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Abstract—Multi-input multi-output (MIMO) is a key technol-
ogy to increase the capacity of wireless networks. Although there
has been extensive work on MIMO at the physical and link
layers, there is limited work on MIMO at the network layer
(i.e., multi-hop MIMO network), particularly results on capacity
scaling laws. In this paper, we investigate capacity scaling laws
for MIMO ad hoc networks. Our goal is to find the achievable
throughput of each node as the number of nodes in the network
increases. We employ a MIMO network model that captures
spatial multiplexing and interference cancellation. We show that
for a MIMO network with 𝑛 randomly located nodes, each
equipped with 𝛼 antennas and a rate of 𝑊 on each data stream,
the achievable throughput of each node is Θ( 𝛼𝑊√

𝑛 ln𝑛
).

Index Terms—MIMO, ad hoc networks, asymptotic capacity,
scaling law

I. INTRODUCTION

BY employing multiple antennas at both the transmitter
and receiver, MIMO has brought significant benefits to

wireless communications, such as increased link capacity [1],
[2], [3], improved link diversity [4], and interference cancella-
tion between conflicting links [5], [6]. Although there has been
extensive work on MIMO at the physical and link layers, there
is limited work on MIMO at the network layer (i.e., multi-hop
MIMO network), particularly results on capacity scaling laws.
The analysis of capacity scaling law studies how the achiev-
able throughput of each node scales as the number of nodes
in the network increases. Such investigation is considered
critical to understand the fundamental behavior of large-sized
networks. Capacity scaling law was first studied by Gupta and
Kumar [7] on single-antenna ad hoc networks. Subsequently,
the research community has extended this seminal work to
other types of wireless networks, such as multi-channel multi-
radio (MC-MR) ad hoc networks [8], [9], ultra-wide band ad
hoc networks [10], [11], and cognitive radio networks [12],
[13].

However, to date, there is very limited work [14], [15] on
capacity scaling laws for MIMO ad hoc networks. In [14],
Bolcskei et al. considered a MIMO source and destination pair,
assisted by a set of relay nodes, and studied how the capacity
between this source-destination pair scales with respect to the
number of relay nodes. In [15], Chen and Gans studied the
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capacity of a MIMO ad hoc network with a set of simultaneous
one-hop source-destination pairs. In this work, routing is not
considered due to one-hop communications. Apart from these
results, capacity scaling laws for multi-hop MIMO ad hoc
networks remain unexplored.

In this paper, we aim to characterize asymptotic capacity for
multi-hop MIMO ad hoc networks. Although there are many
schemes to exploit the benefits of antenna arrays at a node,
we focus on the so-called zero-forcing beamforming (ZFBF)
scheme [5], [6], which captures the two key characteristics of
MIMO: spatial multiplexing and interference cancellation. For
asymptotic study, we analyze both the lower bound and the
upper bound. We show that although a capacity lower bound
can be obtained by extending the work of Gupta and Kumar
[7], a tight capacity upper bound is a much harder problem.
We propose to partition the network area into small squares
cleverly so that the maximum data rate that can be received
by the nodes inside the small square can be computed exactly.
By taking the sum of data rates from all small squares, we can
obtain the maximum data rate the whole network can support.
Based on this result, we develop a tight capacity upper bound
for our problem. Our main result in this paper is the following:
for a MIMO network with 𝑛 randomly located nodes, each
equipped with 𝛼 antennas and a rate of 𝑊 on each data stream,
we show that the capacity upper and lower bounds have the
same order, and the achievable throughput of each node is
Θ( 𝛼𝑊√

𝑛 ln𝑛
).

The remainder of this paper is organized as follows. In
Section II, we present a model for MIMO network that will
be used in our asymptotic capacity study. In Section III, we
analyze asymptotic capacity bounds. Section IV presents some
numerical results. Section V concludes this paper.

II. MIMO NETWORK MODELING

In this section, we present a model for MIMO ad hoc
networks which we will use in our analysis of asymptotic
capacity. This model captures MIMO’s spatial multiplexing
and interference cancellation capabilities at the physical layer.

