Rate Allocation and Network Lifetime Problems for Wireless Sensor Networks

Y. Thomas Hou, Senior Member, IEEE, Yi Shi, Member, IEEE, and Hanif D. Sherali

Abstract-An important performance consideration for wireless sensor networks is the amount of information collected by all the nodes in the network over the course of network lifetime. Since the objective of maximizing the sum of rates of all the nodes in the network can lead to a severe bias in rate allocation among the nodes, we advocate the use of lexicographical maxmin (LMM) rate allocation. To calculate the LMM rate allocation vector, we develop a polynomial-time algorithm by exploiting the parametric analysis (PA) technique from linear program (LP), which we call serial LP with Parametric Analysis (SLP-PA). We show that the SLP-PA can be also employed to address the LMM node lifetime problem much more efficiently than a state-of-theart algorithm proposed in the literature. More important, we show that there exists an elegant *duality* relationship between the LMM rate allocation problem and the LMM node lifetime problem. Therefore, it is sufficient to solve only one of the two problems. Important insights can be obtained by inferring duality results for the other problem.

Index Terms—Theory, sensor networks, energy constraint, network capacity, rate allocation, lexicographic max-min, node lifetime, linear programming, parametric analysis, flow routing.

I. INTRODUCTION

W IRELESS sensor networks consist of battery-powered **V** nodes that are endowed with a multitude of sensing modalities including multi-media (e.g., video, audio) and scalar data (e.g., temperature, pressure, light, magnetometer, infrared). Although there have been significant improvements in processor design and computing, advances in battery technology still lag behind, making energy resource considerations the fundamental challenge in wireless sensor networks. Consequently, there have been active research efforts on performance limits of wireless sensor networks. These performance limits include, among others, network capacity (see e.g., [13]) and network lifetime (see e.g., [7], [8]). Network capacity typically refers to the maximum amount of bit volume that can be successfully delivered to the base station ("sink node") by all the nodes in the network, while network lifetime refers to the maximum time limit that nodes in the network remain alive until one or more nodes drain up their energy.

In this paper, we consider an overarching problem that encompasses both performance metrics. In particular, we study the network capacity problem under a given network lifetime requirement. Specifically, for a wireless sensor network where each node is provisioned with an initial energy, if all nodes are required to live up to a certain lifetime criterion, what is the maximum amount of bit volume that can be generated by the entire network? At first glance, it appears desirable to maximize the sum of rates from all the nodes in the network, subject to the condition that each node can meet the network lifetime requirement. Mathematically, this problem can be formulated as a linear programming (LP) problem (see Section II-B) within which the objective function is defined as the sum of rates over all the nodes in the network and the constraints are: (1) flow balance is preserved at each node, and (2) the energy constraint at each node is met for the given network lifetime requirement. However, the solution to this problem shows (see Section VI) that although the network capacity (i.e., the sum of bit rates over all nodes) is maximized, there exists a severe bias in rate allocation among the nodes. In particular, those nodes that consume the least amount of power on their data path toward the base station are allocated with much more bit rates than other nodes in the network. Consequently, the data collection behavior for the entire network only favors certain nodes that have this property, while other nodes will be unfavorably penalized with much smaller bit rates.

The fairness issue associated with the network capacity maximization objective calls for a careful consideration in rate allocation among the nodes. In this paper, we investigate the rate allocation problem in an energy-constrained sensor network for a given network lifetime requirement. Our objective is to achieve a certain measure of optimality in the rate allocation that takes into account both fairness and bit rate maximization. We advocate to use the so-called Lexicographic Max-Min (LMM) criterion [14], which maximizes the bit rates for all the nodes for the given energy constraint and network lifetime requirement. At first level, the smallest rate among all the nodes is maximized. Then, we continue to maximize the second level of smallest rate and so forth. The LMM rate allocation criterion is appealing since it addresses both fairness and efficiency (i.e., bit rate maximization) in an energy-constrained network.

A naive approach to the LMM rate allocation problem would be to apply a max-min-like iterative procedure. Under this approach, successive LPs are employed to calculate the maximum rate at each level based on the available energy for the remaining nodes, until all nodes use up their energy. We call this approach "serial LP with energy reservation" (SLP-ER). We show that, although SLP appears intuitive, unfortunately it usually gives an *incorrect* solution. To understand how this could happen, we must understand a fundamental

Manuscript received Nov. 14, 2005; revised Sep. 23, 2006 and Feb. 14, 2007; approved by IEEE/ACM Transactions on Networking Editor R. Srikant. The work of Y.T. Hou and Y. Shi has been supported in part by National Science Foundation (NSF) under Grant CNS-0347390 and Office of Naval Research (ONR) under Grant N00014-05-1-0481. The work of H.D. Sherali has been supported in part by NSF under Grant No. CMMI-0552676. This paper was presented in part at ACM MobiHoc 2004, Tokyo, Japan.

Y.T. Hou and Y. Shi are with the Bradley Dept. of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA (e-mail: {thou,yshi}@vt.edu).

H.D. Sherali is with the Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA (e-mail: hanifs@vt.edu). Digital Object Identifier 10.1109/TNET.2007.900407

difference between the LMM rate allocation problem described here and the classical max-min rate allocation in [3]. Under the LMM rate allocation problem, the rate allocation problem is implicitly *coupled* with a flow routing problem, while under the classical max-min rate allocation, there is no routing problem involved since the routes for all flows are given. As it turns out, for the LMM rate allocation problem, any iterative rate allocation approach that requires energy reservation at each iteration is incorrect. This is because, unlike max-min, which addresses only the rate allocation problem with fixed routes and yields a unique solution at each iteration, for the LMM rate allocation problem, there usually exist non*unique* flow routing solutions corresponding to the same rate allocation at each level. Consequently, each of these flow routing solutions will yield *different* available energy levels on the remaining nodes for future iterations and so forth, leading to a different rate allocation vector, which usually does not coincide with the optimal LMM rate allocation vector.

In this paper, we develop an efficient polynomial-time algorithm to solve the LMM rate allocation problem. We exploit the so-called *parametric analysis* (PA) technique [2] at each rate level to determine the minimum set of nodes that must deplete their energy. We call this approach *serial LP* with PA (SLP-PA). In most cases when the problem is non-degenerate, the SLP-PA algorithm is extremely efficient and only requires O(N) time complexity to determine whether or not a node is in the minimum node set for each rate level. Even for the rare case when the problem is degenerate, the SLP-PA algorithm is efficient than the state-of-the-art slack variable (SV)-based approach proposed in [6], due to fewer number of LPs involved at each rate level.

We also extend the PA technique for the LMM rate allocation problem to address the so-called maximum node lifetime curve problem in [6], which we call LMM node lifetime problem. We show that the SLP-PA approach is much more efficient than the slack variable (SV)-based approach (SLP-SV) described in [6]. More importantly, we show that there exists a simple and elegant *duality* relationship between the LMM rate allocation problem and the LMM node lifetime problem. As a result, it is sufficient to solve only one of these two problems. Important insights can be obtained by inferring duality results for the other problem.

The remainder of this paper is organized as follows. In Section II, we describe the network and energy model, and formulate the LMM rate allocation problem. Section III presents our SLP-PA algorithm to the LMM rate allocation problem. In Section IV, we introduce the LMM node lifetime problem and apply the SLP-PA algorithm to solve it. Section V shows an interesting duality relationship between the LMM rate allocation problem and the LMM node lifetime problem. In Section VI, we present numerical results. Section VII reviews related work and Section VIII concludes this paper.

II. SYSTEM MODELING AND PROBLEM FORMULATION

We consider a two-tier architecture for wireless sensor networks. Figures 1(a) and (b) show the physical and hierarchical network topology for such a network, respectively. There are

Fig. 1. Reference architecture for two-tier wireless sensor networks.

three types of nodes in the network, namely, *micro-sensor nodes* (MSNs), *aggregation and forwarding nodes* (AFNs), and a *base station* (BS). The MSNs can be application-specific sensor nodes (*e.g.*, temperature sensor nodes (TSNs), pressure sensor nodes (PSNs), and video sensor nodes (VSNs)) and they constitute the lower tier of the network. They are deployed in groups (or clusters) at strategic locations for surveillance and monitoring applications. The MSNs are small and low-cost. The objective of an MSN is very simple: Once triggered by an event, it starts to capture sensing date and sends it directly to the local AFN.¹

For each cluster of MSNs, there is one AFN, which is different from an MSN in terms of physical properties and functions. The primary functions of an AFN are: (1) data aggregation (or "fusion") for data flows from the local cluster of MSNs, and (2) forwarding (or relaying) the aggregated information to the next hop AFN (toward the base station). For data fusion, an AFN analyzes the content of each data stream it receives and exploits the correlation among the data streams. An AFN also serves as a relay node for other AFNs to carry traffic toward the base station. Although an AFN is expected to be provisioned with much more energy than an MSN, it also consumes energy at a substantially higher rate (due to wireless communication over large distances). Consequently, an AFN has a limited lifetime. Upon depletion of energy at an AFN, we expect that the *coverage* for the particular area under surveillance is lost, despite the fact that some of the MSNs within the cluster may still have remaining energy.²

¹Due to the small distance between an MSN and its AFN, multi-hop routing among the MSNs may not be necessary.

 2 We assume that each MSN can only forward information to its local AFN for processing (*e.g.*, video fusion).

The third component in the two-tier architecture is the base station. The base station is, essentially, the *sink* node for data streams from all the AFNs in the network. In this investigation, we assume that there is sufficient energy resource available at the base station and thus there is no energy constraint at the base station. In summary, the main functions of the lower tier MSNs are data acquisition and compression while the uppertier AFNs are used for data fusion and relaying information to the base station.

A. Power Consumption Model

Our focus in this paper is on the communication energy consumption among the upper tier AFNs. For each AFN i, we assume that the aggregated bit rate collected locally (after data fusion) is g_i , $i = 1, 2, \dots, N$. These collected local bit streams must be routed toward the base station. Our objective is to maximize the g_i values according to the LMM criterion (see Definition 1) under a given network lifetime requirement.

