
Toward Secure and Dependable
Storage Services in Cloud Computing

Cong Wang, Student Member, IEEE, Qian Wang, Student Member, IEEE,

Kui Ren, Senior Member, IEEE, Ning Cao, and Wenjing Lou, Senior Member, IEEE

Abstract—Cloud storage enables users to remotely store their data and enjoy the on-demand high quality cloud applications without

the burden of local hardware and software management. Though the benefits are clear, such a service is also relinquishing users’

physical possession of their outsourced data, which inevitably poses new security risks toward the correctness of the data in cloud. In

order to address this new problem and further achieve a secure and dependable cloud storage service, we propose in this paper a

flexible distributed storage integrity auditing mechanism, utilizing the homomorphic token and distributed erasure-coded data. The

proposed design allows users to audit the cloud storage with very lightweight communication and computation cost. The auditing result

not only ensures strong cloud storage correctness guarantee, but also simultaneously achieves fast data error localization, i.e., the

identification of misbehaving server. Considering the cloud data are dynamic in nature, the proposed design further supports secure

and efficient dynamic operations on outsourced data, including block modification, deletion, and append. Analysis shows the proposed

scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks.

Index Terms—Data integrity, dependable distributed storage, error localization, data dynamics, cloud computing.

Ç

1 INTRODUCTION

SEVERAL trends are opening up the era of cloud comput-
ing, which is an Internet-based development and use of

computer technology. The ever cheaper and more powerful
processors, together with the Software as a Service (SaaS)
computing architecture, are transforming data centers into
pools of computing service on a huge scale. The increasing
network bandwidth and reliable yet flexible network
connections make it even possible that users can now
subscribe high quality services from data and software that
reside solely on remote data centers.

Moving data into the cloud offers great convenience to
users since they don’t have to care about the complexities
of direct hardware management. The pioneer of cloud
computing vendors, Amazon Simple Storage Service (S3),
and Amazon Elastic Compute Cloud (EC2) [2] are both
well-known examples. While these internet-based online
services do provide huge amounts of storage space
and customizable computing resources, this computing

platform shift, however, is eliminating the responsibility of
local machines for data maintenance at the same time. As a
result, users are at the mercy of their cloud service
providers (CSP) for the availability and integrity of their
data [3], [4]. On the one hand, although the cloud
infrastructures are much more powerful and reliable than
personal computing devices, broad range of both internal
and external threats for data integrity still exist. Examples
of outages and data loss incidents of noteworthy cloud
storage services appear from time to time [5], [6], [7], [8],
[9]. On the other hand, since users may not retain a local
copy of outsourced data, there exist various incentives for
CSP to behave unfaithfully toward the cloud users
regarding the status of their outsourced data. For example,
to increase the profit margin by reducing cost, it is possible
for CSP to discard rarely accessed data without being
detected in a timely fashion [10]. Similarly, CSP may even
attempt to hide data loss incidents so as to maintain a
reputation [11], [12], [13]. Therefore, although outsourcing
data into the cloud is economically attractive for the cost
and complexity of long-term large-scale data storage, its
lacking of offering strong assurance of data integrity and
availability may impede its wide adoption by both
enterprise and individual cloud users.

In order to achieve the assurances of cloud data integrity
and availability and enforce the quality of cloud storage
service, efficient methods that enable on-demand data
correctness verification on behalf of cloud users have to
be designed. However, the fact that users no longer have
physical possession of data in the cloud prohibits the direct
adoption of traditional cryptographic primitives for the
purpose of data integrity protection. Hence, the verification
of cloud storage correctness must be conducted without
explicit knowledge of the whole data files [10], [11], [12],
[13]. Meanwhile, cloud storage is not just a third party data
warehouse. The data stored in the cloud may not only be

220 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

. C. Wang is with the Department of Electrical and Computer Engineering,
Illinois Institute of Technology, 1451 East 55th St., Apt. 1017 N, Chicago,
IL 60616. E-mail: cwang55@iit.edu.

. Q. Wang is with the Department of Electrical and Computer Engineering,
Illinois Institute of Technology, 500 East 33rd St., Apt. 602, Chicago, IL
60616. E-mail: qwang38@iit.edu.

. K. Ren is with the Department of Electrical and Computer Engineering,
Illinois Institute of Technology, 3301 Dearborn St., Siegel Hall 319,
Chicago, IL 60616. E-mail: kren@ece.iit.edu.

. N. Cao is with the Department of Electrical and Computer Engineering,
Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA
01609. E-mail: ncao@wpi.edu.

. W. Lou is with the Department of Computer Science, Virginia Polytechnic
Institute and State University, Falls Church, VA 22043.
E-mail: wjlou@vt.edu.

Manuscript received 4 Apr. 2010; revised 14 Sept. 2010; accepted 25 Dec.
2010; published online 6 May 2011.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org and reference IEEECS Log Number TSCSI-2010-04-0033.
Digital Object Identifier no. 10.1109/TSC.2011.24.

1939-1374/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

accessed but also be frequently updated by the users [14],
[15], [16], including insertion, deletion, modification, ap-
pending, etc. Thus, it is also imperative to support the
integration of this dynamic feature into the cloud storage
correctness assurance, which makes the system design even
more challenging. Last but not the least, the deployment of
cloud computing is powered by data centers running in a
simultaneous, cooperated, and distributed manner [3]. It is
more advantages for individual users to store their data
redundantly across multiple physical servers so as to
reduce the data integrity and availability threats. Thus,
distributed protocols for storage correctness assurance will
be of most importance in achieving robust and secure cloud
storage systems. However, such important area remains to
be fully explored in the literature.

Recently, the importance of ensuring the remote data
integrity has been highlighted by the following research
works under different system and security models [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]. These
techniques, while can be useful to ensure the storage
correctness without having users possessing local data, are
all focusing on single server scenario. They may be useful for
quality-of-service testing [23], but does not guarantee the
data availability in case of server failures. Although direct
applying these techniques to distributed storage (multiple
servers) could be straightforward, the resulted storage
verification overhead would be linear to the number of
servers. As an complementary approach, researchers have
also proposed distributed protocols [23], [24], [25] for
ensuring storage correctness across multiple servers or peers.
However, while providing efficient cross server storage
verification and data availability insurance, these schemes
are all focusing on static or archival data. As a result, their
capabilities of handling dynamic data remains unclear,
which inevitably limits their full applicability in cloud
storage scenarios.

In this paper, we propose an effective and flexible
distributed storage verification scheme with explicit dy-
namic data support to ensure the correctness and avail-
ability of users’ data in the cloud. We rely on erasure-
correcting code in the file distribution preparation to
provide redundancies and guarantee the data dependability
against Byzantine servers [26], where a storage server may
fail in arbitrary ways. This construction drastically reduces
the communication and storage overhead as compared to
the traditional replication-based file distribution techniques.
By utilizing the homomorphic token with distributed
verification of erasure-coded data, our scheme achieves
the storage correctness insurance as well as data error
localization: whenever data corruption has been detected
during the storage correctness verification, our scheme can
almost guarantee the simultaneous localization of data
errors, i.e., the identification of the misbehaving server(s). In
order to strike a good balance between error resilience and
data dynamics, we further explore the algebraic property of
our token computation and erasure-coded data, and
demonstrate how to efficiently support dynamic operation
on data blocks, while maintaining the same level of storage
correctness assurance. In order to save the time, computa-
tion resources, and even the related online burden of users,
we also provide the extension of the proposed main scheme
to support third-party auditing, where users can safely

delegate the integrity checking tasks to third-party auditors
(TPA) and be worry-free to use the cloud storage services.
Our work is among the first few ones in this field to
consider distributed data storage security in cloud comput-
ing. Our contribution can be summarized as the following
three aspects: 1) Compared to many of its predecessors,
which only provide binary results about the storage status
across the distributed servers, the proposed scheme
achieves the integration of storage correctness insurance
and data error localization, i.e., the identification of
misbehaving server(s). 2) Unlike most prior works for
ensuring remote data integrity, the new scheme further
supports secure and efficient dynamic operations on data
blocks, including: update, delete, and append. 3) The
experiment results demonstrate the proposed scheme is
highly efficient. Extensive security analysis shows our
scheme is resilient against Byzantine failure, malicious data
modification attack, and even server colluding attacks.

The rest of the paper is organized as follows: Section 2
introduces the system model, adversary model, our design
goal, and notations. Then we provide the detailed
description of our scheme in Sections 3 and 4. Section 5
gives the security analysis and performance evaluations,
followed by Section 6 which overviews the related work.
Finally, Section 7 concludes the whole paper.