A. Spatial Multiplexing and Interference Cancellation

There are a number of mechanisms at the physical layer
to enable spatial multiplexing and interference cancellation,
such as V-Blast (Vertical-Bell labs layered space time) [1],
ZFBF (zero-forcing beamforming) [5], [6], DPC (dirty paper
coding) [16], among others. Spatial multiplexing refers that a
transmitter can send several independent data streams to its
intended receiver simultaneously on a link. Interference can-
cellation refers that by properly devising the transmission and
reception vectors, the interference between several conflicting
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TABLE I
NOTATION.

Symbol Definition
𝐷 The mean distance between each node and its destination
𝑑𝑖,𝑗 The distance between node 𝑖 and 𝑗
H𝑙𝑘 The channel coefficient matrix between nodes Tx(𝑙) and

Rx(𝑘)
𝑛 The number of nodes in the network

Rx(𝑙) The receiver of link 𝑙
𝑟(𝑛) The common transmission range of all nodes
𝑆𝑙𝑖 The signal of data stream 𝑖 on link 𝑙

𝑆𝑙𝑖 The recovered signal of data stream 𝑖 on link 𝑙
Tx(𝑙) The transmitter of link 𝑙
𝑈𝐵(𝑛) Capacity upper bound
u𝑙𝑖 The transmission vector for transmitting signal 𝑆𝑙𝑖

v𝑙𝑖 The reception vector for receiving signal 𝑆𝑙𝑖

𝑊 The maximum data rate that a single data stream can support
𝑧𝑙 The number of active data streams on link 𝑙
𝛼 The number of antennas at each node
Δ The parameter to set the interference range

𝜆(𝑛) The per-node throughput of a random multi-hop MIMO
ad hoc network with 𝑛 nodes

𝜋(⋅) An ordering function of all nodes in the network
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Fig. 1. A spatial multiplexing link.

links can be cancelled out. In this paper, for the ease of the
mathematic modeling, we employ the simple but yet powerful
ZFBF for spatial multiplexing and interference cancellation.
Table I lists the notation in this paper.
Spatial multiplexing. We assume that the number of antennas
at each node is 𝛼 and the network is deployed in a rich
scattering environment, so that the degree of freedom (DoF)
at each node is approximately equal to its number of antennas
(𝛼). Suppose we want to activate 𝑧𝑙 data streams on a link
𝑙 (see Fig. 1). Denote Tx(𝑙) and Rx(𝑙) the transmitter and
receiver of link 𝑙, respectively. Denote 𝑆𝑙𝑖 the signal of data
stream 𝑖 (1 ≤ 𝑖 ≤ 𝑧𝑙) at transmitter Tx(𝑙) and u𝑙𝑖 the
𝛼 × 1 transmission vector of signal 𝑆𝑙𝑖, respectively. Denote
H𝑙𝑙 the channel coefficient matrix between nodes Tx(𝑙) and
Rx(𝑙). Although there are different MIMO channel models in

zl
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k

Fig. 2. Two interfering MIMO links.

the literature, e.g., MIMO Rician [17] and Rayleigh fading
channels [5], [15], our results do not depend on the specific
channel models. We assume that our channel matrix remains
constant during a certain transmission period. Moreover, we
assume that the channel matrix is of full rank, which is
justifiable under rich scattering environment. Thus, during a
transmission period, channel matrix H is regarded as a full
rank 𝛼 × 𝛼 constant matrix. Note that although the channel
matrix may change for different transmission periods, the
asymptotic results (Section III) will still hold under each
transmission period, i.e., our results remain valid over time.

To transmit all 𝑧𝑙 data streams, Tx(𝑙) sends the combined
signal

∑𝑧𝑙
𝑗=1 u𝑙𝑗𝑆𝑙𝑗 through its 𝛼 antennas. The signal at

receiver Rx(𝑙)’s antennas will be (
∑𝑧𝑙

𝑗=1 u𝑙𝑗𝑆𝑙𝑗)
𝑇H𝑙𝑙. Re-

ceiver Rx(𝑙) uses an 𝛼× 1 reception vector v𝑙𝑖 to recover the
signal of data stream 𝑖. Then the recovered signal 𝑆𝑙𝑖 for data
stream 𝑖 is 𝑆𝑙𝑖 = (

