
32

Optimal Base Station Placement in Wireless
Sensor Networks

YI SHI and Y. THOMAS HOU

Virginia Polytechnic Institute and State University

Base station location has a significant impact on network lifetime performance for a sensor network.
For a multihop sensor network, this problem is particularly challenging due to its coupling with
data routing. This article presents an approximation algorithm that can guarantee (1 − ε)-optimal
network lifetime performance for base station placement problem with any desired error bound
ε > 0. The proposed (1 − ε)-optimal approximation algorithm is based on several novel techniques
that makes it possible to reduce an infinite search space to a finite-element search space for base
station location. The first technique used in this reduction is to discretize cost parameter (associated
with energy consumption) with performance guarantee. Subsequently, the continuous search space
can be broken up into a finite number of subareas. The second technique is to exploit the cost
property of each subarea and represent it by a novel notion called fictitious cost point, each with
guaranteed cost bounds. We give a proof that the proposed base station placement algorithm is
(1−ε)-optimal. This approximation algorithm is simpler and faster than a state-of-the-art algorithm
and represents the best known result to the base station placement problem.
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1. INTRODUCTION

An important performance metric for wireless sensor networks is the so-called
network lifetime, which is highly dependent upon the physical topology of the
network. This is because energy expenditure at a node to transmit data to
another node not only depends on the data bit rate, but also on the physical
distance between these two nodes. Consequently, it is important to understand
the impact of location related issues on network lifetime performance and to
optimize topology during network deployment stage.

This article considers the important base station placement problem for a
given sensor network such that network lifetime can be maximized. Specifically,
we consider the following problem. Given a sensor network with each node i
producing sensing data at a rate of ri, where should we place the base station in
this sensor network such that all the data can be forwarded to the base station
(via multihop and multipath if necessary) such that the network lifetime is
maximized?

In Section 6, we give a comprehensive review of related work on network
lifetime and node placement problems and contrast their differences with this
work. The most relevant work on this problem, done by Efrat et al. [2005],
represents the state-of-the-art result on this problem. As we shall show, the
computational complexity of this algorithm is higher than the one to be pre-
sented in this paper for most cases.

The main idea of our approximation algorithm is to exploit a clever way of
discretizing cost parameter associated with energy consumption into a geomet-
ric sequence with tight upper and lower bounds. As a result, we can divide a
continuous search space into a finite number of subareas. By further exploiting
the cost property of each subarea, we conceive a novel idea to represent each
subarea with a so-called fictitious cost point, which is an N -tuple cost vector
with each component representing the upper bound of cost to a sensor node
in the network. Based on these ideas, we can successfully reduce an infinite
search space for base station location into finite number of “points” upon which
we can apply a linear program (LP) to find the achievable network lifetime and
data routing solution. By comparing the achievable network lifetime among all
the fictitious cost points, we show that the largest is (1 − ε)-optimal. We also
show that placing the base station at any physical point in the subarea cor-
responding to the best fictitious cost point is (1 − ε)-optimal. We analyze the
complexity of our approximation algorithm and show that it is practically faster
than the algorithm proposed in Efrat et al. [2005] for most cases, which was
the best known result on this problem. As a result, the algorithm presented
in this paper represents the best known result to the base station placement
problem.
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The rest of this article is organized as follows. Section 2 presents the network
model used in this study and describes the base station placement problem.
Section 3 presents the main result of this article, which is a (1−ε)-approximation
algorithm for the base station placement problem. In Section 4, we present
some numerical results illustrating the efficacy of the proposed algorithm. In
Section 5, we extend our approximation algorithm to handle bounded trans-
mission power and multiple base stations. Section 6 reviews related work and
Section 7 concludes this article.

2. NETWORK MODEL AND PROBLEM DESCRIPTION

2.1 Network Model

We consider a static sensor network consisting of a set N of sensor nodes de-
ployed over a two-dimensional area. The location of each sensor node is fixed
and the initial energy on sensor node i is denoted as ei. Each sensor node i
generates data at a rate ri. For the time being, we assume there is one base
station that needs to be deployed in the area to collect sensing data. Extension
to multiple base station will be discussed in Section 5.

In this article, we focus on the energy consumption due to communications
(i.e., data transmission and reception). Suppose sensor node i transmits data
to sensor node j with a rate of fij b/s. Then we model the transmission power
at sensor node i as [Heinzelman 2000]

ut
ij = cij · fij. (1)

cij is the cost associated with link (i, j ) and can be modeled as

cij = β1 + β2 · dα
ij , (2)

where β1 and β2 are constant coefficients, dij is the physical distance between
sensor nodes i and j , α is the path loss index, and 2 ≤ α ≤ 4 [Heinzelman 2000].

The power consumption at the receiving sensor node i can be modeled
as [Heinzelman 2000]

ur
i = ρ ·

k �=i∑
k∈N

fki, (3)

where fki (also in b/s) is the incoming bit-rate received by sensor i from sensor
k and ρ is a constant coefficient.

In this article, we assume that the interference from simultaneous transmis-
sions can be effectively avoided by appropriate MAC layer scheduling. For low
bit rate and deterministic traffic pattern considered in this article, a contention-
free MAC protocol is fairly easy to design (see, e.g., Sohrabi et al. [2000]) and its
discussion is beyond the scope of this article. Table I lists all notation used in this
article.