2 PROBLEM STATEMENT

2.1 System Model

A representative network architecture for cloud storage
service architecture is illustrated in Fig. 1. Three different
network entities can be identified as follows:

. User: an entity, who has data to be stored in the
cloud and relies on the cloud for data storage and
computation, can be either enterprise or individual
customers.

. Cloud Server (CS): an entity, which is managed by
cloud service provider (CSP) to provide data storage
service and has significant storage space and
computation resources (we will not differentiate CS
and CSP hereafter).

. Third-Party Auditor: an optional TPA, who has
expertise and capabilities that users may not have, is
trusted to assess and expose risk of cloud storage
services on behalf of the users upon request.

In cloud data storage, a user stores his data through a
CSP into a set of cloud servers, which are running in a

WANG ET AL.: TOWARD SECURE AND DEPENDABLE STORAGE SERVICES IN CLOUD COMPUTING 221

Fig. 1. Cloud storage service architecture.

simultaneous, cooperated, and distributed manner. Data
redundancy can be employed with a technique of erasure-
correcting code to further tolerate faults or server crash as
user’s data grow in size and importance. Thereafter, for
application purposes, the user interacts with the cloud
servers via CSP to access or retrieve his data. In some cases,
the user may need to perform block level operations on his
data. The most general forms of these operations we are
considering are block update, delete, insert, and append.
Note that in this paper, we put more focus on the support of
file-oriented cloud applications other than nonfile applica-
tion data, such as social networking data. In other words,
the cloud data we are considering is not expected to be
rapidly changing in a relative short period.

As users no longer possess their data locally, it is of
critical importance to ensure users that their data are being
correctly stored and maintained. That is, users should be
equipped with security means so that they can make
continuous correctness assurance (to enforce cloud storage
service-level agreement) of their stored data even without
the existence of local copies. In case that users do not
necessarily have the time, feasibility or resources to monitor
their data online, they can delegate the data auditing tasks
to an optional trusted TPA of their respective choices.
However, to securely introduce such a TPA, any possible
leakage of user’s outsourced data toward TPA through the
auditing protocol should be prohibited.

In our model, we assume that the point-to-point
communication channels between each cloud server and
the user is authenticated and reliable, which can be
achieved in practice with little overhead. These authentica-
tion handshakes are omitted in the following presentation.

2.2 Adversary Model

From user’s perspective, the adversary model has to capture
all kinds of threats toward his cloud data integrity. Because
cloud data do not reside at user’s local site but at CSP’s
address domain, these threats can come from two different
sources: internal and external attacks. For internal attacks, a
CSP can be self-interested, untrusted, and possibly mal-
icious. Not only does it desire to move data that has not
been or is rarely accessed to a lower tier of storage than
agreed for monetary reasons, but it may also attempt to hide
a data loss incident due to management errors, Byzantine
failures, and so on. For external attacks, data integrity
threats may come from outsiders who are beyond the
control domain of CSP, for example, the economically
motivated attackers. They may compromise a number of
cloud data storage servers in different time intervals and
subsequently be able to modify or delete users’ data while
remaining undetected by CSP.

Therefore, we consider the adversary in our model has
the following capabilities, which captures both external and
internal threats toward the cloud data integrity. Specifically,
the adversary is interested in continuously corrupting the
user’s data files stored on individual servers. Once a server
is comprised, an adversary can pollute the original data files
by modifying or introducing its own fraudulent data to
prevent the original data from being retrieved by the user.
This corresponds to the threats from external attacks. In the
worst case scenario, the adversary can compromise all the

storage servers so that he can intentionally modify the data

files as long as they are internally consistent. In fact, this is
equivalent to internal attack case where all servers are

assumed colluding together from the early stages of

application or service deployment to hide a data loss or

corruption incident.

2.3 Design Goals

To ensure the security and dependability for cloud data
storage under the aforementioned adversary model, we aim
to design efficient mechanisms for dynamic data verifica-
tion and operation and achieve the following goals:

1. Storage correctness: to ensure users that their data
are indeed stored appropriately and kept intact all
the time in the cloud.

2. Fast localization of data error: to effectively locate
the malfunctioning server when data corruption has
been detected.

3. Dynamic data support: to maintain the same level of
storage correctness assurance even if users modify,
delete, or append their data files in the cloud.

4. Dependability: to enhance data availability against
Byzantine failures, malicious data modification and
server colluding attacks, i.e., minimizing the effect
brought by data errors or server failures.

5. Lightweight: to enable users to perform storage
correctness checks with minimum overhead.

2.4 Notation and Preliminaries

. F—the data file to be stored. We assume that F can
be denoted as a matrix of m equal-sized data vectors,
each consisting of l blocks. Data blocks are all well
represented as elements in Galois Field GF ð2pÞ for
p ¼ 8 or 16.

. A—The dispersal matrix used for Reed-Solomon
coding.

. G—The encoded file matrix, which includes a set of
n ¼ mþ k vectors, each consisting of l blocks.

. fkeyð�Þ—pseudorandom function (PRF), which is
defined as f : f0; 1g� � key! GF ð2pÞ.

. �keyð�Þ—pseudorandom permutation (PRP), which

is defined as � : f0; 1glog2ð‘Þ � key! f0; 1glog2ð‘Þ.
. ver—a version number bound with the index for

individual blocks, which records the times the block
has been modified. Initially we assume ver is 0 for all
data blocks.

. sverij —the seed for PRF, which depends on the file
name, block index i, the server position j as well as
the optional block version number ver.

3 ENSURING CLOUD DATA STORAGE

In cloud data storage system, users store their data in the
cloud and no longer possess the data locally. Thus, the
correctness and availability of the data files being stored on
the distributed cloud servers must be guaranteed. One of
the key issues is to effectively detect any unauthorized data
modification and corruption, possibly due to server
compromise and/or random Byzantine failures. Besides,
in the distributed case when such inconsistencies are

222 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

successfully detected, to find which server the data error
lies in is also of great significance, since it can always be the
first step to fast recover the storage errors and/or
identifying potential threats of external attacks.

To address these problems, our main scheme for ensuring

cloud data storage is presented in this section. The first part

of the section is devoted to a review of basic tools from

coding theory that is needed in our scheme for file

distribution across cloud servers. Then, the homomorphic

token is introduced. The token computation function we are

considering belongs to a family of universal hash function

[27], chosen to preserve the homomorphic properties, which

can be perfectly integrated with the verification of erasure-

coded data [24], [28]. Subsequently, it is shown how to

derive a challenge-response protocol for verifying the

storage correctness as well as identifying misbehaving

servers. The procedure for file retrieval and error recovery

based on erasure-correcting code is also outlined. Finally,

we describe how to extend our scheme to third party

auditing with only slight modification of the main design.

3.1 File Distribution Preparation

It is well known that erasure-correcting code may be used to

tolerate multiple failures in distributed storage systems. In

cloud data storage, we rely on this technique to disperse the

data file F redundantly across a set of n ¼ mþ k distributed

servers. An ðm; kÞ Reed-Solomon erasure-correcting code is

used to create k redundancy parity vectors from m data

vectors in such a way that the original m data vectors can be

reconstructed from any m out of the mþ k data and parity

vectors. By placing each of the mþ k vectors on a different

server, the original data file can survive the failure of any

k of the mþ k servers without any data loss, with a space

overhead of k=m. For support of efficient sequential I/O to

the original file, our file layout is systematic, i.e., the

unmodified m data file vectors together with k parity

vectors is distributed across mþ k different servers.
Let F ¼ ðF1; F2; . . . ; FmÞ and Fi ¼ ðf1i; f2i; . . . ; fliÞT ði 2

f1; . . . ;mgÞ. Here, T (shorthand for transpose) denotes that

each Fi is represented as a column vector, and l denotes

data vector size in blocks. All these blocks are elements of

GF ð2pÞ. The systematic layout with parity vectors is

achieved with the information dispersal matrix A, derived

from an m� ðmþ kÞ Vandermonde matrix [29]

1 1 . . . 1 1 . . . 1
�1 �2 . . . �m �mþ1 . . . �n

..

. ..
. . .

. ..
. ..

. . .
. ..

.

�m�1
1 �m�1

2 . . . �m�1
m �m�1

mþ1 . . . �m�1
n

0BBB@
1CCCA;

where �j ðj 2 f1; . . . ; ngÞ are distinct elements randomly

picked from GF ð2pÞ.
After a sequence of elementary row transformations, the

desired matrix A can be written as

A ¼ ðIjPÞ ¼

1 0 . . . 0 p11 p12 . . . p1k

0 1 . . . 0 p21 p22 . . . p2k

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 . . . 1 pm1 pm2 . . . pmk

0BBB@
1CCCA;

where I is a m�m identity matrix and P is the secret parity
generation matrix with size m� k. Note that A is derived
from a Vandermonde matrix, thus it has the property that
any m out of the mþ k columns form an invertible matrix.