∑𝑧𝑙
𝑗=1 u𝑙𝑗𝑆𝑙𝑗)

𝑇H𝑙𝑙v𝑙𝑖 = u𝑇
𝑙𝑖H𝑙𝑙v𝑙𝑖𝑆𝑙𝑖 +∑𝑗 ∕=𝑖

1≤𝑗≤𝑧𝑙
u𝑇
𝑙𝑗H𝑙𝑙v𝑙𝑖𝑆𝑙𝑗 . By choosing appropriate u and v, we

can ensure that the recovered signal 𝑆𝑙𝑖 achieves a unit gain
(u𝑇

𝑙𝑖H𝑙𝑙v𝑙𝑖 = 1) and zero interference (u𝑇
𝑙𝑗H𝑙𝑙v𝑙𝑖 = 0, 𝑗 ∕= 𝑖)

such that the data stream 𝑖 can be successfully recovered.
Thus, we have the following constraints to make all 𝑧𝑙 data
streams successful.

u𝑇
𝑙𝑖H𝑙𝑙v𝑙𝑖 = 1 (1 ≤ 𝑖 ≤ 𝑧𝑙) , (1)

u𝑇
𝑙𝑗H𝑙𝑙v𝑙𝑖 = 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑧𝑙, 𝑗 ∕= 𝑖) . (2)

Interference cancellation. Consider two links 𝑘 and 𝑙 and
assume that the transmission on link 𝑘 will interfere with
the reception at link 𝑙 (see Fig. 2). Suppose that we want
to have 𝑧𝑘 data streams on link 𝑘 and 𝑧𝑙 data streams on link
𝑙. Denote H𝑘𝑙 the channel coefficient matrix between nodes
Tx(𝑘) and Rx(𝑙). To ensure these simultaneous transmission
of data streams possible, we must satisfy both the spatial
multiplexing constraints in (1) and (2) for each link and the
following interference cancellation constraints.

u𝑇
𝑘𝑖H𝑘𝑙v𝑙𝑗 = 0 (1 ≤ 𝑖 ≤ 𝑧𝑘, 1 ≤ 𝑗 ≤ 𝑧𝑙) .

The above constraints guarantee that the interference coming
from each data stream of node Tx(𝑘) is cancelled out for each
data stream at node Rx(𝑙).

B. Mathematical Modeling

In this paper, we consider a random multi-hop MIMO ad
hoc network with 𝑛 nodes, where each node, equipped with 𝛼
antennas, is randomly located in a unit square area. Each node
acts as a source node and transmits data to a randomly chosen
destination node. The per-node throughput 𝜆(𝑛) is defined as
the minimum data rate that can be sent from each source to
its destination via multi-hop routing. Our goal is to find the
maximum asymptotic per-node throughput 𝜆(𝑛).

We represent the random multi-hop MIMO ad hoc network
by a directed graph, denoted by 𝒢 = {𝒩 ,ℒ}, where 𝒩



1034 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 4, APRIL 2011

and ℒ are the set of nodes and all possible MIMO links,
respectively. We use the so-called protocol model [7] to deal
with interference in the network. Under protocol model, each
node in the network has a transmission range 𝑟(𝑛) and a node
can only transmit data to the nodes within its transmission
range. An ordered node pair (𝑖, 𝑗) is said to be a link if node
𝑗 is within 𝑖’s transmission range, i.e., ℒ = {(𝑖, 𝑗) : 𝑑𝑖,𝑗 ≤
𝑟(𝑛), 𝑖, 𝑗 ∈ 𝒩 , 𝑖 ∕= 𝑗}, where 𝑑𝑖,𝑗 is the distance. Likewise,
each node also has an interference range (1+Δ)𝑟(𝑛) and when
a node is transmitting, the other nodes (other than its intended
receiver) within its interference range cannot be receiving data
at the same time, where Δ is a non-negative constant. Under
this protocol model, it has been shown by Gupta and Kumar in

[7] that we need to set the transmission range 𝑟(𝑛) >
√

ln𝑛
𝜋𝑛

to maintain network connectivity with high probability when
𝑛 → ∞. Due to the use of protocol model and our goal of
keeping our analysis tractable, the impact of fading channel
on network connectivity [18] is not considered in this study.