For an AFN, energy consumption due to wireless communication (*i.e.*, transmitting and receiving) has been considered the dominant factor in power consumption [1]. The power dissipation at a radio transmitter can be modeled as [9]

$$p_{ik}^t = c_{ik} \cdot f_{ik} , \qquad (1)$$

where p_{ik}^t is the power dissipated at AFN *i* when it is transmitting to node *k*, f_{ik} is the rate from AFN *i* to node *k*, c_{ik} is the power consumption cost of radio link (i, k) and is given by

$$c_{ik} = \alpha + \beta \cdot d_{ik}^m \,, \tag{2}$$

where α and β are two constant terms, d_{ik} is the distance between these two nodes, and m is the path loss index, with $2 \leq m \leq 4$ [16]. Typical values for these parameters are $\alpha = 50$ nJ/b and $\beta = 0.0013$ pJ/b/m⁴ (for m = 4) [9].³ Since the power level of an AFN's transmitter can be used to control the distance coverage of an AFN (see, e.g., [15], [17], [20]), different network flow routing topologies can be formed by adjusting the power level of each AFN's transmitter.

The power dissipation at a receiver can be modeled as [9]

$$p_r(i) = \rho \cdot \sum_{k \neq i} f_{ki} , \qquad (3)$$

where $\sum_{k \neq i} f_{ki}$ (in b/s) is the rate of the received data stream at AFN *i*. A typical value for the parameter ρ is 50 nJ/b [9].

The above transmission and reception energy model assumes a contention-free MAC protocol, where interference from simultaneous transmission can be effectively minimized or avoided. For such a network, a contention-free MAC protocol is fairly easy to design (see, e.g., [18]) and its discussion is beyond the scope of this paper.

B. The LMM Rate Allocation Problem

Before we formulate the LMM rate allocation problem, let us revisit the maximum capacity problem (with "bias" in rate allocation) that was described in Section I. For a network with N AFNs, suppose that the rate of AFN i is g_i , and that the initial energy at this node is e_i $(i = 1, 2, \dots, N)$. For a given network lifetime requirement T (i.e., each AFN must remain alive for at least time duration T), the maximum information capacity that the network can collect can be found by the following linear program (LP).

$$\underbrace{\text{MaxCap:}}_{\text{s.t.}} \quad \text{Max} \qquad \sum_{i=1}^{N} g_i \\
\text{s.t.} \quad f_{iB} + \sum_{k \neq i} f_{ik} - \sum_{m \neq i} f_{mi} = g_i \qquad (1 \le i \le N) \qquad (4)$$

$$\sum_{m \neq i} \rho f_{mi} T + \sum_{k \neq i} c_{ik} f_{ik} T + c_{iB} f_{iB} T \le e_i \qquad (1 \le i \le N) \qquad (5)$$

$$f_{ik}, f_{iB} \ge 0 \quad (1 \le i, k \le N, k \ne i)$$

where f_{ik} and f_{iB} are data rates transmitted from AFN *i* to AFN *k* and from AFN *i* to the base station *B*, respectively. The set of constraints in (4) are the flow balance equations: they state that, the total bit rate transmitted by AFN *i* is equal to the total bit rate received by AFN *i* from other AFNs, plus the bit rate generated locally at AFN *i* (g_i). The set of constraints in (5) are the energy constraints: they state that, for a given network lifetime requirement *T*, the energy required in communications (i.e., transmitting and receiving all these data) cannot exceed the initial energy provisioning level.

Note that f_{mi} , f_{ik} , f_{iB} , and g_i are variables and that T is a constant (the given network lifetime requirement). MaxCap is a standard LP formulation that can be solved by a polynomialtime algorithm [2]. Unfortunately, as we shall see in the numerical results (Section VI), the solution to this MaxCap problem lends itself into an extreme favor for those AFNs whose data paths consume the least amount of power toward the base station. Consequently, although the network capacity is maximized over the network lifetime T, the corresponding bit rate allocation among the AFNs (i.e., the g_i values) only favors those AFNs that have this property, while other AFNs are unfavorably allocated with much smaller (even close to 0) bit rates. As a result of this unfairness, the effectiveness of the network in performing information collection or surveillance could be severely compromised.

To address this fairness issue, we advocate the so-called *lexicographic max-min* (LMM) rate allocation strategy [14] in this paper, which has some similarity to the max-min rate allocation in data networks [3].⁴ Under LMM rate allocation, we start with the objective of *maximizing* the bit rate for *all* the nodes until one or more nodes reach their energy-constrained capacities for the given network lifetime requirement. Given that the first level of the smallest rate allocated among the nodes is maximized, we continue to maximize the second level of rate for the remaining nodes that still have available energy, and so forth. More formally, denote $\mathbf{r} = [r_1, r_2, \dots, r_N]$ as the sorted version (i.e., $r_1 \leq r_2 \leq \dots \leq r_N$) of the rate vector $\mathbf{g} = [g_1, g_2, \dots, g_N]$, with g_i corresponding to the rate of node *i*. We then have the following definition for LMM-optimal rate allocation.

³In this paper, we use m = 4 in all of our numerical results.

⁴However, there is significant difference between max-min and LMM, which we will discuss shortly.

Definition 1: (LMM-optimal Rate Allocation) For a given network lifetime requirement T, a sorted rate vector $\mathbf{r} = [r_1, r_2, \cdots, r_N]$ yields an LMM-optimal rate allocation if and only if for any other sorted rate allocation vector $\hat{r} =$ $[\hat{r}_1, \hat{r}_2, \cdots, \hat{r}_N]$ with $\hat{r}_1 \leq \hat{r}_2 \leq \cdots \leq \hat{r}_N$, there exists a k, $1 \leq k \leq N$, such that $r_i = \hat{r}_i$ for $1 \leq i \leq k-1$ and $r_k > \hat{r}_k$.

Based on the LMM-optimal definition, we can calculate the first level optimal rate $\lambda_1 = r_1$ easily through the following LP.

Max

$$\begin{array}{ll} \underset{m \neq i}{\operatorname{Max}} & & \lambda_{1} \\ \text{s.t.} & f_{iB} + \sum_{k \neq i} f_{ik} - \sum_{m \neq i}^{\lambda_{1}} f_{mi} - \lambda_{1} = 0 & (1 \leq i \leq N) \\ & & \sum_{m \neq i} \rho f_{mi} T + \sum_{k \neq i} c_{ik} f_{ik} T + c_{iB} f_{iB} T \leq e_{i} & (1 \leq i \leq N) \\ & & f_{ik}, f_{iB} \geq 0 & (1 \leq i, k \leq N, k \neq i) \end{array}$$

Although the first level bottleneck rate λ_1 is easy to obtain, calculating the subsequent bottleneck rates are quite challenging. As discussed in Section I, a naive approach that applies an iterative LP procedure to calculate the desired rate allocations is incorrect. This is because there is a fundamental difference in the nature of the LMM rate allocation problem described here and the classical max-min rate allocation problem in [3]. The LMM rate allocation problem implicitly couples a flow routing problem (i.e., a determination of the f_{ik} and f_{iB} for the entire network), while the classical max-min rate allocation explicitly assumes that the routes for all the flows are given a priori and fixed. Moreover, for the LMM rate allocation problem, starting from the first iteration, there usually exist non-unique flow routing solutions corresponding to the same maximum rate level. Consequently, each of these flow routing solutions, once chosen, will yield *different* remaining energy levels on the nodes for future iterations and so forth, leading to a different rate vector, which usually does not coincide with the LMM-optimal rate vector. Therefore, any iterative rate allocation algorithm that requires energy reservation among the nodes during each iteration is unlikely to give a correct LMM rate allocation (see Section VI for numerical examples).

III. A SERIAL LP ALGORITHM BASED ON PARAMETRIC ANALYSIS

In this section, we present an efficient (polynomial-time) algorithm to solve the LMM rate allocation problem correctly without requiring any energy reservation during each iteration. Table I lists the notation used in this paper.

We first introduce the following notation. Suppose that the rate vector $\mathbf{r} = [r_1, r_2, \cdots, r_N]$ is LMM-optimal, with $r_1 \leq$ $r_2 \leq \cdots \leq r_N$. Note that the values of these N rates may not be all distinct. To highlight those distinct rate levels, we remove any repetitive elements in this vector and rewrite it as $[\lambda_1, \lambda_2, \dots, \lambda_n]$ such that $\lambda_1 < \lambda_2 < \dots < \lambda_n$, where $\lambda_1 =$ $r_1, \lambda_n = r_N$, and $n \leq N$. Now for each $\lambda_i, i = 1, 2, \dots, n$, denote S_i the corresponding set of nodes that use up their energy at this rate. Clearly, we have $\sum_{i=1}^{n} |S_i| = |S| = N$, where S denotes the set of all N nodes.

The key to the LMM rate allocation problem is to find the correct values $\lambda_1, \lambda_2, \dots, \lambda_n$ and the corresponding sets

TABLE I NOTATION

~ .	
General n	otation to the LMM-Rate and LMM-Lifetime problems
N	The total number of AFNs in the network
e_i	The initial energy at AFN i
ρ	The power consumption coefficient for receiving data
c_{ik}	The power consumption coefficient for transmitting
(or c_{iB})	data from AFN i to AFN k (or the base station B)
n	The number of distinct elements in the sorted
	LMM-optimal rate/lifetime vector
S_i	The minimum set of nodes that reach their energy
	constraint limits at <i>i</i> -th level
\hat{S}_i	The set of all possible AFNs that may reach their
~ i	energy constraint limits at <i>i</i> th level $S_i \subset \hat{S}_i$
V.	The total volume from AFN <i>i</i> to AFN <i>h</i>
Vik	The total volume from AFN i to AFN k
$(\text{or } V_{iB})$	(of the base station D) The rate form $A = N i$ to $A = N i$
Jik	The rate from AFN i to AFN k
(or J_{iB})	(or the base station B)
x	The optimal solution to LMM-Rate/LMM-Lifetime
w	The optimal solution to dual problem of LMM-Rate
,	or LMM-Lifetime
b	The right-hand-side (RHS) of LMM-Rate
T	or LMM-Lifetime
I_i	A column vector having a single 1 element
	corresponding to node i in (10) or (14) and
	0 for all other elements
B	The columns corresponding to the basic variables in
	LMM-Rate or LMM-Lifetime
\mathcal{Z}	The columns corresponding to the non-basic variables
	in LMM-Rate or LMM-Lifetime
$C\mathcal{B}$	The parameters in objective function corresponding to
	the basic variables of LMM-Rate or LMM-Lifetime
$c_{\mathcal{Z}}$	The parameters in objective function corresponding to
	the non-basic variables of LMM-Rate/LMM-Lifetime
$x_{\mathcal{B}}$	Part of optimal solution corresponding to the basic
	variables of LMM-Rate or LMM-Lifetime
$x_{\mathcal{Z}}$	Part of optimal solution corresponding to the
	non-basic variables of LMM-Rate or LMM-Lifetime
	Symbols used for the LMM-Rate problem
T	The network lifetime requirement
g_i	The local bit rate collected at AFN i
r_i	The <i>i</i> -th element in the sorted LMM-optimal rate
	vector, where $r_1 \leq r_2 \leq \cdots \leq r_N$
λ_i	The <i>i</i> -th rate level in the sorted LMM-optimal rate
	vector, i.e., $\lambda_1(=r_1) < \lambda_2 < \cdots < \lambda_n(=r_N)$
δ_i	$=\lambda_i - \lambda_{i-1}$, the difference between λ_i and λ_{i-1}
	Symbols used for the LMM-Lifetime problem
g_i	The rate requirement at AFN i
\overline{t}_i	The node lifetime at AFN i
$ au_i$	The <i>i</i> -th element in the sorted LMM-optimal lifetime
	vector, where $\tau_1 \leq \tau_2 \leq \cdots \leq \tau_N$
μ_i	The <i>i</i> -th drop point in the sorted LMM-optimal
	lifetime vector, i.e., $\mu_1(=\tau_1) < \mu_2 < \cdots < \mu_n(=\tau_N)$
ζ_i	$=\mu_i - \mu_{i-1}$, the difference between μ_i and μ_{i-1}
34	, , , , , , , , , , , , , , , , , , ,