By multiplying F by A, the user obtains the encoded file

G ¼ F �A ¼ ðGð1Þ; Gð2Þ; . . . ; GðmÞ; Gðmþ1Þ; . . . ; GðnÞÞ
¼ ðF1; F2; . . . ; Fm;G

ðmþ1Þ; . . . ; GðnÞÞ;

where GðjÞ ¼ ðgðjÞ1 ; g
ðjÞ
2 ; . . . ; g

ðjÞ
l Þ

T ðj 2 f1; . . . ; ngÞ. As noticed,
the multiplication reproduces the original data file vectors
of F and the remaining part ðGðmþ1Þ; . . . ; GðnÞÞ are k parity
vectors generated based on F.

3.2 Challenge Token Precomputation

In order to achieve assurance of data storage correctness
and data error localization simultaneously, our scheme
entirely relies on the precomputed verification tokens. The
main idea is as follows: before file distribution the user
precomputes a certain number of short verification tokens
on individual vector GðjÞ ðj 2 f1; . . . ; ngÞ, each token cover-
ing a random subset of data blocks. Later, when the user
wants to make sure the storage correctness for the data in
the cloud, he challenges the cloud servers with a set of
randomly generated block indices. Upon receiving chal-
lenge, each cloud server computes a short “signature” over
the specified blocks and returns them to the user. The
values of these signatures should match the corresponding
tokens precomputed by the user. Meanwhile, as all servers
operate over the same subset of the indices, the requested
response values for integrity check must also be a valid
codeword determined by the secret matrix P.

Suppose the user wants to challenge the cloud servers t
times to ensure the correctness of data storage. Then, he must
precompute t verification tokens for each GðjÞðj2f1; . . . ;ngÞ,
using a PRF fð�Þ, a PRP �ð�Þ, a challenge key kchal, and a
master permutation key KPRP . Specifically, to generate the
ith token for server j, the user acts as follows:

1. Derive a random challenge value �i of GF ð2pÞ by
�i ¼ fkchalðiÞ and a permutation key kðiÞprp based on
KPRP .

2. Compute the set of r randomly-chosen indices

fIq 2 ½1; . . . ; l�j1 � q � rg; where Iq ¼ �kðiÞprpðqÞ:

3. Calculate the token as

v
ðjÞ
i ¼

Xr
q¼1

�qi � GðjÞ½Iq�; where GðjÞ½Iq� ¼ gðjÞIq :

Note that v
ðjÞ
i , which is an element of GF ð2pÞ with small

size, is the response the user expects to receive from server j
when he challenges it on the specified data blocks.

After token generation, the user has the choice of either
keeping the precomputed tokens locally or storing them in
encrypted form on the cloud servers. In our case here, the
user stores them locally to obviate the need for encryption
and lower the bandwidth overhead during dynamic data
operation which will be discussed shortly. The details of
token generation are shown in Algorithm 1.

WANG ET AL.: TOWARD SECURE AND DEPENDABLE STORAGE SERVICES IN CLOUD COMPUTING 223

Algorithm 1. Token Precomputation.
1: procedure

2: Choose parameters l; n and function f; �;

3: Choose the number t of tokens;

4: Choose the number r of indices per verification;

5: Generate master key KPRP and challenge key kchal;

6: for vector GðjÞ; j 1; n do

7: for round i 1; t do

8: Derive �i ¼ fkchalðiÞ and kðiÞprp from KPRP .

9: Compute v
ðjÞ
i ¼

Pr
q¼1 �

q
i � GðjÞ½�kðiÞprpðqÞ�

10: end for

11: end for

12: Store all the vi’s locally.

13: end procedure

Once all tokens are computed, the final step before file

distribution is to blind each parity block g
ðjÞ
i in ðGðmþ1Þ; . . . ;

GðnÞÞ by

g
ðjÞ
i g

ðjÞ
i þ fkjðsijÞ; i 2 f1; . . . ; lg;

where kj is the secret key for parity vector GðjÞðj 2 fm þ
1; . . . ; ngÞ. This is for protection of the secret matrix P. We

will discuss the necessity of using blinded parities in detail

in Section 5.2. After blinding the parity information, the

user disperses all the n encoded vectors GðjÞ ðj 2 f1; . . . ; ngÞ
across the cloud servers S1; S2; . . . ; Sn.

3.3 Correctness Verification and Error Localization

Error localization is a key prerequisite for eliminating errors

in storage systems. It is also of critical importance to

identify potential threats from external attacks. However,

many previous schemes [23], [24] do not explicitly consider

the problem of data error localization, thus only providing

binary results for the storage verification. Our scheme

outperforms those by integrating the correctness verifica-

tion and error localization (misbehaving server identifica-

tion) in our challenge-response protocol: the response

values from servers for each challenge not only determine

the correctness of the distributed storage, but also contain

information to locate potential data error(s).
Specifically, the procedure of the ith challenge-response

for a cross-check over the n servers is described as follows:

1. The user reveals the �i as well as the ith permutation
key kðiÞprp to each servers.

2. The server storing vector GðjÞðj 2 f1; . . . ; ngÞ aggre-

gates those r rows specified by index kðiÞprp into a linear

combination

R
ðjÞ
i ¼

Xr
q¼1

�qi � GðjÞ½�kðiÞprpðqÞ�;

and send back R
ðjÞ
i ðj 2 f1; . . . ; ngÞ.

3. Upon receiving R
ðjÞ
i ’s from all the servers, the user

takes away blind values inRðjÞðj 2 fmþ 1; . . . ; ngÞ by

R
ðjÞ
i R

ðjÞ
i �

Xr
q¼1

fkjðsIq;jÞ � �
q
i ; where Iq ¼ �kðiÞprpðqÞ:

4. Then, the user verifies whether the received values
remain a valid codeword determined by the secret
matrix P�

R
ð1Þ
i ; . . . ; R

ðmÞ
i

�
�P ¼?

�
R
ðmþ1Þ
i ; . . . ; R

ðnÞ
i

�
:

Because all the servers operate over the same subset of
indices, the linear aggregation of these r specified rows
ðRð1Þi ; . . . ; R

ðnÞ
i Þ has to be a codeword in the encoded file

matrix (See Section 5.1 for the correctness analysis). If the
above equation holds, the challenge is passed. Otherwise, it
indicates that among those specified rows, there exist file
block corruptions.

Once the inconsistency among the storage has been
successfully detected, we can rely on the precomputed
verification tokens to further determine where the potential
data error(s) lies in. Note that each response R

ðjÞ
i is

computed exactly in the same way as token v
ðjÞ
i , thus the

user can simply find which server is misbehaving by
verifying the following n equations:

R
ðjÞ
i ¼

?
v
ðjÞ
i ; j 2 f1; . . . ; ng:

Algorithm 2 gives the details of correctness verification and
error localization.

Algorithm 2. Correctness Verification and Error Localization.

1: procedure CHALLENGE(i)

2: Recompute �i ¼ fkchalðiÞ and kðiÞprp from KPRP ;
3: Send f�i; kðiÞprpg to all the cloud servers;

4: Receive from servers:

fRðjÞi ¼
Pr

q¼1 �
q
i � GðjÞ½�kðiÞprpðqÞ�j1 � j � ng

5: for ðj mþ 1; nÞ do

6: RðjÞ RðjÞ �
Pr

q¼1 fkjðsIq;jÞ � �
q
i , Iq ¼ �kðiÞprpðqÞ

7: end for

8: if ððRð1Þi ; . . . ; R
ðmÞ
i Þ �P¼¼ðR

ðmþ1Þ
i ; . . . ; R

ðnÞ
i ÞÞ than

9: Accept and ready for the next challenge.
10: else

11: for (j 1; n) do

12: if ðRðjÞi ! ¼vðjÞi Þ than

13: return server j is misbehaving.

14: end if

15: end for

16: end if

17: end procedure

Discussion. Previous work [23], [24] has suggested using
the decoding capability of error-correction code to treat data
errors. But such approach imposes a bound on the number
of misbehaving servers b by b � bk=2c. Namely, they cannot
identify misbehaving servers when b > bk=2c.1 However,
our token-based approach, while allowing efficient storage
correctness validation, does not have this limitation on the
number of misbehaving servers. That is, our approach can
identify any number of misbehaving servers for b �
ðmþ kÞ. Also note that, for every challenge, each server
only needs to send back an aggregated value over the

224 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

1. In [23], the authors also suggest using brute-force decoding when their
dispersal code is an erasure code. However, such brute-force method is
asymptotically inefficient, and still cannot guarantee identification of all
misbehaving servers.

specified set of blocks. Thus, the bandwidth cost of our
approach is much less than the straightforward approaches
that require downloading all the challenged data.