If one link is active and no interference cancellation scheme
is used in the network, it will interfere with all its nearby
links whose receiver are within the interference range of
the transmitting node. When no interference cancellation is
employed, denote ℐ+

𝑙 the set of links that are interfered by
link 𝑙 ∈ ℒ and ℐ−

𝑙 the set of links that interfere with link
𝑙 ∈ ℒ.
MIMO physical layer. In this study, we focus on spa-
tial multiplexing and interference cancellation to characterize
MIMO physical layer behavior. Further, we employ DoF to
represent MIMO resources at a node. A detailed discussion
of DoF allocation for spatial multiplexing and interference
cancellation is given in [19]. Simply put, when there is no
interference, we need to allocate 𝑧𝑙 DoFs at both transmitter
Tx(𝑙) and receiver Rx(𝑙) to achieve 𝑧𝑙 data streams on link
𝑙. When interference is present in the network, it is necessary
to have an ordered list for all nodes and allocate DoFs
sequentially to achieve interference cancellation. Denote 𝜋(⋅)
the mapping between a node and its order in the node list.
For two links 𝑙 and 𝑘 with 𝑧𝑙 and 𝑧𝑘 data streams on each
link, 𝑙 ∈ ℒ, 𝑘 ∈ ℐ+

𝑙 , we know that if 𝜋(Tx(𝑙)) > 𝜋(Rx(𝑘))
(i.e., node Tx(l) is after node Rx(𝑘) in the ordered node
list), then node Tx(𝑙) will be responsible for cancelling the
interference from 𝑙 to 𝑘 and will thus consume 𝑧𝑘 DoFs; if
𝜋(Tx(𝑙)) < 𝜋(Rx(𝑘)) (i.e., node Tx(𝑙) is before node Rx(𝑘)
in the ordered node list), then node Rx(𝑘) will be responsible
for cancelling the interference from 𝑙 to 𝑘 and will consume
𝑧𝑙 DoFs. Then, a link 𝑙 can support 𝑧𝑙 active data streams in
the network if and only if the following two constraints are
satisfied.

1) DoF constraint at transmitter Tx(𝑙): The total number
of DoFs transmitter Tx(𝑙) uses for spatial multiplexing
and interference cancellation cannot exceed the number
of available DoFs at node Tx(𝑙), i.e.,

𝑧𝑙 +

𝜋(Tx(𝑙))>𝜋(Rx(𝑘))∑

𝑘∈ℐ+
𝑙

𝑧𝑘 ≤ 𝛼. (3)

This constraint shows that the DoF consumption at
transmitter Tx(𝑙) includes two parts: spatial multiplexing

(first term on the LHS) and interference cancellation
(second term on the LHS). The total DoF allocation at
transmitter Tx(𝑙) cannot exceed the total DoFs.

2) DoF constraint at receiver Rx(𝑙): The total number of
DoFs that transmitter Rx(𝑙) allocates for spatial multi-
plexing and interference cancellation cannot exceed the
number of available DoFs at node Rx(𝑙), i.e.,

𝑧𝑙 +

𝜋(Rx(𝑙))>𝜋(Tx(𝑘))∑

𝑘∈ℐ−
𝑙

𝑧𝑘 ≤ 𝛼. (4)

Routing and scheduling. In this paper, we assume that
a node’s transmitter is limited to a transmission range 𝑟(𝑛).
When a source node cannot transmit data to its destination
node in one hop, multi-hop routing is needed to relay the
data. To avoid potential interference among active links, we
employ TDMA to schedule conflict links into different time
slots.

III. ASYMPTOTIC CAPACITY BOUNDS

In this section, we analyze the asymptotic capacity bounds
for multi-hop MIMO ad hoc networks and the main result of
this section is summarized as follows.