2.2 Problem Description

The focus of this article is to investigate how to optimally place a base station to
collect data in a sensor network so that the network lifetime can be maximized.
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Table I. Notation

Symbol Definition
A The search space for the base station, which can be the smallest enclosing disk

to cover all sensor nodes
Am The m-th subarea in the search space
B The base station

cij (or ciB(p)) Power consumption coefficient for transmitting data from sensor i to sensor j
(or base station B at point p)

Cmin
iB , Cmax

iB Lower and upper bounds of ciB(p)
C[h] The transmission cost for the h-th circle

dij (or diB) Distance between sensor i and sensor j (or base station B)
ei Initial energy at sensor i

fij (or fiB) Data rate from sensor i to sensor j (or base station B)
Hi Total number of circles for discretization at sensor node i required for a given ε

K Total number of circles for discretization under a given ε

M Total number of subareas for discretization under a given ε

N Set of sensor nodes in the network
N Number of sensor nodes in the network, N = ‖N‖
OA The center of the smallest enclosing disk A
pm Fictitious cost point representation for the m-th subarea

popt The best base station location
p∗ The best location among M fictitious cost points
pε A point in the subarea corresponding to p∗
ri Sensing data rate produced at sensor i
RA The radius of the smallest enclosing disk A
Tm Maximum achievable network lifetime by placing the base station at pm

Topt Optimal network lifetime achieved by placing the base station at popt
T ∗ = max{Tm : m = 1, 2, . . . , M }
Tε (1 − ε)-optimal network lifetime achieved by pε

ut
ij Transmission power at sensor node i to sensor node i

ur
i Power consumption at the receiving sensor node i

Vij (or ViB) Total data volume from sensor i to sensor j (or base station B)
α Path loss index

β1, β2 Constant terms in transmission power modeling
ε Desired approximation error, ε > 0
ρ Power consumption coefficient for receiving data

ψopt The best routing solution when the base station is at popt
ψ∗ Routing solution when the base station is at p∗
ψε Routing solution when the base station is at pε

The network lifetime is defined as the time until any sensor node uses up its
energy. To achieve optimality, the data generated by each sensor node is allowed
to be routed to the base station via multihop or multipath. Also, power control
at a node is allowed, as modeled in (1) and (2).

Assume that base station B is located at a point p. Denote (xB, yB) the posi-
tion of point p and T the network lifetime. A feasible routing solution achieving
this network lifetime T should satisfy both flow balance and energy constraints
at each sensor node. These constraints can be formally stated as follows. De-
note fij and f iB the data rates from sensor node i to sensor node j and base
station B, respectively (since we allow multi-path). Then the flow balance for
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each sensor node i is
k �=i∑
k∈N

fki + ri =
j �=i∑
j∈N

fij + f iB,

that is, the sum of total incoming flow rates plus self-generated data rate is
equal to the sum of total outgoing flow rates. The energy constraint for each
sensor node i is

k �=i∑
k∈N

ρ · fkiT +
j �=i∑
j∈N

cij · fijT + ciB(p) · f iBT ≤ ei,

that is, total consumed energy due to receiving and transmission over time T
cannot exceed its initial energy ei. By (2), we have

ciB(p) = β1 + β2

[√
(xB − xi)2 + ( yB − yi)2

]α

,

which is a nonlinear function of base station location (xB, yB).
Our objective is maximizing the network lifetime T under the flow balance

and energy constraints, that is,

Max T

s.t.
∑ j �=i

j∈N fij + f iB − ∑k �=i
k∈N fki = ri (i ∈ N ) (4)∑k �=i

k∈N ρ fkiT + ∑ j �=i
j∈N cij f ijT + ciB(p) f iBT ≤ ei (i ∈ N ) (5)

ciB(p) − β2

[√
(xB − xi)2 + ( yB − yi)2

]α

= β1 (i ∈ N )

(xB, yB) ∈ A, T, fij, f iB ≥ 0 (i, j ∈ N , i �= j ),

where A is an area of possible base station locations and will be determined by
Lemma 3.1. This optimization problem is in the form of non-linear program,
which is NP-hard in general [Garey and Johnson 1979].

3. ALGORITHM DESIGN

In this article, we aim to develop an approximation algorithm to solve the base
station placement problem. In particular, the algorithm that we will develop is
(1 − ε)-optimal, meaning that for any small ε > 0, the solution is guaranteed to
be within (1 − ε) from the optimal, which is unknown (due to the NP-hardness
of the problem).

We first give a roadmap for the design of this approximation algorithm, which
also corresponds to the structure of this section. First, in Section 3.1, we show
that for a given base station location, the maximum achievable network lifetime
and the corresponding optimal routing can be found via a single linear program
(LP). So the problem becomes how to search the best base station location. In-
stead of searching the entire two-dimensional plane, in Section 3.2, we narrow
down the search space to the so-called smallest enclosing disk (SED), which
is the smallest circular area that covers all the sensor nodes in the network.
Although the SED contains a smaller area, there are still infinite number of
points in this SED. In Section 3.3, we divide the continuous search space of
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SED into a finite number of subareas. This is made possible by a novel idea
of discretizing cost parameter associated with energy consumption with tight
upper and lower bounds. By further exploiting the cost property of each sub-
area, we employ another novel idea of representing each subarea by a so-called
fictitious cost point, which is an N -tuple cost vector with each component rep-
resenting the upper bound of cost to a sensor node in the network. Based on
these ideas, we are able to successfully reduce an infinite search space for base
station location into finite “points” upon which we can apply a LP to find the
corresponding achievable network lifetime and data routing solution for each of
these points. By comparing the achievable network lifetime among all the ficti-
tious cost points, we find the fictitious cost point corresponding to the maximum
network lifetime. We show that by placing the base station at any point in the
subarea corresponding to the best fictitious cost point will give a (1−ε)-optimal
network lifetime. In Section 3.4, we summarize all the steps as an algorithm
and give an example for illustration. In Section 3.5, we prove the correctness
of the algorithm and analyze its complexity.

3.1 Optimal Routing for a Given Base Station Location

As discussed earlier, the maximum network lifetime depends on both base sta-
tion location and data routing. To start with, we show that for a given base
station location, we can find the maximum achievable network lifetime and
optimal routing via a single LP as follows.