3.4 File Retrieval and Error Recovery

Since our layout of file matrix is systematic, the user can
reconstruct the original file by downloading the data
vectors from the first m servers, assuming that they return
the correct response values. Notice that our verification
scheme is based on random spot-checking, so the storage
correctness assurance is a probabilistic one. However, by
choosing system parameters ðe:g:; r; l; tÞ appropriately and
conducting enough times of verification, we can guarantee
the successful file retrieval with high probability. On the
other hand, whenever the data corruption is detected, the
comparison of precomputed tokens and received response
values can guarantee the identification of misbehaving
server(s) (again with high probability), which will be
discussed shortly. Therefore, the user can always ask
servers to send back blocks of the r rows specified in the
challenge and regenerate the correct blocks by erasure
correction, shown in Algorithm 3, as long as the number of
identified misbehaving servers is less than k. (otherwise,
there is no way to recover the corrupted blocks due to lack
of redundancy, even if we know the position of misbehav-
ing servers.) The newly recovered blocks can then be
redistributed to the misbehaving servers to maintain the
correctness of storage.

Algorithm 3. Error Recovery.

1: procedure

% Assume the block corruptions have been detected

among

% the specified r rows;

% Assume s � k servers have been identified
misbehaving

2: Download r rows of blocks from servers;

3: Treat s servers as erasures and recover the blocks.

4: Resend the recovered blocks to corresponding

servers.

5: end procedure

3.5 Toward Third Party Auditing

As discussed in our architecture, in case the user does not
have the time, feasibility, or resources to perform the
storage correctness verification, he can optionally delegate
this task to an independent third-party auditor, making the
cloud storage publicly verifiable. However, as pointed out
by the recent work [30], [31], to securely introduce an
effective TPA, the auditing process should bring in no new
vulnerabilities toward user data privacy. Namely, TPA
should not learn user’s data content through the delegated
data auditing. Now we show that with only slight
modification, our protocol can support privacy-preserving
third party auditing.

The new design is based on the observation of linear
property of the parity vector blinding process. Recall that
the reason of blinding process is for protection of the secret
matrix P against cloud servers. However, this can be
achieved either by blinding the parity vector or by blinding
the data vector (we assume k < m). Thus, if we blind data
vector before file distribution encoding, then the storage

verification task can be successfully delegated to third party
auditing in a privacy-preserving manner. Specifically, the
new protocol is described as follows:

1. Before file distribution, the user blinds each file
block data g

ðjÞ
i in ðGð1Þ; . . . ; GðmÞÞ by g

ðjÞ
i g

ðjÞ
i þ

fkjðsijÞ; i 2 f1; . . . ; lg, where kj is the secret key for
data vector GðjÞðj 2 f1; . . . ;mgÞ.

2. Based on the blinded data vector ðGð1Þ; . . . ; GðmÞÞ, the
user generates k parity vectors ðGðmþ1Þ; . . . ; GðnÞÞ via
the secret matrix P.

3. The user calculates the ith token for server j as
previous scheme: v

ðjÞ
i ¼

Pr
q¼1 �

q
i � GðjÞ½Iq�, where

GðjÞ½Iq� ¼ gðjÞIq and �i ¼ fkchalðiÞ 2 GF ð2pÞ.
4. The user sends the token set fvðjÞi gf1�i�t;1�j�ng, secret

matrix P, permutation and challenge key KPRP , and
kchal to TPA for auditing delegation.

The correctness validation and misbehaving server iden-
tification for TPA is just similar to the previous scheme. The
only difference is that TPA does not have to take away the
blinding values in the servers’ response RðjÞðj 2 f1; . . . ; ngÞ
but verifies directly. As TPA does not know the secret
blinding key kjðj 2 f1; . . . ;mgÞ, there is no way for TPA to
learn the data content information during auditing process.
Therefore, the privacy-preserving third party auditing is
achieved. Note that compared to previous scheme, we only
change the sequence of file encoding, token precomputation,
and blinding. Thus, the overall computation overhead and
communication overhead remains roughly the same.

4 PROVIDING DYNAMIC DATA OPERATION

SUPPORT

So far, we assumed that F represents static or archived data.
This model may fit some application scenarios, such as
libraries and scientific data sets. However, in cloud data
storage, there are many potential scenarios where data
stored in the cloud is dynamic, like electronic documents,
photos, or log files, etc. Therefore, it is crucial to consider
the dynamic case, where a user may wish to perform
various block-level operations of update, delete, and
append to modify the data file while maintaining the
storage correctness assurance.

Since data do not reside at users’ local site but at cloud
service provider’s address domain, supporting dynamic
data operation can be quite challenging. On the one hand,
CSP needs to process the data dynamics request without
knowing the secret keying material. On the other hand,
users need to ensure that all the dynamic data operation
request has been faithfully processed by CSP. To address
this problem, we briefly explain our approach methodology
here and provide the details later. For any data dynamic
operation, the user must first generate the corresponding
resulted file blocks and parities. This part of operation has
to be carried out by the user, since only he knows the secret
matrix P. Besides, to ensure the changes of data blocks
correctly reflected in the cloud address domain, the user
also needs to modify the corresponding storage verification
tokens to accommodate the changes on data blocks. Only
with the accordingly changed storage verification tokens,
the previously discussed challenge-response protocol can
be carried on successfully even after data dynamics. In

WANG ET AL.: TOWARD SECURE AND DEPENDABLE STORAGE SERVICES IN CLOUD COMPUTING 225

other words, these verification tokens help to ensure that
CSP would correctly execute the processing of any dynamic
data operation request. Otherwise, CSP would be caught
cheating with high probability in the protocol execution
later on. Given this design methodology, the straightfor-
ward and trivial way to support these operations is for user
to download all the data from the cloud servers and
recompute the whole parity blocks as well as verification
tokens. This would clearly be highly inefficient. In this
section, we will show how our scheme can explicitly and
efficiently handle dynamic data operations for cloud data
storage, by utilizing the linear property of Reed-Solomon
code and verification token construction.

4.1 Update Operation

In cloud data storage, a user may need to modify some data

block(s) stored in the cloud, from its current value fij to a

new one, fij þ�fij. We refer this operation as data update.

Fig. 2 gives the high level logical representation of data

block update. Due to the linear property of Reed-Solomon

code, a user can perform the update operation and generate

the updated parity blocks by using �fij only, without

involving any other unchanged blocks. Specifically, the user

can construct a general update matrix �F as

�F ¼

�f11 �f12 . . . �f1m

�f21 �f22 . . . �f2m

..

. ..
. . .

. ..
.

�fl1 �fl2 . . . �flm

0BBBB@
1CCCCA

¼ ð�F1;�F2; . . . ;�FmÞ:

Note that we use zero elements in �F to denote the

unchanged blocks and thus �F should only be a sparse

matrix most of the time (we assume for certain time epoch,

the user only updates a relatively small part of file F). To

maintain the corresponding parity vectors as well as be

consistent with the original file layout, the user can multiply

�F by A and thus generate the update information for both

the data vectors and parity vectors as follows:

�F �A ¼
�
�Gð1Þ; . . . ;�GðmÞ;�Gðmþ1Þ; . . . ;�GðnÞ

�
¼
�
�F1; . . . ;�Fm;�G

ðmþ1Þ; . . . ;�GðnÞ
�
;

where �GðjÞ ðj 2 fmþ 1; . . . ; ngÞ denotes the update infor-

mation for the parity vector GðjÞ.

Because the data update operation inevitably affects some

or all of the remaining verification tokens, after preparation

of update information, the user has to amend those unused

tokens for each vector GðjÞ to maintain the same storage

correctness assurance. In other words, for all the unused

tokens, the user needs to exclude every occurrence of the old

data block and replace it with the new one. Thanks to the

homomorphic construction of our verification token, the user

can perform the token update efficiently. To give more

details, suppose a block GðjÞ½Is�, which is covered by the

specific token v
ðjÞ
i , has been changed to GðjÞ½Is� þ�GðjÞ½Is�,

where Is¼�kðiÞprpðsÞ. To maintain the usability of token v
ðjÞ
i , it is

not hard to verify that the user can simply update it by v
ðjÞ
i

v
ðjÞ
i þ �si � �GðjÞ½Is�, without retrieving other r� 1 blocks

required in the precomputation of v
ðjÞ
i .