 S_1, S_2, \dots, S_n , respectively. This can be done iteratively. That is, we first determine rate level λ_1 and the corresponding set S_1 , then determine rate level λ_2 and the corresponding set S_2 , and so on. In Section III-A, we will show how to determine each rate level and in Section III-B, we will show how to determine the corresponding node set.

A. Rate Level Determination

Denote $\lambda_0 = 0$ and $S_0 = \emptyset$. For $l = 1, 2, \cdots, n$, suppose that we already determined $\lambda_0, \lambda_1, \dots, \lambda_{l-1}$ and the corresponding sets S_0, S_1, \dots, S_{l-1} . The rate level λ_l can be found by the following optimization problem.

Max
s.t.
$$f_{iB} + \sum_{k \neq i} f_{ik} - \sum_{m \neq i}^{\delta_l} f_{mi} - \delta_l = \lambda_{l-1} \qquad (i \notin \bigcup_{h=0}^{l-1} S_h) \quad (6)$$

$$f_{iB} + \sum_{k \neq i} f_{ik} - \sum_{m \neq i} f_{mi} = \lambda_h \quad (i \in S_h, 1 \le h < l)$$
(7)

$$\sum_{m \neq i} \rho f_{mi}T + \sum_{k \neq i} c_{ik} f_{ik}T + c_{iB} f_{iB}T \le e_i \qquad (i \notin \bigcup_{h=0}^{l-1} S_h) \quad (8)$$

$$\sum_{m \neq i} \rho f_{mi}T + \sum_{k \neq i} c_{ik} f_{ik}T + c_{iB} f_{iB}T = e_i \qquad (i \in S_h, 1 \le h < l) \quad (9)$$
$$f_{ik}, f_{iB} \ge 0 \quad (1 \le i, k \le N, k \ne i)$$

Note that for l = 1, the constraints (7) and (9) do not exist. For $2 \le l \le n$, constraints (7) and (9) are for those nodes that have already reached their LMM rate allocation during the previous l-1 iterations. In particular, the set of constraints in (7) say that the sum of in-coming and local data rates are equal to the out-going data rates for each node with its LMMoptimal rate λ_h , $1 \le h < l$. The set of constraints in (9) say that for those nodes that have already reached their LMMoptimal rates, the total energy consumed for communications has reached their initial energy provisioning. On the other hand, the constraints in (6) and (8) are for the remaining nodes that have not yet reached their LMM-optimal rates. Specifically, the set of constraints in (6) state that, for those nodes that have not yet reached their energy constraint levels, the sum of in-coming and local data rates are equal to the out-going data rates. Note that the objective function is to maximize the additional rate δ_l for those nodes. Furthermore, for those nodes, the set of constrains in (8) state that the total energy consumed for communications should be upper bounded by the initial energy provisioning.

To facilitate our later discussion on duality results in Section V, we further re-formulate above LP. In particular, we multiply both sides of (6) and (7) by T (which is a constant representing a given network lifetime requirement) and denote $V_{iB} = f_{iB}T$, $V_{ik} = f_{ik}T$, $V_{mi} = f_{mi}T$. Intuitively, V_{ik} and V_{iB} represent the bit volume that is transferred from node *i* to *k* and from node *i* to *B*, respectively, during lifetime *T*. We obtain the following problem formulation.

$$\underbrace{\mathbf{LMM-Rate:}}_{k \neq i} \quad \text{Max} \qquad \delta_l$$
s.t.

$$V_{iB} + \sum_{k \neq i} V_{ik} - \sum_{m \neq i} V_{mi} - \delta_l T = \lambda_{l-1} T \qquad (i \notin \bigcup_{h=1}^{l-1} S_h) \quad (10)$$

$$V_{iB} + \sum_{k \neq i} V_{ik} - \sum_{m \neq i} V_{mi} = \lambda_h T \qquad (i \in S_h, 1 \le h < l)$$

$$\sum_{m \neq i} \rho V_{mi} + \sum_{k \neq i} c_{ik} V_{ik} + c_{iB} V_{iB} \le e_i \qquad (i \notin \bigcup_{h=1}^{l-1} S_h)$$

$$\sum_{m \neq i} \rho V_{mi} + \sum_{k \neq i} c_{ik} V_{ik} + c_{iB} V_{iB} = e_i \qquad (i \in S_h, 1 \le h < l)$$

$$V_{ik}, V_{iB} \ge 0 \qquad (1 \le i, k \le N, k \ne i)$$

The above LP formulation can be rewritten in the form Max cx, s.t. Ax = b and $x \ge 0$, the dual problem for which is Min

wb, s.t. $wA \ge c$ with w being unrestricted in sign [2]. Both can be solved by standard LP techniques (e.g., [2]).

Although a solution to the LMM-Rate problem gives the optimal solution for δ_l at iteration l, it remains to determine the *minimum* set of nodes corresponding to this δ_l , which is the key difficulty in the LMM rate allocation problem. In the following section, we exploit the parametric analysis technique [2] to determine the minimum node set at each rate.

B. Minimum Node Set Determination

Now we show how to determine set S_l for rate level λ_l . Denote $\hat{S}_l \ (\neq \emptyset)$ the set of nodes for which the constraints (8) are *binding* at the *l*-th iteration in LMM-Rate, *i.e.*, \hat{S}_l include all the nodes that achieve *equality* in (8) at iteration *l*. Although it is certain that at least one of the nodes in \hat{S}_l belong to S_l (the minimum node set for rate λ_l), some nodes in \hat{S}_l may still be able to further increase their rates under alternative flow routing solutions. In other words, if $|\hat{S}_l| = 1$, then we must have $S_l = \hat{S}_l$; otherwise, we must determine the *minimum* node set $S_l \ (\subseteq \hat{S}_l)$ that achieves the LMM-optimal rate allocation.

We find that the so-called *parametric analysis* (PA) technique [2] is most suitable to address this problem. The main idea of PA is to investigate how an infinitesimal perturbation on some components of the LMM-Rate problem can affect the objective function. In particular, considering a small increase on the right-hand-side (RHS) of (10), *i.e.*, changing b_i to $b_i + \epsilon_i$, where $\epsilon_i > 0$, node *i* belongs to the minimum node set S_l *if and only if* $\frac{\partial^+ \delta_l}{\partial \epsilon_i}(0) < 0$. That is, node *i* belongs to the minimum node set S_l if and only if a small increase in node *i*'s rate (in terms of total volume generated at node *i*) leads to a *decrease* in the objective function.

To compare $\frac{\partial^+ \delta_l}{\partial \epsilon_i}(0)$ with 0, we apply an important duality results from LP theory. If x and w are the respective optimal solution to the primal and dual problems, then based on the parametric duality property [2], we have

$$\frac{\partial^+ \delta_l}{\partial \epsilon_i}(0) = \frac{\partial^+(cx)}{\partial b_i}(b_i) \le w_i . \tag{11}$$

Recall that these w_i can be easily obtained at the same time when we solve the primal LP problem. Note that by the nature of the problem, we have $w_i \leq 0$ for an optimal dual solution. Therefore, if we find that $w_i < 0$, then we can determine immediately that node *i* must belong to the minimum node set S_l . On the other hand, if we find that $w_i = 0$, it is not clear whether $\frac{\partial^+ \delta_l}{\partial \epsilon_i}(0)$ is strictly negative or 0 and further analysis is thus needed.