The capacity of a random multi-hop MIMO ad hoc network
with 𝑛 nodes is 𝜆(𝑛) = Θ( 𝛼𝑊√

𝑛 ln𝑛
) with high probability when

𝑛 → ∞.
The above capacity bound is determined by finding a

capacity lower bound and a capacity upper bound and showing
that they have the same order.
Lower bound analysis. For the capacity lower bound, it
is only necessary to find a feasible routing and scheduling
scheme for the underlying network. For this purpose, we can
simply consider the trivial case where all DoF resource at a
node is allocated for spatial multiplexing (i.e., no DoF will
be used for interference cancellation). That is, when a link
is active, it will use all its DoFs at the transmitter and the
receiver to carry 𝛼 data streams on that link. This simple
case corresponds to scaling the capacity lower bound for
a single-antenna ad hoc network by a factor of 𝛼. In [7],
Gupta and Kumar showed that a capacity lower bound for a
single-antenna ad hoc networks is Ω( 𝑊√

𝑛 ln𝑛
) by constructing

a feasible routing and scheduling scheme. Thus, by adopting
the same routing and scheduling scheme in our MIMO ad hoc
networks as in [7], a capacity lower bound of Ω( 𝛼𝑊√

𝑛 ln𝑛
) can

be obtained.
Upper bound analysis. The capacity upper bound analysis
is more challenging and is the main contribution of this paper.
Note that here we cannot simply scale the capacity upper
bound result in [7] by a factor of 𝛼 by just considering spatial
multiplexing and neglecting interference cancellation. Doing
so will neglect the potential increase of network capacity by
joint consideration of using DoFs for spatial multiplexing and
interference cancellation. Therefore, we must consider both
spatial multiplexing and interference cancellation for upper
bound analysis. As a result, the upper bound analysis in [7]
cannot be extended over here.

To derive an upper bound for multi-hop MIMO ad hoc
networks, we propose a novel partitioning method on the
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Fig. 3. The receivers in a square with side length 1/⌈
√

2
Δ𝑟(𝑛)

⌉.

network area. We partition the unit square for the network
into small squares, with the size of each small square being
cleverly chosen so that the maximum data rate that can be
received by the nodes inside the small square can be computed
exactly. By taking the sum of data rates from all small squares,
we can obtain the maximum data rate the whole network can
support. Based on this result, we can further derive a capacity
upper bound for the entire network.

Now the key problem in our analysis is how to set the size
of each small square. This is because in a MIMO network,
several receiving nodes can be active within close vicinity by
using interference cancellation. If the size of each small square
is set too large, then the maximum number of data streams
that can be received by the nodes inside the square cannot be
computed exactly. On the other hand, if the size of each small
square is set too small, then the maximum number of data
streams that can be received by the nodes inside the square is
likely to be over-estimated, leading to a loose upper bound.
We show that when the length of each side of small square is
set to 1/⌈

√
2

Δ⋅𝑟(𝑛)⌉, we can precisely determine the maximum
number of data streams that can be received by nodes inside
the small square, regardless of the number of receiving nodes
in the square. We formally state this result in the following
lemma.

Lemma 1: For a square with side length 1/⌈
√
2

Δ⋅𝑟(𝑛)⌉, the
maximum number of total data streams that can be received by
nodes inside the square at any time slot for any routing scheme
is no greater than 𝛼 regardless of the number of receiving
nodes inside the square.

Proof: Suppose there are 𝐾 active links with their re-
spective receivers being in this square. If 𝐾 = 1, the theorem
holds trivially, since the number of incoming data streams of a
receiver cannot exceed the number of antennas at the receiver.
Now we show the result also holds when 𝐾 ≥ 2.

We first show that when interference cancellation is not
employed, any two links with receiving nodes inside the
square will interfere with each other. Note that the distance
between any two receivers inside this square is at most√
2 ⋅ Δ𝑟(𝑛)√

2
= Δ ⋅𝑟(𝑛). Referring to Fig. 3, for two links 𝑙 and

𝑘 with their receivers Rx(𝑙) and Rx(𝑘) inside the square, we
have 𝑑Rx(𝑙),Rx(𝑘) ≤ Δ ⋅𝑟(𝑛). Since 𝑑Tx(𝑙),Rx(𝑙) ≤ 𝑟(𝑛) (recall that
𝑟(𝑛) is transmission range) based on the triangle inequality, we
have 𝑑Tx(𝑙),Rx(𝑘) ≤ 𝑑Rx(𝑙),Rx(𝑘)+𝑑Tx(𝑙),Rx(𝑙) ≤ (1+Δ)𝑟(𝑛). Since

(1+Δ)𝑟(𝑛) is the interference range of Tx(𝑙), this shows that
Tx(𝑙) will interfere with Rx(𝑘). Similarly, we can prove that
the transmitter Tx(𝑘) of link 𝑘 will interfere receiver Rx(𝑙) of
link 𝑙.