After the amendment to the affected tokens,2 the user
needs to blind the update information �g

ðjÞ
i for each parity

block in ð�Gðmþ1Þ; . . . ;�GðnÞÞ to hide the secret matrix P by
�g
ðjÞ
i �g

ðjÞ
i þ fkjðsverij Þ; i 2 f1; . . . ; lg. Here, we use a new

seed sverij for the PRF. The version number ver functions like
a counter which helps the user to keep track of the blind
information on the specific parity blocks. After blinding, the
user sends update information to the cloud servers, which
perform the update operation as GðjÞ GðjÞ þ�GðjÞ;
ðj 2 f1; . . . ; ngÞ.

Discussion. Note that by using the new seed sverij for the
PRF functions every time (for a block update operation), we
can ensure the freshness of the random value embedded into
parity blocks. In other words, the cloud servers cannot
simply abstract away the random blinding information on
parity blocks by subtracting the old and newly updated
parity blocks. As a result, the secret matrix P is still being well
protected, and the guarantee of storage correctness remains.

4.2 Delete Operation

Sometimes, after being stored in the cloud, certain data
blocks may need to be deleted. The delete operation we are
considering is a general one, in which user replaces the
data block with zero or some special reserved data symbol.
From this point of view, the delete operation is actually a
special case of the data update operation, where the
original data blocks can be replaced with zeros or some
predetermined special blocks. Therefore, we can rely on the

226 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

2. In practice, it is possible that only a fraction of tokens need
amendment, since the updated blocks may not be covered by all the tokens.

Fig. 2. Logical representation of data dynamics, including block update, append, and delete.

update procedure to support delete operation, i.e., by
setting �fij in �F to be ��fij. Also, all the affected tokens
have to be modified and the updated parity information
has to be blinded using the same method specified in an
update operation.

4.3 Append Operation

In some cases, the user may want to increase the size of his
stored data by adding blocks at the end of the data file,
which we refer as data append. We anticipate that the most
frequent append operation in cloud data storage is bulk
append, in which the user needs to upload a large number
of blocks (not a single block) at one time.

Given the file matrix F illustrated in file distribution
preparation, appending blocks toward the end of a data file
is equivalent to concatenate corresponding rows at the
bottom of the matrix layout for file F (See Fig. 2). In the
beginning, there are only l rows in the file matrix. To
simplify the presentation, we suppose the user wants to
append m blocks at the end of file F, denoted as
ðflþ1;1; flþ1;2; . . . ; flþ1;mÞ (We can always use zero-padding
to make a row of m elements). With the secret matrix P,
the user can directly calculate the append blocks for each
parity server as ðflþ1;1; . . . ; flþ1;mÞ �P ¼ ðgðmþ1Þ

lþ1 ; . . . ; g
ðnÞ
lþ1Þ.

To ensure the newly appended blocks are covered by
our challenge tokens, we need a slight modification to our
token precomputation. Specifically, we require the user to
expect the maximum size in blocks, denoted as lmax, for
each of his data vector. This idea of supporting block
append was first suggested by Ateniese et al. [14] in a
single server setting, and it relies on both the initial budget
for the maximum anticipated data size lmax in each
encoded data vector and the system parameter rmax ¼
dr � ðlmax=lÞe for each precomputed challenge-response
token. The precomputation of the ith token on server j is
modified as follows: vi ¼

Prmax
q¼1 �

q
i � GðjÞ½Iq�, where

GðjÞ½Iq� ¼
GðjÞ½�

k
ðiÞ
prp
ðqÞ�; ½�

k
ðiÞ
prp
ðqÞ� � l;

0; ½�
k
ðiÞ
prp
ðqÞ� > l;

(
and the PRP �ð�Þ is modified as: �ð�Þ : f0; 1glog2ðlmaxÞ �
key! f0; 1glog2ðlmaxÞ. This formula guarantees that on average,
there will be r indices falling into the range of existing lblocks.
Because the cloud servers and the user have the agreement on
the number of existing blocks in each vectorGðjÞ, servers will
follow exactly the above procedure when recomputing the
token values upon receiving user’s challenge request.

Now when the user is ready to append new blocks, i.e.,
both the file blocks and the corresponding parity blocks are
generated, the total length of each vector GðjÞ will be
increased and fall into the range ½l; lmax�. Therefore, the
user will update those affected tokens by adding
�si � GðjÞ½Is� to the old vi whenever GðjÞ½Is� 6¼ 0 for Is > l,
where Is ¼ �kðiÞprpðsÞ. The parity blinding is similar as
introduced in update operation, and thus is omitted here.

4.4 Insert Operation

An insert operation to the data file refers to an append
operation at the desired index position while maintaining
the same data block structure for the whole data file, i.e.,
inserting a block F ½j� corresponds to shifting all blocks

starting with index jþ 1 by one slot. Thus, an insert
operation may affect many rows in the logical data file
matrix F, and a substantial number of computations are
required to renumber all the subsequent blocks as well as
recompute the challenge-response tokens. Hence, a direct
insert operation is difficult to support.

In order to fully support block insertion operation,
recent work [15], [16] suggests utilizing additional data
structure (for example, Merkle Hash Tree [32]) to maintain
and enforce the block index information. Following this line
of research, we can circumvent the dilemma of our block
insertion by viewing each insertion as a logical append
operation at the end of file F. Specifically, if we also use
additional data structure to maintain such logical to
physical block index mapping information, then all block
insertion can be treated via logical append operation,
which can be efficiently supported. On the other hand,
using the block index mapping information, the user can
still access or retrieve the file as it is. Note that as a tradeoff,
the extra data structure information has to be maintained
locally on the user side.

5 SECURITY ANALYSIS AND PERFORMANCE

EVALUATION

In this section, we analyze our proposed scheme in terms of
correctness, security, and efficiency. Our security analysis
focuses on the adversary model defined in Section 2. We
also evaluate the efficiency of our scheme via implementa-
tion of both file distribution preparation and verification
token precomputation.

5.1 Correctness Analysis

First, we analyze the correctness of the verification
procedure. Upon obtaining all the response R

ðjÞ
i s from

servers and taking away the random blind values from
R
ðjÞ
i ðj 2 fmþ 1; . . . ; ngÞ, the user relies on the equation
ðRð1Þi ; . . . ; R

ðmÞ
i Þ �P ¼

? ðRðmþ1Þ
i ; . . . ; R

ðnÞ
i Þ to ensure the storage

correctness. To see why this is true, we can rewrite the
equation according to the token computation:

Xr
q¼1

�qi � g
ð1Þ
Iq
; . . . ;

Xr
q¼1

�qi � g
ðmÞ
Iq

 !
�P

¼
Xr
q¼1

�qi � g
ðmþ1Þ
Iq

; . . . ;
Xr
q¼1

�qi � g
ðnÞ
Iq

 !
;

and, hence, the left-hand side (LHS) of the equation
expands as

LHS ¼
�
�i; �

2
i ; . . . ; �ri

�
g
ð1Þ
I1

g
ð2Þ
I1

. . . g
ðmÞ
I1

g
ð1Þ
I2

g
ð2Þ
I2

. . . g
ðmÞ
I2

..

. ..
. . .

. ..
.

g
ð1Þ
Ir

g
ð2Þ
Ir

. . . g
ðmÞ
Ir

0BBBBBB@

1CCCCCCA �P

¼
�
�i; �

2
i ; . . . ; �ri

�
g
ðmþ1Þ
I1

g
ðmþ2Þ
I1

. . . g
ðnÞ
I1

g
ðmþ1Þ
I2

g
ðmþ2Þ
I2

. . . g
ðnÞ
I2

..

. ..
. . .

. ..
.

g
ðmþ1Þ
Ir

g
ðmþ2Þ
Ir

. . . g
ðnÞ
Ir

0BBBBBB@

1CCCCCCA;

WANG ET AL.: TOWARD SECURE AND DEPENDABLE STORAGE SERVICES IN CLOUD COMPUTING 227

which equals the right hand side as required. Thus, it is
clear to show that as long as each server operates on the
same specified subset of rows, the above checking equation
will always hold.

5.2 Security Strength

5.2.1 Detection Probability against Data Modification

In our scheme, servers are required to operate only on
specified rows in each challenge-response protocol execu-
tion. We will show that this “sampling” strategy on selected
rows instead of all can greatly reduce the computational
overhead on the server, while maintaining high detection
probability for data corruption.

Suppose nc servers are misbehaving due to the possible
compromise or Byzantine failure. In the following analysis,
we do not limit the value of nc, i.e., nc � n. Thus, all the
analysis results hold even if all the servers are compromised.
We will leave the explanation on collusion resistance of our
scheme against this worst case scenario in a later section.
Assume the adversary modifies the data blocks in z rows out
of the l rows in the encoded file matrix. Let r be the number
of different rows for which the user asks for checking in a
challenge. Let X be a discrete random variable that is
defined to be the number of rows chosen by the user that
matches the rows modified by the adversary. We first
analyze the matching probability that at least one of the rows
picked by the user matches one of the rows modified by the
adversary: Pr

m ¼ 1�PfX ¼ 0g ¼ 1�
Qr�1

i¼0 ð1�minf z
l�i ; 1gÞ �

1� ðl�zl Þ
r. If none of the specified r rows in the ith

verification process are deleted or modified, the adversary
avoids the detection.