The objective function is network lifetime T and the constraints are given in
(4) and (5). Multiply both sides of (4) by T and denote

Vij = fijT and ViB = f iBT, (6)

where Vij (or ViB) can be interpreted as the total data volume from sensor node
i to sensor node j (or base station B) over time T . We have

Max T

s.t.
∑k �=i

k∈N Vki + riT − ∑ j �=i
j∈N Vij − ViB = 0 (i ∈ N )∑k �=i

k∈N ρVki + ∑ j �=i
j∈N cijVij + ciB(p)ViB ≤ ei (i ∈ N )

T, Vij, ViB ≥ 0 (i, j ∈ N , i �= j )

Note that for a given base station location, ciB(p)’s are constants. Therefore, this
formulation is in the form of a LP. Once we solve the LP, we can obtain optimal

routing solution for fij and f iB by fij = Vij
T and f iB = ViB

T .

3.2 Search Space

Although for a given base station location, we can find the corresponding max-
imum achievable network lifetime via a single LP, it is not possible to examine
all points (infinite) in the two-dimensional plane and select the point with the
maximum network lifetime.
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R

Fig. 1. A schematic diagram showing that optimal base station location must be within SED.

As a first step, we show that it is only necessary to consider points inside the
so-called smallest enclosing disk (SED) [Welzl 1991],1 which is a unique disk
with the smallest radius that contains all the N sensor nodes in the network
and can be found in O(N ) time [Megiddo 1983]. This is formally stated in the
following lemma.

LEMMA 3.1. To maximize network lifetime, the base station location must be
within the smallest enclosing disk A that covers all the N sensor nodes in the
network.

PROOF. The proof is based on contradiction. That is, if the base station loca-
tion is not in SED, then its corresponding network lifetime cannot be maximum.

Assume that the optimal base station location is at point p, which is outside
SED A (see Figure 1). Denote OA the center of SED. Let q be the intersecting
point between the line segment [p, OA] and the circle of SED. Then for any
sensor node i (all in A), we have diq < dip. Consequently, ciq < cip. As a result,
we can save transmission energy on every sensor node i ∈ N by relocating p to
q. This saving in energy at each node increases network lifetime. This shows
that point p cannot be the optimal location to maximize network lifetime. This
completes the proof.

Now we have narrowed down the search space for base station B from a
two-dimensional plane to SED A. However, the number of points in A remains
infinite. It is tempting to divideA into small subareas (e.g., a gridlike structure),
A1, A2, . . . , up to say AM , that is,

A =
M⋃

m=1

Am.

When each subarea is sufficiently small (i.e., M is sufficiently large), we can
use some point qm ∈ Am to represent Am, m = 1, 2, . . . , M . By applying an

1In fact, we can consider points in an even smaller area, that is, the convex hull of all sensor nodes.
However, using convex hull cannot reduce the order of complexity of our algorithm. On the other
hand, the use of SED can simplify the discussion.
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OA
RA

4
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3
D[1] D[2] D[3]

Fig. 2. A sequence of circles with increasing costs with center at node 4.

LP on each of the M points, we can select the best location among all points
and obtain a good solution for base station placement. However, such ap-
proach is heuristic at best and does not provide any theoretical guarantee on
performance.

The key to provide a theoretical guarantee on performance is to divide the
subarea in such a way that tight bounds can be guaranteed on any point in
the subarea. If this is possible, then we may be able to exploit such property
and develop an approximation algorithm that yields provably (1 − ε)-optimal
network lifetime performance. The goal of this paper is to develop such an
algorithm with performance guarantee instead of a heuristic algorithm. In the
following section, we show a novel technique to divide SED A into subareas
where each subarea can be represented by a point with a set of tight bounds.
Consequently, we show how a (1 − ε)-optimal approximation algorithm can be
developed.

3.3 Subarea Division and Fictitious Cost Points

3.3.1 Subarea Division. The proposed subarea division (with guaranteed
performance bounds) hinges upon a novel discretization of cost parameter. A
close look at the energy constraint in (5) suggests that the location of the base
station is embedded in the cost parameter ciB(p)’s. In other words, if we can
discretize these cost parameters, we may also discretize the location for the
base station.

Since the search space is narrowed down to the SED A, we can limit the
range for the distance between a sensor node i to the possible location for the
base station. Denote OA and RA the origin and radius of the SED A. For each
sensor node i ∈ N , denote Di,OA the distance from sensor node i to the origin
of disk A (see node 4 in Figure 2 as an example). Denote Dmin

iB and Dmax
iB the

minimum and maximum distances between sensor node i and possible location
for the base station B, respectively. Then we have

Dmin
iB = 0,

Dmax
iB = Di,OA + RA.

Corresponding to Dmin
iB and Dmax

iB , denote Cmin
iB and Cmax

iB the minimum and max-
imum cost between sensor node i and base station B, respectively. Then by (2),
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we have

Cmin
iB = β1, (7)

Cmax
iB = β1 + β2(Dmax

iB )α = β1 + β2(Di,OA + RA)α. (8)

Given the range of diB ∈ [Dmin
iB , Dmax

iB ] = [0, Di,OA + RA] for each sensor
node i, we now show how to divide disk A into a finite number of subareas
with the distance of each subarea to sensor node i meeting some tight bounds.
Specifically, from a sensor node i, we draw a sequence of circles centered at this
sensor node, each with increasing radius D[1], D[2], . . . , D[Hi] corresponding to
costs C[1], C[2], . . . , C[Hi] that are defined as the following geometric sequence.

C[h] = Cmin
iB (1 + ε)h = β1(1 + ε)h (1 ≤ h ≤ Hi). (9)

This geometric sequence C[h] (with a factor of (1 + ε)) is carefully chosen and
will offer tight performance bounds for any point in a subarea (more on this
later). The number of required circles Hi can be determined by having the last
circle in the sequence (with radius D[Hi]) to completely contain disk A, i.e.
D[Hi] ≥ Dmax

iB , or equivalently,

C[Hi] ≥ Cmax
iB .

Thus, we can determine Hi as follows.

Hi =
⌈

ln
(
Cmax

iB /Cmin
iB

)
ln(1 + ε)

⌉
=

⎡
⎢⎢⎢

ln
(
1 + β2

β1
(Di,OA + RA)α

)
ln(1 + ε)

⎤
⎥⎥⎥ . (10)

For example, for node 4 in Figure 2, we have H4 = 3, that is, D[3] is the
circle centered at node 4 that will completely contain the disk. As a result,
with sensor node i as center, we have a total of Hi circles, each with cost C[h],
h = 1, 2, . . . , Hi.

