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Recently, distributed data storage has gained increasing popularity for efficient and robust data manage-
ment in wireless sensor networks (WSNs). The distributed architecture makes it challenging to build a
highly secure and dependable yet lightweight data storage system. On the one hand, sensor data are subject
to not only Byzantine failures, but also dynamic pollution attacks, as along the time the adversary may mod-
ify/pollute the stored data by compromising individual sensors. On the other hand, the resource-constrained
nature of WSNs precludes the applicability of heavyweight security designs. To address the challenge, in
this article we propose a novel dependable and secure data storage scheme with dynamic integrity assur-
ance. Based on the principle of secret sharing and erasure coding, we first propose a hybrid share generation
and distribution scheme to achieve reliable and fault-tolerant initial data storage by providing redundancy
for original data components. To further dynamically ensure the integrity of the distributed data shares, we
then propose an efficient data integrity verification scheme exploiting the techniques of algebraic signature
and spot-checking. The proposed scheme enables individual sensors to verify in one protocol execution the
correctness of all the pertaining data shares simultaneously in the absence of the original data. Extensive
security analysis shows that the proposed scheme has strong resistance against various data pollution at-
tacks. The efficiency of the scheme is demonstrated by experiments on sensor platforms Tmote Sky and
iMote2.
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1. INTRODUCTION

Distributed data storage and access has recently found increasing popularity due
to many reasons. First, new-generation sensor nodes with significant performance
enhancements are available. Such enhancements include energy-efficient storage,
greater processing capabilities, and data management abilities. It is now possible
to equip sensor devices with energy-efficient storage such as the new-generation flash
memory with several gigabytes and low-power consumption [Mathur et al. 2006; Mitra
et al. 2005]. Second, distributed data storage has more efficient energy consumption.
In the MICAMotes platform,1 flash memory has less energy efficiency, thereby reduc-
ing the energy benefits of local data storage. However, new-generation flash memory
has significantly improved its energy efficiency and computation versus communica-
tion tradeoff as well. For example, transmitting data over a radio channel consumes
200 times more energy than storing the same amount of data locally on a sensor node
[Bhatnagar and Miller 2007]; radio reception uses 500 times more energy than reading
the same amount of data from local storage [Mathur et al. 2006]. A measurement study
in Desnoyers et al. [2005] showed that equipping the MicaZ1 platform with NAND
flash memory allows storage to be two orders of magnitude cheaper than communica-
tion and comparable to computation in cost, which makes local storage and processing
more desirable. Last but not least, distributed data storage achieves more robustness.
Centralized storage can lead to the single point of failure, and easily attracts attacks.
Moreover, it may also cause a performance bottleneck, as all data collection and access
have to go through the base station.

To the best of our knowledge, distributed data storage and access security in wire-
less sensor networks (WSNs) as a fairly new area has received limited attention so
far. Previous research on WSN security issues has been focused on network com-
munication security, such as key management, message authentication, secure time
synchronization and localization, and intrusion detection [Liu and Ning 2003; Perrig
et al. 2002; Ren et al. 2006, 2008, 2009; Wang et al. 2010; Ye et al. 2004]. Some related
work [Chessa et al. 2004; Girao et al. 2007; Ma and Tsudik 2007; Pietro et al. 2008;
Subbiah and Blough 2005; Subramanian et al. 2007; Zhang et al. 2005] regarding se-
cure distributed data storage can be found in the literature, but none of it satisfies the
overall requirements of data confidentiality, dependability, integrity, and efficiency.
Pietro et al. [2008] suggested moving the stored data constantly among sensors to in-
crease dependability of one particular data item. Zhang et al. [2005] proposed a secure
data access approach by using a polynomial-based key management scheme, where
the mobile sinks can retrieve the network data following fixed routes. Subramanian
et al. [2007] studied the distributed data storage and retrieval problem in sensor net-
works, and designed an adaptive polynomial-based data storage scheme for efficient
data management. However, none of these schemes considered the data dependabil-
ity and integrity. Rabin [1989] proposed an information dispersal algorithm (IDA) for
secure data storage and transmission in distributed systems, where the original in-
formation F is dispersed into n by using erasure codes. Chessa et al. [2004] extended
the idea of information dispersal in Rabin [1989], and investigated the data storage
problem in the context of a redundant residue number system (RRNS). However, the
system has to maintain a large library of parameters together with a big set of moduli.
[Subbiah and Blough 2005] developed a novel combination of XOR secret sharing and
replication mechanisms, where each share is managed using replication-based proto-
cols for Byzantine and crash fault tolerance. However, while the computation overhead
is reduced drastically, additional servers and storage capacities are required. Table I

1http://www.xbow.com/Products/
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Table I. Comparison of Data Storage Schemes
�����������Property

Scheme Ours Rabin Chessa et al. Subbiah et al. Subramanian
[1989] [2004] [2005] [2007]

Confidentiality
√ √ √ √ √

Dependability
√ √ √ √

Integrity Assurance
√

Efficiency
√ √ √

shows the comparisons between our scheme and some typical data storage schemes
with respect to several desired properties.

Data integrity and availability is an important and necessary component of secure
data storage for distributed sensor networks. Sensor data are vulnerable to random
Byzantine failures as well as data pollution attacks, in which the adversary can mod-
ify the data and/or inject polluted data into the storage nodes. These attacks prevent
authorized users from recovering the original data information correctly. Therefore, in
order to ensure the data integrity and availability over the entire data lifetime, any
unauthorized data modifications or random data corruptions due to malicious attacks
and Byzantine failures should be detected as soon as possible. However, this impor-
tant and unique security issue has been largely overlooked in most existing designs in
WSNs.

To address the problem, in this article we propose an efficient and flexible dynamic
data integrity checking scheme to verify the consistency of data shares in a distrib-
uted manner. In our scheme, the data-originating sensor partitions the original data
into multiple shares based on the techniques of erasure coding and secret sharing.
This construction drastically reduces the communication and storage overhead as com-
pared to the traditional replication-based techniques, and achieves reliable data stor-
age by providing redundancy for original data components. To ensure data integrity
and availability, we utilize algebraic signatures with favorable algebraic properties
and a spot-checking approach, which allow the shareholders to perform dynamic data
integrity checks in a random way with minimum overhead. Since the data-originating
sensor appends a distinct parity block to each data share, all shareholders can ver-
ify the distributed data shares independently in each check. A salient feature of our
scheme is that the false-negative probability can be reduced to almost zero. Thus any
unauthorized modifications can be detected with high probability in one verification
operation. Most importantly, the proposed scheme can verify the integrity of aggre-
gated data shares with great efficiency. Through detailed security analysis and exper-
iments on sensor platforms Tmote Sky and iMote2, we show that the proposed scheme
is highly effective and efficient and can be well suited for the resource-constrained
WSNs.

The rest of the article is organized as follows. Section 2 introduces the system model
and attack model, and briefly describes some necessary background for the techniques
used in this article. Sections 3 and 4 provide the detailed description of our proposed
schemes. Sections 5 and 6 present the security analysis and performance analysis, re-
spectively. Section 7 summarizes related work. Finally, Section 8 concludes the article.
The proof of Proposition 5.2 is given in the Appendix.

2. NETWORK AND SECURITY ASSUMPTIONS

2.1. System Model

We consider a wireless sensor network with a large number of sensor nodes, each of
which has a unique ID and may perform different functionalities. These nodes are
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deployed strategically into areas of interest and continuously sense the environments.
Some of them are equipped with sufficient capacity to store the sensed data locally in
a distributed manner for a certain period.