Next, we study the probability of a false negative result

that there exists at least one invalid response calculated

from those specified r rows, but the checking equation

still holds. Consider the responses R
ð1Þ
i ; . . . ; R

ðnÞ
i returned

from the data storage servers for the ith challenge, each

response value R
ðjÞ
i , calculated within GF ð2pÞ, is based on r

blocks on server j. The number of responses Rðmþ1Þ; . . . ; RðnÞ

from parity servers is k ¼ n�m. Thus, according to

proposition 2 of our previous work in [33], the false

negative probability is Pr
f ¼Pr1þPr2, where Pr1¼ð1þ2�pÞnc�1

2nc�1

and Pr2 ¼ ð1� Pr1Þð2�pÞk.
Based on above discussion, it follows that the probability

of data modification detection across all storage servers is
Pd ¼ Pr

m � ð1� Pr
f Þ. Fig. 3 plots Pd for different values of

l; r; z while we set p ¼ 16, nc ¼ 10, and k ¼ 5.3 From the
figure we can see that if more than a fraction of the data file
is corrupted, then it suffices to challenge for a small
constant number of rows in order to achieve detection with
high probability. For example, if z ¼ 1% of l, every token
only needs to cover 460 indices in order to achieve the
detection probability of at least 99 percent.

5.2.2 Identification Probability for Misbehaving Servers

We have shown that, if the adversary modifies the data

blocks among any of the data storage servers, our sampling

checking scheme can successfully detect the attack with

high probability. As long as the data modification is

caught, the user will further determine which server is

malfunctioning. This can be achieved by comparing the

response values R
ðjÞ
i with the prestored tokens v

ðjÞ
i , where

j 2 f1; . . . ; ng. The probability for error localization or

identifying misbehaving server(s) can be computed in a

similar way. It is the product of the matching probability

for sampling check and the probability of complementary

event for the false negative result. Obviously, the matching

probability is bPr
m ¼ 1�

Qr�1
i¼0 ð1�minf ẑ

l�i ; 1gÞ, where ẑ � z.
Next, we consider the false negative probability that

R
ðjÞ
i ¼ v

ðjÞ
i when at least one of ẑ blocks is modified.

According to [33, proposition 1], tokens calculated in

GF ð2pÞ for two different data vectors collide with prob-

ability bPr
f ¼ 2�p. Thus, the identification probability for

misbehaving server(s) is bPd ¼ bPr
m � ð1� bPr

f Þ. Along with the

analysis in detection probability, if z ¼ 1% of l and each

228 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

3. Note that nc and k only affect the false negative probability Pr
f .

However in our scheme, since p ¼ 16 almost dominates the negligibility of
Pr
f , the value of nc and k have little effect in the plot of Pd.

Fig. 3. The detection probability Pd against data modification. We show Pd as a function of l (the number of blocks on each cloud storage server) and

r (the number of rows queried by the user, shown as a percentage of l) for two values of z (the number of rows modified by the adversary). Both

graphs are plotted under p ¼ 16, nc ¼ 10, and k ¼ 5, but with different scale. (a) z ¼ 1% of l. (b) z ¼ 10% of l.

token covers 460 indices, the identification probability for

misbehaving servers is at least 99 percent. Note that if the

number of detected misbehaving servers is less than the

parity vectors, we can use erasure-correcting code to

recover the corrupted data, achieving storage dependability

as shown at Section 3.4 and Algorithm 3.

5.2.3 Security Strength against Worst Case Scenario

We now explain why it is a must to blind the parity blocks
and how our proposed schemes achieve collusion resistance
against the worst case scenario in the adversary model.

Recall that in the file distribution preparation, the
redundancy parity vectors are calculated via multiplying
the file matrix F by P, where P is the secret parity
generation matrix we later rely on for storage correctness
assurance. If we disperse all the generated vectors directly
after token precomputation, i.e., without blinding, mal-
icious servers that collaborate can reconstruct the secret P
matrix easily: they can pick blocks from the same rows
among the data and parity vectors to establish a set of m � k
linear equations and solve for the m � k entries of the parity
generation matrix P. Once they have the knowledge of P,
those malicious servers can consequently modify any part
of the data blocks and calculate the corresponding parity
blocks, and vice versa, making their codeword relationship
always consistent. Therefore, our storage correctness
challenge scheme would be undermined—even if those
modified blocks are covered by the specified rows, the
storage correctness check equation would always hold.

To prevent colluding servers from recovering P and
making up consistently-related data and parity blocks, we
utilize the technique of adding random perturbations to the
encoded file matrix and hence hide the secret matrix P. We
make use of a keyed pseudorandom function fkjð�Þ with
key kj and seed sverij , both of which has been introduced
previously. In order to maintain the systematic layout of
data file, we only blind the parity blocks with random
perturbations (We can also only blind data blocks and
achieve privacy-preserving third party auditing, as shown
in Section 3.5). Our purpose is to add “noise” to the set of
linear equations and make it computationally infeasible to
solve for the correct secret matrix P. By blinding each parity
block with random perturbation, the malicious servers no
longer have all the necessary information to build up the

correct linear equation groups and therefore cannot derive
the secret matrix P.

5.3 Performance Evaluation

We now assess the performance of the proposed storage
auditing scheme. We focus on the cost of file distribution
preparation as well as the token generation. Our experiment
is conducted on a system with an Intel Core 2 processor
running at 1.86 GHz, 2,048 MB of RAM, and a 7,200 RPM
Western Digital 250 GB Serial ATA drive. Algorithms are
implemented using open-source erasure coding library
Jerasure [34] written in C. All results represent the mean
of 20 trials.

5.3.1 File Distribution Preparation

As discussed, file distribution preparation includes the
generation of parity vectors (the encoding part) as well as
the corresponding parity blinding part. We consider two
sets of different parameters for the ðm; kÞ Reed-Solomon
encoding, both of which work over GF ð216Þ. Fig. 4 shows
the total cost for preparing a 1 GB file before outsourcing. In
the figure on the left, we set the number of data vectors m
constant at 10, while decreasing the number of parity
vectors k from 10 to 2. In the one on the right, we keep the
total number of data and parity vectors mþ k fixed at 22,
and change the number of data vectors m from 18 to 10.
From the figure, we can see the number k is the dominant
factor for the cost of both parity generation and parity
blinding. This can be explained as follows: on the one hand,
k determines how many parity vectors are required before
data outsourcing, and the parity generation cost increases
almost linearly with the growth of k; on the other hand, the
growth of k means the larger number of parity blocks
required to be blinded, which directly leads to more calls to
our nonoptimized PRF generation in C. By using more
practical PRF constructions, such as HMAC [35], the parity
blinding cost is expected to be further improved.

Compared to the existing work [23], it can be shown from
Fig. 4 that the file distribution preparation of our scheme is
more efficient. This is because in [23] an additional layer of
error-correcting code has to be conducted on all the data and
parity vectors right after the file distribution encoding. For
the same reason, the two-layer coding structure makes the
solution in [23] more suitable for static data only, as any

WANG ET AL.: TOWARD SECURE AND DEPENDABLE STORAGE SERVICES IN CLOUD COMPUTING 229

(a) (b)

Fig. 4. Performance comparison between two different parameter settings for 1 GB file distribution preparation. The ðm; kÞ denotes the chosen

parameters for the underlying Reed-Solomon coding. For example, (10,2) means we divide file into 10 data vectors and then generate two redundant

parity vectors. (a) m is fixed, and k is decreasing. (b) mþ k is fixed.

change to the contents of file F must propagate through the
two-layer error-correcting code, which entails both high
communication and computation complexity. But in our
scheme, the file update only affects the specific “rows” of
the encoded file matrix, striking a good balance between
both error resilience and data dynamics.

5.3.2 Challenge Token Computation

Although in our scheme the number of verification token t is
a fixed priori determined before file distribution, we can
overcome this issue by choosing sufficient large t in practice.
For example, when t is selected to be 7,300 and 14,600, the
data file can be verified every day for the next 20 years and
40 years, respectively, which should be of enough use in
practice. Note that instead of directly computing each token,
our implementation uses the Horner algorithm suggested in
[24] to calculate token v

ðjÞ
i from the back, and achieves a

slightly faster performance. Specifically

v
ðjÞ
i ¼

Xr
q¼1

�rþ1�q
i � GðjÞ½Iq� ¼ ðððGðjÞ½I1� � �i

þGðjÞ½I2�Þ � �i þGðjÞ½I3� . . .Þ � �i þGðjÞ½Ir�Þ � �i;

which only requires r multiplication and ðr� 1Þ XOR
operations. With Jerasure library [34], the multiplication over
GF ð216Þ in our experiment is based on discrete logarithms.