This partitioning of SEDA is with respect to a specific node i. We now perform
the above process for all sensor nodes. These intersecting circles will cut disk A
into a finite number of irregular subareas, with the boundaries of each subarea
being either an arc (with a center at some sensor node i and some cost C[h],
1 ≤ h < Hi) or an arc from SED A. As an example, the SED A in Figure 3 is
now divided into 28 subareas.

Now we claim that under this subarea partitioning technique, for any point
in a given subarea, its cost to each sensor node in the network can be tightly
bounded quantitatively. This is because with respect to each sensor node i, a
subarea Am must be enclosed within some arc centered at sensor node i. Denote
the index of this arc (w.r.t. sensor node i) as hi(Am). So when the base station
B is at any point p ∈ Am, we have

C[hi(Am) − 1] ≤ ciB(p) ≤ C[hi(Am)], (11)

where we define C[0] = Cmin
iB = β1. Since C[hi (Am)]

C[hi (Am)−1] = 1 + ε by (9), we have a
very tight upper and lower bounds for ciB(p). The reader can now have a better
appreciation of the benefit of the proposed discretization for cost and distance.
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q3q1
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2

3

q2

Fig. 3. An example of subareas within disk A that are obtained by intersecting arcs from different
circles.

3.3.2 Fictitious Cost Point. We now introduce a novel concept called ficti-
tious cost point. It will be used to represent upper bound of cost for any point
in a subarea Am, m = 1, 2, . . . , M .

Definition 3.2. Denote the fictitious cost point for subarea Am (m =
1, 2, . . . , M ) as pm, which is represented by an N -tuple vector with its i-th
element (i = 1, 2, . . . , N ) being upper bound of cost for any point in subarea Am

to the i-th sensor node in the network.

That is, the N -tuple cost vector for fictitious cost point pm is [c1B(pm),
c2B(pm), . . ., cN B(pm)], with the i-th element ciB(pm) being

ciB(pm) = C[hi(Am)], (12)

where hi(Am) is determined by (11).
As an example, the fictitious cost point for subarea with corner points

(q1, q2, q3) in Figure 3 can be represented by 4-tuple cost vector [c1B(pm), c2B(pm),
c3B(pm), c4B(pm)] = [C[2], C[3], C[2], C[3]], where the first component C[2] rep-
resents an upper bound of cost for any point in this subarea to sensor node 1,
the second component C[3] represents an upper bound of cost (which is loose
here) for any point in this subarea to sensor node 2, and so forth.

We emphasize that the reason we use the word “fictitious” is that a fictitious
cost point pm may not be mapped to a physical point within the corresponding
subarea Am. This happens when there does not exist a physical point in subarea
Am that has its costs to all the N sensor nodes equal (one by one) to the respec-
tive N -tuple cost vector embodied by pm simultaneously. As an example, any
point within the dark subarea bounded by corner points q1, q2, and q3 cannot
have its costs to the four sensor nodes in the network equal to the respective
element in [C[2], C[3], C[2], C[3]] simultaneously, where [C[2], C[3], C[2], C[3]]
is the cost vector of the fictitious cost point for this subarea.

Using fictitious cost points to represent subareas (and thus dividing SED
into a finite search space) is a key step in designing our low complexity
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Table II. Sensor Locations, Data Rate, and Initial Energy
of the Example Sensor Network

Node Index Location Data Rate Initial Energy
1 (0.1, 0.5) 0.8 390
2 (1.1, 0.7) 1.0 400
3 (0.4, 0.1) 0.5 130

approximation algorithm. This approach overcomes the limitation in Efrat et al.
[2005], where the authors used a physical points to construct a finite search
space. Under that approach, the authors were not able to discretize cost directly.
Instead, they considered how to discretize transmission energy, flow rate, and
network lifetime such that cost can be discretized. The number of discretized
costs is the product of the numbers of discretized transmission energies, flow
rates, and network lifetimes. We will show that the complexity associated with
that approach in Efrat et al. [2005] is higher than ours for most cases.

The following important property for fictitious cost point pm will be used in
the proof of (1 − ε)-optimal of the approximation algorithm.

PROPERTY 1. For any point p ∈ Am and the corresponding fictitious cost
point pm, we have

ciB(pm) ≤ (1 + ε)ciB(p).

PROOF. By (11) and definition of fictitious cost point pm (see (12)), we have

ciB(pm) = C[hi(Am)] = (1 + ε) · C[hi(Am) − 1] ≤ (1 + ε) · ciB(p),

where the inequality follows from (11). This completes the proof.

3.4 Summary of Algorithm and Example

By discretizing the cost parameters and the corresponding distances, we have
partitioned the search space (SED A) into a finite number of M subareas. By
introducing the concept of fictitious cost points (FCPs), we can represent each
subarea with a point. As a result, we can now readily apply the LP approach
discussed in Section 3.1 to examine each FCP and choose the FCP that offers the
maximum network lifetime. The complete approximation algorithm is outlined
in Algorithm 1. The correctness proof of (1−ε)-optimality is given in Section 3.5.

Example 1. We use a small 3-node network to illustrate the steps of the
approximation algorithm. The location, data rate, and initial energy for each
sensor are shown in Table II, where the units of distance, rate, and energy are
all normalized. Also, we set α = 2, β1 = 1, β2 = 0.5, and ρ = 1 under the
normalized units. For illustration, we set the error bound to ε = 0.2.2

(1) We identify SED A with origin OA = (0.61, 0.57) and radius RA = 0.51
(see Figure 4).

