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Abstract—An important performance consideration for wire-
less sensor networks is the amount of information collected by
all the nodes in the network over the course of network lifetime.
Since the objective of maximizing the sum of rates of all the
nodes in the network can lead to a severe bias in rate allocation
among the nodes, we advocate the use of lexicographical max-
min (LMM) rate allocation. To calculate the LMM rate allocation
vector, we develop a polynomial-time algorithm by exploiting the
parametric analysis (PA) technique from linear program (LP),
which we call serial LP with Parametric Analysis (SLP-PA). We
show that the SLP-PA can be also employed to address the LMM
node lifetime problem much more efficiently than a state-of-the-
art algorithm proposed in the literature. More important, we
show that there exists an elegant duality relationship between
the LMM rate allocation problem and the LMM node lifetime
problem. Therefore, it is sufficient to solve only one of the two
problems. Important insights can be obtained by inferring duality
results for the other problem.

Index Terms—Theory, sensor networks, energy constraint,
network capacity, rate allocation, lexicographic max-min, node
lifetime, linear programming, parametric analysis, flow routing.

I. INTRODUCTION

W IRELESS sensor networks consist of battery-powered
nodes that are endowed with a multitude of sensing

modalities including multi-media (e.g., video, audio) and
scalar data (e.g., temperature, pressure, light, magnetometer,
infrared). Although there have been significant improvements
in processor design and computing, advances in battery tech-
nology still lag behind, making energy resource considerations
the fundamental challenge in wireless sensor networks. Conse-
quently, there have been active research efforts on performance
limits of wireless sensor networks. These performance limits
include, among others, network capacity (see e.g., [13]) and
network lifetime (see e.g., [7], [8]). Network capacity typically
refers to the maximum amount of bit volume that can be
successfully delivered to the base station (“sink node”) by all
the nodes in the network, while network lifetime refers to the
maximum time limit that nodes in the network remain alive
until one or more nodes drain up their energy.

In this paper, we consider an overarching problem that
encompasses both performance metrics. In particular, we study
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the network capacity problem under a given network lifetime
requirement. Specifically, for a wireless sensor network where
each node is provisioned with an initial energy, if all nodes
are required to live up to a certain lifetime criterion, what
is the maximum amount of bit volume that can be generated
by the entire network? At first glance, it appears desirable
to maximize the sum of rates from all the nodes in the
network, subject to the condition that each node can meet the
network lifetime requirement. Mathematically, this problem
can be formulated as a linear programming (LP) problem (see
Section II-B) within which the objective function is defined
as the sum of rates over all the nodes in the network and the
constraints are: (1) flow balance is preserved at each node,
and (2) the energy constraint at each node is met for the
given network lifetime requirement. However, the solution
to this problem shows (see Section VI) that although the
network capacity (i.e., the sum of bit rates over all nodes) is
maximized, there exists a severe bias in rate allocation among
the nodes. In particular, those nodes that consume the least
amount of power on their data path toward the base station
are allocated with much more bit rates than other nodes in
the network. Consequently, the data collection behavior for
the entire network only favors certain nodes that have this
property, while other nodes will be unfavorably penalized with
much smaller bit rates.

The fairness issue associated with the network capacity
maximization objective calls for a careful consideration in
rate allocation among the nodes. In this paper, we investigate
the rate allocation problem in an energy-constrained sensor
network for a given network lifetime requirement. Our objec-
tive is to achieve a certain measure of optimality in the rate
allocation that takes into account both fairness and bit rate
maximization. We advocate to use the so-called Lexicographic
Max-Min (LMM) criterion [14], which maximizes the bit
rates for all the nodes for the given energy constraint and
network lifetime requirement. At first level, the smallest rate
among all the nodes is maximized. Then, we continue to
maximize the second level of smallest rate and so forth. The
LMM rate allocation criterion is appealing since it addresses
both fairness and efficiency (i.e., bit rate maximization) in an
energy-constrained network.

A naive approach to the LMM rate allocation problem
would be to apply a max-min-like iterative procedure. Under
this approach, successive LPs are employed to calculate the
maximum rate at each level based on the available energy for
the remaining nodes, until all nodes use up their energy. We
call this approach “serial LP with energy reservation” (SLP-
ER). We show that, although SLP appears intuitive, unfortu-
nately it usually gives an incorrect solution. To understand
how this could happen, we must understand a fundamental
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difference between the LMM rate allocation problem described
here and the classical max-min rate allocation in [3]. Under
the LMM rate allocation problem, the rate allocation problem
is implicitly coupled with a flow routing problem, while under
the classical max-min rate allocation, there is no routing
problem involved since the routes for all flows are given. As it
turns out, for the LMM rate allocation problem, any iterative
rate allocation approach that requires energy reservation at
each iteration is incorrect. This is because, unlike max-min,
which addresses only the rate allocation problem with fixed
routes and yields a unique solution at each iteration, for
the LMM rate allocation problem, there usually exist non-
unique flow routing solutions corresponding to the same rate
allocation at each level. Consequently, each of these flow
routing solutions will yield different available energy levels on
the remaining nodes for future iterations and so forth, leading
to a different rate allocation vector, which usually does not
coincide with the optimal LMM rate allocation vector.

In this paper, we develop an efficient polynomial-time
algorithm to solve the LMM rate allocation problem. We
exploit the so-called parametric analysis (PA) technique [2]
at each rate level to determine the minimum set of nodes that
must deplete their energy. We call this approach serial LP
with PA (SLP-PA). In most cases when the problem is non-
degenerate, the SLP-PA algorithm is extremely efficient and
only requires O(N) time complexity to determine whether or
not a node is in the minimum node set for each rate level.
Even for the rare case when the problem is degenerate, the
SLP-PA algorithm is still much more efficient than the state-
of-the-art slack variable (SV)-based approach proposed in [6],
due to fewer number of LPs involved at each rate level.

We also extend the PA technique for the LMM rate alloca-
tion problem to address the so-called maximum node lifetime
curve problem in [6], which we call LMM node lifetime
problem. We show that the SLP-PA approach is much more
efficient than the slack variable (SV)-based approach (SLP-
SV) described in [6]. More importantly, we show that there
exists a simple and elegant duality relationship between the
LMM rate allocation problem and the LMM node lifetime
problem. As a result, it is sufficient to solve only one of these
two problems. Important insights can be obtained by inferring
duality results for the other problem.

The remainder of this paper is organized as follows. In
Section II, we describe the network and energy model, and for-
mulate the LMM rate allocation problem. Section III presents
our SLP-PA algorithm to the LMM rate allocation problem.
In Section IV, we introduce the LMM node lifetime problem
and apply the SLP-PA algorithm to solve it. Section V shows
an interesting duality relationship between the LMM rate
allocation problem and the LMM node lifetime problem. In
Section VI, we present numerical results. Section VII reviews
related work and Section VIII concludes this paper.

II. SYSTEM MODELING AND PROBLEM FORMULATION

We consider a two-tier architecture for wireless sensor net-
works. Figures 1(a) and (b) show the physical and hierarchical
network topology for such a network, respectively. There are
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Fig. 1. Reference architecture for two-tier wireless sensor networks.

three types of nodes in the network, namely, micro-sensor
nodes (MSNs), aggregation and forwarding nodes (AFNs),
and a base station (BS). The MSNs can be application-specific
sensor nodes (e.g., temperature sensor nodes (TSNs), pressure
sensor nodes (PSNs), and video sensor nodes (VSNs)) and they
constitute the lower tier of the network. They are deployed in
groups (or clusters) at strategic locations for surveillance and
monitoring applications. The MSNs are small and low-cost.
The objective of an MSN is very simple: Once triggered by
an event, it starts to capture sensing date and sends it directly
to the local AFN.1

For each cluster of MSNs, there is one AFN, which is
different from an MSN in terms of physical properties and
functions. The primary functions of an AFN are: (1) data
aggregation (or “fusion”) for data flows from the local cluster
of MSNs, and (2) forwarding (or relaying) the aggregated
information to the next hop AFN (toward the base station). For
data fusion, an AFN analyzes the content of each data stream
it receives and exploits the correlation among the data streams.
An AFN also serves as a relay node for other AFNs to carry
traffic toward the base station. Although an AFN is expected
to be provisioned with much more energy than an MSN, it
also consumes energy at a substantially higher rate (due to
wireless communication over large distances). Consequently,
an AFN has a limited lifetime. Upon depletion of energy at
an AFN, we expect that the coverage for the particular area
under surveillance is lost, despite the fact that some of the
MSNs within the cluster may still have remaining energy.2

1Due to the small distance between an MSN and its AFN, multi-hop routing
among the MSNs may not be necessary.