We assume that these nodes have limited power supply, storage space, and com-
putational capability. Due to the constrained resources, computationally expensive
and energy-intensive operations are not favorable for such systems. In addition, for
such an WSN, we also assume that basic security mechanisms such as pairwise key
establishment between two neighboring nodes are already in place to provide basic
communication security [Blundo et al. 1992]. However, individual sensors are not re-
liable since they can undergo random Byzantine failures and be compromised due to a
lack of tamper-proof hardware.

2.2. Adversary Model

We consider a general and powerful adversary model regarding data storage security
and dependability. More specifically, we consider an adversary with both passive and
active capabilities.

— The adversary is interested in modifying or polluting the data stored at the stor-
age sensors without being detected. Once a storage sensor is compromised, an “ac-
tive” adversary cannot only read the stored data but also pollute it by modifying or
introducing its own fraudulent data. Furthermore, the adversary aims to remain
stealthy in order to periodically or occasionally visit the network and harvest poten-
tially valuable data.

— The adversary seeks to compromise as many storage sensors as possible, and as
long as it remains in control of that node it reads all of the memory or storage
contents and monitors all incoming and outgoing communication. Furthermore,
the adversary’s movements are unpredictable and untraceable, and can compromise
different sets of nodes over different time intervals.

Note that, if the adversary compromises a sensor node and resides there, it can
always respond to the “verifier” with the correct data and successfully pass the periodic
data integrity checks. In fact, there is no way to detect such a compromised sensor if
it is fully controlled by the adversary and behaves properly all the time.

2.3. Design Goal

Our goal is to provide various mechanisms for ensuring and maintaining the security
and dependability of sensed network data under the aforementioned adversary model.
Specifically, we have the following goals.

— Security. To enhance data confidentiality and integrity by increasing the attacker’s
cost, that is, decreasing the its gain on compromising individual sensors.

— Dependability. To enhance data availability against both sensor Byzantine failures
and sensor compromises, that is, minimizing the effect brought by individual sensor
failures and compromises.

— Dynamic Integrity Assurance. To ensure that the distributed data shares are cor-
rectly stored over their lifetime, so they can finally be used to reconstruct the origi-
nal data by authorized users.

— Lightweight. The scheme design should be lightweight as always in order to fit into
the inherent resource-constrained nature of WSNs.
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2.4. Notation and Preliminaries

Following is a list of notation used in presenting the idea of the proposed scheme.

— v, w, NBv . v and w are regular sensor nodes. NBv is the set of one-hop neighbors
of v.

— Di (i ∈ {1, . . . , m}). Partitioned blocks of the original data with equal size.
— q, seqno. q denotes the bit length of a symbol. seqno is the sequence number used

for future data integrity check or retrieval.
— α, βi (i ∈ {1, . . . , n}). α is a primitive element in Galois field GF(2q) and βis

are distinct elements randomly picked from GF(2q). Note that αi (i ≥ 0), which
is generated from α, is also an element in GF(2q). When used in the computa-
tion of algebraic signatures, αi is usually called a symbol which has a length of
qbits.

— Si, Si (i ∈ {1, . . . , n}). Si denotes the shares of original data that generated by Reed
Solomon (RS) coding and Si denotes shares of the authorized key (KUV) generated
by a secret sharing scheme.

— sig(α,r)(S) (S ∈ {S1, . . . , Sn}). An r-symbol signature vector (sigα1 (S), . . . , sigαr (S)) gen-
erated based on data share S.

— Pi, Pi (i ∈ {1, . . . , n}). Pi is the parity block generated based on all data shares using
RS coding. Pi denotes the operation of parity calculation based on βi.

In addition, a sensor node is referred to as a share holder if data shares have been
stored on it, and any node can be a potential verifier if it holds a parity Pi with its
corresponding secret βi.

We now introduce some necessary cryptographic background for our proposed
scheme.

Secret sharing. Shamir proposed an (m, n)-secret sharing (SS) scheme [Shamir 1979]
based on polynomial interpolation, in which m of n shares of a secret are required
to reconstruct the secret. Shamir’s SS scheme works as follows: the secret C is in
field Zp (p is prime; p > n), and there are n shareholders. All mathematical op-
erations are performed in the finite field Zp. To distribute C, we select a polyno-
mial a(x) with degree m − 1 and generate a share si for each shareholder i with a(x):
si = C + a1i + a2i2 + ... + am−1im−1, where si is also in Zp. To reconstruct C, we retrieve
m coordinate pairs (i, si) of all i in B (B is any subset of the shareholders with |B| = m;
), and apply the Lagrange interpolation formula: C =

∑
i∈B bisi, where bi =

∏
j∈B, j�=i

j
j−i .

Informally, secret sharing schemes which do not reveal any information about the
shared secret to unauthorized individuals are called perfect. A perfect secret shar-
ing scheme is called ideal, if the size of each share is the same as that of the
secret.

Erasure code. An (k, n)-erasure code encodes a block of data into n fragments, each
has 1/k the size of the original block and any k fragments can be used to recon-
struct the original data block. Examples are Reed Solomon (RS) codes [Reed and
Solomon 1960] and Rabin’s Information Dispersal algorithm [Rabin 1989]. A (k, n)-
Reed Solomon code can correct up to t = �n−k+1

2 � errors, and works as follows, for
q ≤ n. Let α0, . . . , αn−1 be n distinct elements of Zp. The RS code of message length
k is defined as follows: associate a message m = 〈m0, . . . , mk−1〉 with a polynomial
M(x) =

∑k−1
j=0 mjx j. The encoding of m is the evaluation of M(x) at the n given points,

that is, E(m) = 〈M(α0), . . . , M(αn−1)〉.
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Algebraic signature. Algebraic signature (AS) was proposed in Litwin and Schwarz
[2004] and Schwarz [2004]. An algebraic signature of a string X of l symbols, X =
(x1, . . . , xl), is itself a symbol defined as sigα(X ) =

∑l
i=1 xiα

i−1. The symbols xi can be
1- or 2-byte words as the elements of the Galois Field GF (2q) (e.g., q = 8, 16). As-
sume l < 2q − 1. Let −→α = (α1, . . . , αn) be a vector consisting of n different nonzero ele-
ments in GF . The n-symbol signature sig(n,α) of X based on α is the vector sig(α,n)(X ) =
(sigα1 (X ), sigα2 (X ), . . . , sigαn(X )), where α is called the n-symbol signature base and each
sigαi is called a component signature. We now list three important properties for alge-
braic signatures.

— Property I. Given the string length l < 2q − 1, then sig(α,r) can detect any changes up
to r symbols.

— Property II. Given the string length l < 2q − 1, then sig(α,r) of two different shares
collide with probability of 2−rq.

— Property III. Assume Pi = Pi(D1, . . . , Dm), then sigα(Pi) = sigα(Pi(D1, . . . , Dm))
= Pi(sigα(D1), . . . , sigα(Dm)).

Properties I and II demonstrate the security of algebraic signature (the proofs of
the properties can be found in Litwin and Schwarz [2004]). Property I gives the best
possible behavior of sig(α,r) for changes limited up to r symbols. If a data share is mod-
ified up to k > r symbols, property II shows that sig(α,r) still exhibits the low collision
probability that is required in a signature scheme. In other words, for an arbitrary
signature sig(α,r) of X = (x1, . . . , xl) (l < 2q − 1), the probability that X is modified
but sig(α,r) remains unchanged is 2−rq. When r and q are chosen appropriately, the
probability of collision due to any data change is sufficiently low. Property III shows
the characteristic homomorphism of algebraic signature when an algebraic signature
is applied with erasure and error correcting codes that use only the XOR operation,
that is, the signature of the code parity block is equivalent to the code parity of the
signatures.