2This ε is used here to simplify the illustration of each step. In our numerical results in Section 4,
we use ε = 0.05 for all computations.
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Algorithm 1. (A (1 − ε)-Approximation Algorithm)

(1) Find the smallest enclosing disk A that covers all the N nodes.
(2) Within A, compute the lower and upper cost bounds Cmin

iB and Cmax
iB for each node

i ∈ N by (7) and (8).
(3) For a given ε > 0, define a sequence of costs C[1], C[2], . . . , C[Hi] by (9), where Hi is

calculated by (10).
(4) At each node i, draw a sequence of Hi − 1 circles centered at node i with increasing

radius corresponding to cost C[h], h = 1, 2, . . . , Hi − 1. The intersection of these
circles within disk A will divide A into M subareas A1, A2, . . . , AM .

(5) For each subarea Am, 1 ≤ m ≤ M , define a FCP pm by an N -tuple cost vector
[c1B(pm), c2B(pm), . . ., cN B(pm)], where ciB(pm) is defined in (12).

(6) For each FCP pm, 1 ≤ m ≤ M , apply the LP in Section 3.1 and obtain the achievable
network lifetime Tm.

(7) Choose the FCP p∗ that offers the maximum network lifetime among these M FCPs.
The base station can be placed at any point pε within the subarea corresponding to
p∗.

(8) For the chosen point pε, apply the LP in Section 3.1 and obtain (1 − ε) optimal
network lifetime Tε.

(2) We first have Di,OA = RA = 0.51 for each node i, 1 ≤ i ≤ 3. We then find
the lower and upper bounds of ciB for each node i, 1 ≤ i ≤ 3, as follows.

Cmin
iB = β1 = 1,

Cmax
iB = β1 + β2(Di,OA + RA)α = 1 + 0.5 · (0.51 + 0.51)2 = 1.52.

(3) For each node i, 1 ≤ i ≤ 3, we find

Hi =
⎡
⎢⎢⎢

ln
(
1 + β2

β1
(Di,OA + RA)α

)
ln(1 + ε)

⎤
⎥⎥⎥ =

⎡
⎢⎢⎢

ln
(
1 + 0.5

1 (0.51 + 0.51)2
)

ln(1 + 0.2)

⎤
⎥⎥⎥ = 3,

and

C[1] = β1(1 + ε) = 1 · (1 + 0.2) = 1.20,

C[2] = β1(1 + ε)2 = 1 · (1 + 0.2)2 = 1.44,

C[3] = β1(1 + ε)3 = 1 · (1 + 0.2)3 = 1.73.

(4) We draw circles centered at each node i, 1 ≤ i ≤ 3, and with cost C[h],
1 ≤ h < Hi = 3, to divide the whole disk A into 16 subareas A1, A2, . . . , A16.

(5) We define a FCP pm for each subarea Am, 1 ≤ m ≤ 16. For exam-
ple, for FCP p1, we define a 3-tuple cost vector as [c1B(p1), c2B(p1), c3B(p1)] =
[C[1], C[3], C[2]] = [1.20, 1.73, 1.44].

(6) We apply LP in Section 3.1 on these 16 FCPs and obtain the achievable
network lifetime for each FCP.

(7) Since the FCP p∗ = p9 has the maximum achievable network lifetime
226.47 among all 16 FCPs, we can place the base station at any point in subarea
A9, e.g., pε = (0.6, 0.6).

(8) We apply LP in Section 3.1 on pε and obtain a (1 − ε)-optimal network
lifetime Tε = 227.07. This completes the algorithm.
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Fig. 4. The SED is divided into 16 subareas for the 3-node example.

3.5 Correctness Proof and Complexity Analysis

In this section, we give a formal proof that the solution obtained by Algorithm 1
is (1 − ε)-optimal and analyze its complexity.

Denote as popt the optimal location for base station placement (unknown) and
Topt and ψopt the corresponding maximum network lifetime and data routing
solution, all of which are unknown.

Denote as p∗ the best FCP among the M FCPs pm, m = 1, 2, . . . , M ,
based on their achievable network lifetime performance. Denote T ∗ and ψ∗

the corresponding maximum network lifetime and data routing solution, i.e.,
T ∗ = max{Tm : m = 1, 2, . . . , M }.

Based on (7) in Algorithm 1, we choose a physical point pε in the subarea cor-
responding to p∗ for base station placement. For point pε, denote the maximum
achievable network lifetime as Tε and corresponding routing solution as ψε.

Our roadmap for the proof is as follows. In Theorem 3.3, we prove that T ∗

for the best FCP p∗ is within (1 − ε) of the optimum, that is, T ∗ ≥ (1 − ε)Topt.
Then, in Theorem 3.5, we show that for the physical point pε, its corresponding
network lifetime Tε is also (1 − ε) of the optimum, that is, Tε ≥ (1 − ε)Topt.
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THEOREM 3.3. For T ∗ and Topt as defined, we have T ∗ ≥ (1 − ε)Topt.

To prove Theorem 3.3, we first present the following lemma, which is a gen-
eral case for the theorem.

LEMMA 3.4. For any given base station location p and corresponding optimal
routing solution ϕ and achievable network lifetime T (obtained via LP), denote
Am the subarea that contains p for a given ε. Then for the corresponding FCP
pm, its achievable network lifetime Tm is at least (1−ε) of T, i.e., Tm ≥ (1−ε) ·T.

PROOF. Instead of considering the optimal routing solution for FCP pm, we
use the same routing ϕ on pm, which is clearly suboptimal. That is, denoting
T̂ m the network lifetime for FCP pm under ϕ, we have Tm ≥ T̂ m. Then we only
need to show T̂ m ≥ (1 − ε) · T .

To show T̂ m ≥ (1 − ε) · T , we compute the total consumed energy on node
i ∈ N under ϕ for FCP pm and at time (1 − ε) · T , which is

k �=i∑
k∈N

ρ fki · (1 − ε)T +
j �=i∑
j∈N

cij f ij · (1 − ε)T + ciB(pm) f iB · (1 − ε)T

<

k �=i∑
k∈N

ρ fkiT +
j �=i∑
j∈N

cij f ijT + (1 + ε)ciB(p) f iB · (1 − ε)T

<

k �=i∑
k∈N

ρ fkiT +
j �=i∑
j∈N

cij f ijT + ciB(p) f iBT ≤ ei.