For each node *i* with $w_i = 0$, we must perform a complete PA to see whether a perturbation (i.e., tiny increase) on the RHS of (10) will result in any change in the objective function. If there is no change, then we can determine that node *i* does not belong to the minimum node set S_l ; otherwise, node *i* belongs to S_l . Assume that the optimal solution is $(x_{\mathcal{B}}, x_{\mathcal{Z}})$, where $x_{\mathcal{B}}$ and $x_{\mathcal{Z}}$ denote the set of basic and nonbasic variables; \mathcal{B} and \mathcal{Z} denote the columns corresponding to the basic and non-basic variables. $c_{\mathcal{B}}$ and $c_{\mathcal{Z}}$ denote the objective function coefficient vectors for the basic and nonbasic variables; and q denotes the objective value. Then we have the corresponding canonical equations as follows

$$q + (c_{\mathcal{B}}^{t} \mathcal{B}^{-1} \mathcal{Z} - c_{\mathcal{Z}}^{t}) x_{\mathcal{Z}} = c_{\mathcal{B}}^{t} \mathcal{B}^{-1} b ,$$
$$x_{\mathcal{B}} + \mathcal{B}^{-1} \mathcal{Z} x_{\mathcal{Z}} = \mathcal{B}^{-1} b .$$

If b is replaced by $b + \epsilon_i I_i$, where the column vector I_i has a single 1 element corresponding to node i in the set of constraints (10) while all the other elements are 0, then the only change due to this perturbation is that $\mathcal{B}^{-1}b$ will be replaced by $\mathcal{B}^{-1}(b + \epsilon_i I_i)$. Consequently, the objective value for the current basis becomes $c_{\mathcal{B}}^t \mathcal{B}^{-1}(b + \epsilon_i I_i)$. As long as $\mathcal{B}^{-1}(b + \epsilon_i I_i)$ is nonnegative, the current basis remains optimal. Denote $\bar{b} = \mathcal{B}^{-1}b$, $\mathcal{B}_i^{-1} = \mathcal{B}^{-1}I_i$, and let $\hat{\epsilon}_i$ be an upper bound for ϵ_i such that the current basis remains optimal. We have

$$\hat{\epsilon}_i = \min_j \left\{ \frac{\bar{b}_j}{-\mathcal{B}_{ij}^{-1}} : \mathcal{B}_{ij}^{-1} < 0 \right\} .$$
(12)

If $\hat{\epsilon}_i > 0$, the optimal objective value varies according to $c_{\mathcal{B}}^t \mathcal{B}^{-1}(b + \epsilon_i I_i)$ for $0 < \epsilon_i \leq \hat{\epsilon}_i$. Since $w = c_{\mathcal{B}}^t \mathcal{B}^{-1}$ and $w_i = 0$, we have $c_{\mathcal{B}}^t \mathcal{B}^{-1} I_i = w_i = 0$. Thus, the objective value will *not* change for $\epsilon_i \in (0, \hat{\epsilon}_i]$, and consequently, the rate for node *i* can be increased beyond the current λ_l value. That is, node *i* does not belong to the minimum node set S_l .

For most problems in practice, the above procedure is sufficient to determine whether or not node *i* belongs to the minimum node set S_l for all $i \in \hat{S}_l$. But in the rare event where $\hat{\epsilon}_i = 0$, the problem is degenerate. To develop a polynomialtime algorithm, denote W_l as the set of all nodes with $w_i < 0$ and U_l as the set of all nodes with $w_i = 0$ and $\hat{\epsilon}_i = 0$. Then we solve the following LP to maximize the slack variables (SV) for nodes in U_l .

 $\sum \epsilon_i$

MSV: Max

s.t.
$$V_{iB} + \sum_{k \neq i} V_{ik} - \sum_{m \neq i} V_{mi} - \epsilon_i T = \lambda_l T \qquad (i \in U_l)$$
$$V_{iB} + \sum_{k \neq i} V_{ik} - \sum_{m \neq i} V_{mi} = \lambda_h T \qquad (i \in S_h, 1 \le h < l)$$
$$V_{iB} + \sum_{k \neq i} V_{ik} - \sum_{m \neq i} V_{mi} = \lambda_l T \qquad (i \notin U_l \bigcup_{h=1}^{l-1} S_h)$$
$$\sum_{m \neq i} \rho V_{mi} + \sum_{k \neq i} c_{ik} V_{ik} + c_{iB} V_{iB} = e_i \qquad (i \in U_l \bigcup W_l \bigcup_{h=1}^{l-1} S_h)$$
$$\sum_{m \neq i} \rho V_{mi} + \sum_{k \neq i} c_{ik} V_{ik} + c_{iB} V_{iB} \le e_i \qquad (i \notin U_l \bigcup W_l \bigcup_{h=1}^{l-1} S_h)$$
$$V_{ik}, V_{iB}, \epsilon_i \ge 0 \qquad (1 \le i, k \le N, i \ne k)$$

If the optimal objective function is 0, then we conclude that no node in U_l can have a positive ϵ_i . That is, these nodes should all belong to S_l and we have $S_l = W_l + U_l$. On the other hand, if the optimal objective function is positive, then some nodes $i \in U_l$ must have positive ϵ_i values and these nodes therefore do not belong to the minimum node set S_l . Consequently, we can remove these nodes from U_l . If $U_l \neq \emptyset$, we move on to solve another MSV. This procedure will terminate when the optimal objective function value is 0 or $U_l = \emptyset$. The following lemma ensures that MSV determines the minimum node set correctly. Its proof is given in the Appendix.

Lemma 1: (The Minimum Node Set is Unique.) The minimum node set for each rate level under the LMM-optimal rate allocation is unique.

In a nutshell, the complete PA procedure to determine whether a node $i \in \hat{S}_l$ belongs to the minimum node set S_l can be summarized as follows.

Algorithm 1: (Minimum Node Set Determination with PA)

- 1) Initialize sets $W_l = \emptyset$ and $U_l = \emptyset$.
- 2) For each node $i \in \hat{S}_l$,
 - a) If $w_i < 0$, then $W_l = W_l \cup \{i\}$.
 - b) Otherwise (i.e., $w_i = 0$), compute $\overline{b} = \mathcal{B}^{-1}b$, $\mathcal{B}_i^{-1} = \mathcal{B}^{-1}I_i$, and $\hat{\epsilon}_i$ according to (12). If $\hat{\epsilon}_i = 0$, then $U_l = U_l + \{i\}$.

3) If
$$U_l = \emptyset$$
, then $S_l = W_l$ and stop;

- else set up the MSV problem and solve it.
- 4) If the optimal objective value in MSV is 0, then S_l = W_l + U_l and stop; else remove all nodes i with ε_i > 0 from the set U_l and go to Step 3.

C. Optimal Flow Routing for LMM Rate Allocation

After we solve the LMM rate allocation problem iteratively using the procedure in Sections III-A and III-B, the corresponding optimal flow routing can be obtained by dividing the total bit volume on each link (V_{ik} or V_{iB}) by T, i.e.,

$$f_{ik} = \frac{V_{ik}}{T}$$
 and $f_{iB} = \frac{V_{iB}}{T}$, (13)

where T is the given network lifetime requirement. Although the LMM-optimal rate allocation is unique, it is important to note that the corresponding flow routing solution is *not* unique. This is because upon the completion of the LMM rate allocation problem (i.e., upon finding $[\lambda_1, \lambda_2, \dots, \lambda_n]$), there usually exist non-unique bit volume solutions (V_{ik} and V_{iB} values) corresponding to the same LMM-optimal rate allocation. This result is summarized in the following lemma.

Lemma 2: The optimal flow routing solution corresponding to the LMM rate allocation may not be unique.

We use the following example to illustrate the non-uniqueness of the optimal flow routing solution for an LMM rate allocation.

Example 1: Consider an 8-node network with the following topology (see Fig. 2). The base station B is located at the origin (0, 0). There are two groups of nodes, G_1 and G_2 , in the network, with each group consisting of four nodes. Group G_1 nodes consists of AFN₁ at (100, 0), AFN₃ at (0, 100), AFN₅ at (-100, 0), and AFN₇ at (0, -100), respectively (all in meters); Group G_2 nodes consists of AFN₂ at (100, 100), AFN₄ at (-100, 100), AFN₆ at (-100, -100), and AFN₈ at (100, -100), respectively. Assume that all nodes have the same initial energy *e*. For a network lifetime requirement of *T*, we can calculate (via SLP-PA) that the final LMM-optimal rate allocation for all 8 nodes are identical (perfect fairness), i.e., $g_1 = g_2 = \cdots = g_8$. We denote $g_i = g$ for $1 \le i \le 8$.

Fig. 2. A simple example showing that the optimal flow routing to the LMM rate allocation is not unique. The range of x is $0 \le x \le \frac{39g}{62}$.

Upon the completion of the SLP-PA algorithm, we also obtain an optimal flow routing solution corresponding to this LMM-optimal rate q. This optimal flow routing solution has the following flows: $f_{21} = f_{43} = f_{65} = f_{87} = \frac{39}{62}g$, $f_{2B} = f_{4B} = f_{6B} = f_{8B} = \frac{23}{62}g$, and $f_{1B} = f_{3B} = f_{5B} = f_{7B} = \frac{101}{62}g$. We now show that the optimal flow routing solution is non-unique. Since the network has symmetrical property, it can be easily verified that for any $x, 0 \le x \le \frac{39}{62}g$, the LMM-optimal rate allocation can be achieved if the flow routing solution satisfies the following two conditions: (i) each node in G_2 (i.e., AFNs 2, 4, 6, and 8) sends a flow of xand a flow of $\frac{39}{62}g - x$ to its two neighboring G_1 nodes as shown in Fig. 2, and a remaining flow of $\frac{23}{62}g$ directly to the base station; and (ii) each node in G_1 (i.e., AFNs 1, 3, 5, and 7) sends a total amount of $\frac{101}{62}g$ to the base station, which includes x and $\frac{39}{62}g - x$ from its neighboring nodes, plus g from itself. Clearly, there are infinitely many flow routing solutions that meet these two conditions, each of which can be shown to yield the LMM-optimal rate allocation g with the given network lifetime requirement T.

D. Complexity Analysis

We now analyze the complexity of the SLP-PA algorithm. First we consider the complexity of finding each node's rate and the total bit volume transmitted along each link. At each stage, we solve an LP problem, both its primal and dual have a complexity of $O(n_A^3 \cdot L)$ [2], where n_A is the number of constraints or variables in the problem, whichever is larger, and L is the number of binary bits required to store the data. Since the number of variables is $O(N^2)$ and is larger than the number of constraints (which is O(N)), the complexity of solving the LP is $O(N^6L)$. After solving an LP at each stage, we need to determine whether or not a node that just reached its energy binding constraint belongs to the minimum node set for this stage. Note that w and $\hat{b} = \mathcal{B}^{-1}b$ can be readily obtained when we solve the primal LP problem. To determine whether a node, say i, belongs to the minimum node set, we examine w_i . If $w_i < 0$, then node i belongs to the minimum node set and the complexity is O(1). On the other hand, if $w_i = 0$, we need to further examine whether $\hat{\epsilon}_i > 0$ or not. Based on (12), the computation for $\hat{\epsilon}_i$ is O(N). So at each stage, the complexity in PA for each node is O(N). The total complexity of PA at each stage for the node set is thus $|\hat{S}_l| \cdot O(N)$ or $O(N \cdot N) = O(N^2)$. Thus, the complexity at each stage is $O(N^6L) + O(N^2) = O(N^6L)$. As there are at most N stages, the overall complexity is $O(N^7L)$.