3. DEPENDABLE INITIAL DATA STORAGE

To guarantee the security of the stored data, sensor nodes must encrypt the data for
confidentiality. Thus only authorized user can obtain the access privilege and decrypt
the data information. In addition, as sensors may exhibit Byzantine behaviors and are
attractive for attacks, data dependability should also be ensured to avoid single point
of failure. To address these problems and achieve a lightweight design in resource-
constrained WSNs, we discuss two schemes for initial data storage (a basic scheme
followed by an enhanced scheme), which we believe will lead us to the final desirable
solution.

3.1. The Basic Scheme

Suppose a sensor node v has data to be stored locally. To protect the data, it can perform
the following operations to ensure the data integrity and confidentiality.

— Step 1. Generate a random session key kr and compute the keyed hash value
h(data, kr) of the data, where h(·) denotes a cryptographic hash function.

— Step 2. Encrypt data, h(data, kr) with kr and obtain {data, h(data, kr)}kr.
— Step 3. Encrypt kr using the key KUV shared between the authorized users and

itself. This key can be either symmetric or asymmetric depending on the chosen

ACM Transactions on Sensor Networks, Vol. 8, No. 1, Article 9, Publication date: August 2011.



Dependable and Secure Sensor Data Storage with Dynamic Integrity Assurance 9:7

user access control mechanism, which is independent of our design here and will
not be discussed in this article.

— Step 4. Store DATA =< {data, h(data, kr)}kr, {kr}KUV > and destroy kr.

DATA will be fed back to the user when required. An authorized user will be able to
decrypt the original data with KUV and ensure its integrity by checking h(data, kr).

Discussion. This basic approach only provides the least protection for data secu-
rity and dependability. It cannot stand sensor Byzantine failures or data losses due
to sensor compromises. One straightforward way to enhance data dependability is
to replicate the data and distribute the replicas to the neighbors. If some nodes are
compromised or undergo Byzantine failures, the data can still be correctly recov-
ered from the other nodes that store the replicas. However, the simple replication
approach incurs a very high scheme overhead. Since n replicas need to be distrib-
uted and stored, both the communication overhead and the storage overhead are
n ∗ |DATA|.

To further enhance data security and dependability, we may resort to the secret
sharing technique. In a (k, n)-threshold secret sharing scheme, any combination of
less than k secret shares reveals no information regarding the secret. On the other
hand, no more than k out of n shares are required to fully recover the secret. Ob-
viously, the first property can be used to enhance data security, while the second is
good for data dependability. However, when secret sharing is used to manage data,
each data share has the same size with the original data block. If n data shares
are generated and distributed, the storage and communication overhead are both in-
creased n times. Thus using perfect secret sharing to manage generic data leads to
an n-fold increase in storage and communication cost, and is no better than n-fold
replication. For a sensor holding a large amount of data, these costs will be very
high. This problem becomes worse when the number of nodes increases. Therefore,
in terms of space and communication efficiency, the direct use of the secret sharing ap-
proach for data storage may not be suitable for resource-constrained wireless sensor
networks.

3.2. An Enhanced Scheme Based on Erasure Coding and Secret Sharing

To deal with the limitations in the secret sharing-based approach, we now propose to
integrate the technique of erasure coding as it can achieve optimal space efficiency.
We thus propose a hybrid scheme as follows, which takes advantage of both erasure
coding and secret sharing techniques.

— Step 1. v calculates DATA according to the basic scheme and further divides the
DATA into two parts, that is, {data, h(data, kr)}kr and {kr}KUV .

— Step 2. v then encodes < {data, h(data, kr)}kr > into n fragments by employing a
(m, n)-RS code. That is, v constructs M(x) = D1 + D2x + . . . + Dmxm−1, where <

{data, h(data, kr)}kr >: = D1‖ . . . ‖Dm. v further obtains n Sjs with each Sj = M(α j)
(1 ≤ j ≤ n), where n ≤ 2q − 1.

— Step 3. v then employs an (m, n)-SS scheme to obtain n shares of {kr}KUV , denoted as
S1, . . . , Sn.

— Step 4. v randomly selects n neighbors from NBv . For each neighbor wi (i ∈
{1, . . . , n}), v distributes {v, seqno, Si, Si}Kvwi

to wi, where Kvwi is the pairwise key
shared between v and wi. The original data is erased.

Now, an authorized user can recover DATA by reconstructing < {data, h(data, kr)}kr >

from Sjs based on the RS code and {kr}KUV from Sis based on secret sharing. In both
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cases, any m out of n shares are sufficient. Obviously, the proposed hybrid scheme
offers the same level of security and dependability as the secret sharing-based scheme.
Compromising fewer than m sensors will not damage data security and dependability.
Moreover, the hybrid scheme is much more efficient in terms of communication and
storage overheads. In fact, these two overheads are approximately now both n

m ∗|DATA|
as compared to n ∗ |DATA|.
4. DYNAMIC DATA INTEGRITY ASSURANCE

In mission-critical applications, the availability of the stored data must be guaranteed
over the whole data lifetime. One of the key issue related to this is to detect any unau-
thorized data modification and/or data corruption. In reality, after data shares are
distributed among the neighbor nodes, these shares may be modified illegally once the
corresponding storage sensor is compromised or it undergoes Byzantine failures. If
such illegal modifications and data corruptions cannot be detected, the user, when re-
trieving the data, will not be able to correctly recover the original data due to the share
pollution. Therefore, it is critical to enable dynamic data integrity check through-
out the whole data lifetime. The challenge then is how to achieve dynamic data in-
tegrity check without the existence of the original data and in a lightweight and secure
manner.

4.1. The Basic Schemes

We start with some basic solutions aiming to provide integrity assurance of the sensor
data.

Scheme-I. One straightforward approach of ensuring the integrity of data or data
shares is to use “fingerprints”, where the hash of the data shares are computed and
stored as a hash vector

−→
H at the data originating sensor v before the share distribu-

tion. Later on, the data originating sensor v can check the data integrity by requesting
each share to be returned. Upon receiving all the shares from the shareholders, v can

calculate H(S1), . . . , H(Sn) and check
−→
H ?=

(
H(S1), . . . , H(Sn)

)
, where H(·) denotes the

hash operation (e.g., SHA-1, MD5). However, this approach has a number of serious
problems: (i) it is single point of failure. If v fails to function correctly, no one else can
perform the integrity check. (ii) It is not secure, as v will collect all the original shares
for each integrity check. If it is compromised, the attacker will be able to recover the
original data by leveraging this operation. (iii) The storage and communication over-
head become high when the sensed data is aggregated. To verify data, n hash values
need to be stored in the data-originating sensor. The communication overhead is also
n ∗ |Si| as n shares have to be returned for verification. The overhead problem be-
comes much worse in the case of data aggregation, that is, many more hash values
need to be stored and many more shares need to be returned to verify multiple data
blocks.