2We assume that each MSN can only forward information to its local AFN
for processing (e.g., video fusion).
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The third component in the two-tier architecture is the base
station. The base station is, essentially, the sink node for data
streams from all the AFNs in the network. In this investigation,
we assume that there is sufficient energy resource available at
the base station and thus there is no energy constraint at the
base station. In summary, the main functions of the lower tier
MSNs are data acquisition and compression while the upper-
tier AFNs are used for data fusion and relaying information
to the base station.

A. Power Consumption Model

Our focus in this paper is on the communication energy
consumption among the upper tier AFNs. For each AFN i,
we assume that the aggregated bit rate collected locally (after
data fusion) is gi, i = 1, 2, · · · , N . These collected local bit
streams must be routed toward the base station. Our objective
is to maximize the gi values according to the LMM criterion
(see Definition 1) under a given network lifetime requirement.

For an AFN, energy consumption due to wireless commu-
nication (i.e., transmitting and receiving) has been considered
the dominant factor in power consumption [1]. The power
dissipation at a radio transmitter can be modeled as [9]

pt
ik = cik · fik , (1)

where pt
ik is the power dissipated at AFN i when it is

transmitting to node k, fik is the rate from AFN i to node
k, cik is the power consumption cost of radio link (i, k) and
is given by

cik = α + β · dm
ik , (2)

where α and β are two constant terms, dik is the distance
between these two nodes, and m is the path loss index, with
2 ≤ m ≤ 4 [16]. Typical values for these parameters are
α = 50 nJ/b and β = 0.0013 pJ/b/m4 (for m = 4) [9].3 Since
the power level of an AFN’s transmitter can be used to control
the distance coverage of an AFN (see, e.g., [15], [17], [20]),
different network flow routing topologies can be formed by
adjusting the power level of each AFN’s transmitter.

The power dissipation at a receiver can be modeled as [9]

pr(i) = ρ ·
∑

k 6=i

fki , (3)

where
∑

k 6=i fki (in b/s) is the rate of the received data stream
at AFN i. A typical value for the parameter ρ is 50 nJ/b [9].

The above transmission and reception energy model as-
sumes a contention-free MAC protocol, where interference
from simultaneous transmission can be effectively minimized
or avoided. For such a network, a contention-free MAC proto-
col is fairly easy to design (see, e.g., [18]) and its discussion
is beyond the scope of this paper.

B. The LMM Rate Allocation Problem

Before we formulate the LMM rate allocation problem, let
us revisit the maximum capacity problem (with “bias” in rate
allocation) that was described in Section I. For a network with

3In this paper, we use m = 4 in all of our numerical results.

N AFNs, suppose that the rate of AFN i is gi, and that the
initial energy at this node is ei (i = 1, 2, · · · , N ). For a given
network lifetime requirement T (i.e., each AFN must remain
alive for at least time duration T ), the maximum information
capacity that the network can collect can be found by the
following linear program (LP).

MaxCap: Max
N∑

i=1

gi

s.t. fiB +
∑
k 6=i

fik −
∑
m6=i

fmi = gi (1 ≤ i ≤ N) (4)

∑
m6=i

ρfmiT +
∑
k 6=i

cikfikT +ciBfiBT ≤ei (1 ≤ i ≤ N) (5)

fik, fiB ≥ 0 (1≤ i, k≤N, k 6= i)

where fik and fiB are data rates transmitted from AFN i to
AFN k and from AFN i to the base station B, respectively.
The set of constraints in (4) are the flow balance equations:
they state that, the total bit rate transmitted by AFN i is equal
to the total bit rate received by AFN i from other AFNs,
plus the bit rate generated locally at AFN i (gi). The set of
constraints in (5) are the energy constraints: they state that, for
a given network lifetime requirement T , the energy required
in communications (i.e., transmitting and receiving all these
data) cannot exceed the initial energy provisioning level.

Note that fmi, fik, fiB , and gi are variables and that T is a
constant (the given network lifetime requirement). MaxCap is
a standard LP formulation that can be solved by a polynomial-
time algorithm [2]. Unfortunately, as we shall see in the
numerical results (Section VI), the solution to this MaxCap
problem lends itself into an extreme favor for those AFNs
whose data paths consume the least amount of power toward
the base station. Consequently, although the network capacity
is maximized over the network lifetime T , the corresponding
bit rate allocation among the AFNs (i.e., the gi values) only
favors those AFNs that have this property, while other AFNs
are unfavorably allocated with much smaller (even close to 0)
bit rates. As a result of this unfairness, the effectiveness of the
network in performing information collection or surveillance
could be severely compromised.

To address this fairness issue, we advocate the so-called
lexicographic max-min (LMM) rate allocation strategy [14]
in this paper, which has some similarity to the max-min rate
allocation in data networks [3].4 Under LMM rate allocation,
we start with the objective of maximizing the bit rate for all the
nodes until one or more nodes reach their energy-constrained
capacities for the given network lifetime requirement. Given
that the first level of the smallest rate allocated among the
nodes is maximized, we continue to maximize the second level
of rate for the remaining nodes that still have available energy,
and so forth. More formally, denote r = [r1, r2, · · · , rN ] as
the sorted version (i.e., r1 ≤ r2 ≤ · · · ≤ rN ) of the rate
vector g = [g1, g2, · · · , gN ], with gi corresponding to the rate
of node i. We then have the following definition for LMM-
optimal rate allocation.

4However, there is significant difference between max-min and LMM,
which we will discuss shortly.
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Definition 1: (LMM-optimal Rate Allocation) For
a given network lifetime requirement T , a sorted rate vector
r = [r1, r2, · · · , rN ] yields an LMM-optimal rate allocation if
and only if for any other sorted rate allocation vector r̂ =
[r̂1, r̂2, · · · , r̂N ] with r̂1 ≤ r̂2 ≤ · · · ≤ r̂N , there exists a k,
1 ≤ k ≤ N , such that ri = r̂i for 1 ≤ i ≤ k− 1 and rk > r̂k.

Based on the LMM-optimal definition, we can calculate the
first level optimal rate λ1 = r1 easily through the following
LP.

Max λ1

s.t. fiB +
∑

k 6=i

fik −
∑

m6=i

fmi − λ1 = 0 (1 ≤ i ≤ N)

∑

m 6=i

ρfmiT +
∑

k 6=i

cikfikT +ciBfiBT ≤ei (1 ≤ i ≤ N)

fik, fiB ≥ 0 (1≤ i, k≤N, k 6= i)

Although the first level bottleneck rate λ1 is easy to obtain,
calculating the subsequent bottleneck rates are quite challeng-
ing. As discussed in Section I, a naive approach that applies an
iterative LP procedure to calculate the desired rate allocations
is incorrect. This is because there is a fundamental difference
in the nature of the LMM rate allocation problem described
here and the classical max-min rate allocation problem in [3].
The LMM rate allocation problem implicitly couples a flow
routing problem (i.e., a determination of the fik and fiB for
the entire network), while the classical max-min rate allocation
explicitly assumes that the routes for all the flows are given
a priori and fixed. Moreover, for the LMM rate allocation
problem, starting from the first iteration, there usually exist
non-unique flow routing solutions corresponding to the same
maximum rate level. Consequently, each of these flow routing
solutions, once chosen, will yield different remaining energy
levels on the nodes for future iterations and so forth, leading
to a different rate vector, which usually does not coincide with
the LMM-optimal rate vector. Therefore, any iterative rate
allocation algorithm that requires energy reservation among
the nodes during each iteration is unlikely to give a correct
LMM rate allocation (see Section VI for numerical examples).

III. A SERIAL LP ALGORITHM BASED ON PARAMETRIC
ANALYSIS

In this section, we present an efficient (polynomial-time)
algorithm to solve the LMM rate allocation problem correctly
without requiring any energy reservation during each iteration.
Table I lists the notation used in this paper.

