we set a new band on this link. Thus, the complexity
at each hop is in the order of the number of links that we assigned a new band in this CheckLink(). Note that we
assign a new band for each link at most once in MinScheduling() and the number of links in the minimum cost route
is at most || — 1. Thus, the total complexity of CheckLink() at each hop is O(|\/]), which is also the complexity
of CIP-Minimalist Scheduling. Since the number of links that we assign a new band in AIP-Minimalist Scheduling
is smaller than that in CIP-Minimalist Scheduling, the complexity of AIP-Minimalist Scheduling is thus at most
O(IN)).

For CIP-Power Control/Scheduling, the major computations are in the first iteration in PowerControl() (see
Fig. 5), which has a complexity of in the order of the number of hops (at most |A/| — 1) times the number of
unassigned bands (at most |M|) and the complexity of Active(). The complexity of Active() is in the order of the
number of interference nodes, which is at most O(|A|). Therefore, the complexity of CIP-Power Control/Scheduling
is O(JNV|2| M]). The additional complexity in AIP-Power Control/Scheduling is in the order of the number of hops
(at most || — 1) times the complexity in Fig. 7. Note that in Fig. 7, the number of released flow rates on links is
no more than the number of links in the network, which is at most O(|\|2). Therefore, the additional complexity is
O(]N|?) and the overall complexity of AlP-Power Control/Scheduling is O(|NV|2|M| + [N ?).

With all the above analysis, we know that the complexity of one iteration in CIP is O(|N|?) + O(|N]) +
O(IN]2|IM]|) = O(IN|?|M]) and the complexity of one iteration in AIP is O(IN|?) + O(IN]) + O(IN|2|M| +
INF) = O(NPIM| + INF).

If only CIP is used, the number of iterations can be analyzed as follows. Note that when CIP-Minimalist Schedul-
ing or CIP-Power Control/Scheduling is infeasible, a link’s ILC will be set as co. Then within at most O(JA|?)
infeasible CIPs, we will find that either CIP-Routing is infeasible (algorithm terminates when only CIP is used) or
the current smallest scaling factor is increased. We also note that when the current smallest scaling factor is in-
creased, we can find a link ¢ — j and a band m such that the transmission power p” in increased to either P or

77 )u. Thus, at node 4 and band m, the transmission power will be increased to the maximum allowed transmission
power in two feasible CIPs (may not be two continuous CIPs) as follows. Band m is first assigned to a link ¢ — j

with power P%; then the transmission power is increased to (pg'})U. Thus, the number of feasible CIPs is at most
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O(|N||M]). The overall number of CIPs is O(|A|?| M|). However, when AIP is also used, the number of iterations

is still an open problem.

5 Simulation Results

In this section, we present simulation results to demonstrate the performance of our distributed algorithm. We
will show its iteration behavior and convergence (via case study) as well as performance over a large number of

simulation runs.

5.1 Simulation Setting

We consider |A| = 20, 30,40, and 50 nodes randomly deployed in a 100x100 area. The units for distance, rate, and
power density are all normalized with appropriate dimensions. Among these nodes, there are |£| = 3 or 5 active

sessions, with source node and destination node of each session randomly selected and the rate requirement is 10.

There are | M| = 10 frequency bands in the network. However, at each node, only a subset of these frequency
bands may be available. In the simulation, this is done by randomly selecting a subset of bands for each node from
the pool of 10 bands. Each band has a bandwidth of W = 50.

We assume that the maximum transmission range on each node is 20. Correspondingly, the maximum transmis-
sion power is then Pyax = (20) Pr, where the path loss index « is taken to be 4. Let the transmission threshold
Pr = nW = 50n. We assume the interference range is twice of the transmission range. Then the interference

threshold is Py = (1) Pr = 2n.

5.2 One Simulation Case Study

Before we present complete simulation results, we first examine the iterative behavior and convergence of our dis-
tributed algorithm with one simulation case study. For this purpose, we consider the case of 50-node network shown

in Fig. 8 with 5 sessions (source and destination of each session are also marked in the figure).

Initially, all sessions start with their scaling factors as 0. Thus, the session with the smallest source node ID is
chosen, say session 1. A minimum cost route, as well as scheduling and power control, for this session is constructed
and its scaling factor is increased to K (1) = 8.73 (corresponding to session rate of 87.3). At the second iteration,
there are 4 sessions with scaling factors 0. Among then, session 2 is chosen and its scaling factor K'(2) is increased
to 1.75. After five iterations, we have K (1) = 8.73, K(2) = 1.75, K(3) = 15.92, K(4) = 17.24, and K (5) = 3.25.
Since K(2) = 1.75 is the smallest among the five, we choose session 2 and try to increase its scaling factor in the
next (sixth) iteration. During the sixth iteration, we find that it is infeasible to increase K (2) under CIP. Thus, we

resort to AIP, i.e., try to release some capacity from other sessions such that K'(2) may be increased. We find that
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Figure 10: Normalized K for 100 data sets.

K (2) can be increased to 2.50 by decreasing K (1) to 7.98 and K (5) to 2.50. This iteration process continues.
Finally, at the 14-th iteration, we find that K (3) = 5.24 is the smallest scaling factor among the sessions. However,
we find that it is not feasible to increase its scaling factor under either CIP or AIP. Thus, our algorithm terminates at
this iteration.

Note that our distributed algorithm offers a multi-path routing solution as we designed. In this network, session
5 uses two paths for flow routing in the final solution (see Fig. 8).