Scheme-II. A variant approach could be to ask the shareholders to return the fin-
gerprints instead of the original share. However, the storage overhead is the same
as for the above scheme. Moreover, this method suffers from a severe drawback: a
compromised shareholder could simply precompute and store the fingerprint H(Si)
instead of the genuine data. When required to return the fingerprint, it could re-
spond to the verifier with H(Si), the use of which will always pass the integrity
checks. This problem can be solved using keyed fingerprinting [Bellare et al. 1996],
where a different secret key is employed to generate the fingerprint for each integrity
check. The purpose of constructing keyed hash functions is to use cryptographic hash
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functions in conjunction with a key for building secure message authentication func-
tions. One common approach is to key the function’s initial variable (IV). The fixed
and known IV, as defined by the original function, is replaced by a random and se-
cret value known only to the parties [Bellare et al. 1996]. Using the keyed IV ap-
proach, any iterated hash construction (e.g., MD5, SHA-1) can be associated to a
family of keyed functions. However, the use of keying hash functions for integrity
checking would result in an additional overhead in both computation and storage,
since the verifier (data-originating sensor) must precompute and store all the keyed
fingerprints for data shares it plans to check. In addition, the number of verifications
allowed to be performed in this solution is prelimited by the number of secret keys
held by the verifiers. After these keys are exhausted, the aforementioned problem still
exists.

Another technique to safeguard against modified data shares is verifiable secret
sharing (VSS). Different from the classical secret sharing schemes, VSS includes
auxiliary information that allows shareholders to verify their shares as consistent.
We give a commonly used example of VSS scheme proposed by Feldman [1987],
which is constructed based on Shamir’s [1979] secret sharing scheme. Assume a
cyclic group G of prime order p and a generator g of G are chosen publicly as sys-
tem parameters. The scheme is executed as follows: (i) the data-originating sensor
v generates shares P(1), . . . , P(n) and distributes each shareholder one value, where
P(x) = S+ a1x + . . . + atxt is a random polynomial of degree t and P(0) = S is the original
data share; (ii) v computes and distributes commitments to the coefficients of P, that
is, c0 = gS, c1 = ga1 , . . . , ct = gat. Then any shareholder can verify the integrity of its
own share: shareholder i that holds u = P(i) checks if the following equation holds:
gu = c0ci1

1 · · · cit
t =

∏t
j=0 gajij

= g
∑t

j=0 ajij
= gP(i). It is obvious that VSS allows each share-

holder to perform an integrity check for its own data share. However, it cannot tell
the status of the other shares corresponding to the same original data block as each
shareholder only has one share.

4.2. The Algebraic Signature-Based Dynamic Checking Scheme

To achieve dynamic data integrity assurance with a lightweight design, we pro-
pose to use algebraic signatures for our purpose [Litwin and Schwarz 2004; Schwarz
and Miller 2006]. The idea is as follows: for each data share, the data originating
sensor generates a distinct parity and appends the parity to the data share. Dur-
ing the integrity verification process, each shareholder can act as a verifier to vali-
date the integrity of the stored data shares as long as they have the corresponding
parities. The nice properties of the proposed scheme are as follows: (i) any unau-
thorized modifications can be almost detected in one integrity check; (ii) a fast in-
tegrity check can be realized when data shares are aggregated on shareholders; (iii)
the shareholders have no ability to create valid signatures that are internally con-
sistent for all data shares (including both the original or polluted ones). The de-
tails of the dynamic data integrity checking scheme is presented in the following
subsections.

4.2.1. Parities Generation and Distribution. Suppose a sensor node v has data to be stored
locally. v first follows the hybrid share generation scheme to obtain n shares S1, . . . , Sn,
where each share Si = Si||Si (i ∈ {1, . . . , n}). Let (xi1, xi2, . . . , xik) denote the data
share Si, where k ≤ 2q − 1. Note all these symbols are elements of a Galois field
GF(2q).
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Fig. 1. Parity generation from data shares.

Based on the n data shares S1, . . . , Sn, v generates n parities

Pj =
n∑

i=1

β i−1
j Si

= (
n∑

i=1

β i−1
j xi1,

n∑
i=1

β i−1
j xi2, . . . ,

n∑
i=1

β i−1
j xik)

= (pj1, pj2, . . . , pjk), for j ∈ {1, . . . , n} , (1)

where n ≤ 2q − 1. Notice that β j ( j = 1, . . . , n) are distinct elements randomly picked
from GF (2q). Figure 1 shows the parity generation from data shares.

After parity generation, v randomly chooses n neighbor nodes w1, . . . , wn from NBv .
For each neighbor wi (i ∈ {1, . . . , n}), v distributes a data share together with a distinct
parity, that is,

{v, seqno, Si, Pi, βi}Kvwi
,

where seqno is the data sequence number used for future data integrity check or
retrieval. Then, data, Sis and Pis are erased. Note Pi is generated based on its cor-
responding βi, and, after parity generation for the remaining data blocks, βis are
erased.

4.2.2. Dynamic Data Integrity Checking. At a later time, suppose a shareholder wi who
holds {Pi, βi} wants to check whether the data item data corresponding to seqno is being
correctly stored. wi will launch a data integrity check by broadcasting a challenge
message to all the other data shareholders,

{wi, seqno, α, r},
where α is a primitive number randomly picked from GF(2q) and r is the required
number of signatures such that r << 2q − 1.

Upon receiving the challenge, all the other shareholders that store {seqno, Si} (i ∈
{1, . . . , n}) compute an r-symbol algebraic signature based on α,

sig(α,r)(Si) = (sigα1 (Si), sigα2 (Si), . . . , sigαr (Si)),

and respond to wi with
{
sig(α,r)(Si)

}
Kw j,wi

, where {j : j ∈ [1, n], j �= i}.
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After obtaining all sig(α,r)(Si) (i = 1, . . . , n), wi can verify the data integrity by
checking

sig(αt)(Pi)
?= Pi(sig(αt)(S1), . . . , sig(αt)(Sn))

=
n∑

j=1

β
j−1
i sigαt(Sj), t = 1, . . . , r. (2)

Equation (2) holds because

sig(αt)(Pi) =
k∑

j=1

αt( j−1) pij

=
k∑

j=1

αt( j−1)
n∑

m=1

βm−1
i xmj

=
n∑

m=1

βm−1
i

k∑
j=1

αt( j−1)xmj

=
n∑

m=1

βm−1
i sigαt(Sm)

=
n∑

j=1

β
j−1
i sigαt(Sj). (3)

Equation (3) shows that the signature of parity block should be equal to the parity
of signatures of the original data block. There are totally r such equations. If any of
these r equations does not hold, we can conclude that the data has been modified due
to either malicious attacks or Byzantine faults, that is, there is no false positive result
(the data has not been modified but the test says it has). However, if all the checking
equations hold, a false negative result (the data has been modified but the test says it
has not) is possible. As will be shown in Section 5, the false-negative probability can
be reduced to almost zero.

4.2.3. Fast Integrity Check for Multiple Data Blocks. Data shares belonging to different
data blocks may aggregate on the storage sensors. An important advantage of the
proposed dynamic checking scheme over existing approaches is that it can efficiently
verify the integrity of the aggregated data shares with minimum communication and
computational overhead, for example, if the sensor node v has another data block data′
to be stored locally. Similarly, v follows the hybrid share generation scheme to generate
shares S′

1, . . . , S′
n, and distributes them to the preselected n neighbors that stores the

data shares of data. To verify that the data shares corresponding to data and data′
are both correctly stored, a verifier can initiate an integrity check by broadcasting a
challenge to all shareholders (for simplicity, we assume r = 1 here). Upon receiving the
message, each node acts as follows.

— Assume S′
i = (x′

i1, x′
i2, . . . , x′

ik). Thus the concatenation of Si and S′
i can be written as

Si||S′
i = (xi1, xi2, . . . , xik, x′

i1, x′
i2, . . . , x′

ik)
= (xi1, xi2, . . . , xik, xi(k+1), xi(k+2), . . . , xi(2k)).
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The signature of Si||S′
i can be computed as

sigα(Si||S′
i) =

k∑
j=1

α j−1xij +
2k∑

j=k+1

α j−1xij

= sigα(Si) + αk
k∑

j=1

α j−1x′
ij

= sigα(Si) + αksigα(S′
i).