We first introduce the following notation. Suppose that the
rate vector r = [r1, r2, · · · , rN ] is LMM-optimal, with r1 ≤
r2 ≤ · · · ≤ rN . Note that the values of these N rates may
not be all distinct. To highlight those distinct rate levels, we
remove any repetitive elements in this vector and rewrite it as
[λ1, λ2, · · · , λn] such that λ1 < λ2 < · · · < λn, where λ1 =
r1, λn = rN , and n ≤ N . Now for each λi, i = 1, 2, · · · , n,
denote Si the corresponding set of nodes that use up their
energy at this rate. Clearly, we have

∑n
i=1 |Si| = |S| = N ,

where S denotes the set of all N nodes.
The key to the LMM rate allocation problem is to find

the correct values λ1, λ2, · · · , λn and the corresponding sets

TABLE I
NOTATION

General notation to the LMM-Rate and LMM-Lifetime problems
N The total number of AFNs in the network
ei The initial energy at AFN i
ρ The power consumption coefficient for receiving data

cik The power consumption coefficient for transmitting
(or ciB) data from AFN i to AFN k (or the base station B)

n The number of distinct elements in the sorted
LMM-optimal rate/lifetime vector

Si The minimum set of nodes that reach their energy
constraint limits at i-th level

Ŝi The set of all possible AFNs that may reach their
energy constraint limits at i-th level, Si ⊆ Ŝi

Vik The total volume from AFN i to AFN k
(or ViB) (or the base station B)

fik The rate from AFN i to AFN k
(or fiB) (or the base station B)

x The optimal solution to LMM-Rate/LMM-Lifetime
w The optimal solution to dual problem of LMM-Rate

or LMM-Lifetime
b The right-hand-side (RHS) of LMM-Rate

or LMM-Lifetime
Ii A column vector having a single 1 element

corresponding to node i in (10) or (14) and
0 for all other elements

B The columns corresponding to the basic variables in
LMM-Rate or LMM-Lifetime

Z The columns corresponding to the non-basic variables
in LMM-Rate or LMM-Lifetime

cB The parameters in objective function corresponding to
the basic variables of LMM-Rate or LMM-Lifetime

cZ The parameters in objective function corresponding to
the non-basic variables of LMM-Rate/LMM-Lifetime

xB Part of optimal solution corresponding to the basic
variables of LMM-Rate or LMM-Lifetime

xZ Part of optimal solution corresponding to the
non-basic variables of LMM-Rate or LMM-Lifetime
Symbols used for the LMM-Rate problem

T The network lifetime requirement
gi The local bit rate collected at AFN i
ri The i-th element in the sorted LMM-optimal rate

vector, where r1 ≤ r2 ≤ · · · ≤ rN

λi The i-th rate level in the sorted LMM-optimal rate
vector, i.e., λ1(= r1) < λ2 < · · · < λn(= rN )

δi =λi−λi−1, the difference between λi and λi−1

Symbols used for the LMM-Lifetime problem
gi The rate requirement at AFN i
ti The node lifetime at AFN i
τi The i-th element in the sorted LMM-optimal lifetime

vector, where τ1 ≤ τ2 ≤ · · · ≤ τN

µi The i-th drop point in the sorted LMM-optimal
lifetime vector, i.e., µ1(=τ1) < µ2 < · · · < µn(=τN )

ζi =µi−µi−1, the difference between µi and µi−1

S1, S2, · · · , Sn, respectively. This can be done iteratively.
That is, we first determine rate level λ1 and the corresponding
set S1, then determine rate level λ2 and the corresponding
set S2, and so on. In Section III-A, we will show how to
determine each rate level and in Section III-B, we will show
how to determine the corresponding node set.

A. Rate Level Determination

Denote λ0 = 0 and S0 = ∅. For l = 1, 2, · · · , n,
suppose that we already determined λ0, λ1, · · · , λl−1 and the
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corresponding sets S0, S1, · · · , Sl−1. The rate level λl can be
found by the following optimization problem.

Max δl

s.t. fiB +
∑
k 6=i

fik−
∑
m6=i

fmi−δl =λl−1 (i 6∈ ⋃l−1

h=0
Sh) (6)

fiB +
∑
k 6=i

fik −
∑
m6=i

fmi = λh (i∈Sh, 1≤h<l) (7)

∑
m6=i

ρfmiT +
∑
k 6=i

cikfikT +ciBfiBT ≤ei (i 6∈ ⋃l−1

h=0
Sh) (8)

∑
m6=i

ρfmiT +
∑
k 6=i

cikfikT +ciBfiBT =ei (i∈Sh, 1≤h<l) (9)

fik, fiB ≥ 0 (1≤ i, k≤N, k 6= i)

Note that for l = 1, the constraints (7) and (9) do not exist.
For 2 ≤ l ≤ n, constraints (7) and (9) are for those nodes that
have already reached their LMM rate allocation during the
previous l − 1 iterations. In particular, the set of constraints
in (7) say that the sum of in-coming and local data rates are
equal to the out-going data rates for each node with its LMM-
optimal rate λh, 1 ≤ h < l. The set of constraints in (9) say
that for those nodes that have already reached their LMM-
optimal rates, the total energy consumed for communications
has reached their initial energy provisioning. On the other
hand, the constraints in (6) and (8) are for the remaining
nodes that have not yet reached their LMM-optimal rates.
Specifically, the set of constraints in (6) state that, for those
nodes that have not yet reached their energy constraint levels,
the sum of in-coming and local data rates are equal to the
out-going data rates. Note that the objective function is to
maximize the additional rate δl for those nodes. Furthermore,
for those nodes, the set of constrains in (8) state that the
total energy consumed for communications should be upper
bounded by the initial energy provisioning.

To facilitate our later discussion on duality results in Sec-
tion V, we further re-formulate above LP. In particular, we
multiply both sides of (6) and (7) by T (which is a constant
representing a given network lifetime requirement) and denote
ViB = fiBT , Vik = fikT , Vmi = fmiT . Intuitively, Vik and
ViB represent the bit volume that is transferred from node i to
k and from node i to B, respectively, during lifetime T . We
obtain the following problem formulation.

LMM-Rate: Max δl

s.t.
ViB +

∑
k 6=i

Vik−
∑
m6=i

Vmi−δlT =λl−1T (i 6∈ ⋃l−1

h=1
Sh) (10)

ViB +
∑
k 6=i

Vik −
∑
m6=i

Vmi = λhT (i∈Sh, 1≤h<l)

∑
m6=i

ρVmi +
∑
k 6=i

cikVik + ciBViB ≤ ei (i 6∈ ⋃l−1

h=1
Sh)

∑
m6=i

ρVmi +
∑
k 6=i

cikVik + ciBViB = ei (i∈Sh, 1≤h<l)

Vik, ViB ≥ 0 (1≤ i, k≤N, k 6= i)

The above LP formulation can be rewritten in the form Max
cx, s.t. Ax = b and x ≥ 0, the dual problem for which is Min

wb, s.t. wA ≥ c with w being unrestricted in sign [2]. Both
can be solved by standard LP techniques (e.g., [2]).

Although a solution to the LMM-Rate problem gives the
optimal solution for δl at iteration l, it remains to determine
the minimum set of nodes corresponding to this δl, which is
the key difficulty in the LMM rate allocation problem. In the
following section, we exploit the parametric analysis technique
[2] to determine the minimum node set at each rate.

B. Minimum Node Set Determination

Now we show how to determine set Sl for rate level λl.
Denote Ŝl ( 6= ∅) the set of nodes for which the constraints
(8) are binding at the l-th iteration in LMM-Rate, i.e., Ŝl

include all the nodes that achieve equality in (8) at iteration
l. Although it is certain that at least one of the nodes in Ŝl

belong to Sl (the minimum node set for rate λl), some nodes
in Ŝl may still be able to further increase their rates under
alternative flow routing solutions. In other words, if |Ŝl| = 1,
then we must have Sl = Ŝl; otherwise, we must determine the
minimum node set Sl (⊆ Ŝl) that achieves the LMM-optimal
rate allocation.

We find that the so-called parametric analysis (PA) tech-
nique [2] is most suitable to address this problem. The main
idea of PA is to investigate how an infinitesimal perturbation
on some components of the LMM-Rate problem can affect the
objective function. In particular, considering a small increase
on the right-hand-side (RHS) of (10), i.e., changing bi to bi+εi,
where εi > 0, node i belongs to the minimum node set Sl

if and only if ∂+δl

∂εi
(0) < 0. That is, node i belongs to the

minimum node set Sl if and only if a small increase in node
i’s rate (in terms of total volume generated at node i) leads to
a decrease in the objective function.

To compare ∂+δl

∂εi
(0) with 0, we apply an important duality

results from LP theory. If x and w are the respective optimal
solution to the primal and dual problems, then based on the
parametric duality property [2], we have

∂+δl

∂εi
(0) =

∂+(cx)
∂bi

(bi) ≤ wi . (11)

Recall that these wi can be easily obtained at the same time
when we solve the primal LP problem. Note that by the nature
of the problem, we have wi ≤ 0 for an optimal dual solution.
Therefore, if we find that wi < 0, then we can determine
immediately that node i must belong to the minimum node set
Sl. On the other hand, if we find that wi = 0, it is not clear
whether ∂+δl

∂εi
(0) is strictly negative or 0 and further analysis

is thus needed.
For each node i with wi = 0, we must perform a complete

PA to see whether a perturbation (i.e., tiny increase) on the
RHS of (10) will result in any change in the objective function.
If there is no change, then we can determine that node i
does not belong to the minimum node set Sl; otherwise,
node i belongs to Sl. Assume that the optimal solution is
(xB, xZ), where xB and xZ denote the set of basic and non-
basic variables; B and Z denote the columns corresponding
to the basic and non-basic variables. cB and cZ denote the
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objective function coefficient vectors for the basic and non-
basic variables; and q denotes the objective value. Then we
have the corresponding canonical equations as follows

q + (ct
BB−1Z − ct

Z)xZ = ct
BB−1b ,

xB + B−1ZxZ = B−1b .