We now examine the performance of the distributed iteration. Using the centralized upper bound calculation
in Section 3.2, we find that the upper bound for the scaling factor is 5.42. In our distributed algorithm, we have
achieved a scaling factor of 5.24. Since the maximum achievable scaling factor is between 5.24 (a feasible solution)

and 5.42 (upper bound), the scaling factor achieved by our distributed algorithm is at least 96.7% of the maximum.

5.3 Complete Simulation Results

We now show complete simulation results for all 100 simulation runs. Figure 10 shows the ratio of scaling factor K
obtained via our distributed algorithm over that obtained centralized upper bound. The average ratio for these 100
data is 88.6%, with a standard derivation of 11.5%. We find that half of these ratio are at least 91.1%. Since the
maximum achievable scaling factor (unknown) lies between the upper bound and the feasible solution obtained by
our distributed algorithm, we can conclude that (i) the upper bound is very tight; and (ii) the scaling factor obtained

by our distributed algorithm must be even closer to the optimum solution.

To get a sense of how the actual numerical results (rather than ratio) look like in the simulations, we list the first
40 sets of results in Table 2. Note that in some cases, the result obtained by our distributed algorithm is identical to

the respective upper bound obtained via relaxation. This indicates that the result found by our distributed algorithm
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Table 2: Simulation results for the first 40 data sets.

Data Set Index | Upper Bound | Our Result || Data Set Index | Upper Bound | Our Result
1 26.13 20.59 21 15.30 15.30
2 30.97 30.97 22 5.04 5.04
3 22.38 17.44 23 6.89 6.89
4 8.73 7.93 24 10.14 8.60
5 13.21 12.76 25 9.41 9.32
6 10.58 9.64 26 12.18 12.18
7 17.42 16.03 27 7.72 7.72
8 5.16 5.16 28 7.93 6.95
9 8.85 8.85 29 12.44 9.06

10 36.25 25.20 30 7.99 7.99
11 30.70 22.69 31 32.83 26.18
12 33.19 23.86 32 17.37 16.21
13 39.03 30.39 33 18.00 15.15
14 23.00 22.71 34 8.04 6.82
15 15.00 13.39 35 8.08 7.11
16 5.00 5.00 36 8.79 8.79
17 7.85 7.85 37 18.27 18.27
18 6.83 5.45 38 21.96 17.07
19 12.80 12.22 39 23.41 16.81
20 7.80 7.80 40 23.94 15.85
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is optimal.

6 Reated Work

Related work on MC-MR network and its relationship to CR network have been discussed in Section 1. In this
section, our review focus on two lines of research that are relevant to this research: (1) recent advances in multi-hop

CR networks; and (2) distributed optimization algorithms for wireless networks.

For multi-hop networking with CRs, there is limited amount of work to date available in the literature. In [24],
Zhao et al. designed a distributed coordination approach for spectrum sharing. They showed that this approach offers
throughput improvement over a dedicated channel approach. In [22], Ugarte and McDonald studied the network
capacity problem for multi-hop CR networks and found an upper bound, although it is not clear how tight this bound
is. In [23], Xin et al. studied how to assign frequency bands at each node to form a topology such that a certain
performance metric can be optimized. A layered graph was proposed to model frequency bands available at each
node and to facilitate topology formation and achieve optimization objective. The authors considered the so-called
fixed channel approach whereby the radio is assumed to operate on only one channel at a specific time. In [21],
Steenstrup studied three different frequency assignment problems: common broadcast frequencies, non-interfering
frequencies for simultaneous transmissions, and frequencies for direct source-destination communications. Each is
viewed as a graph-coloring problem, and both centralized and distributed algorithms are presented. In [20], Shi and
Hou studied the impact of power control on scheduling, routing, and network resource allocation for a CR network

via a centralized approach.

This has been active research on distributed optimization algorithms for wireless networks. Some of these
algorithms focus on routing problem (e.g., [14]) or scheduling problem (e.g., [2, 3, 4, 5, 16]), without consideration of
cross-layer optimization. Cross-layer optimization problems considering joint routing and scheduling include those
in [7, 13]. In these efforts, however, power control is not part of the optimization space. With fixed power, both the
interference relationship among links and the capacity of each link can be computed easily. In [12, 15], power control
has been considered as part of the cross-layer problems. Specifically, in [12], Lin and Shroff designed a distributed
algorithm for maximizing total session utility under fixed route for each session. Their algorithm was shown to
achieve a constant factor of the capacity region. But routing was not part of the optimization space. In [15], Palomar
and Chiang solved some maximizing network utility problems via distributed alternative decomposition approaches.
In these problems, scheduling was not considered and the only power constraint is that the total transmission power at
all links is bounded. As expected, joint consideration of power control, scheduling, and routing will make underlying

distributed optimization problem much more complex.
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7 Conclusions

In this paper, we investigated how to design distributed optimization algorithm for a multi-hop cognitive radio
network. We first developed a mathematical model for such problem with joint consideration of power control,
scheduling, and routing. For the centralized problem, we formulated a cross-layer optimization problem and de-
veloped an upper bound for the objective function. The main contribution of this paper is the development of a
distributed optimization algorithm that iteratively increases the scaling factor of a session. This algorithm consists of
a conservative iterative process and an aggressive iterative process, each of which incorporates modules for routing,
minimalist scheduling, and power control/scheduling. Through simulation results, we compared the performance of

the distributed optimization algorithm with the upper bound and validated its efficacy.
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