We now analyze the complexity for the degenerate case. Upon the completion of Step 2 in Algorithm 1, we denote $U_l^{(0)} = U_l$. Since we need to solve at most $|U_l^{(0)} - S_l|$ LPs, the complexity is $|U_l^{(0)} - S_l| \cdot O(N^6L)$ or $O(N \cdot N^6L) = O(N^7L)$. Hence, the complexity at each stage is $O(N^6L) + O(N^2) + O(N^7L) = O(N^7L)$. Since there are at most N stages, the overall complexity is $O(N^8L)$.

The complexity in finding the optimal flow routing is bounded by the number of radio links in the network, which is $O(N^2)$. Hence the overall complexity is $O(N^7L) + O(N^2) =$ $O(N^7L)$ for the non-degenerate case and $O(N^8L) + O(N^2) =$ $O(N^8L)$ for the degenerate case. Under either case, the computational complexity is polynomial.⁵

E. Discussion

So far, we consider the case that each AFN generates data at a constant rate. In practice, an AFN node may not always transmit data and may work in on/off mode to conserve energy. In this case, it is necessary to construct optimal flow routing solution for variable bit rate source (where on/off mode is a special case). In [11], we have developed techniques to construct optimal flow routing solution for variable bit rate, as long as its average rate is known. Such average rate corresponds to the constant rate in this paper. As a result, the case of on/off mode (with known average rate) can also be handled using techniques in [11].

IV. EXTENSION TO LMM NODE LIFETIME PROBLEM

In this section, we show that our SLP-PA algorithm can be used to solve the so-called *maximum node lifetime curve problem* in [6], which we define as the *LMM node lifetime problem*. We also show that the SLP-PA algorithm is a much more efficient approach than the one proposed in [6], which is currently the state-of-the-art to address this problem.

A. The LMM-optimal Node Lifetime Problem

The LMM node lifetime problem considers the following scenario. For a network with N AFNs, with a given local bit rate g_i (fixed) and initial energy e_i for AFN $i, i = 1, 2, \dots, N$, how can we maximize the network lifetime for all AFNs in the network? In other words, the LMM node lifetime problem not only considers how to maximize the network lifetime until the first AFN runs out of energy, but also the time for all the AFNs in the network.

More formally, denote the lifetime for each AFN i as t_i , $i = 1, 2, \dots, N$. Note that g_i 's are fixed here, while t_i 's are the optimization variables, which are different from the LMM rate allocation problem that we studied in the last section.

 $^{^{5}}$ Note that our analysis here gives a very loose upper bound for time complexity. In practice, the running time for LP implementation is much faster.

Denote $[\tau_1, \tau_2, \dots, \tau_N]$ as the *sorted* sequence of the t_i values in nondecreasing order. Then LMM-optimal node lifetime can be defined as follows.

Definition 2: (LMM-optimal Node Lifetime) A sorted node lifetime vector $[\tau_1, \tau_2, \dots, \tau_N]$ with $\tau_1 \leq \tau_2 \leq \dots \leq \tau_N$ is LMM-optimal if and only if for any other sorted node lifetime vector $[\hat{\tau}_1, \hat{\tau}_2, \dots, \hat{\tau}_N]$ with $\hat{\tau}_1 \leq \hat{\tau}_2 \leq \dots \leq \hat{\tau}_N$, there exists a k, $1 \leq k \leq N$, such that $\tau_i = \hat{\tau}_i$ for $1 \leq i \leq k - 1$ and $\tau_k > \hat{\tau}_k$.

B. Solution

It should be clear that, under the LMM-optimal node lifetime objective, we must *maximize* the time until a set of nodes use up their energy (which is also called a *drop point* in [6]) while *minimizing* the number of nodes that drain up their energy at each drop point. We now show that the SLP-PA algorithm developed for the LMM rate allocation problem can be directly applied to solve the LMM node lifetime problem.

Suppose that $[\tau_1, \tau_2, \dots, \tau_N]$ with $\tau_1 \leq \tau_2 \leq \dots \leq \tau_N$ is LMM-optimal. To keep track of *distinct* node lifetimes (or drop points) in this vector, we remove all repetitive elements in the vector and rewrite it as $[\mu_1, \mu_2, \dots, \mu_n]$ such that $\mu_1 < \mu_2 < \dots < \mu_n$, where $\mu_1 = \tau_1, \mu_n = \tau_N$, and $n \leq N$. Corresponding to these drop points, denote S_1, S_2, \dots, S_n as the sets of nodes that drain up their energy at drop points $\mu_1, \mu_2, \dots, \mu_n$, respectively. Then $|S_1| + |S_2| + \dots + |S_n| =$ |S| = N, where S denotes the set of all N AFNs in the network. The problem is to find the LMM-optimal values of $\mu_1, \mu_2, \dots, \mu_n$ and the corresponding sets S_1, S_2, \dots, S_n .

Similar to the LMM rate allocation problem, the LMM node lifetime problem can be formulated as an iterative optimization problem as follows. Denote $\mu_0 = 0$, $S_0 = \emptyset$, and $\zeta_l = \mu_l - \mu_{l-1}$. Starting from l = 1, we solve the following LP iteratively.

$$\underbrace{\mathbf{LMM-Lifetime:}}_{s.t.} \quad \text{Max} \qquad \zeta_{l}$$
s.t.
$$V_{iB} + \sum_{k \neq i} V_{ik} - \sum_{m \neq i} V_{mi} - \zeta_{l} g_{i} = \mu_{l-1} g_{i} \qquad (i \notin \bigcup_{h=0}^{l-1} S_{h}) \quad (14)$$

$$V_{iB} + \sum_{k \neq i} V_{ik} - \sum_{m \neq i} V_{mi} = \mu_{h} g_{i} \qquad (i \in S_{h}, 1 \leq h < l)$$

$$\sum_{m \neq i} \rho V_{mi} + \sum_{k \neq i} c_{ik} V_{ik} + c_{iB} V_{iB} \leq e_{i} \qquad (i \notin \bigcup_{h=0}^{l-1} S_{h})$$

$$\sum_{m \neq i} \rho V_{mi} + \sum_{k \neq i} c_{ik} V_{ik} + c_{iB} V_{iB} = e_{i} \qquad (i \in S_{h}, 1 \leq h < l)$$

$$V_{ik}, V_{iB}, \zeta_{l} \geq 0 \qquad (1 \leq i, k \leq N, k \neq i)$$

Comparing the above LMM-Lifetime problem to the LMM-Rate problem that we studied in Section III-A, we find that they are exactly of the same form. The only differences are that under the LMM-Lifetime problem, the local bit rates g_i are constants and the node lifetimes τ_i are variables (subject to optimization), while under the LMM-Rate problem, the g_i are variables (subject to optimization) and the node lifetimes are all identical (T), $i = 1, 2, \dots, N$. Since the mathematical formulation for the two problems are identical, we can apply the SLP-PA algorithm to solve the LMM node lifetime problem as well. The only issue that we need to be concerned about is the optimal flow routing solution corresponding to the LMM-optimal lifetime vector. The optimal flow routing solution here is not as simple as that for the LMM rate allocation problem, which merely involves a simple division (see (13)). We refer readers to the Appendix for an $O(N^4)$ algorithm to obtain an optimal flow routing solution for the LMM-optimal lifetime vector. Similar to Lemma 2, the optimal flow routing solution corresponding to the LMM node lifetime problem may not be unique.

C. Complexity Comparison

In [6], Brown *et al.* studied the LMM node lifetime problem under the so-called "maximum node lifetime curve" problem. They also developed the first procedure to solve this problem correctly. A key step in their procedure is the use of *multiple* independent LP calculations to determine the minimum node set at each drop point, which we call *serial LP with slack variable analysis* (SLP-SV). Although this approach solves the LMM node lifetime problem correctly, its computational complexity (potentially exponential) remains an issue to be resolved.

On the other hand, the SLP-PA algorithm developed in this paper is polynomial and is computationally more efficient than the SLP-SV approach. To understand the difference between the two, we take a closer look on the computational complexity of the SLP-SV approach in [6]. First, SLP-SV needs to keep track of each *sub-flow* along its route from the source node toward the base station. Such a flow-based (or more precisely, sub-flow based) approach could make the size of the LP coefficient matrix exponential, which leads to an exponential-time algorithm [2].⁶

Second, even if a link-based LP formulation such as ours is adopted in [6], the computational efficiency of the SVbased approach is still worse than the SLP-PA algorithm. This is because at each stage, the SV-based approach must solve several *additional* LPs (up to $|\hat{S}_l - S_l|$) to determine S_l , which is in contrast to the simpler PA under the SLP-PA algorithm ($O(N^2)$). Even for the degenerate case, the number of additional LPs under the SLP-PA algorithm is at most $|U_l^{(0)} - S_l|$,⁷ which is still no more than $|\hat{S}_l - S_l|$.

Finally, we discuss a hybrid link-flow approach mentioned in [6]. In this approach, link-based formulations are used for sub-flows. This leads to a much fewer number of variables than those for the flow-based approach. But this approach still requires sub-flow accounting and results in an order of magnitude more constraints than the link-based approach in SLP-PA. Although this approach solves the LMM node lifetime problem in polynomial-time (*e.g.*, by using interior point methods [2]), the overall complexity is still orders of magnitude higher than that under the SLP-PA algorithm. Furthermore, the burden of solving additional LPs to determine whether a node belongs to the minimum node set still remains.

⁷Recall that $U_l^{(0)}$ denotes U_l upon the completion of Step 2 in Algorithm 1.

⁶Incidentally, the revised simplex method proposed in [6] is not as efficient as the polynomial-time algorithm described in [2] and is itself exponential.

TABLE II DUALITY RELATIONSHIP BETWEEN LMM RATE ALLOCATION PROBLEM \mathcal{P}_R and LMM node lifetime problem \mathcal{P}_L .

\mathcal{P}_R	\mathcal{P}_L			
g_i (optimization variable)	$g_i = R$ (constant)			
$t_i = T$ (constant)	t_i (optimization variable)			
Total bit volume at AFN <i>i</i> : $g_i \cdot T = t_i \cdot R$				

V. DUALITY THEOREM

In this section, we present an elegant and powerful result showing that there is a duality relationship between the LMM rate allocation problem and the LMM node lifetime problem. As a result, it is only necessary to solve only one of the two problems and the results for the other can be obtained via simple algebraic calculations.