Following the security analysis, we select a practical
parameter r ¼ 460 for our token precomputation (see
Section 5.2.1), i.e., each token covers 460 different indices.
Other parameters are along with the file distribution
preparation. Our implementation shows that the average
token precomputation cost is about 0.4 ms. This is
significantly faster than the hash function based token
precomputation scheme proposed in [14]. To verify encoded
data distributed over a typical number of 14 servers, the total
cost for token precomputation is no more than 1 and
1.5 minutes, for the next 20 years and 40 years, respectively.
Note that each token is only an element of field GF ð216Þ, the
extra storage for those precomputed tokens is less than 1MB,
and thus can be neglected. Table 1 gives a summary of
storage and computation cost of token precomputation for
1GB data file under different system settings.

6 RELATED WORK

Juels and Kaliski Jr. [10] described a formal “proof of
retrievability” (POR) model for ensuring the remote data
integrity. Their scheme combines spot-checking and error-
correcting code to ensure both possession and retrievability

of files on archive service systems. Shacham and Waters
[17] built on this model and constructed a random linear
function-based homomorphic authenticator which enables
unlimited number of challenges and requires less commu-
nication overhead due to its usage of relatively small size of
BLS signature. Bowers et al. [18] proposed an improved
framework for POR protocols that generalizes both Juels
and Shacham’s work. Later in their subsequent work,
Bowers et al. [23] extended POR model to distributed
systems. However, all these schemes are focusing on static
data. The effectiveness of their schemes rests primarily on
the preprocessing steps that the user conducts before
outsourcing the data file F. Any change to the contents of
F, even few bits, must propagate through the error-
correcting code and the corresponding random shuffling
process, thus introducing significant computation and
communication complexity. Recently, Dodis et al. [20] gave
theoretical studies on generalized framework for different
variants of existing POR work.

Ateniese et al. [11] defined the “provable data posses-
sion” (PDP) model for ensuring possession of file on
untrusted storages. Their scheme utilized public key-based
homomorphic tags for auditing the data file. However, the
precomputation of the tags imposes heavy computation
overhead that can be expensive for an entire file. In their
subsequent work, Ateniese et al. [14] described a PDP
scheme that uses only symmetric key-based cryptography.
This method has lower overhead than their previous
scheme and allows for block updates, deletions, and
appends to the stored file, which has also been supported
in our work. However, their scheme focuses on single
server scenario and does not provide data availability
guarantee against server failures, leaving both the distrib-
uted scenario and data error recovery issue unexplored. The
explicit support of data dynamics has further been studied
in the two recent work [15] and [16]. Wang et al. [15]
proposed to combine BLS-based homomorphic authentica-
tor with Merkle Hash Tree to support fully data dynamics,
while Erway et al. [16] developed a skip list-based scheme
to enable provable data possession with fully dynamics
support. The incremental cryptography work done by
Bellare et al. [36] also provides a set of cryptographic
building blocks such as hash, MAC, and signature functions
that may be employed for storage integrity verification
while supporting dynamic operations on data. However,
this branch of work falls into the traditional data integrity
protection mechanism, where local copy of data has to be
maintained for the verification. It is not yet clear how the
work can be adapted to cloud storage scenario where users
no longer have the data at local sites but still need to ensure
the storage correctness efficiently in the cloud.

230 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

TABLE 1
The Storage and Computation Cost of Token Precomputation

for 1 GB Data File under Different System Settings

The ðm; kÞ denotes the parameters for the underlying Reed-Solomon coding, as illustrated in Fig. 4.

In other related work, Curtmola et al. [19] aimed to
ensure data possession of multiple replicas across the
distributed storage system. They extended the PDP scheme
to cover multiple replicas without encoding each replica
separately, providing guarantee that multiple copies of data
are actually maintained. Lillibridge et al. [25] presented a
P2P backup scheme in which blocks of a data file are
dispersed across mþ k peers using an ðm; kÞ-erasure code.
Peers can request random blocks from their backup peers
and verify the integrity using separate keyed cryptographic
hashes attached on each block. Their scheme can detect data
loss from free-riding peers, but does not ensure all data are
unchanged. Filho and Barreto [37] proposed to verify data
integrity using RSA-based hash to demonstrate uncheatable
data possession in peer-to-peer file sharing networks.
However, their proposal requires exponentiation over the
entire data file, which is clearly impractical for the server
whenever the file is large. Shah et al. [12], [13] proposed
allowing a TPA to keep online storage honest by first
encrypting the data then sending a number of precomputed
symmetric-keyed hashes over the encrypted data to the
auditor. However, their scheme only works for encrypted
files, and auditors must maintain long-term state. Schwarz
and Miller [24] proposed to ensure static file integrity across
multiple distributed servers, using erasure-coding and
block-level file integrity checks. We adopted some ideas
of their distributed storage verification protocol. However,
our scheme further support data dynamics and explicitly
study the problem of misbehaving server identification,
while theirs did not. Very recently, Wang et al. [31] gave a
study on many existing solutions on remote data integrity
checking, and discussed their pros and cons under different
design scenarios of secure cloud storage services.

Portions of the work presented in this paper have
previously appeared as an extended abstract in [1]. We have
revised the paper a lot and add more technical details as
compared to [1]. The primary improvements are as follows:
First, we provide the protocol extension for privacy-
preserving third-party auditing, and discuss the application
scenarios for cloud storage service. Second, we add correct-
ness analysis of proposed storage verification design. Third,
we completely redo all the experiments in our performance
evaluation part, which achieves significantly improved
result as compared to [1]. We also add detailed discussion
on the strength of our bounded usage for protocol verifica-
tions and its comparison with state of the art.

7 CONCLUSION

In this paper, we investigate the problem of data security in
cloud data storage, which is essentially a distributed storage
system. To achieve the assurances of cloud data integrity
and availability and enforce the quality of dependable
cloud storage service for users, we propose an effective and
flexible distributed scheme with explicit dynamic data
support, including block update, delete, and append. We
rely on erasure-correcting code in the file distribution
preparation to provide redundancy parity vectors and
guarantee the data dependability. By utilizing the homo-
morphic token with distributed verification of erasure-
coded data, our scheme achieves the integration of storage

correctness insurance and data error localization, i.e.,
whenever data corruption has been detected during the
storage correctness verification across the distributed
servers, we can almost guarantee the simultaneous identi-
fication of the misbehaving server(s). Considering the time,
computation resources, and even the related online burden
of users, we also provide the extension of the proposed
main scheme to support third-party auditing, where users
can safely delegate the integrity checking tasks to third-
party auditors and be worry-free to use the cloud storage
services. Through detailed security and extensive experi-
ment results, we show that our scheme is highly efficient
and resilient to Byzantine failure, malicious data modifica-
tion attack, and even server colluding attacks.

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation under grants CNS-1054317, CNS-
1116939, CNS-1156318, and CNS-1117111, and by an
Amazon web service research grant. A preliminary
version [1] of this paper was presented at the 17th IEEE
International Workshop on Quality of Service (IWQoS ’09).

REFERENCES

[1] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring Data Storage
Security in Cloud Computing,” Proc. 17th Int’l Workshop Quality of
Service (IWQoS ’09), pp. 1-9, July 2009.

[2] Amazon.com, “Amazon Web Services (AWS),” http://aws.
amazon.com, 2009.

[3] Sun Microsystems, Inc., “Building Customer Trust in Cloud
Computing with Transparent Security,” https://www.sun.com/
offers/details/sun_transparency.xml, Nov. 2009.

[4] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the
Public Cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69-73,
2012.

[5] M. Arrington, “Gmail Disaster: Reports of Mass Email Deletions,”
http://www.techcrunch.com/2006/12/28/gmail-disasterreports-
of-mass-email-deletions, Dec. 2006.

[6] J. Kincaid, “MediaMax/TheLinkup Closes Its Doors,” http://
www.techcrunch.com/2008/07/10/mediamaxthelinkup-closes-
its-doors, July 2008.

[7] Amazon.com, “Amazon S3 Availability Event: July 20, 2008,”
http://status.aws.amazon.com/s3-20080720.html, July 2008.

[8] S. Wilson, “Appengine Outage,” http://www.cio-weblog.com/
50226711/appengine_outage.php, June 2008.