Then sigα(Si||S′
i)s for (i = 1, . . . , n) are returned to the verifier. Note all signatures

are encrypted using pairwise keys.
— Assume this verifier holds Pi and P′

i (i ∈ {1, . . . , n}), where Pi and P′
i are par-

ities of data and data′ based on the same secret βi, respectively. Upon receiving
all responses from the other shareholders, the verifier generates signatures of
Pi||P′

i by

sigα(Pi||P′
i) = sigα(Pi) + αksigα(P′

i).

Now the checking equation can be written as

sig(α)(Pi||P′
i)

?=
n∑

j=1

β
j−1
i sigα(Sj||S′

j).

Hence, when data shares are aggregating on storage sensors, the proposed checking
scheme can verify the integrity of different data blocks. This property can be eas-
ily generalized to more or any combination of data shares for arbitrary data blocks.
Note that, no matter how many data shares or parities are concatenated, the signa-
ture is only a symbol of length q; thus using this scheme allows us to check a group of
data blocks in a more efficient way while introducing a minimum of communication
overhead.

4.2.4. Spot Checking. The above approach provides deterministic data integrity as-
surance straightforwardly as the verification covers all the data shares. Thus the time
consumption for the integrity check is proportional to the number of blocks required to
be checked. To verify the data integrity, the verifier can also adopt a probabilistic spot-
checking approach [Ateniese et al. 2007], that is, requesting the algebraic signature of
a number of randomly selected symbols to be returned. The spot-checking approach
can provide probabilistic integrity assurance of the data blocks. Specifically, in the
challenge message, the verifier specifies the index of the symbols to be checked in the
data shares. All the shareholders compute the signatures based on the specified sym-
bols and return them to the verifier. On the other side, the verifier can easily compute
the parity of the received signatures and compare the result to the signature of the
parity, which is computed based on the the symbols of the same index in the parity.
By sampling the data blocks randomly for integrity check, it suffices to challenge a
small number of symbols in each data share to achieve detection with high probability
(the performance analysis of the spot-checking approach is shown in Section 5.2.3).
Note that, due to the use of spot checking, the number of possible signatures is much
higher than the actual size of the data blocks. Thus, to correctly answer all possible
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challenges, a rational adversary by doing the right thing simply keeps the original
data on the nodes rather than all possible signatures.

4.3. Multiparty Data Integrity Checking

Recall that in the integrity checking process, the signatures are encrypted using
pairwise keys shared between the verifier and the other shareholders. If another
shareholder wants to perform an independent integrity check, it has to ask other
shareholders to resend the signatures again. In this section, we eliminate this re-
striction by employing the broadcast-based nature of wireless communication. In the
modified scheme, all the shareholders (except the verifier itself) respond to verifier
wi with

{
sig(α,r)(Si)

}
in a broadcast manner, that is,

{
sig(α,r)(Si)

}
are sent openly, not

encrypted. Now these signatures could be considered free and employed by other po-
tential verifiers who possess {Pi, βi} (i ∈ {1, . . . , n}) to perform an independent integrity
check. To make it work, the initiator wi itself should include signatures of its own data
share in the published challenge, that is, {wi, seqno, α, r, sig(α,r) (Si)}. Therefore, after the
challenge-response process, the other shareholders can obtain sig(α,r)(Si) (i = 1, . . . , n)
and act as a verifier in each check process.

This approach not only saves computational overhead (encryption and decryption)
but also offers verification “diversity” since it enables efficient multiparty verification
by all parties sharing their signature information with one another. In addition, the
verification does not reveal much information about the original data shares since sig-
natures only carry a few bytes of information. It would take thousands of randomly
selected queries to retrieve sufficient signatures to be able to solve for the original data
shares [Schwarz and Miller 2006]. Now we consider the worst case: if an adversary
luckily obtains the signatures of Si based on k different signature bases, it first con-
structs a system of linear equations. The adversary can break the data share since the
number of equations is k and the number of unknowns is k, that is, (xi1, xi2, . . . , xik).
To further enhance the security strength of the scheme, we develop a modification
of the original protocol to allow each shareholder to safeguard the exposed signa-
tures with a minimum of overhead. Different from the basic scheme, shareholders
do not give verifiers the original signature but the perturbed one, which is a sum of
the original signature and a perturbation symbol. Thus, by blinding each signature
information with perturbation, the adversary cannot capture the original signatures
directly. On the other hand, after receiving these perturbed signatures, the verifier
computes parities based on these signatures without needing to decrypt them. To
further explain the above idea, we will present more details of this technique in the
following.

Recall that, in the parity generation phase, β js are chosen as secrets by the data-
originating sensor to generate parities. The first step under this scheme is to construct
a Vandermonde matrix using these secrets. Next, the originator constructs a random
perturbation vector (γ1, γ2, γ3, . . . , γn)T , where all γi (i = 1, . . . , n) are picked from GF(2q)
independently. By multiplying the matrix by this perturbation vector, we obtain an-
other symbol vector

⎛
⎜⎜⎜⎜⎝

1 β1 β2
1 . . . βn−1

1

1 β2 β2
2 . . . βn−1

2
...

...
...

. . .
...

1 βn (βn)2 . . . (βn)n−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1

γ2

γ3
...

γn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

θ1

θ2

θ3
...
θn

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Here, (θ1, θ2, θ3, . . . , θn)T is called the counteracting vector. We have
n∑

i=1

β i−1
j (sigα(Si) + γi) =

n∑
i=1

β i−1
j sigα(Si) +

n∑
i=1

β i−1
j γi

=
n∑

i=1

β i−1
j sigα(Si) + θ j.

This property is exploited in our design of the integrity checking scheme. In the
parity distribution phase, a piece of additional information {γi, θi}Kvwi

(i ∈ {1, . . . , n})
is distributed to shareholder i. When required to return a signature to the verifier,
shareholder i blinds sigα(Si) by adding a perturbation γi. On the verifier side, to uncover
parity of the original signatures, it can first compute parity of the perturbed signatures
based on β ∈ {β1, . . . , βn} and then subtract the corresponding θ ∈ {θ1, . . . , θn} from it.
It is clear that this configuration has no effect on the validity of the checking results.

Discussion. The above operation ensures that the adversary cannot capture the orig-
inal signatures by eavesdropping and obtain the original data share by solving a sys-
tem of linear equations. This is because the symbol xi1 is fully blinded by γi. Assume
q = 8, which means the fist 8 bits of Si are blinded. To reconstruct {kr}KUV , the adver-
sary needs to solve for m shares and guess 8m bits, which is infeasible. For example,
if m = 10, The complexity to break {kr}KUV is thus O(280). Therefore, even if KUV is
known to the adversary, it is almost impossible to break the session key kr.

4.4. Data Maintenance

In our data storage scheme, the original data block is first partitioned into n shares of
equal size using Reed Solomon coding before distribution. Once any unauthorized data
modification is detected, to repair the polluted shares, the basic idea of using mobile
sinks [Zhang et al. 2005] can be applied. The network controller can periodically dis-
patch mobile sinks (MSs) to collect data shares, and perform error correction. In this
article we only focus on the secure data storage scheme with dynamic data integrity
check. The topic of data maintenance is out of the scope here.