The first inequality holds via Property 1. The last inequality holds by the energy
constraint in routing solution ϕ for point p. Thus, the network lifetime T̂ m for
FCP pm under routing solution ϕ is at least (1 − ε) · T . As a result, we have
Tm ≥ T̂ m ≥ (1 − ε) · T . This completes the proof.

With Lemma 3.4, we are ready to prove Theorem 3.3.

PROOF OF THEOREM 3.3. Consider the special case of Lemma 3.4 that the given
base station location p is the optimal location popt, with corresponding optimal
data routing solution ϕopt, and maximum network lifetime Topt. Following the
same token in Lemma 3.4, we can find a corresponding subarea Am that con-
tains point popt with corresponding FCP pm. As a result, for FCP pm, we have
Tm ≥ (1 − ε)Topt. Thus, for the best FCP p∗ among all the FCPs, we have
T ∗ ≥ Tm ≥ (1 − ε)Topt. This completes the proof.

Theorem 3.3 guarantees that the best network lifetime among the M FCPs
is at least (1 − ε) of Topt. Now consider a point pε in the subarea represented by
the best FCP p∗. We have the following theorem.

THEOREM 3.5. For Tε and Topt as defined, we have Tε ≥ (1 − ε)Topt.

PROOF. Denote as T̂ ε the network lifetime for point pε under the same
routing solution ψ∗ for FCP p∗. Since ψ∗ is a suboptimal routing for pε,
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we have Tε ≥ T̂ ε. Thus, to show Tε ≥ (1 − ε)Topt, we only need to show
T̂ ε ≥ T ∗ ≥ (1 − ε)Topt, where the second inequality follows from Theorem 3.3.

To analyze whether T̂ ε ≥ T ∗, we compute the total consumed energy on node
i ∈ N under ψ∗ for point pε and at time T ∗, which is

k �=i∑
k∈N

ρ fkiT ∗ +
j �=i∑
j∈N

cij f ijT ∗ + ciB(pε) f iBT ∗

≤
k �=i∑
k∈N

ρ fkiT ∗ +
j �=i∑
j∈N

cij f ijT ∗ + ciB(p∗) f iBT ∗ ≤ ei.

The first inequality holds by (11) and (12). The second inequality holds by the
energy constraint on p∗ under routing solution ψ∗. Thus, the network lifetime
T̂ ε for location pε under ψ∗ is at least T ∗. As a result, the maximum network
lifetime Tε for location pε is at least T̂ ε ≥ T ∗ ≥ (1 − ε) · Topt. This completes the
proof.

The complexity of Algorithm 1 can be measured by the number of LPs that
need to be solved, which is equal to the total number of subareas M . So let us
calculate M .

The boundaries of each subarea is either an arc centered at some sensor node
i (with some cost C[h], 1 ≤ h < Hi, with Hi being defined in (10)), or an arc
of disk A. Since there are Hi − 1 circles radiating from each sensor node i and
one circle for disk A, the total number of circles is K = 1 + ∑

i∈N (Hi − 1). The
maximum number of subareas M that can be obtained by K circles is upper
bounded by [de Berg et al. 1998]

M ≤ K 2 − K + 2. (13)

We have

M = O(K 2) = O

⎛
⎝(∑

i∈N
Hi

)2
⎞
⎠ = O((N/ε)2).

As for comparison, the complexity of the approximation algorithm proposed
in Efrat et al. [2005] is given in Section 4.1. Numerical comparison on complex-
ity for some network topologies are also given there.

4. NUMERICAL RESULTS

In this section, we apply the approximation algorithm on various network
topologies and use numerical results to demonstrate its efficacy. The units of
distance, rate, and energy are all normalized appropriately. The normalized
parameters in energy consumption model are β1 = β2 = ρ = 1 and we set path
loss index α = 2.

We consider four randomly generated networks consisting of 10, 20, 50, and
100 nodes deployed over a 1×1 square area. In all cases, the targeted accuracy
for approximation algorithm is 0.95-optimal, that is, ε = 0.05.

The network setting (location, data rate, and initial energy for each node)
for the 10-node network is given in Table III. By applying Algorithm 1, we

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 32, Publication date: November 2009.



32:16 • Y. Shi and Y. T. Hou

Table III. Each Node’s Cartesian Coordinates, Data
Generation Rate and Initial Energy for a 10-Node Network

Node Index Location Data Rate Initial Energy
1 (0.81, 0.86) 0.7 390
2 (0.25, 0.71) 0.4 400
3 (0.47, 0.44) 1.0 440
4 (0.28, 0.03) 0.6 330
5 (0.25, 0.36) 0.2 440
6 (0.48, 0.22) 0.1 300
7 (0.53, 0.16) 0.8 410
8 (0.66, 0.52) 0.2 210
9 (0.91, 0.86) 0.1 320

10 (0.44, 0.21) 0.9 330
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Fig. 5. A schematic showing the routing solution for the 10-node network with base station being
placed at (0.59, 0.31).

find that FCP with cost vector [1.05, 1.28, 1.05, 1.22, 1.16, 1.05, 1.05, 1.05, 1.41,
1.05] has the maximum network lifetime T ∗ = 357.49, which is at least 95%
of the optimum. By placing the base station at a point in the corresponding
subarea, e.g., at point (0.59, 0.31), the network lifetime is Tε = 359.17 > T ∗.
This network lifetime is also at least 95% of the optimum. The flow routing
solution is shown in Figure 5, where a circle represents a sensor node and a
star represents the location of the base station (0.59, 0.31).