[9] B. Krebs, “Payment Processor Breach May Be Largest Ever,”
http://voices.washingtonpost.com/securityfix/2009/01/
payment_processor_breach_may_b.html, Jan. 2009.

[10] A. Juels and B.S. Kaliski Jr., “PORs: Proofs of Retrievability for
Large Files,” Proc. 14th ACM Conf. Computer and Comm. Security
(CCS ’07), pp. 584-597, Oct. 2007.

[11] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at Untrusted
Stores,” Proc. 14th ACM Conf. Computer and Comm. Security (CCS
’07), pp. 598-609, Oct. 2007.

[12] M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan, “Auditing
to Keep Online Storage Services Honest,” Proc. 11th USENIX
Workshop Hot Topics in Operating Systems (HotOS ’07), pp. 1-6, 2007.

[13] M.A. Shah, R. Swaminathan, and M. Baker, “Privacy-Preserving
Audit and Extraction of Digital Contents,” Cryptology ePrint
Archive, Report 2008/186, http://eprint.iacr.org, 2008.

[14] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, “Scalable
and Efficient Provable Data Possession,” Proc. Fourth Int’l Conf.
Security and Privacy in Comm. Netowrks (SecureComm ’08), pp. 1-10,
2008.

[15] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamics for Storage Security in Cloud
Computing,” Proc. 14th European Conf. Research in Computer
Security (ESORICS ’09), pp. 355-370, 2009.

WANG ET AL.: TOWARD SECURE AND DEPENDABLE STORAGE SERVICES IN CLOUD COMPUTING 231

[16] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia,
“Dynamic Provable Data Possession,” Proc. 16th ACM Conf.
Computer and Comm. Security (CCS ’09), pp. 213-222, 2009.

[17] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
Proc. 14th Int’l Conf. Theory and Application of Cryptology and
Information Security: Advances in Cryptology (Asiacrypt ’08), pp. 90-
107, 2008.

[18] K.D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability:
Theory and Implementation,” Proc. ACM Workshop Cloud Comput-
ing Security (CCSW ’09), pp. 43-54, 2009.

[19] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP:
Multiple-Replica Provable Data Possession,” Proc. IEEE 28th Int’l
Conf. Distributed Computing Systems (ICDCS ’08), pp. 411-420, 2008.

[20] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of Retrievability via
Hardness Amplification,” Proc. Sixth Theory of Cryptography Conf.
(TCC ’09), Mar. 2009.

[21] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE Trans. Parallel and Distributed Systems, vol. 22,
no. 5, pp. 847-859, 2011.

[22] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans.
Computers, preprint, 2012, doi:10.1109/TC.2011.245.

[23] K.D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability
and Integrity Layer for Cloud Storage,” Proc. ACM Conf. Computer
and Comm. Security (CCS ’09), pp. 187-198, 2009.

[24] T. Schwarz and E.L. Miller, “Store, Forget, and Check: Using
Algebraic Signatures to Check Remotely Administered Storage,”
Proc. IEEE Int’l Conf. Distributed Computing Systems (ICDCS ’06),
pp. 12-12, 2006.

[25] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard,
“A Cooperative Internet Backup Scheme,” Proc. USENIX Ann.
Technical Conf. (General Track), pp. 29-41, 2003.

[26] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and
Proactive Recovery,” ACM Trans. Computer Systems, vol. 20, no. 4,
pp. 398-461, 2002.

[27] L. Carter and M. Wegman, “Universal Hash Functions,” J.
Computer and System Sciences, vol. 18, no. 2, pp. 143-154, 1979.

[28] J. Hendricks, G. Ganger, and M. Reiter, “Verifying Distributed
Erasure-Coded Data,” Proc. 26th ACM Symp. Principles of
Distributed Computing, pp. 139-146, 2007.

[29] J.S. Plank and Y. Ding, “Note: Correction to the 1997 Tutorial on
Reed-Solomon Coding,” Technical Report CS-03-504, Univ. of
Tennessee, Apr. 2003.

[30] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Storage Security in Cloud Computing,” Proc.
IEEE INFOCOM, Mar. 2010.

[31] C. Wang, K. Ren, W. Lou, and J. Li, “Towards Publicly Auditable
Secure Cloud Data Storage Services,” IEEE Network Magazine,
vol. 24, no. 4, pp. 19-24, July/Aug. 2010.

[32] R.C. Merkle, “Protocols for Public Key Cryptosystems,” Proc. IEEE
Symp. Security and Privacy, 1980.

[33] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and Secure
Sensor Data Storage with Dynamic Integrity Assurance,” Proc.
IEEE INFOCOM, Apr. 2009.

[34] J.S. Plank, S. Simmerman, and C.D. Schuman, “Jerasure: A Library
in C/C++ Facilitating Erasure Coding for Storage Applications -
Version 1.2,” Technical Report CS-08-627, Univ. of Tennessee,
Aug. 2008.

[35] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions
for Message Authentication,” Proc. 16th Ann. Int’l Cryptology Conf.
Advances in Cryptology (Crypto ’96), pp. 1-15, 1996.

[36] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental
Cryptography: The Case of Hashing and Signing,” Proc. 14th
Ann. Int’l Cryptology Conf. Advances in Cryptology (CRYPTO ’94),
pp. 216-233, 1994.

[37] D.L.G. Filho and P.S.L.M. Barreto, “Demonstrating Data Posses-
sion and Uncheatable Data Transfer,” Cryptology ePrint Archive,
Report 2006/150, http://eprint.iacr.org, 2006.

Cong Wang received the BE and ME degrees
from Wuhan University, China, in 2004 and
2007, respectively. He is currently a PhD student
in the Electrical and Computer Engineering
Department at the Illinois Institute of Technol-
ogy. He was a summer intern at the Palo Alto
Research Centre in 2011. His research interests
are in the areas of applied cryptography and
network security, with a current focus on secure
data services in cloud computing and secure

computation outsourcing. He is a student member of the IEEE.

Qian Wang received the BS degree from
Wuhan University, China, in 2003 and the MS
degree from the Shanghai Institute of Micro-
system and Information Technology, Chinese
Academy of Sciences, China, in 2006, both in
electrical engineering. He is currently working
toward the PhD degree in the Electrical and
Computer Engineering Department at the Illinois
Institute of Technology. His research interests
include wireless network security and privacy

and cloud computing security. He was a corecipient of the Best Paper
Award from IEEE ICNP 2011. He is a student member of the IEEE.

Kui Ren received the PhD degree in electrical
and computer engineering from Worcester Poly-
technic Institute in 2007. He is currently an
assistant professor in the Electrical and Com-
puter Engineering Department at the Illinois
Institute of Technology. His research interests
include security and privacy in cloud computing,
wireless security, smart grid security, and sensor
network security. His research is supported by
the US National Science Foundation (NSF),

DoE, AFRL, and Amazon. He was a corecipient of the Best Paper
Award from IEEE ICNP 2011 and a recipient of the NSF Faculty Early
Career Development (CAREER) Award in 2011. He is a senior member
of the IEEE and the IEEE Computer Society and a member of the ACM.

Ning Cao received the BE and ME degrees from
Xi’an Jiaotong University, China, in 2002 and
2008, respectively. He is currently working
toward the PhD degree in the Electrical and
Computer Engineering Department, Worcester
Polytechnic Institute. His research interests are in
the areas of storage codes, security and privacy
in cloud computing, and secure mobile cloud.

Wenjing Lou eceived the BE and ME degrees in
computer science and engineering from Xian
Jiaotong University, China, in 1993 and 1996,
respectively, the MASc degree from Nanyang
Technological University, Singapore, in 1998,
and the PhD degree in electrical and computer
engineering from the University of Florida in
2003. She joined the Computer Science Depart-
ment at the Virginia Polytechnic Institute and
State University in 2011 and has been an

associate professor with tenure since then. Prior to that, she was on
the faculty of the Department of Electrical and Computer Engineering at
Worcester Polytechnic Institute, where she was an assistant professor
since 2003 and was promoted to associate professor with tenure in 2009.
She is currently serving on the editorial boards of five journals: the IEEE
Transactions on Wireless Communications, the IEEE Transactions on
Smart Grid, IEEE Wireless Communications Letters, Elsevier Computer
Networks, and Springer Wireless Networks. She has served as a TPC
cochair for the security symposiums of several leading IEEE confer-
ences. She was named a Joseph Samuel Satin Distinguished Fellow in
2006 by WPI, was a recipient of the US National Science Foundation
Faculty Early Career Development (CAREER) award in 2008, and
received the Sigma Xi Junior Faculty Research Award at WPI in 2009.
She is a senior member of the IEEE.

232 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