If b is replaced by b + εiIi, where the column vector Ii

has a single 1 element corresponding to node i in the set
of constraints (10) while all the other elements are 0, then
the only change due to this perturbation is that B−1b will be
replaced by B−1(b + εiIi). Consequently, the objective value
for the current basis becomes ct

BB−1(b + εiIi). As long as
B−1(b+εiIi) is nonnegative, the current basis remains optimal.
Denote b̄ = B−1b, B−1

i = B−1Ii, and let ε̂i be an upper bound
for εi such that the current basis remains optimal. We have

ε̂i = min
j

{
b̄j

−B−1
ij

: B−1
ij < 0

}
. (12)

If ε̂i > 0, the optimal objective value varies according to
ct
BB−1(b + εiIi) for 0 < εi ≤ ε̂i. Since w = ct

BB−1 and
wi = 0, we have ct

BB−1Ii = wi = 0. Thus, the objective
value will not change for εi ∈ (0, ε̂i], and consequently, the
rate for node i can be increased beyond the current λl value.
That is, node i does not belong to the minimum node set Sl.

For most problems in practice, the above procedure is
sufficient to determine whether or not node i belongs to the
minimum node set Sl for all i ∈ Ŝl. But in the rare event where
ε̂i = 0, the problem is degenerate. To develop a polynomial-
time algorithm, denote Wl as the set of all nodes with wi < 0
and Ul as the set of all nodes with wi = 0 and ε̂i = 0. Then
we solve the following LP to maximize the slack variables
(SV) for nodes in Ul.

MSV: Max
∑
i∈Ul

εi

s.t. ViB +
∑
k 6=i

Vik−
∑
m6=i

Vmi−εiT =λlT (i ∈ Ul)

ViB +
∑
k 6=i

Vik −
∑
m6=i

Vmi = λhT (i ∈ Sh, 1 ≤ h < l)

ViB +
∑
k 6=i

Vik −
∑
m6=i

Vmi = λlT (i 6∈ Ul

⋃l−1

h=1
Sh)

∑
m6=i

ρVmi +
∑
k 6=i

cikVik + ciBViB = ei (i∈Ul

⋃
Wl

⋃l−1

h=1
Sh)

∑
m6=i

ρVmi +
∑
k 6=i

cikVik + ciBViB ≤ ei (i 6∈Ul

⋃
Wl

⋃l−1

h=1
Sh)

Vik, ViB , εi ≥ 0 (1≤ i, k≤N, i 6=k)

If the optimal objective function is 0, then we conclude that no
node in Ul can have a positive εi. That is, these nodes should
all belong to Sl and we have Sl = Wl+Ul. On the other hand,
if the optimal objective function is positive, then some nodes
i ∈ Ul must have positive εi values and these nodes therefore
do not belong to the minimum node set Sl. Consequently, we
can remove these nodes from Ul. If Ul 6= ∅, we move on to
solve another MSV. This procedure will terminate when the
optimal objective function value is 0 or Ul = ∅.

The following lemma ensures that MSV determines the
minimum node set correctly. Its proof is given in the Appendix.

Lemma 1: (The Minimum Node Set is Unique.) The
minimum node set for each rate level under the LMM-optimal
rate allocation is unique.

In a nutshell, the complete PA procedure to determine
whether a node i ∈ Ŝl belongs to the minimum node set Sl

can be summarized as follows.
Algorithm 1: (Minimum Node Set Determination with

PA)
1) Initialize sets Wl = ∅ and Ul = ∅.
2) For each node i ∈ Ŝl,

a) If wi < 0, then Wl = Wl ∪ {i}.
b) Otherwise (i.e., wi = 0), compute b̄ = B−1b,

B−1
i = B−1Ii, and ε̂i according to (12).

If ε̂i = 0, then Ul = Ul + {i}.
3) If Ul = ∅, then Sl = Wl and stop;

else set up the MSV problem and solve it.
4) If the optimal objective value in MSV is 0, then Sl =

Wl + Ul and stop;
else remove all nodes i with εi > 0 from the set Ul and
go to Step 3.

C. Optimal Flow Routing for LMM Rate Allocation

After we solve the LMM rate allocation problem iteratively
using the procedure in Sections III-A and III-B, the corre-
sponding optimal flow routing can be obtained by dividing
the total bit volume on each link (Vik or ViB) by T , i.e.,

fik =
Vik

T
and fiB =

ViB

T
, (13)

where T is the given network lifetime requirement. Although
the LMM-optimal rate allocation is unique, it is important
to note that the corresponding flow routing solution is not
unique. This is because upon the completion of the LMM
rate allocation problem (i.e., upon finding [λ1, λ2, · · · , λn]),
there usually exist non-unique bit volume solutions (Vik and
ViB values) corresponding to the same LMM-optimal rate
allocation. This result is summarized in the following lemma.

Lemma 2: The optimal flow routing solution correspond-
ing to the LMM rate allocation may not be unique.

We use the following example to illustrate the non-unique-
ness of the optimal flow routing solution for an LMM rate
allocation.

Example 1: Consider an 8-node network with the following
topology (see Fig. 2). The base station B is located at the
origin (0, 0). There are two groups of nodes, G1 and G2, in
the network, with each group consisting of four nodes. Group
G1 nodes consists of AFN1 at (100, 0), AFN3 at (0, 100),
AFN5 at (−100, 0), and AFN7 at (0, −100), respectively (all
in meters); Group G2 nodes consists of AFN2 at (100, 100),
AFN4 at (−100, 100), AFN6 at (−100, −100), and AFN8

at (100, −100), respectively. Assume that all nodes have the
same initial energy e. For a network lifetime requirement of
T , we can calculate (via SLP-PA) that the final LMM-optimal
rate allocation for all 8 nodes are identical (perfect fairness),
i.e., g1 = g2 = · · · = g8. We denote gi = g for 1 ≤ i ≤ 8.
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Fig. 2. A simple example showing that the optimal flow routing to the LMM
rate allocation is not unique. The range of x is 0 ≤ x ≤ 39g

62
.

Upon the completion of the SLP-PA algorithm, we also
obtain an optimal flow routing solution corresponding to this
LMM-optimal rate g. This optimal flow routing solution has
the following flows: f21 = f43 = f65 = f87 = 39

62g,
f2B = f4B = f6B = f8B = 23

62g, and f1B = f3B = f5B =
f7B = 101

62 g. We now show that the optimal flow routing
solution is non-unique. Since the network has symmetrical
property, it can be easily verified that for any x, 0 ≤ x ≤ 39

62g,
the LMM-optimal rate allocation can be achieved if the flow
routing solution satisfies the following two conditions: (i) each
node in G2 (i.e., AFNs 2, 4, 6, and 8) sends a flow of x
and a flow of 39

62g − x to its two neighboring G1 nodes as
shown in Fig. 2, and a remaining flow of 23

62g directly to the
base station; and (ii) each node in G1 (i.e., AFNs 1, 3, 5,
and 7) sends a total amount of 101

62 g to the base station, which
includes x and 39

62g−x from its neighboring nodes, plus g from
itself. Clearly, there are infinitely many flow routing solutions
that meet these two conditions, each of which can be shown
to yield the LMM-optimal rate allocation g with the given
network lifetime requirement T .

D. Complexity Analysis

We now analyze the complexity of the SLP-PA algorithm.
First we consider the complexity of finding each node’s rate
and the total bit volume transmitted along each link. At each
stage, we solve an LP problem, both its primal and dual have
a complexity of O(nA

3 · L) [2], where nA is the number of
constraints or variables in the problem, whichever is larger,
and L is the number of binary bits required to store the data.
Since the number of variables is O(N2) and is larger than
the number of constraints (which is O(N)), the complexity
of solving the LP is O(N6L). After solving an LP at each
stage, we need to determine whether or not a node that just
reached its energy binding constraint belongs to the minimum
node set for this stage. Note that w and b̂ = B−1b can be
readily obtained when we solve the primal LP problem. To
determine whether a node, say i, belongs to the minimum
node set, we examine wi. If wi < 0, then node i belongs to
the minimum node set and the complexity is O(1). On the
other hand, if wi = 0, we need to further examine whether
ε̂i > 0 or not. Based on (12), the computation for ε̂i is O(N).