Denote the set of these 𝐾 links as 𝒦 = {1, . . . ,𝐾} and
the number of active data streams on link 𝑙 as 𝑧𝑙, 𝑙 ∈ 𝒦.
We have shown that all these active links will interference
with each other. Thus, in order to make them all active
simultaneously, interference cancellation is necessary. Based
on the MIMO model we discussed earlier, we need an ordered
list for all the 2𝐾 nodes on these 𝐾 links to determine
interference cancellation. Depending on whether the last node
in the ordered list is a transmitter or receiver, we have two
cases.
Case i. The last node in the ordered list is a receiver. Without
loss of generality, assume that receiver Rx(𝑚) of link 𝑚 is
the last node in this list. To have 𝑧𝑚 data streams on link 𝑚,
based on (4), we have the following constraint on Rx(𝑚).

𝑧𝑚 +

𝜋(Rx(𝑚))>𝜋(Tx(𝑘))∑

𝑘∈ℐ−
𝑚

𝑧𝑘 ≤ 𝛼 , (5)

where we recall 𝜋(⋅) is the mapping function between a node
and its order in the node list. Since any two links interfere
with each other in this small square, we have ℐ−

𝑚 = 𝒦∖{𝑚}.
Further, since Rx(𝑚) is the last node in this list, we have
𝜋(Rx(𝑚)) > 𝜋(Tx(𝑘)), for all 𝑘 ∈ 𝒦∖{𝑚}. Therefore, (5) can
be written as 𝑧𝑚+

∑
𝑘∈𝒦∖{𝑚} 𝑧𝑘 ≤ 𝛼, which is

∑
𝑘∈𝒦 𝑧𝑘 ≤ 𝛼.

Thus, we have shown that the sum of data streams that can
be received by nodes inside the small square is no greater than
𝛼 regardless of the size of the set 𝒦.
Case ii. The last node in the ordered list is a transmitter. In
this case, based on (3) and following the same token as the
above discussion, we can get the same result as Case i.

Combining the two cases, the proof is complete.
Based on Lemma 1, we can now compute the maximum

data rate that can be supported in the unit square network by
taking the sum of the data rates among all small squares. Since
the side length of each small square is 1/⌈

√
2

Δ⋅𝑟(𝑛)⌉, the total

number of small squares in the unit square is ⌈
√
2

Δ⋅𝑟(𝑛)⌉2. From
Lemma 1, we know that the maximum number of data streams
inside a small square is 𝛼. Thus the total data rate that each
square can support is at most 𝛼𝑊 . So the maximum data rate
that can be supported in the network is ⌈

√
2

Δ⋅𝑟(𝑛)⌉2𝛼𝑊 .
We are now ready to derive a capacity upper bound for

MIMO ad hoc network, which is stated in the following
theorem.

Theorem 1: For a random multi-hop MIMO ad hoc net-
work, a capacity upper bound for all possible routing and
scheduling schemes is 𝜆(𝑛) = 𝑂( 𝛼𝑊√

𝑛 ln𝑛
) with high probabil-

ity when 𝑛 → ∞.
Proof: Let 𝐷 be the average length of source-destination

lines. Since multi-hop routing is employed, we have that the
average number of each source-destination pair is at least
𝐷

𝑟(𝑛) . Note that there are 𝑛 source-destination pairs. Thus, the
required transmission rate over the entire network is at least
𝐷

𝑟(𝑛)𝑛𝜆(𝑛).
When TDMA is used to schedule conflict links into different

time slots, the average rate over all time slots in the entire
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Fig. 4. Capacity upper bound 𝑈𝐵(𝑛).