The network setting for a 20-node network (with location, data rate, and
initial energy for each of the 20 sensor nodes) is given in Table IV. By applying
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Table IV. Each Node’s Cartesian Coordinates, Data
Generation Rate, and Initial Energy for a 20-Node Network

Node Index Location Data Rate Initial Energy
1 (0.98, 0.49) 0.4 180
2 (0.44, 0.67) 0.8 320
3 (0.57, 0.52) 0.1 340
4 (0.13, 0.19) 0.6 430
5 (0.74, 0.73) 0.1 350
6 (0.24, 0.19) 0.7 310
7 (0.49, 0.38) 0.9 410
8 (0.63, 0.33) 0.7 500
9 (0.76, 0.63) 0.6 270

10 (0.92, 0.33) 0.5 180
11 (0.09, 0.84) 0.7 60
12 (0.65, 0.62) 0.1 100
13 (0.92, 0.05) 0.1 310
14 (1.00, 0.33) 0.6 280
15 (0.63, 1.00) 0.2 210
16 (0.11, 0.36) 0.3 70
17 (0.89, 0.12) 0.7 420
18 (0.52, 0.86) 0.3 270
19 (0.24, 0.91) 0.9 160
20 (0.40, 0.67) 1.0 180

Algorithm 1, we find that FCP with a cost vector [1.55, 1.05, 1.16, 1.05, 1.41,
1.22, 1.41, 1.22,1.41, 1.28, 1.63, 1.05, 1.16, 1.98, 1.71, 1.16, 1.28, 1.80, 1.05, 1.05]
has the maximum network lifetime T ∗ = 82.86 among all FCPs. Subsequently,
we place the base station at a point in the corresponding subarea, say at point
(0.31, 0.79). The corresponding network lifetime is Tε = 82.91 > T ∗, which
is also at least 95% of the optimum. The flow routing solution is shown in
Figure 6.

For the 50-node and 100-node networks, the positions of the nodes and lo-
cation for the base station are shown in Figure 7 and Figure 8, respectively.
We omit to list the coordinates of each node for both networks due to paper
length limitation. The data rate and initial energy for each node are randomly
generated between [0.1, 1] and [50, 500], respectively. For the 50-node network,
we obtain a (1 − ε)-optimal solution with Tε = 135.17 when the base station is
placed at (0.51, 0.68); for the 100-node network, the (1 − ε)-optimal solution is
Tε = 61.73 when the base station is placed at (0.57, 0.52).

4.1 Complexity Comparison

We now compare the complexity of our algorithm (Section 3.4) with the approx-
imation algorithm proposed in Efrat et al. [2005]. Similarly, the complexity of
the approximation algorithm in Efrat et al. [2005] can also be measured by the
number of LPs that need to be solved, which is

⌊
4
ε

⌋ ⌈
α ln 2

ln(1 + ε/8)

⌉ ⌈
8απ

ε

⌉
·
∑
i∈N

⌈
ln(8N 3 ∑

j∈N r j /(εri))

ln(1 + ε/8)

⌉
. (14)
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Fig. 6. A schematic showing the routing solution for the 20-node network with base station being
placed at (0.31, 0.79).
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Fig. 7. A 50-node network.
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Fig. 8. A 100-node network.

To have a sense of quantitative comparison of complexity between our algorithm
and the one in Efrat et al. [2005], we use (13) and (14) on the 10, 20, 50, and
100-node network considered in this section. Corresponding to each network
topology, we find that the complexity of the approximation algorithm in Efrat
et al. [2005] is 3.7 × 107, 1.5 × 107, 5.2 × 106, and 3.2 × 106 times of the
complexity of our proposed approximation algorithm.

5. EXTENSIONS

In this section, we make two extensions for our approximation algorithm in
Section 3. In the first extension, we consider the case where the transmit power
at each sensor node is upper bounded, that is, there exists a limit on power level
at a sensor node. In the second extension, we consider the case for multiple base
stations.

5.1 Bounded Transmission Power

The approximation algorithm developed in Section 3 assumes there is no bound
on the transmit power. For the case when there is a bound on transmission
power, we show that our approximation algorithm can be extended without
much difficulty.

Denote as U the maximum transmission power on each sensor node, that is,
each sensor node can exercise power control between [0, U ]. Given the maxi-
mum transmit power U , the maximum transmission range of a sensor node is
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Fig. 9. A sequence of circles with increasing costs with center at node i.

limited. This maximum transmission range, denoted as DU , can be computed
from (1) and (2).

Figure 9 illustrates the impact of this maximum transmission range DU

on the discretization process. Now for a sensor node i, in addition to circles
with radius D[1], D[2], . . . , D[Hi], we have one more circle with radius DU .
That is, we now have (Hi + 1) circles centered around sensor node i, with ra-
dius D[1], D[2], . . . , D[h], DU , D[h + 1], . . . , D[Hi]. These circles from all the
N sensor nodes will divide the SED into subareas. The definition for FCP
remains the same under Definition 3.2. Now, with the newly defined upper
bound cost sequence C[1], C[2], . . . , C[h], CU , C[h + 1], . . . , C[Hi], where CU is
the transmission cost corresponding to DU , it can be shown that Property 1 still
holds.

Further, to account for the maximum transmission range, (6) and (8) in
Algorithm 1 need to be slightly updated as follows.

(6) For a transmitting node i, if node j is outside node i’s maximum transmis-
sion range DU , then the traffic flow fij cannot exist. Thus, we set fij = 0 for
such node j . Correspondingly, in the LP formulation, Vij is also set to 0 since
Vij = fijT . Since Vij = 0 for such node j that is out of transmission range,
we can remove the corresponding terms from the flow balance constraints
and energy constraints.

(8) When base station is at a FCP pm or at a point pε, the base station may
be outside the maximum transmission range of node i. In this case, the
corresponding traffic flow f iB cannot exist. Thus, we set f iB and ViB = 0.
Therefore, we can remove the corresponding terms from the flow balance
constraints and energy constraints.

After we perform this operation with respect to each sensor node, the updated
LP formulation will give an optimal solution under bounded transmission power
for the given base station location.