So at each stage, the complexity in PA for each node is O(N).
The total complexity of PA at each stage for the node set is
thus |Ŝl| ·O(N) or O(N ·N) = O(N2). Thus, the complexity
at each stage is O(N6L) + O(N2) = O(N6L). As there are
at most N stages, the overall complexity is O(N7L).

We now analyze the complexity for the degenerate case.
Upon the completion of Step 2 in Algorithm 1, we denote
U

(0)
l = Ul. Since we need to solve at most |U (0)

l −Sl| LPs, the
complexity is |U (0)

l −Sl|·O(N6L) or O(N ·N6L) = O(N7L).
Hence, the complexity at each stage is O(N6L) + O(N2) +
O(N7L) = O(N7L). Since there are at most N stages, the
overall complexity is O(N8L).

The complexity in finding the optimal flow routing is
bounded by the number of radio links in the network, which is
O(N2). Hence the overall complexity is O(N7L)+O(N2) =
O(N7L) for the non-degenerate case and O(N8L)+O(N2) =
O(N8L) for the degenerate case. Under either case, the
computational complexity is polynomial.5

E. Discussion

So far, we consider the case that each AFN generates data
at a constant rate. In practice, an AFN node may not always
transmit data and may work in on/off mode to conserve energy.
In this case, it is necessary to construct optimal flow routing
solution for variable bit rate source (where on/off mode is
a special case). In [11], we have developed techniques to
construct optimal flow routing solution for variable bit rate,
as long as its average rate is known. Such average rate
corresponds to the constant rate in this paper. As a result,
the case of on/off mode (with known average rate) can also
be handled using techniques in [11].

IV. EXTENSION TO LMM NODE LIFETIME PROBLEM

In this section, we show that our SLP-PA algorithm can
be used to solve the so-called maximum node lifetime curve
problem in [6], which we define as the LMM node lifetime
problem. We also show that the SLP-PA algorithm is a much
more efficient approach than the one proposed in [6], which
is currently the state-of-the-art to address this problem.

A. The LMM-optimal Node Lifetime Problem

The LMM node lifetime problem considers the following
scenario. For a network with N AFNs, with a given local bit
rate gi (fixed) and initial energy ei for AFN i, i = 1, 2, · · · , N ,
how can we maximize the network lifetime for all AFNs in
the network? In other words, the LMM node lifetime problem
not only considers how to maximize the network lifetime until
the first AFN runs out of energy, but also the time for all the
AFNs in the network.

More formally, denote the lifetime for each AFN i as ti,
i = 1, 2, · · · , N . Note that gi’s are fixed here, while ti’s are
the optimization variables, which are different from the LMM
rate allocation problem that we studied in the last section.

5Note that our analysis here gives a very loose upper bound for time
complexity. In practice, the running time for LP implementation is much
faster.
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Denote [τ1, τ2, · · · , τN ] as the sorted sequence of the ti values
in nondecreasing order. Then LMM-optimal node lifetime can
be defined as follows.

Definition 2: (LMM-optimal Node Lifetime) A sorted
node lifetime vector [τ1, τ2, · · · , τN ] with τ1 ≤ τ2 ≤ · · · ≤
τN is LMM-optimal if and only if for any other sorted node
lifetime vector [τ̂1, τ̂2, · · · , τ̂N ] with τ̂1 ≤ τ̂2 ≤ · · · ≤ τ̂N , there
exists a k, 1 ≤ k ≤ N , such that τi = τ̂i for 1 ≤ i ≤ k − 1
and τk > τ̂k.

B. Solution
It should be clear that, under the LMM-optimal node

lifetime objective, we must maximize the time until a set of
nodes use up their energy (which is also called a drop point
in [6]) while minimizing the number of nodes that drain up
their energy at each drop point. We now show that the SLP-PA
algorithm developed for the LMM rate allocation problem can
be directly applied to solve the LMM node lifetime problem.

Suppose that [τ1, τ2, · · · , τN ] with τ1 ≤ τ2 ≤ · · · ≤ τN

is LMM-optimal. To keep track of distinct node lifetimes (or
drop points) in this vector, we remove all repetitive elements in
the vector and rewrite it as [µ1, µ2, · · · , µn] such that µ1 <
µ2 < · · · < µn, where µ1 = τ1, µn = τN , and n ≤ N .
Corresponding to these drop points, denote S1, S2, · · · , Sn

as the sets of nodes that drain up their energy at drop points
µ1, µ2, · · · , µn, respectively. Then |S1|+ |S2|+ · · ·+ |Sn| =
|S| = N , where S denotes the set of all N AFNs in the
network. The problem is to find the LMM-optimal values of
µ1, µ2, · · · , µn and the corresponding sets S1, S2, · · · , Sn.

Similar to the LMM rate allocation problem, the LMM
node lifetime problem can be formulated as an iterative
optimization problem as follows. Denote µ0 = 0, S0 = ∅, and
ζl = µl − µl−1. Starting from l = 1, we solve the following
LP iteratively.

LMM-Lifetime: Max ζl

s.t.
ViB +

∑
k 6=i

Vik−
∑
m6=i

Vmi−ζlgi =µl−1gi (i 6∈ ⋃l−1

h=0
Sh) (14)

ViB +
∑
k 6=i

Vik −
∑
m6=i

Vmi = µhgi (i∈Sh, 1≤h<l)

∑
m6=i

ρVmi +
∑
k 6=i

cikVik + ciBViB ≤ ei (i 6∈ ⋃l−1

h=0
Sh)

∑
m6=i

ρVmi +
∑
k 6=i

cikVik + ciBViB = ei (i∈Sh, 1≤h<l)

Vik, ViB , ζl ≥ 0 (1≤ i, k≤N, k 6= i)

Comparing the above LMM-Lifetime problem to the LMM-
Rate problem that we studied in Section III-A, we find that
they are exactly of the same form. The only differences are
that under the LMM-Lifetime problem, the local bit rates gi

are constants and the node lifetimes τi are variables (subject to
optimization), while under the LMM-Rate problem, the gi are
variables (subject to optimization) and the node lifetimes are
all identical (T ), i = 1, 2, · · · , N . Since the mathematical for-
mulation for the two problems are identical, we can apply the
SLP-PA algorithm to solve the LMM node lifetime problem
as well.

The only issue that we need to be concerned about is the
optimal flow routing solution corresponding to the LMM-
optimal lifetime vector. The optimal flow routing solution here
is not as simple as that for the LMM rate allocation problem,
which merely involves a simple division (see (13)). We refer
readers to the Appendix for an O(N4) algorithm to obtain an
optimal flow routing solution for the LMM-optimal lifetime
vector. Similar to Lemma 2, the optimal flow routing solution
corresponding to the LMM node lifetime problem may not be
unique.

C. Complexity Comparison

In [6], Brown et al. studied the LMM node lifetime problem
under the so-called “maximum node lifetime curve” problem.
They also developed the first procedure to solve this problem
correctly. A key step in their procedure is the use of multiple
independent LP calculations to determine the minimum node
set at each drop point, which we call serial LP with slack
variable analysis (SLP-SV). Although this approach solves
the LMM node lifetime problem correctly, its computational
complexity (potentially exponential) remains an issue to be
resolved.

On the other hand, the SLP-PA algorithm developed in this
paper is polynomial and is computationally more efficient than
the SLP-SV approach. To understand the difference between
the two, we take a closer look on the computational complexity
of the SLP-SV approach in [6]. First, SLP-SV needs to keep
track of each sub-flow along its route from the source node
toward the base station. Such a flow-based (or more precisely,
sub-flow based) approach could make the size of the LP
coefficient matrix exponential, which leads to an exponential-
time algorithm [2].6

Second, even if a link-based LP formulation such as ours
is adopted in [6], the computational efficiency of the SV-
based approach is still worse than the SLP-PA algorithm.
This is because at each stage, the SV-based approach must
solve several additional LPs (up to |Ŝl − Sl|) to determine
Sl, which is in contrast to the simpler PA under the SLP-PA
algorithm (O(N2)). Even for the degenerate case, the number
of additional LPs under the SLP-PA algorithm is at most
|U (0)

l − Sl|,7 which is still no more than |Ŝl − Sl|.
Finally, we discuss a hybrid link-flow approach mentioned

in [6]. In this approach, link-based formulations are used for
sub-flows. This leads to a much fewer number of variables
than those for the flow-based approach. But this approach
still requires sub-flow accounting and results in an order
of magnitude more constraints than the link-based approach
in SLP-PA. Although this approach solves the LMM node
lifetime problem in polynomial-time (e.g., by using interior
point methods [2]), the overall complexity is still orders
of magnitude higher than that under the SLP-PA algorithm.
Furthermore, the burden of solving additional LPs to determine
whether a node belongs to the minimum node set still remains.