To start with, we denote \mathcal{P}_R the LMM rate allocation problem where we have N AFNs in the network and all nodes have a common given lifetime requirement T (constant). Denote g_i the LMM-optimal rate allocation for node *i* under \mathcal{P}_R , $i = 1, 2, \dots, N$. Similarly, we denote \mathcal{P}_L the LMM node lifetime problem where all nodes have the same local bit rate R (constant). Denote t_i the LMM node lifetime for node *i* under \mathcal{P}_L , $i = 1, 2, \dots, N$. Then the following theorem shows how the solution to one problem can be used to obtain the solution to the other.

Theorem 1: (Duality) For a given node lifetime requirement T for all nodes under problem \mathcal{P}_R and a given local bit rate R for all nodes under problem \mathcal{P}_L , we have the following relationship between the solutions to the LMM rate allocation problem \mathcal{P}_R and the LMM node lifetime problem \mathcal{P}_L .

(i) Suppose that we have solved problem \mathcal{P}_R and obtained the LMM-optimal rate allocation g_i for each node i ($i = 1, 2, \dots, N$). Then under \mathcal{P}_L , the LMM node lifetime t_i for node i is

$$t_i = \frac{g_i T}{R} \ . \tag{15}$$

(ii) Suppose that we have solved problem \mathcal{P}_L and obtained the LMM-optimal node lifetime t_i for each node i ($i = 1, 2, \dots, N$). Then under \mathcal{P}_R , the LMM rate allocation g_i for node i is

$$g_i = \frac{t_i R}{T} . \tag{16}$$

Table II shows the duality relationship between solutions to problems \mathcal{P}_R and \mathcal{P}_L .

Proof: We prove (i) and (ii) in Theorem 1 separately. (i) We organize our proof into two parts. First, we show that t_i 's are feasible node lifetimes in terms of flow balance and energy constraints on each node i ($i = 1, 2, \dots, N$). Then we show that it is indeed the LMM-optimal node lifetime.

Feasibility. Since we have obtained the solution to problem \mathcal{P}_R , we have one feasible flow routing solution for sending bit streams g_i , $i = 1, 2, \dots, N$, to the base station. Under problem \mathcal{P}_R , the bit volumes (V_{ij} and V_{iB} values) must meet the following equalities under the LMM-optimal rate allocation:

$$V_{iB} + \sum_{1 \le k \le N, k \ne i} V_{ik} - \sum_{1 \le m \le N, m \ne i} V_{mi} = g_i T ,$$

$$\sum_{1 \le m \le N, m \ne i} \rho V_{mi} + \sum_{1 \le k \le N, k \ne i} c_{ik} V_{ik} + c_{iB} V_{iB} = e_i .$$

Now replacing $g_i T$ by $t_i R$, we see that the *same* bit volume solution under \mathcal{P}_R yields a feasible bit volume solution to the node lifetime problem under \mathcal{P}_L . Consequently, we can use Algorithm 2 to obtain the flow routing solution to problem \mathcal{P}_L under the bit volume solution to problem \mathcal{P}_L and this verifies that t_i , $i = 1, 2, \dots, N$, is a feasible solution to problem \mathcal{P}_L . **Optimality.** To prove that t_i 's obtained via (15) are indeed LMM-optimal for problem \mathcal{P}_L , we sort g_i , $i = 1, 2, \dots, N$, under problem \mathcal{P}_R in non-decreasing order and denote it as $[r_1, r_2, \dots, r_N]$. We also introduce a node index $I = [i_1, i_2, \dots, i_N]$ for $[r_1, r_2, \dots, r_N]$. For example, $i_3 = 7$ means that r_3 actually corresponds to the rate of AFN 7, i.e., $r_3 = g_7$.

Since t_i is proportional to g_i through the relationship $(t_i = \frac{T}{R} \cdot g_i)$, listing t_i , $i = 1, 2, \dots, N$, according to $I = [i_1, i_2, \dots, i_N]$ will yield a *sorted* (in *non-decreasing* order) lifetime list, denoted as $[\tau_1, \tau_2, \dots, \tau_N]$. We now prove that $[\tau_1, \tau_2, \dots, \tau_N]$ is indeed LMM-optimal for problem \mathcal{P}_L .

Our proof is based on contradiction. Suppose that $[\tau_1, \tau_2, \cdots, \tau_N]$ is not LMM-optimal for problem \mathcal{P}_L . Assume that the LMM-optimal lifetime vector to problem \mathcal{P}_L is $[\hat{\tau}_1, \hat{\tau}_2, \cdots, \hat{\tau}_N]$ (sorted in non-decreasing order) with the corresponding node index being $\hat{I} = [\hat{i}_1, \hat{i}_2, \cdots, \hat{i}_N]$. Then, by Definition 2, there exists a k such that $\hat{\tau}_j = \tau_j$ for $1 \leq j \leq k-1$ and $\hat{\tau}_k > \tau_k$.

We now claim that if \hat{t}_i , $i = 1, 2, \dots, N$, is a feasible solution to problem \mathcal{P}_L , then \hat{g}_i obtained via $\hat{g}_i = \frac{\hat{t}_i R}{T}$, $i = 1, 2, \dots, N$, is also a feasible solution to problem \mathcal{P}_R . The proof to this claim follows identically as above. Using this result, we can obtain a corresponding feasible solution $[\hat{r}_1, \hat{r}_2, \dots, \hat{r}_N]$ with $\hat{r}_i = \frac{\hat{\tau}_i R}{T}$ and the node index \hat{I} for problem \mathcal{P}_R . Hence we have $\hat{r}_j = \frac{\hat{\tau}_j R}{T} = \frac{\tau_j R}{T} = r_j$ for $1 \leq j \leq k - 1$ but $\hat{r}_k = \frac{\hat{\tau}_k R}{T} > \frac{\tau_k R}{T} = r_k$. That is, $[r_1, r_2, \dots, r_N]$ is not LMM-optimal and this leads to a contradiction.

(ii) The proof for this part follows the same token as the above proof for (i) and is thus omitted here.

This duality relationship offers important insights on system performance issues, in addition to providing solutions to the LMM rate allocation and the LMM node lifetime problems. For example, in Section I, we pointed out the potential bias (fairness) issue associated with the network capacity maximization objective (i.e., sum of rates from all nodes). It is interesting to see that there is a dual fairness issue under the node lifetime problem. In particular, the objective of maximizing the *sum* of node lifetimes among all nodes also leads to a bias (or fairness) problem because this objective would only favor those nodes that consume energy at a small rate. As a result, certain nodes will have much larger lifetimes while some other nodes will be penalized with much smaller lifetimes, although the sum of node lifetimes is maximized.

VI. NUMERICAL INVESTIGATION

In this section, we use numerical results to illustrate our SLP-PA algorithm to the LMM rate allocation problem and compare it with other approaches. We also use numerical results to illustrate the duality between the LMM rate allocation problem and the LMM node lifetime problem.

Fig. 3. Network topologies used in the numerical investigation.

TABLE III NODE COORDINATES FOR A 10-AFN NETWORK.

AFN i	(x_i, y_i) (in meters)	AFN i	(x_i, y_i) (in meters)
1	(400, -320)	6	(-500, 100)
2	(300, 440)	7	(-400, 0)
3	(-300, -420)	8	(420, 120)
4	(320, -100)	9	(200, 140)
5	(-120, 340)	10	(220, -340)

TABLE IV NODE COORDINATES FOR A 20-AFN NETWORK.

AFN i	(x_i, y_i) (in meters)	AFN i	(x_i, y_i) (in meters)
1	(200, 130)	11	(110, -230)
2	(-400, -430)	12	(-210, 0)
3	(-100, 420)	13	(210, 320)
4	(0, 430)	14	(300, -480)
5	(-410, 440)	15	(-420, -470)
6	(-200, 230)	16	(-120, -240)
7	(400, -490)	17	(220, -440)
8	(410, -300)	18	(-220, -240)
9	(100, 310)	19	(-500, -110)
10	(10, 140)	20	(20, 330)

TABLE V RATE ALLOCATION UNDER THE THREE APPROACHES FOR THE 10-AFN NETWORK.

<i>i</i> (Sorted	SLP-PA SLP-ER Max(SLP-ER		ີan	
Node		AFN		AFN	r:	AFN
Index)	(Kb/s)		(Kb/s)		(Kb/s)	1 11 11
1	0.1023	3	0.1023	1	0.0553	2
2	0.1023	6	0.1023	2	0.0627	3
3	0.1023	7	0.1023	3	0.0646	1
4	0.1536	5	0.1023	6	0.0658	6
5	0.2941	1	0.1023	7	0.1222	8
6	0.2941	2	0.1536	5	0.1653	10
7	0.2941	4	0.1536	8	0.1736	7
8	0.2941	8	0.1536	10	0.2628	5
9	0.2941	9	0.6563	4	0.3513	4
10	0.2941	10	0.6563	9	1.2398	9

We consider two network topologies, one with 10 AFNs and the other with 20 AFNs. Under both topologies, the base station B is located at the origin while the locations for the 10 or 20 AFNs are randomly generated over a 1000m \times 1000m square area (see Figs. 3(a) and (b) and Tables III and IV, respectively).

A. SLP-PA Algorithm to the LMM Rate Allocation Problem

We will compare SLP-PA with the naive approach (see Section II-B) that uses a serial LP "blindly" to solve the LMM rate allocation problem and performs energy reservation during each iteration. We call this naive approach Serial LP with Energy Reservation (SLP-ER). As discussed in Section II-B, the SLP-ER approach will not give the correct final solution to the LMM rate allocation problem.

We will also compare our SLP-PA algorithm to the Maximum-Capacity (MaxCap) approach (see Section II-B). As discussed in the beginning of Section II-B, the rate allocation under the MaxCap approach can be extremely biased and in favor of only those AFNs that consume the least power along their data paths toward the base station.

10-AFN network. We assume that the initial energy at each AFN is 50 KJ and that under the LMM rate allocation problem, the network lifetime requirement is 100 days. The power consumption is for transmission and reception defined in (1) and (3), respectively.