5. SECURITY ANALYSIS

In this section, we present the security analysis of the proposed schemes. Our security
analysis focuses on the adversary model defined in Section 2.2. Further discussion on
other attacks is also presented.

5.1. Security and Dependability of Initial Data Storage

The security proof in Shamir [1979] and Reed and Solomon [1960] ensures that our
hybrid share generation scheme for initial data storage is unconditionally secure and
(m − 1)-collusion resistant. That is, up to (m − 1) colluding/compromised nodes reveal
no information about the encoded data. In practice, requirements may vary depending
on different applications, and thus the threshold m can be adjusted to accommodate
the special needs.

5.2. Security of Dynamic Integrity Assurance

5.2.1. Random Modification of Data Shares. After an adversary has compromised a set
of nodes, it would like to modify the data shares in order to prevent authorized users
from recovering the original data blocks correctly.
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Table II. Probability of False-Negative Result (q = 8)

nc r = 1 r = 2 r = 3

10 p = 1 3.9450e-003 3.9064e-003 3.9063e-003
p = 2 5.4121e-005 1.5408e-005 1.5259e-005
p = 3 3.8922e-005 2.0877e-007 6.0187e-008

20 p = 1 3.9063e-003 3.9063e-003 3.9063e-003
p = 2 1.5336e-005 1.5336e-005 1.5336e-005
p = 3 1.3694e-007 5.9896e-008 5.9606e-008

30 p = 1 3.9063e-003 3.9063e-003 3.9063e-003
p = 2 1.5259e-005 1.5259e-005 1.5259e-005
p = 3 5.9720e-008 5.9605e-008 5.9605e-008

We first analyze the case that the adversary modifies data shares randomly and
study the probability of a false negative result in the process of data integrity checks.
In the following analysis, we call (sig(α)(S1), . . . , sig(α)(Sn)) a n-symbol signature page.
Since parity calculations and algebraic signature calculations are isomorphic, the par-
ity of signatures can be considered as the signature of a signature page based on β,
that is,

∑n
i=1 β i−1sigα(Si). We have the following proposition.

PROPOSITION 5.1. Assuming the number of shares n < 2q − 1, then the parity P
of two different n-symbol signature pages collide with probability 2−q. If p different
parities P1, . . . , Pp are used, the collision probability (of all p parities) can be further
reduced to 2−pq.

PROOF. The proof of this proposition is similar to the proof of Property II [Litwin
and Schwarz 2004].

Next, we study the probability of a false negative result where the data has
been modified randomly but all the checking equations hold, that is, sig(αt)(Pi) =∑n

j=1 β
j−1
i sigαt(Sj), where (t = 1, . . . , r) and (i = 1, . . . , n). Suppose nc nodes are misbe-

having due to the possible compromise or Byzantine failure. In the following analysis,
we do not limit the value of nc, that is, nc ≤ n.

PROPOSITION 5.2. Assume the number of shares n < 2q − 1, Pi(sig(αt)(S1), . . . ,
sig(αt)(Sn)) =

∑n
j=1 β

j−1
i sigαt(Sj), where (t = 1, . . . , r) and (i = 1, . . . , p), p ≤ n. Then the

probability of a false negative result is

Pr = Pr1 + Pr2, (4)

where Pr1 = (1+2−rq)nc −1
2nc −1 and Pr2 = (1 − Pr1)2−pq.

PROOF. See the Appendix.

Any node that possesses a pair {Pj, β j} can launch a data integrity check. Consider the
probability of a false negative result Pr, which is a sum of two probabilities. For fixed
nc and q, Pr is determined by the number of signatures and the number of parities
used during the check.

Table II shows some numeric results of Pr. For example, assume the symbol length
is q = 8 and nc = 20. It is shown that, by increasing r and p simultaneously, the false-
negative probability can be reduced significantly. However, using more signatures will
incur more computational and communication overhead, since all the shareholders
have to compute r different signatures (sigα1 (S), sigα2 (S), . . . , sigαr (S)) and return them
to the verifier. Observe that, for a specific p, the increase of the number of r offers little
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gain in reducing the false-negative probability. In our dynamic checking scheme, we
distribute to each shareholder a distinct parity P and its corresponding secret β, so all
the share holders can receive sig(α,r)(Si)s and act as independent verifiers. The results
show that the false-negative probability is reduced significantly as p increases. This
multiparty verification can tolerate large number of unavailable sensors (verifiers) and
reduce the false-negative probability to an acceptable extent.

5.2.2. Targeted Modification of Data Shares. We have shown that, if an adversary modi-
fies the data share randomly, the proposed data integrity checking scheme can success-
fully detect the attack in one verification. However, by observing the system for a long
time, the adversary may find out the set of challenge number αs. Then it is targeted to
modify data such that the polluted data share has the same signatures as the original
ones.

First, we analyze how this attack can be carried out. Considering the process of
calculating signatures, a data share S can be written as a sum of two special sym-
bol vectors (x1, x2, . . . , xk) = (x1, x2, . . . , xn, 0, . . . , 0) + (0, . . . , 0, xn+1, xn+2, . . . , xk). The
n-symbol algebraic signature sig(α,n) of (x1, x2, . . . , xn, 0, . . . , 0) is

⎛
⎜⎜⎜⎜⎝

sigα

sigα2

...
sigαn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 α α2 . . . αn−1

1 α2 (α2)2 . . . (α2)n−1

...
...

...
. . .

...
1 αn (αn)2 . . . (αn)n−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3
...

xn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The square matrix is of Vandermonde type; thus, for each n-symbol signature, there
is one and only one symbol vector (x1, x2, . . . , xn, 0, . . . , 0) corresponding to it. Now
consider the symbol vector of form (0, . . . , 0, xn+1, xn+2, . . . , xk); we denote its sig(α,n) by
s̃. Assume the sig(α,n) of the original share (x1, x2, . . . , xk) is s. The adversary can first
randomly choose a vector of the form (0, . . . , 0, x

′
n+1, x

′
n+2, . . . , x

′
k), then it can compute

the vector (x
′
1, x

′
2, . . . , x

′
n, 0, . . . , 0) that has (s− s̃) as its signature. It is obvious that the

symbol vector (x
′
1, . . . , x

′
n, x

′
n+1, . . . , x

′
k) has signature s, which is the same as the original

data share! Notice that n < k; hence the polluted data generated by the adversary can
possibly pass k − 1 data integrity checks. This attack, however, does not work because,
in our scheme, the verifier picks α from GF(2q) in a random way. For this reason, the
adversary has to guess which α will be used in the future. As analyzed, using one
signature (r = 1) is sufficient for each multiparty integrity check. Thus α does not have
to be a primitive element now; it can be any element in GF(2q). In practice, as long as q
is appropriately selected, for example, q = 8 or 16, the probability of passing successive
checks is very small, which makes the attack unfeasible.

5.2.3. Spot Checking. In this section, we analyze the performance of the spot-checking
strategy on selected symbols instead of all in terms of the detection probability of
data modification. Following the same assumptions as in Section 5.2.1, we further
assume the adversary randomly modifies z symbols out of the total l symbols at data
storage nodes. Let r be the number of different symbols for which the verifier asks
for check in a challenge. Let X be a discrete random variable that is defined to be
the number of symbols chosen by the verifier that matches the symbols modified
by the adversary. We first analyze the matching probability that at least one of the
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Fig. 2. The detection probability of data modification Pd (z/l = 1%).

symbols picked by the user matches one of the symbols modified by the adversary
[Ateniese et al. 2007]:

Pm = 1 − P{X = 0}

= 1 −
r−1∏
i=0

(1 − min{ z
l − i

, 1})

≥ 1 − (
l − z

l
)r.