6Incidentally, the revised simplex method proposed in [6] is not as efficient
as the polynomial-time algorithm described in [2] and is itself exponential.

7Recall that U
(0)
l

denotes Ul upon the completion of Step 2 in Algorithm 1.
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TABLE II
DUALITY RELATIONSHIP BETWEEN LMM RATE ALLOCATION PROBLEM

PR AND LMM NODE LIFETIME PROBLEM PL .

PR PL

gi (optimization variable) gi = R (constant)
ti = T (constant) ti (optimization variable)

Total bit volume at AFN i: gi · T = ti ·R

V. DUALITY THEOREM

In this section, we present an elegant and powerful result
showing that there is a duality relationship between the LMM
rate allocation problem and the LMM node lifetime problem.
As a result, it is only necessary to solve only one of the two
problems and the results for the other can be obtained via
simple algebraic calculations.

To start with, we denote PR the LMM rate allocation
problem where we have N AFNs in the network and all
nodes have a common given lifetime requirement T (constant).
Denote gi the LMM-optimal rate allocation for node i under
PR, i = 1, 2, · · · , N . Similarly, we denote PL the LMM node
lifetime problem where all nodes have the same local bit rate R
(constant). Denote ti the LMM node lifetime for node i under
PL, i = 1, 2, · · · , N . Then the following theorem shows how
the solution to one problem can be used to obtain the solution
to the other.

Theorem 1: (Duality) For a given node lifetime
requirement T for all nodes under problem PR and a given
local bit rate R for all nodes under problem PL, we have the
following relationship between the solutions to the LMM rate
allocation problem PR and the LMM node lifetime problem
PL.
(i) Suppose that we have solved problem PR and obtained
the LMM-optimal rate allocation gi for each node i (i =
1, 2, · · · , N ). Then under PL, the LMM node lifetime ti for
node i is

ti =
giT

R
. (15)

(ii) Suppose that we have solved problem PL and obtained
the LMM-optimal node lifetime ti for each node i (i =
1, 2, · · · , N ). Then under PR, the LMM rate allocation gi for
node i is

gi =
tiR

T
. (16)

Table II shows the duality relationship between solutions to
problems PR and PL.

Proof: We prove (i) and (ii) in Theorem 1 separately.
(i) We organize our proof into two parts. First, we show that
ti’s are feasible node lifetimes in terms of flow balance and
energy constraints on each node i (i = 1, 2, · · · , N ). Then we
show that it is indeed the LMM-optimal node lifetime.
Feasibility. Since we have obtained the solution to problem
PR, we have one feasible flow routing solution for sending bit
streams gi, i = 1, 2, · · · , N , to the base station. Under problem
PR, the bit volumes (Vij and ViB values) must meet the
following equalities under the LMM-optimal rate allocation:

ViB +
∑

1≤k≤N,k 6=i

Vik −
∑

1≤m≤N,m 6=i

Vmi = giT ,

∑

1≤m≤N,m 6=i

ρVmi +
∑

1≤k≤N,k 6=i

cikVik + ciBViB = ei .

Now replacing giT by tiR, we see that the same bit volume
solution under PR yields a feasible bit volume solution to the
node lifetime problem under PL. Consequently, we can use
Algorithm 2 to obtain the flow routing solution to problem PL

under the bit volume solution to problem PL and this verifies
that ti, i = 1, 2, · · · , N , is a feasible solution to problem PL.
Optimality. To prove that ti’s obtained via (15) are indeed
LMM-optimal for problem PL, we sort gi, i = 1, 2, · · · , N ,
under problem PR in non-decreasing order and denote it
as [r1, r2, · · · , rN ]. We also introduce a node index I =
[i1, i2, · · · , iN ] for [r1, r2, · · · , rN ]. For example, i3 = 7 means
that r3 actually corresponds to the rate of AFN 7, i.e., r3 = g7.

Since ti is proportional to gi through the relationship
(ti = T

R · gi), listing ti, i = 1, 2, · · · , N , according to
I = [i1, i2, · · · , iN ] will yield a sorted (in non-decreasing
order) lifetime list, denoted as [τ1, τ2, · · · , τN ]. We now prove
that [τ1, τ2, · · · , τN ] is indeed LMM-optimal for problem PL.

Our proof is based on contradiction. Suppose that
[τ1, τ2, · · · , τN ] is not LMM-optimal for problem PL. As-
sume that the LMM-optimal lifetime vector to problem PL

is [τ̂1, τ̂2, · · · , τ̂N ] (sorted in non-decreasing order) with the
corresponding node index being Î = [̂i1, î2, · · · , îN ]. Then,
by Definition 2, there exists a k such that τ̂j = τj for
1 ≤ j ≤ k − 1 and τ̂k > τk.

We now claim that if t̂i, i = 1, 2, · · · , N , is a feasible
solution to problem PL, then ĝi obtained via ĝi = t̂iR

T ,
i = 1, 2, · · · , N , is also a feasible solution to problem PR.
The proof to this claim follows identically as above. Using
this result, we can obtain a corresponding feasible solution
[r̂1, r̂2, · · · , r̂N ] with r̂i = τ̂iR

T and the node index Î for
problem PR. Hence we have r̂j = τ̂jR

T = τjR
T = rj for

1 ≤ j ≤ k − 1 but r̂k = τ̂kR
T > τkR

T = rk. That
is, [r1, r2, · · · , rN ] is not LMM-optimal and this leads to a
contradiction.

(ii) The proof for this part follows the same token as the
above proof for (i) and is thus omitted here.

This duality relationship offers important insights on system
performance issues, in addition to providing solutions to the
LMM rate allocation and the LMM node lifetime problems.
For example, in Section I, we pointed out the potential
bias (fairness) issue associated with the network capacity
maximization objective (i.e., sum of rates from all nodes).
It is interesting to see that there is a dual fairness issue
under the node lifetime problem. In particular, the objective of
maximizing the sum of node lifetimes among all nodes also
leads to a bias (or fairness) problem because this objective
would only favor those nodes that consume energy at a small
rate. As a result, certain nodes will have much larger lifetimes
while some other nodes will be penalized with much smaller
lifetimes, although the sum of node lifetimes is maximized.

VI. NUMERICAL INVESTIGATION

In this section, we use numerical results to illustrate our
SLP-PA algorithm to the LMM rate allocation problem and
compare it with other approaches. We also use numerical re-
sults to illustrate the duality between the LMM rate allocation
problem and the LMM node lifetime problem.
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(b) A 20-AFN network.

Fig. 3. Network topologies used in the numerical investigation.

TABLE III
NODE COORDINATES FOR A 10-AFN NETWORK.

AFN i (xi, yi) (in meters) AFN i (xi, yi) (in meters)
1 (400, -320) 6 (-500, 100)
2 (300, 440) 7 (-400, 0)
3 (-300, -420) 8 (420, 120)
4 (320, -100) 9 (200, 140)
5 (-120, 340) 10 (220, -340)

TABLE IV
NODE COORDINATES FOR A 20-AFN NETWORK.

AFN i (xi, yi) (in meters) AFN i (xi, yi) (in meters)
1 (200, 130) 11 (110, -230)
2 (-400, -430) 12 (-210, 0)
3 (-100, 420) 13 (210, 320)
4 (0, 430) 14 (300, -480)
5 (-410, 440) 15 (-420, -470)
6 (-200, 230) 16 (-120, -240)
7 (400, -490) 17 (220, -440)
8 (410, -300) 18 (-220, -240)
9 (100, 310) 19 (-500, -110)

10 (10, 140) 20 (20, 330)

TABLE V
RATE ALLOCATION UNDER THE THREE APPROACHES FOR THE 10-AFN

NETWORK.

i (Sorted SLP-PA SLP-ER MaxCap
Node ri AFN ri AFN ri AFN
Index) (Kb/s) (Kb/s) (Kb/s)

1 0.1023 3 0.1023 1 0.0553 2
2 0.1023 6 0.1023 2 0.0627 3
3 0.1023 7 0.1023 3 0.0646 1
4 0.1536 5 0.1023 6 0.0658 6
5 0.2941 1 0.1023 7 0.1222 8
6 0.2941 2 0.1536 5 0.1653 10
7 0.2941 4 0.1536 8 0.1736 7
8 0.2941 8 0.1536 10 0.2628 5
9 0.2941 9 0.6563 4 0.3513 4

10 0.2941 10 0.6563 9 1.2398 9

We consider two network topologies, one with 10 AFNs
and the other with 20 AFNs. Under both topologies, the base
station B is located at the origin while the locations for the 10
or 20 AFNs are randomly generated over a 1000m × 1000m
square area (see Figs. 3(a) and (b) and Tables III and IV,
respectively).