We now show that the (1− ε) optimality is still maintained. Since Property 1
holds, it can be shown, rather straightforward, that both Theorem 3.3 and
Theorem 3.5 also hold. As a result, the final solution obtained in the last step
of Algorithm 1 is (1 − ε)-optimal.
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Regarding the impact of our extension (for bounded transmission power) on
the algorithm’s complexity, we now show that the complexity order remains
the same. To see this, recall that the number of circles for each sensor node is
increased by one. As a result, the total number of circles is increased from K
to K + N . By (13), the number of subareas is at most (K + N )2 − (K + N ) + 2.
Since K = O( N

ε
) and N

ε
	 N , the total number of subareas is still O(K 2).

It is worth pointing out that bounded transmission power will reduce network
lifetime. This is because such bound adds more constraints on flow routing,
thus reduces its solution space. As a result, the achievable network lifetime is
reduced.

5.2 Multiple Base Stations

So far, the approximation algorithm we developed is for single base station. We
now show how this algorithm can be extended for multiple base stations.

Denote as L the number of base stations to be placed in the sensor network.
The roadmap for multiple base station follows a similar approach taken as for
single base station. First, we show that given a set of L base station locations,
the optimal routing solution can be solved by an LP. Then, we narrow down the
search space for each base station location into a finite search space with per-
formance guarantee. Finally, the optimal base station locations can be obtained
by finding the best L locations corresponding to the maximum achievable net-
work lifetime among all possible set of locations. In this rest of this section, we
briefly elaborate the above steps.

First, similar to Section 3.1, for a set of L given base station locations, we
can find the corresponding maximum achievable network lifetime and optimal
routing via a single LP as follows.

Max T

s.t.
∑k �=i

k∈N Vki + riT − ∑ j �=i
j∈N Vij − ∑L

l=1 Vi,B(l ) = 0 (i ∈ N )∑k �=i
k∈N ρVki + ∑ j �=i

j∈N cijVij + ∑L
l=1 ci,B(l )(p(l ))Vi,B(l ) ≤ ei (i ∈ N )

T, Vij, Vi,B(l ) ≥ 0 (i, j ∈ N , i �= j , 1 ≤ l ≤ L),

where p(l ), 1 ≤ l ≤ L, is the location of base station B(l ).
It is easy to prove that Lemma 3.1 still holds. We then perform the same

subarea division for SED A and define the same set of FCPs. For multiple base
stations, (7) and (8) in Algorithm 1 need to be extended as follows.

(7) Choose the FCP set {p(1)∗, p(2)∗, . . . , p(L)∗} that offers the maximum net-
work lifetime among all the L-element subset of these M FCPs. The base
station B(l ), 1 ≤ l ≤ L, can be placed at any point pε(l ) within the subarea
corresponding to p(l )∗.

(8) For points pε(l ), 1 ≤ l ≤ L, apply an LP to obtain (1 − ε)-optimal network
lifetime Tε.

Such approach basically enumerates all possible subsets of L locations
among M FCPs and choose the best set of L points. So the complexity is O(M L),
where M = O(( N

ε
)2) is defined in (13).
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It is worth pointing out that due to the availability of multiple base stations,
each sensor has more choices to transmit its data (and thus larger solution
space). As a result, the network lifetime will be larger than that under single
base station.

6. RELATED WORK

Due to energy constraint, network lifetime for a wireless sensor network is lim-
ited. As a result, there is a flourish of research activities on how to prolong net-
work lifetime. Many of these efforts (e.g., Bhardwaj and Chandrakasae [2002];
Brown et al. [2001], Kalpakis et al. [2002]; Zhang and Hou [2004]) studied life-
time problem under a given network topology and without explicit consideration
of the impact of node placement on network performance.

Among the body of research on node placement, researchers have studied
sensor node placement [Dhillon and Chakrabarty 2004; Wang et al. 2004; Wu
and Yang 2005; Zou and Chakrabarty 2003], relay node placement [Hou et al.
2005; Xu et al. 2005], and base station placement [Bogdanov et al. 2004; Efrat
et al. 2005; Pan et al. 2003]. The main focus of sensor node placement has
been on coverage (in order to have either better geographical coverage of the
area or better connectivity in the network). Relay node placement deals with
how to place special auxiliary nodes within a sensor network so that network
performance (e.g., connectivity, lifetime) can be improved. Related work on relay
node placement (e.g., Hou et al. [2005]; Xu et al. [2005]) have been limited to
heuristic algorithms instead of providing theoretical performance guarantee.

Related work on base station placement include [Bogdanov et al. 2004; Efrat
et al. 2005; Pan et al. 2003]. Bogdanov et al. [2004] studied how to place base
station so that the network flow is proportionally maximized subject to link
capacity. The authors show that although it is possible to find optimal solutions
for special network topology (e.g., grid), the base station placement problem
for an arbitrary network is NP-complete. The authors also pointed out that
an approximation algorithm with any guarantee was not known at the time
of their paper and subsequently proposed two heuristic algorithms. Pan et al.
[2003] studied base station placement problem to maximize network lifetime.
The optimal location is only determined for the simple case where only single-
hop routing is allowed. The more difficult problem involving multihop routing
was not addressed.

Efrat et al. [2005] proposed the first (1−ε)-optimal approximation algorithm
to the base station placement problem. However, since they constructed a finite
search space consisting of physical points, the computational complexity of their
algorithm is higher than the one proposed in this paper for most cases, as
illustrated in Section 4.1.

7. CONCLUSION

In this article, we investigated the base station placement problem for a multi-
hop sensor network. The main result is an approximation algorithm that can
guarantee (1 − ε)-optimal network lifetime performance with any desired error
bound ε > 0. The proposed (1−ε)-approximation algorithm was based on several
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novel techniques such as discretization of cost parameters (and distances), di-
vision of search space into a finite number of subareas, and representation of
subareas with fictitious points (with nice bounding properties on costs). We gave
a proof that the proposed approximation algorithm is (1 − ε)-optimal. The pro-
posed approximation algorithm offers significant complexity reduction when
compared to a state-of-the-art algorithm and represents the best known result
to the base station placement problem.
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