network is at least 𝐷
𝑟(𝑛)𝑛𝜆(𝑛). Since the maximum data

rate that can be supported in the network at any time slot
is ⌈

√
2

Δ⋅𝑟(𝑛)⌉2𝛼𝑊 , we have 𝐷
𝑟(𝑛)𝑛𝜆(𝑛) ≤ ⌈

√
2

Δ⋅𝑟(𝑛)⌉2𝛼𝑊 <

(
√
2

Δ⋅𝑟(𝑛) + 1)2𝛼𝑊, which can be rewritten as

𝜆(𝑛) <
2𝛼𝑊

Δ2𝐷𝑛𝑟(𝑛)
+

2
√
2𝛼𝑊

Δ𝐷𝑛
+

𝛼𝑊𝑟(𝑛)

𝐷𝑛
. (6)

It has been shown in [7] that to maintain the connectivity of

the network, we need 𝑟(𝑛) >
√

ln𝑛
𝜋𝑛 . It can be verified that

the right-hand-side of (6) is a non-increasing function of 𝑟(𝑛).

By substituting 𝑟(𝑛) =
√

ln𝑛
𝜋𝑛 into (6), we get

𝜆(𝑛) <
2𝛼𝑊

√
𝜋

Δ2𝐷
√
𝑛 ln𝑛

+
2
√
2𝛼𝑊

Δ2𝐷𝑛
+
𝛼𝑊

√
ln𝑛

𝐷𝑛
√
𝜋𝑛

= 𝑂(
𝛼𝑊√
𝑛 ln𝑛

).

(7)

The upper bound in Theorem 1 is tight, because it has the
same order as that of the capacity lower bound we obtained at
the beginning of this section. Combining the capacity lower
and upper bounds, we can see that the capacity of a random
multi-hop MIMO ad hoc network with 𝑛 nodes is Θ( 𝛼𝑊√

𝑛 ln𝑛
).

IV. NUMERICAL RESULTS

In previous section, our theoretical results show that by us-
ing spatial multiplexing and interference cancellation, MIMO
can have a constant improvement 𝛼 on asymptotic capacity
compared to the results of Gupta and Kumar [7]. However, our
results also show that MIMO cannot fundamentally improve
the asymptotic capacity of multi-hop wireless networks, since
it still has the same order as the results of Gupta and Kumar.

In this section, we will present some numerical results to
validate our theoretical findings. We set 𝛼 = 4, 𝑊 = 1, and
Δ = 1. By running 1000 instances, we obtain the average
length of source-destination lines 𝐷 = 0.52. Denote the capac-
ity upper bound (in Equation (7)) as 𝑈𝐵(𝑛) = 2𝛼𝑊

√
𝜋

Δ2𝐷
√
𝑛 ln𝑛

+
2
√
2𝛼𝑊

Δ2𝐷𝑛 + 𝛼𝑊
√
ln𝑛

𝐷𝑛
√
𝜋𝑛

. We show that 𝑈𝐵(𝑛) decreases as 𝑛

increases in Fig. 4. Then, we validate 𝜆(𝑛) = 𝑂( 𝛼𝑊√
𝑛 ln𝑛

)

by showing 𝑈𝐵(𝑛)/( 𝛼𝑊√
𝑛 ln𝑛

) converges to a constant when
𝑛 goes to infinity. This result is shown in Fig. 5.
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Fig. 5. The normalized capacity upper bound 𝑈𝐵(𝑛)/( 𝛼𝑊√
𝑛 ln𝑛

).

V. CONCLUSION

In this paper, we studied capacity scaling laws for MIMO
ad hoc networks, i.e., the achievable throughput of each node
as the number of nodes in the network increases. Our analysis
was based on a MIMO network model that employs zero-
forcing beamforming, a powerful physical layer technique
that is capable of spatial multiplexing and interference can-
cellation. Based on this model, we obtained the capacity
lower bound and upper bound. The main contribution of this
paper is the development of upper bound, which requires
joint consideration of spatial multiplexing and interference
cancellation. Our results showed that both lower bound and
upper bound have the same order, thus assuring that our
asymptotic capacity for MIMO ad hoc network is tight.
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