Obviously, if none of the specified r symbols are modified, the adversary avoids the de-
tection in a data integrity check. Assume there are p independent verifiers; according
to Proposition 5.2, the false negative probability is Pr. It follows that the probability
of data modification detection is Pd = Pm · (1 − Pr).

Figures 2, 3, and 4 plot Pd for different values of l, r, z when we set q = 8, nc = 10 and
p = 5. The results show that, if more than a fraction of the data file is modified, then it
suffices to challenge for a small number of symbols in order to achieve detection with
high probability.

5.2.4. Collusion Attacks. Share holders may collaborate to modify data or even make
up signatures as long as they are internally consistent. In other words, a verifier
receiving signatures can verify that the parity matches the data, but it cannot tell
whether some of sensors collude to provide fake signatures for a compromised parity.
This attack, however, does not work because, in our dynamic checking scheme, all
shareholders will participate in each checking process to act as a verifier. To make
up signatures consistent with n different parities, the colluding sensors have to find
out all the secret βs, and attempt to construct a set of fake signatures that go with
them. In practice, to reduce computational and communication overhead, we use only
one signature base (r = 1) in a multiparty integrity check; thus n signatures from n
verifiers are returned for each verification. Based on the above analysis, it is quite
evident that using n parities can detect any changes up to n signatures. Therefore, our
scheme can prevent multiple sensors from colluding to fabricate consistent signatures.
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Fig. 3. The detection probability of data modification Pd (z/l = 5%).

Fig. 4. The detection probability of data modification Pd (z/l = 10%).

6. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of our dynamic data integrity checking
scheme in terms of storage, computational, and communication overheads. In our
scheme, sensor data is generated and distributedly stored, and retrieved and decrypted
by authorized users. Since sensor nodes are usually resource constrained, they may
not be able to efficiently execute expensive operations, which may become the bottle-
neck of the scheme. Thus, our evaluation focuses on the efficiency of the scheme. In the
following section, we first present the numeric results. Then, we present our imple-
mentation results on real sensor platforms. The notation of cryptographic operations
is summarized in Table III.
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Table III. Notation Summary of Cryptographic Operations

Hasht
l t hash operations with input size of l

SymEncrt t symmetric-key encryption operations

SymDecrt t symmetric-key decryption operations
PolyEvaltm t polynomial evaluations with polynomial of degree m

ParGent
k t parity generations with vector of size k

AlgSigGent
k t algebraic signature generations with vector of size k

6.1. Initial Data Storage

We first consider the computational overhead. Before the share generation process,
the data-originating node v computes one keyed hash value h(data, kr) and per-
forms two symmetric-key encryptions {data, h(data, kr)}kr and {kr}KUV , respectively.
The data share generation requires two sets of polynomial evaluations. v first en-
codes {data, h(data, kr)}kr into n fragments using an (m, n)-RS code, where m denotes
the number of partitioned data blocks and n denotes the number of selected neigh-
bors (i.e., shareholders). Assuming each partitioned data block Di contains c sym-
bols, there are totally n · c polynomial evaluations in this step. Then v employs an
(m, n)-SS scheme to obtain n shares of {kr}KUV . The construction for the counteract-
ing vector can be considered as n signature generations with vector size of n. Finally,
a parity based on all shares will be generated for each shareholder. Let l denote
the size of data||kr; the total computation cost at the data-originating node is hence
Hash1

l + SymEncr2 + PolyEvaln·(c+1)
m + AlgSigGenn

n + ParGenn
k. Correspondingly, the cost

at each shareholder is only SymDecr1.
Now let us estimate the storage and communication overhead during the initial

data distribution stage. Assume we use a Galois field GF(2q) (q = 8 or 16). After
share generation, the source node v distributes {v, seqno, Si, βi, Pi, γi, θi}Kvwi

to neighbor
i, where we assume Si of data contains k symbols. There are a total n such messages.
Thus, to store the data, the communication overhead during the distribution process
is approximately n · (2k + 5) · q bits. Obviously, it requires (2k + 5) · q bits of storage
overhead to keep the distributed information at each shareholder.

6.2. Dynamic Data Integrity Check

Consider a shareholder w who initiates a data integrity check to verify the integrity
of the data. It broadcasts a challenge message {w, seqno, α, r} to all the shareholders.
In addition, a 1-symbol algebraic signature based on its own data share is generated
and included in the challenge. Hence, the communication overhead involved in this
broadcast message is 5 · q bits. Upon receiving the challenge, each shareholder needs
to compute a 1-symbol algebraic signature and return it to the check initiator. Thus, for
each shareholder (including the initiator), the computational cost is just AlgSigGen1

k.
The communication overhead involved in every response message sigα(Si) is q bits.
After obtaining all sigα(Si)s (i = 1, . . . , n), each shareholder can act as a verifier to check
the integrity of the data. It is clear that in this step the computational cost at each
node is ParGen1

k + AlgSigGen1
k.

6.3. Implementation

In our implementation, we choose Tmote Sky and iMote2 as the target sensor plat-
forms. We use SHA-1 as the one-way hash function and AES (supported by CC2420
Radio module of the motes) as the the data encryption algorithm. Our implementation
shows that it takes about 0.06ms for SHA-1 to execute one hash operation and 0.4ms
for AES to encrypt 64 bytes data. Since addition is done with XOR and fast in GF(2q),
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Table IV. Performance Comparison Under Different Sensor Platforms

Tmote Sky (8MHz) iMote2 (13MHz)

Metric\Parameter m = 10, n = 20 m = 20, n = 30 m = 10, n = 20 m = 20, n = 30
Coefficient matrix gen. time (ms) 4.7 15.7 0.47 1.4

RS coding time (ms) 135.0 271.0 8.90 17.8

the expensive operations in PolyEval, ParGen, and AlgSigGen are multiplications. In
our experiment, we implement all multiplications by a power of α by successive lookups
to a single multiplication-by-α table as in Schwarz and Miller [2006]. Note that (i) the
operations in ParGen and AlgSigGen include the generation of coefficient matrix (e.g.,
matrix that consists of powers of β or α) and polynomial evaluations; (ii) the opera-
tions in RS coding are matrix multiplications, which consists of multiple polynomial
evaluations. As RS coding involves the most number of multiplication operations, we
focus on the performance of RS coding on the sensor platforms. Assume q = 8 and let
c = 100 be the number of symbols per partitioned block. Table IV compares the com-
putation time of coefficient matrix generation and RS coding on Tmote Sky running
at 8MHz and iMote2 running at 13MHz. Our results show that these operations can
be efficiently implemented, especially on high-end sensor platforms. When running at
higher frequencies, for m = 20 and n = 30, iMote2 consumes 7.3ms at 104MHz, 3.6ms
at 208MHz and 1.8ms at 416MHz to execute RS codings. However, as the number of
data block increases (i.e., more sensed data needs to be encoded and stored), the RS
coding may be expensive in terms of time cost and energy consumption for low-end
sensor nodes.