Table V shows the rate allocation for the AFNs under each approach, which is also plotted in Fig. 4. The "sorted node index" corresponds to the sorted rates among the AFNs in non-decreasing order. Clearly, among the three rate allocation approaches, only the rate allocation under SLP-PA meets the LMM-optimal rate allocation definition (see Definition 1). Specifically, comparing SLP-PA with SLP-ER, we have $r_1^{\text{SLP-PA}} = r_1^{\text{SLP-ER}}$, $r_2^{\text{SLP-PA}} = r_2^{\text{SLP-ER}}$, $r_3^{\text{SLP-PA}} = r_3^{\text{SLP-ER}}$, and $r_4^{\text{SLP-PA}} > r_4^{\text{SLP-ER}}$; comparing SLP-PA with MaxCap, we have $r_1^{\text{SLP-PA}} > r_1^{\text{MaxCap}}$.

We also observe, as expected, a severe bias in the rate allocation under the MaxCap approach. In particular, r_{10} alone accounts for over 48% of the sum of total rates among all the AFNs. Comparing the three approaches, we have $r_1^{\text{SLP-PA}} = r_1^{\text{SLP-ER}} > r_1^{\text{MaxCap}}$ and $r_{10}^{\text{SLP-PA}} < r_{10}^{\text{SLP-ER}} < r_{10}^{\text{MaxCap}}$. In other words, the rate allocation vector under the SLP-PA

Fig. 4. Rate allocation under the SLP-PA, SLP-ER, and MaxCap approaches for a 10-AFN network and a 20-AFN Network.

algorithm has the smallest rate difference between the smallest rate (r_1) and the largest rate (r_{10}) , i.e., $r_{10} - r_1$, among the three approaches. In addition, although $r_1^{\text{SLP-PA}} = r_1^{\text{SLP-ER}}$ for the first level rate allocation, the minimum node set for $r_1^{\text{SLP-PA}}$ is smaller than the minimum node set for $r_1^{\text{SLP-ER}}$, i.e., $|S_1^{\text{SLP-PA}}| = 3 < |S_1^{\text{SLP-ER}}| = 5$. This confirms that the naive SLP-ER approach cannot offer the correct solution to the LMM rate allocation problem.

20-AFN network. For the 20-AFN network (Table IV), we assume that the initial energy at each AFN is 50 KJ and that the network lifetime requirement under the LMM rate allocation problem is 100 days. Table VI shows the sorted rate allocation under the three approaches, which are also displayed in Fig. 4(b). It can be easily verified that all the observations for the 10-AFN network also hold here.

B. Duality Results

We now use numerical results to verify the duality relationship between the LMM rate allocation problem (\mathcal{P}_R) and the LMM node lifetime problem (\mathcal{P}_L) (see Section V). Again, we use the 10-AFN and 20-AFN network configurations in

TABLE VI Rate allocation under the three approaches for the 20-AFN Network.

i (Sorted	SLP-	SLP-PA SLP-ER MaxC		SLP-ER		Cap
Node	r_i	AFN	r_i	AFN	r_i	AFN
Index)	(Kb/s)		(Kb/s)		(Kb/s)	
1	0.3182	2	0.3182	2	0.0278	7
2	0.3182	7	0.3182	3	0.0282	15
3	0.3182	8	0.3182	4	0.0340	5
4	0.3182	11	0.3182	5	0.0374	2
5	0.3182	12	0.3182	6	0.0433	14
6	0.3182	14	0.3182	7	0.0648	19
7	0.3182	15	0.3182	8	0.0668	8
8	0.3182	16	0.3182	11	0.0760	17
9	0.3182	17	0.3182	12	0.1280	3
10	0.3182	18	0.3182	14	0.1301	4
11	0.3182	19	0.3182	15	0.2070	13
12	0.5694	5	0.3182	16	0.3714	20
13	1.3099	1	0.3182	17	0.3941	9
14	1.3099	3	0.3182	18	0.3948	18
15	1.3099	4	0.3182	19	0.5135	6
16	1.3099	6	2.0344	1	0.8524	16
17	1.3099	9	2.0344	9	1.0441	11
18	1.3099	10	2.0344	10	1.3588	1
19	1.3099	13	2.0344	13	2.2446	12
20	1.3099	20	2.0344	20	10.4362	10

TABLE VII NUMERICAL RESULTS VERIFYING THE DUALITY RELATIONSHIP $T \cdot g_i = R \cdot t_i$ between the LMM rate allocation problem (\mathcal{P}_R) and the LMM node lifetime problem (\mathcal{P}_L) for the 10-AFN NETWORK.

AFN	\mathcal{P}_R (T =	= 100 days)	$\mathcal{P}_L (R = 0.2 \text{ Kb/})$		
	g_i	$T \cdot g_i$	t_i	$R \cdot t_i$	
1	0.2941	29.41	147.07	29.41	
2	0.2941	29.41	147.07	29.41	
3	0.1023	10.23	51.17	10.23	
4	0.2941	29.41	147.07	29.41	
5	0.1536	15.36	76.79	15.36	
6	0.1023	10.23	51.17	10.23	
7	0.1023	10.23	51.17	10.23	
8	0.2941	29.41	147.07	29.41	
9	0.2941	29.41	147.07	29.41	
10	0.2941	29.41	147.07	29.41	

Figs. 3(a) and (b), respectively. The coordinates for each AFN under the 10-AFN network and 20-AFN network are listed in Tables III and IV, respectively. For both networks, we assume that the initial energy at each AFN is 50 KJ and that the network lifetime requirement under the LMM rate allocation problem is T = 100 days. Under \mathcal{P}_L , we assume the local bit rate for all AFNs is R = 0.2 Kb/s.

To verify the duality relationship (Theorem 1), we perform the following calculations. First, we solve the LMM rate allocation problem (\mathcal{P}_R) and the LMM node lifetime problem (\mathcal{P}_L) *independently* with the above initial conditions using the SLP-PA algorithm. Consequently, we obtain the LMM-optimal rate allocation (g_i for each AFN i) under \mathcal{P}_R and the LMMoptimal node lifetime (t_i for each AFN i) under \mathcal{P}_L . Then we compute $T \cdot g_i$ and $R \cdot t_i$ separately for each AFN i and examine if they are equal to each other.

The results for the LMM-optimal rate allocation $(q_i, i =$

TABLE VIII NUMERICAL RESULTS VERIFYING THE DUALITY RELATIONSHIP $T \cdot g_i = R \cdot t_i$ between the LMM rate allocation problem (\mathcal{P}_R) and the LMM node lifetime problem (\mathcal{P}_L) for the 20-AFN NETWORK.

AFN	\mathcal{P}_R (T =	= 100 days)	$\parallel \mathcal{P}_L \ (R = 0.2 \text{ Kb/s})$	
	g_i	$T \cdot g_i$	t_i	$R \cdot t_i$
1	1.3099	130.99	654.94	130.99
2	0.3182	31.82	159.10	31.82
3	1.3099	130.99	654.94	130.99
4	1.3099	130.99	654.94	130.99
5	0.5694	56.94	284.71	56.94
6	1.3099	130.99	654.94	130.99
7	0.3182	31.82	159.10	31.82
8	0.3182	31.82	159.10	31.82
9	1.3099	130.99	654.94	130.99
10	1.3099	130.99	654.94	130.99
11	0.3182	31.82	159.10	31.82
12	0.3182	31.82	159.10	31.82
13	1.3099	130.99	654.94	130.99
14	0.3182	31.82	159.10	31.82
15	0.3182	31.82	159.10	31.82
16	0.3182	31.82	159.10	31.82
17	0.3182	31.82	159.10	31.82
18	0.3182	31.82	159.10	31.82
19	0.3182	31.82	159.10	31.82
20	1.3099	130.99	654.94	130.99

 $1, 2, \dots, 10$) and the LMM-optimal node lifetime $(t_i, i = 1, 2, \dots, 10)$ for the 10-AFN network are shown in Table VII. We find that $T \cdot g_i$ and $R \cdot t_i$ are exactly equal for all AFNs, precisely as we would expect under Theorem 1. Similarly, the results for the 20-AFN network are shown in Table VIII.

VII. RELATED WORK

Due to energy constraints in wireless sensor networks, there has been active research on exploring the performance limits of such networks. These performance limits include, among others, *network capacity* and *network lifetime*. Network capacity typically refers to the maximum amount of bit volume that can be successfully delivered to the base station ("sink node") by all the nodes in the network, where network lifetime refers to the maximum time that the nodes in the network remain alive before one or more nodes deplete their energy.

The network capacity problem and network lifetime problem have so far been studied disjointly in the literature. For example, in [13], the problem of how to maximize network capacity via routing was studied. While, in many other efforts (see, e.g., [4], [5], [8], [12], [21]), the focus was on how to maximize the time until the first node drains up its energy.

In this paper, we study the important overarching problem that considers both network capacity and network lifetime. Under the LMM rate allocation problem, we studied how to maximize rate allocations for *all* the nodes in the network under a given network lifetime requirement. Under the LMM node lifetime problem, we studied how to maximize the lifetime for *all* nodes when the local bit rate for each node is given *a priori*. The LMM rate allocation criterion effectively mitigates the unfairness issue when the objective is to maximize the total bit volume generated by the network. Although the LMM rate allocation is somewhat similar to the classical max-min strategy [3], there is a fundamental difference between the two. In particular, the LMM rate allocation problem implicitly embeds (or couples) a flow routing problem within rate allocation, while under the classical max-min rate allocation, there is no routing problem involved since the routes for all flows are given. Due to this coupling of flow routing and rate allocation, a solution approach (i.e., SLP-PA) to the LMM rate allocation problem is much more challenging than that for the classical max-min.

In [19], Srinivasan *et al.* applied game theory and Nash equilibrium among the nodes to forward packets such that the total throughput (capacity) can achieve an optimal operating point subject to a common lifetime requirement on all nodes. However, the fairness issue in information collection was not considered. The most relevant work to the LMM node lifetime problem was by Brown *et al.* [6], which has been discussed in detail in Section IV-A.

VIII. CONCLUSION

In this paper, we investigated the important problem of rate allocation for wireless sensor networks under a given network lifetime requirement. Since the objective of maximizing the sum of rates of all nodes can lead to a severe bias in rate allocation among the nodes, we advocate the use of lexicographical max-min (LMM) rate allocation for all nodes in the network. To calculate the LMM-optimal rate vector, we developed a polynomial-time algorithm by exploiting the parametric analysis (PA) technique from linear programming (LP), which we called serial LP with Parametric Analysis (SLP-PA). Furthermore, we showed that the SLP-PA algorithm can also be employed to address the maximum node lifetime curve problem and that the SLP-PA algorithm is much more efficient than an state-of-the-art algorithm. More important, we discovered a simple and elegant duality relationship between the LMM rate allocation problem and the LMM node lifetime problem, which enables us to develop solutions and insights on both problems by solving one of the two problems. Our results in this paper offer some important understanding on network capacity and network lifetime problems for energyconstrained wireless sensor networks.