A. SLP-PA Algorithm to the LMM Rate Allocation Problem

We will compare SLP-PA with the naive approach (see
Section II-B) that uses a serial LP “blindly” to solve the LMM
rate allocation problem and performs energy reservation during
each iteration. We call this naive approach Serial LP with
Energy Reservation (SLP-ER). As discussed in Section II-B,
the SLP-ER approach will not give the correct final solution
to the LMM rate allocation problem.

We will also compare our SLP-PA algorithm to the
Maximum-Capacity (MaxCap) approach (see Section II-B). As
discussed in the beginning of Section II-B, the rate allocation
under the MaxCap approach can be extremely biased and in
favor of only those AFNs that consume the least power along
their data paths toward the base station.
10-AFN network. We assume that the initial energy at
each AFN is 50 KJ and that under the LMM rate allocation
problem, the network lifetime requirement is 100 days. The
power consumption is for transmission and reception defined
in (1) and (3), respectively.

Table V shows the rate allocation for the AFNs under
each approach, which is also plotted in Fig. 4. The “sorted
node index” corresponds to the sorted rates among the AFNs
in non-decreasing order. Clearly, among the three rate al-
location approaches, only the rate allocation under SLP-PA
meets the LMM-optimal rate allocation definition (see Defi-
nition 1). Specifically, comparing SLP-PA with SLP-ER, we
have rSLP-PA

1 = rSLP-ER
1 , rSLP-PA

2 = rSLP-ER
2 , rSLP-PA

3 = rSLP-ER
3 ,

and rSLP-PA
4 > rSLP-ER

4 ; comparing SLP-PA with MaxCap, we
have rSLP-PA

1 > rMaxCap
1 .

We also observe, as expected, a severe bias in the rate
allocation under the MaxCap approach. In particular, r10 alone
accounts for over 48% of the sum of total rates among
all the AFNs. Comparing the three approaches, we have
rSLP-PA
1 = rSLP-ER

1 > rMaxCap
1 and rSLP-PA

10 < rSLP-ER
10 < rMaxCap

10 .
In other words, the rate allocation vector under the SLP-PA
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Fig. 4. Rate allocation under the SLP-PA, SLP-ER, and MaxCap approaches
for a 10-AFN network and a 20-AFN Network.

algorithm has the smallest rate difference between the smallest
rate (r1) and the largest rate (r10), i.e., r10 − r1, among
the three approaches. In addition, although rSLP-PA

1 = rSLP-ER
1

for the first level rate allocation, the minimum node set for
rSLP-PA
1 is smaller than the minimum node set for rSLP-ER

1 ,
i.e., |SSLP-PA

1 | = 3 < |SSLP-ER
1 | = 5. This confirms that the

naive SLP-ER approach cannot offer the correct solution to
the LMM rate allocation problem.
20-AFN network. For the 20-AFN network (Table IV),
we assume that the initial energy at each AFN is 50 KJ and
that the network lifetime requirement under the LMM rate
allocation problem is 100 days. Table VI shows the sorted rate
allocation under the three approaches, which are also displayed
in Fig. 4(b). It can be easily verified that all the observations
for the 10-AFN network also hold here.

B. Duality Results

We now use numerical results to verify the duality rela-
tionship between the LMM rate allocation problem (PR) and
the LMM node lifetime problem (PL) (see Section V). Again,
we use the 10-AFN and 20-AFN network configurations in

TABLE VI
RATE ALLOCATION UNDER THE THREE APPROACHES FOR THE 20-AFN

NETWORK.

i (Sorted SLP-PA SLP-ER MaxCap
Node ri AFN ri AFN ri AFN
Index) (Kb/s) (Kb/s) (Kb/s)

1 0.3182 2 0.3182 2 0.0278 7
2 0.3182 7 0.3182 3 0.0282 15
3 0.3182 8 0.3182 4 0.0340 5
4 0.3182 11 0.3182 5 0.0374 2
5 0.3182 12 0.3182 6 0.0433 14
6 0.3182 14 0.3182 7 0.0648 19
7 0.3182 15 0.3182 8 0.0668 8
8 0.3182 16 0.3182 11 0.0760 17
9 0.3182 17 0.3182 12 0.1280 3

10 0.3182 18 0.3182 14 0.1301 4
11 0.3182 19 0.3182 15 0.2070 13
12 0.5694 5 0.3182 16 0.3714 20
13 1.3099 1 0.3182 17 0.3941 9
14 1.3099 3 0.3182 18 0.3948 18
15 1.3099 4 0.3182 19 0.5135 6
16 1.3099 6 2.0344 1 0.8524 16
17 1.3099 9 2.0344 9 1.0441 11
18 1.3099 10 2.0344 10 1.3588 1
19 1.3099 13 2.0344 13 2.2446 12
20 1.3099 20 2.0344 20 10.4362 10

TABLE VII
NUMERICAL RESULTS VERIFYING THE DUALITY RELATIONSHIP

T · gi = R · ti BETWEEN THE LMM RATE ALLOCATION PROBLEM (PR)
AND THE LMM NODE LIFETIME PROBLEM (PL) FOR THE 10-AFN

NETWORK.

AFN PR (T = 100 days) PL (R = 0.2 Kb/s)
gi T · gi ti R · ti

1 0.2941 29.41 147.07 29.41
2 0.2941 29.41 147.07 29.41
3 0.1023 10.23 51.17 10.23
4 0.2941 29.41 147.07 29.41
5 0.1536 15.36 76.79 15.36
6 0.1023 10.23 51.17 10.23
7 0.1023 10.23 51.17 10.23
8 0.2941 29.41 147.07 29.41
9 0.2941 29.41 147.07 29.41

10 0.2941 29.41 147.07 29.41

Figs. 3(a) and (b), respectively. The coordinates for each AFN
under the 10-AFN network and 20-AFN network are listed in
Tables III and IV, respectively. For both networks, we assume
that the initial energy at each AFN is 50 KJ and that the
network lifetime requirement under the LMM rate allocation
problem is T = 100 days. Under PL, we assume the local bit
rate for all AFNs is R = 0.2 Kb/s.

To verify the duality relationship (Theorem 1), we perform
the following calculations. First, we solve the LMM rate
allocation problem (PR) and the LMM node lifetime problem
(PL) independently with the above initial conditions using the
SLP-PA algorithm. Consequently, we obtain the LMM-optimal
rate allocation (gi for each AFN i) under PR and the LMM-
optimal node lifetime (ti for each AFN i) under PL. Then
we compute T · gi and R · ti separately for each AFN i and
examine if they are equal to each other.

The results for the LMM-optimal rate allocation (gi, i =



12 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 2, APRIL 2008

TABLE VIII
NUMERICAL RESULTS VERIFYING THE DUALITY RELATIONSHIP

T · gi = R · ti BETWEEN THE LMM RATE ALLOCATION PROBLEM (PR)
AND THE LMM NODE LIFETIME PROBLEM (PL) FOR THE 20-AFN

NETWORK.

AFN PR (T = 100 days) PL (R = 0.2 Kb/s)
gi T · gi ti R · ti

1 1.3099 130.99 654.94 130.99
2 0.3182 31.82 159.10 31.82
3 1.3099 130.99 654.94 130.99
4 1.3099 130.99 654.94 130.99
5 0.5694 56.94 284.71 56.94
6 1.3099 130.99 654.94 130.99
7 0.3182 31.82 159.10 31.82
8 0.3182 31.82 159.10 31.82
9 1.3099 130.99 654.94 130.99

10 1.3099 130.99 654.94 130.99
11 0.3182 31.82 159.10 31.82
12 0.3182 31.82 159.10 31.82
13 1.3099 130.99 654.94 130.99
14 0.3182 31.82 159.10 31.82
15 0.3182 31.82 159.10 31.82
16 0.3182 31.82 159.10 31.82
17 0.3182 31.82 159.10 31.82
18 0.3182 31.82 159.10 31.82
19 0.3182 31.82 159.10 31.82
20 1.3099 130.99 654.94 130.99

1, 2, · · · , 10) and the LMM-optimal node lifetime (ti, i =
1, 2, · · · , 10) for the 10-AFN network are shown in Table VII.
We find that T · gi and R · ti are exactly equal for all AFNs,
precisely as we would expect under Theorem 1. Similarly, the
results for the 20-AFN network are shown in Table VIII.