7. RELATED WORK AND DISCUSSION

[Rabin 1989] proposed an information dispersal algorithm (IDA) for secure storage and
transmission of data files in distributed systems, where the original information F is
dispersed into n pieces or locations by using erasure codes. The salient point of this
idea is that each piece is of size |F|/m; thus the file can be reconstructed from any m
pieces. Apparently the IDA, as compared with Shamir [1979] algorithm for sharing
secrets, can achieve data reliability and space efficiency in both storage and trans-
mission. Due to these desirable properties, IDA has found its potential applications
to secure and fault-tolerant storage and transmission of information. [Chessa et al.
2004] further extended this idea and investigated the storage problem in the context
of a redundant residue number system (RRNS) for encoding information, which aims
to provide a dependable and secure data storage to mobile wireless networks. The
idea of using number theoretic constructs for information dispersal can be traced back
to Asmuth and Blakley [1982], who proposed an algorithm based on the Chinese Re-
mainder theorem. The main idea of RRNS is to partition the data file into records and
encode each record separately as (h+r)-tuples of data residues using h+r moduli. Then
the residues are distributed among the mobiles in the network. To recover the origi-
nal information, one is required to know at least h residues and of the correspondence
moduli. Data dependability is ensured since data can be reconstructed in the presence
of up to s ≤ r residue erasures, combined with up to

⌊ r−s
2

⌋
corrupted residues. It has

been shown in Chessa et al. [2004] that RRNS and IDA have comparable performance
in terms of code efficiency and complexity; however, whether space efficiency can be
obtained remains unclear. Another severe drawback of this approach is that, to reduce
the computational overhead in the encoding and decoding process, the system has to
maintain a large library of parameter values together with a big set of moduli.

Subbiah and Blough [2005] developed a novel combination of XOR secret shar-
ing and replication mechanisms, which aimed to reduce the computation overheads
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introduced by perfect sharing schemes and achieve speeds comparable to standard en-
cryption schemes. This scheme uses XOR secret sharing for confidentiality and man-
ages each share using replication-based protocols for Byzantine and crash fault toler-
ance. However, while the computational overheads are reduced drastically, additional
servers and storage capacities at each server are required. Moreover, by using perfect
secret sharing to manage generic data leads to an n-fold increase in storage overhead,
and is no better than n-fold replication.

Subramanian et al. [2007] studied the distributed data storage and retrieval prob-
lem in sensor networks and designed an adaptive polynomial-based (APB) data stor-
age scheme for efficient data management. In the APB scheme, each storage1 sensor
(with ID v) is given a share f (v, y) of a t-degree polynomial f (x, y) for generating data
encryption keys in different phases, while an authorized user equipped with a share
f (x, i) and a target sensor ID can obtain the data decryption keys for phase i. Different
from the basic polynomial-based scheme [Blundo et al. 1992], the APB scheme gives
each node or user the perturbed share instead of the original share. The APB scheme
can provide high scalability and flexibility, and hence is the most suitable for real ap-
plications. However, it cannot guarantee the data dependability and integrity, that is,
if the data blocks are modified or polluted, it cannot tell whether the data has been
altered or not. In earlier sections, we have demonstrated that our techniques have
many desirable properties and advantages over these schemes. Table I shows that,
compared to our scheme, none of these data storage schemes provides all the required
properties.

Portions of the work presented in this article have previously appeared as an ex-
tended abstract [Wang et al. 2009]. This article revises that article a lot (in particular
the scheme description part and the security analysis section) and adds more techni-
cal details. In addition, we discuss and analyze a new spot-checking approach when it
is combined with our algebraic signature-based dynamic checking scheme. The spot-
checking scheme prevents the adversary from precomputing and storing all possible
signatures of the data shares. We also realize our design on the real sensor platforms.
The implementation results are presented in our performance analysis section, in-
cluding both a low-end sensor (e.g., Tmote Sky) and a high-end sensor (e.g., iMote2)
running at different frequencies.

8. CONCLUSION

In this article, we propose a secure and dependable data storage scheme with dynamic
integrity assurance in wireless sensor networks. We utilize perfect secret sharing and
erasure coding in the initial data storage process to guarantee data confidentiality
and dependability. To ensure the integrity of data shares, an efficient dynamic data
integrity checking scheme is constructed based on the principle of algebraic signatures
and a spot-checking method. In contrast to the existing approaches, more desirable
properties and advantages are achieved in our scheme. Furthermore, through detailed
performance and security analysis and experiments on real sensor platforms, we show
that the proposed scheme is highly secure and efficient, and thus can be implemented
in the current generation of sensor networks.

APPENDIX: PROOF OF PROPOSITION 5.2

PROOF. We first consider the simplest scenario where r = 1 and p = 1, that is, where
only one signature is calculated for each data share and only one parity is generated
for all the data shares. Without loss of generality, we denote the signature base by α
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and the secret for parity generation by β, respectively. The checking equations can be
rewritten as

sig(α)(P) ?= P(sig(α)(S1), sig(α)(S2), . . . , sig(α)(Sn))

=
n∑

i=1

β i−1sigα(Si).

As discussed above, a false-negative result is that the data has been modified but the
integrity test says it has not, that is, the parity of the n-symbol signature page does not
change. An analysis of the checking equation reveals two possible cases.

Case 1. The data has been modified, but the signature page (sig(α)(S1), . . . , sig(α)(Sn))
remains the same. Hence the parity of the page will not change. We denote the proba-
bility of this case by Pr1. According to Property II, the probability that Si (i ∈ {1, . . . , n})
is modified but sig(α)(Si) remains unchanged is 2−q. It is also reasonable to assume that
sigα(S1), . . . , sigα(Sn) are mutually independent. Let Ck

nc
(2−q)k denote the probability

that k shares are modified but the signature page remains the same. We have

Pr1 =
C1

nc
(2−q)1 + · · · + Cnc

nc
(2−q)nc

C1
nc

+ · · · + Cnc
nc

=
(1 + 2−q)nc − 1

2nc − 1
.

Case 2. The data has been modified, the signature page will change for sure, but
the parity of the page will remain the same. We denote the probability of this case by
Pr2. A page can be considered as a “data share” with n symbols; thus the parity of a
page is actually a signature based on the secret β. According to Proposition 5.1, the
probability that the n-symbol signature page is modified but the parity of the signature
page remains unchanged is 2−q; thus we have

Pr2 = (1 − Pr1)2−q.

The probability of a false-negative result with r = 1 and p = 1 is thus Pr = Pr1 + Pr2.
Now we analyze a more complex scenario where r > 1 and p = 1. Similarly, there

are two possible cases.

Case 1. The data has been modified, but all the r signature pages will remain
the same. To facilitate the analysis, we denote the r signature pages by a so-called
compound signature page (sig(α,r)(S1)T, sig(α,r)(S2)T, . . . , sig(α,r)(Sn)T), where sig(α,r)(Si)T=
(sigα1 (Si), . . . , sigαr (Si))T .

According to Property II, the probability that Si is modified but sig(α,r)(Si) remains
unchanged is 2−rq. Thus

Pr1 =
(1 + 2−rq)nc − 1

2nc − 1
.

Case 2. The data has been modified, the compound signature page
(sig(α,r)(S1)T, . . . ,sig(α,r)(Sn)T) will change for sure, but the parity of the page will re-
main the same. Similarly, Pr2 can be calculated as

Pr2 = (1 − Pr1)2−q.

Furthermore, we can explore the scenario where r = 1 and p > 1. When r = 1,
there is only one signature page; thus Pr1 = (1+2−q )nc −1

2nc −1 . According to Proposition 5.1,
if p different parities are used, the collision probability of a page is 2−pq. Therefore,
Pr2 = (1 − Pr1)(2−q)p.
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Base on the discussion above, it is easy to see that the probability of a false negative
result with r > 1 and p > 1 is

Pr = Pr1 + Pr2,

where Pr1 = (1+2−rq)nc −1
2nc −1 and Pr2 = (1 − Pr1)2−pq.
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