VII. RELATED WORK

Due to energy constraints in wireless sensor networks,
there has been active research on exploring the performance
limits of such networks. These performance limits include,
among others, network capacity and network lifetime. Network
capacity typically refers to the maximum amount of bit volume
that can be successfully delivered to the base station (“sink
node”) by all the nodes in the network, where network lifetime
refers to the maximum time that the nodes in the network
remain alive before one or more nodes deplete their energy.

The network capacity problem and network lifetime prob-
lem have so far been studied disjointly in the literature. For
example, in [13], the problem of how to maximize network
capacity via routing was studied. While, in many other efforts
(see, e.g., [4], [5], [8], [12], [21]), the focus was on how to
maximize the time until the first node drains up its energy.

In this paper, we study the important overarching problem
that considers both network capacity and network lifetime.
Under the LMM rate allocation problem, we studied how
to maximize rate allocations for all the nodes in the net-
work under a given network lifetime requirement. Under the
LMM node lifetime problem, we studied how to maximize
the lifetime for all nodes when the local bit rate for each
node is given a priori. The LMM rate allocation criterion
effectively mitigates the unfairness issue when the objective
is to maximize the total bit volume generated by the network.
Although the LMM rate allocation is somewhat similar to the

classical max-min strategy [3], there is a fundamental differ-
ence between the two. In particular, the LMM rate allocation
problem implicitly embeds (or couples) a flow routing problem
within rate allocation, while under the classical max-min rate
allocation, there is no routing problem involved since the
routes for all flows are given. Due to this coupling of flow
routing and rate allocation, a solution approach (i.e., SLP-PA)
to the LMM rate allocation problem is much more challenging
than that for the classical max-min.

In [19], Srinivasan et al. applied game theory and Nash
equilibrium among the nodes to forward packets such that the
total throughput (capacity) can achieve an optimal operating
point subject to a common lifetime requirement on all nodes.
However, the fairness issue in information collection was not
considered. The most relevant work to the LMM node lifetime
problem was by Brown et al. [6], which has been discussed
in detail in Section IV-A.

VIII. CONCLUSION

In this paper, we investigated the important problem of rate
allocation for wireless sensor networks under a given network
lifetime requirement. Since the objective of maximizing the
sum of rates of all nodes can lead to a severe bias in
rate allocation among the nodes, we advocate the use of
lexicographical max-min (LMM) rate allocation for all nodes
in the network. To calculate the LMM-optimal rate vector,
we developed a polynomial-time algorithm by exploiting the
parametric analysis (PA) technique from linear programming
(LP), which we called serial LP with Parametric Analysis
(SLP-PA). Furthermore, we showed that the SLP-PA algorithm
can also be employed to address the maximum node lifetime
curve problem and that the SLP-PA algorithm is much more
efficient than an state-of-the-art algorithm. More important, we
discovered a simple and elegant duality relationship between
the LMM rate allocation problem and the LMM node lifetime
problem, which enables us to develop solutions and insights
on both problems by solving one of the two problems. Our
results in this paper offer some important understanding on
network capacity and network lifetime problems for energy-
constrained wireless sensor networks.

APPENDIX A
PROOF OF LEMMA 1

By the definition of LMM-optimal rate vector (see Defi-
nition 1), the optimal rates (λl values) are unique and the
corresponding numbers of nodes in each minimum node sets
(|Sl| values) are also unique. To show that the group of
physical nodes in each Sl is also unique, we employ the
parametric simplex approach to determine the minimum node
set as follows.

In essence, the parametric simplex approach solely relies on
the PA technique without resorting to the MSV approach even
when the problem is degenerate. That is, when the problem is
degenerate, i.e., for some node i ∈ Ŝl, we have wi = 0 and
ε̂i = 0, then the basis can change while the optimal objective
value remains unchanged. We can analyze wi and εi under the
new basis to determine whether or not node i belongs to the
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minimum node set Sl. If we still have wi = 0 and ε̂i = 0,
the basis can change again with the same optimal objective
value. To prevent cycling back to a previous basis, we can use
an anti-cycling rule [2]. Thus, this procedure is guaranteed to
terminate within a finite number of steps and we can determine
whether or not node i indeed belongs to the minimum node
set Sl.

Note that in the above parametric simplex approach, the set
of nodes corresponding to Sl is uniquely determined since the
analysis is conducted independently for each node.8 Therefore,
upon the completion of all stages, the group of AFNs in each
minimum node set is unique.

APPENDIX B
OPTIMAL FLOW ROUTING SOLUTION FOR LMM-OPTIMAL

NODE LIFETIME

It is straightforward to develop an example similar to the
one given in Section III-C that shows the non-uniqueness of
the flow routing schedule.9 Given that the optimal flow routing
solution is non-unique, there are potentially many flow routing
solutions that can achieve the LMM-optimal lifetime vector.
In this section, we present a simple polynomial-time algorithm
that provides an LMM-optimal flow routing solution.

The main task in this algorithm is to define flows from the
bit volumes (Vik and ViB values), which are obtained upon
the completion of the last iteration in the LMM-Rate problem
with our SLP-PA algorithm. Note that the bit volumes obtained
here represent the total amount of bit volume being transported
between the nodes during [0, µn], where µn = τN is the time
that the last group of nodes drain up their energy. The main
result here is that if we let the total amount of out-going flow at
a node be distributed proportionally to the bit volumes on each
out-going link for all the remaining alive nodes at each stage,
then we can achieve the drop points µ1, µ2, · · · , µn as well as
the corresponding minimum node sets S1, S2, · · · , Sn. The
algorithm is formally described as follows and its correctness
proof follows that in [10].

Algorithm 2: (An Optimal Flow Routing Solution)
Upon the completion of the SLP-PA algorithm for the LMM-
optimal lifetime vector, we have the drop points (in strictly
increasing order) µ1, µ2, · · · , µn, the corresponding minimum
node sets S1, S2, · · · , Sn, and the total amount of bit volume
on each radio link (i.e., Vik and ViB). The following algorithm
gives an LMM-optimal flow routing solution for the time
interval (µl−1, µl], where µ0 = 0 and l = 1, 2, · · · , n.

1) Denote Ul = S − ⋃l−1
h=0 Sh, with S0 = ∅. Initialize all

flows to zero, i.e., f
(l)
ik = 0, f

(l)
iB = 0 for 1 ≤ i, k ≤

N, k 6= i.
2) If Ul = ∅, then stop, else choose a node i from Ul such

that10:
• node i does not receive data from any other node,

or
8This can be done in parallel if so desired.
9Incidentally, this result corrects an error in [6] (Lemma 3.2), which

incorrectly stated that such a flow routing solution is unique.
10It can be shown that an LMM-optimal solution is cycle free in terms of

flow routing. Consequently, the node i under consideration must exist when
Ul 6= ∅.

• all nodes from which node i receives data are not
in Ul.

3) The flow routing at node i during (µl−1, µl] is then
defined as

f
(l)
ik =

Vik

ViB +
∑

k 6=i
Vik

(
∑
m6=i

f
(l)
mi + gi) (1≤k≤N, k 6= i)

f
(l)
iB =

ViB

ViB +
∑

k 6=i
Vik

(
∑
m6=i

f
(l)
mi + gi)

where the f
(l)
mi values, if not zero, have all been defined

before calculating the flow routing for node i.
4) Let Ul = Ul − {i} and go to Step 2.
As shown in this algorithm, for each time interval (µl−1, µl],

l = 1, 2, · · · , n, we initialize Ul as the set of remaining alive
nodes at this stage, which is represented by Ul = S−⋃l−1

h=0 Sh.
For these nodes, we compute flow routing by starting with
the “boundary” nodes and then move to the “interior” nodes.
More precisely, we will calculate the flow routing for a node
i if and only if we have calculated the flow routing for each
node m that has traffic going into node i. The out-going flow
from node i is calculated by distributing the aggregated flow
proportionally according to the overall bit volume along its
out-going radio links. As an example, suppose that during
(µ4, µ5], node 2 receives an aggregated flow with rate 2 Kb/s
and generates 0.4 Kb/s locally. Assume that V24 = 100 Kb,
V25 = 200 Kb, and V2B = 300 Kb over [0, µn]. Then the out-
going flow at node 2 is routed as follows: f

(5)
24 = 0.4 Kb/s,

f
(5)
25 = 0.8 Kb/s, and f

(5)
2B = 1.2 Kb/s.
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