APPENDIX A Proof of Lemma 1

By the definition of LMM-optimal rate vector (see Definition 1), the optimal rates (λ_l values) are unique and the corresponding numbers of nodes in each minimum node sets ($|S_l|$ values) are also unique. To show that the group of *physical* nodes in each S_l is also unique, we employ the parametric simplex approach to determine the minimum node set as follows.

In essence, the parametric simplex approach solely relies on the PA technique without resorting to the MSV approach even when the problem is degenerate. That is, when the problem is degenerate, i.e., for some node $i \in \hat{S}_l$, we have $w_i = 0$ and $\hat{\epsilon}_i = 0$, then the basis can change while the optimal objective value remains unchanged. We can analyze w_i and ϵ_i under the new basis to determine whether or not node *i* belongs to the minimum node set S_l . If we still have $w_i = 0$ and $\hat{\epsilon}_i = 0$, the basis can change again with the same optimal objective value. To prevent cycling back to a previous basis, we can use an anti-cycling rule [2]. Thus, this procedure is guaranteed to terminate within a finite number of steps and we can determine whether or not node *i* indeed belongs to the minimum node set S_l .

Note that in the above parametric simplex approach, the set of nodes corresponding to S_l is *uniquely* determined since the analysis is conducted independently for each node.⁸ Therefore, upon the completion of all stages, the group of AFNs in each minimum node set is unique.

APPENDIX B

Optimal Flow Routing Solution for LMM-optimal Node Lifetime

It is straightforward to develop an example similar to the one given in Section III-C that shows the non-uniqueness of the flow routing schedule.⁹ Given that the optimal flow routing solution is non-unique, there are potentially many flow routing solutions that can achieve the LMM-optimal lifetime vector. In this section, we present a simple polynomial-time algorithm that provides an LMM-optimal flow routing solution.

The main task in this algorithm is to define flows from the bit volumes (V_{ik} and V_{iB} values), which are obtained upon the completion of the last iteration in the LMM-Rate problem with our SLP-PA algorithm. Note that the bit volumes obtained here represent the *total* amount of bit volume being transported between the nodes during $[0, \mu_n]$, where $\mu_n = \tau_N$ is the time that the last group of nodes drain up their energy. The main result here is that if we let the total amount of out-going flow at a node be distributed *proportionally to the bit volumes* on each out-going link for all the remaining alive nodes at each stage, then we can achieve the drop points $\mu_1, \mu_2, \dots, \mu_n$ as well as the corresponding minimum node sets S_1, S_2, \dots, S_n . The algorithm is formally described as follows and its correctness proof follows that in [10].

Algorithm 2: (An Optimal Flow Routing Solution) Upon the completion of the SLP-PA algorithm for the LMMoptimal lifetime vector, we have the drop points (in strictly increasing order) $\mu_1, \mu_2, \dots, \mu_n$, the corresponding minimum node sets S_1, S_2, \dots, S_n , and the total amount of bit volume on each radio link (i.e., V_{ik} and V_{iB}). The following algorithm gives an LMM-optimal flow routing solution for the time interval $(\mu_{l-1}, \mu_l]$, where $\mu_0 = 0$ and $l = 1, 2, \dots, n$.

- 1) Denote $U_l = S \bigcup_{h=0}^{l-1} S_h$, with $S_0 = \emptyset$. Initialize all flows to zero, i.e., $f_{ik}^{(l)} = 0$, $f_{iB}^{(l)} = 0$ for $1 \le i, k \le N, k \ne i$.
- If U_l = Ø, then stop, else choose a node i from U_l such that¹⁰:
 - node i does not receive data from any other node, or
- ⁸This can be done in parallel if so desired.

⁹Incidentally, this result corrects an error in [6] (Lemma 3.2), which incorrectly stated that such a flow routing solution is unique.

- all nodes from which node i receives data are not in U_l.
- 3) The flow routing at node *i* during $(\mu_{l-1}, \mu_l]$ is then defined as

$$\begin{split} f_{ik}^{(l)} &= \frac{V_{ik}}{V_{iB} + \sum_{k \neq i} V_{ik}} (\sum_{m \neq i} f_{mi}^{(l)} + g_i) \quad (1 \le k \le N, k \ne i) \\ f_{iB}^{(l)} &= \frac{V_{iB}}{V_{iB} + \sum_{k \neq i} V_{ik}} (\sum_{m \neq i} f_{mi}^{(l)} + g_i) \end{split}$$

where the $f_{mi}^{(l)}$ values, if not zero, have all been defined before calculating the flow routing for node *i*.

4) Let $U_l = U_l - \{i\}$ and go to Step 2.

As shown in this algorithm, for each time interval $(\mu_{l-1}, \mu_l]$, $l = 1, 2, \dots, n$, we initialize U_l as the set of remaining alive nodes at this stage, which is represented by $U_l = S - \bigcup_{h=0}^{l-1} S_h$. For these nodes, we compute flow routing by starting with the "boundary" nodes and then move to the "interior" nodes. More precisely, we will calculate the flow routing for a node *i* if and only if we have calculated the flow routing for each node *m* that has traffic going into node *i*. The out-going flow from node *i* is calculated by distributing the aggregated flow proportionally according to the overall bit volume along its out-going radio links. As an example, suppose that during $(\mu_4, \mu_5]$, node 2 receives an aggregated flow with rate 2 Kb/s and generates 0.4 Kb/s locally. Assume that $V_{24} = 100$ Kb, $V_{25} = 200$ Kb, and $V_{2B} = 300$ Kb over $[0, \mu_n]$. Then the outgoing flow at node 2 is routed as follows: $f_{24}^{(5)} = 0.4$ Kb/s, $f_{25}^{(5)} = 0.8$ Kb/s, and $f_{2B}^{(5)} = 1.2$ Kb/s.

REFERENCES

- I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: A survey," *Computer Networks (Elsevier)*, vol. 38, no. 4, pp. 393–422, 2002.
- [2] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali, *Linear Programming and Network Flows*, second edition, Chapters 4, 6, and 8, John Wiley & Sons, 1990.
- [3] D. Bertsekas and R. Gallager, *Data Networks*, Chapter 6, Prentice Hall, Englewood Cliffs, NJ, 1992.
- [4] M. Bhardwaj and A.P. Chandrakasan, "Bounding the lifetime of sensor networks via optimal role assignments," in *Proc. IEEE Infocom*, pp. 1587–1596, June 23–27, 2002, New York, NY.
- [5] D. Blough and S. Paolo, "Investigating upper bounds on network lifetime extension for cell-based energy conservation techniques in stationary ad hoc networks," in *Proc. ACM MobiCom*, pp. 183–192, Sept. 23–28, 2002, Atlanta, GA.
- [6] T.X. Brown, H.N. Gabow, and Q. Zhang, "Maximum flow-life curve for a wireless ad hoc network," in *Proc. ACM MobiHoc*, pp. 128–136, Oct. 4–5, 2001, Long Beach, CA.
- [7] J.-H. Chang and L. Tassiulas, "Routing for maximum system lifetime in wireless ad-hoc networks," in *Proc. 37th Annual Allerton Conference on Communications, Control, and Computing*, vol. 1, pp. 22–31, Sept. 1999, Monticello, IL.
- [8] J.-H. Chang and L. Tassiulas, "Energy conserving routing in wireless ad-hoc networks," in *Proc. IEEE Infocom*, pp. 22–31, March 26–30, 2000, Tel Aviv, Israel.
- [9] W. Heinzelman, Application-specific Protocol Architectures for Wireless Networks, Ph.D. thesis, Massachusetts Institute of Technology, June 2000.
- [10] Y.T. Hou, Yi Shi, and H.D. Sherali, "On node lifetime problem for energy-constrained wireless sensor networks," ACM/Springer Mobile Networks and Applications, vol. 10, no. 6, pp. 865–878, Dec. 2005.
- [11] Y.T. Hou, Y. Shi, J.H. Reed, and K. Sohraby, "Flow routing for variable bit rate source nodes in energy-constrained wireless sensor networks," in *Proc. IEEE International Conference on Communications*, pp. 3057– 3062, Seoul, Korea, May 16–20, 2005.

¹⁰It can be shown that an LMM-optimal solution is cycle free in terms of flow routing. Consequently, the node *i* under consideration must exist when $U_l \neq \emptyset$.

- [12] K. Kalpakis, K. Dasgupta, and P. Namjoshi, "Maximum lifetime data gathering and aggregation in wireless sensor networks," in *Proc. IEEE International Conference on Networking (ICN'02)*, pp. 685–696, Aug. 26–29, 2002, Atlanta, GA.
- [13] K. Kar, M. Kodialam, T.V. Lakshman, and L. Tassiulas, "Routing for network capacity maximization in energy-constrained ad-hoc networks," in *Proc. IEEE Infocom*, pp. 673–681, Mar. 30–Apr. 3, 2003, San Francisco, CA.
- [14] H. Luss and D.R. Smith, "Resource allocation among competing activities: a lexicographic minimax approach," *Operations Research Letters*, vol. 5, no. 5, pp. 227–231, Nov. 1986.
- [15] R. Ramanathan and R. Rosales-Hain, "Topology control of multihop wireless networks using transmit power adjustment," in *Proc. IEEE Infocom*, pp. 404–413, Mar. 26–30, 2000, Tel Aviv, Israel.
- [16] T.S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, New Jersey, 1996.
- [17] V. Rodoplu and T.H. Meng, "Minimum energy mobile wireless networks," *IEEE Journal on Selected Areas in Communications*, vol. 17, no. 8, pp. 1333–1344, Aug. 1999.
- [18] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, "Protocols for selforganizing of a wireless sensor network," *IEEE Personal Communications Magazine*, vol. 7, pp. 16–27, Oct. 2000.
- [19] V. Srinivasan, P. Nuggehalli, C.F. Chiasserini, and R. Rao, "Cooperation in wireless ad hoc networks," in *Proc. IEEE Infocom*, pp. 808–817, Mar. 30–Apr. 3, 2003, San Francisco, CA.
- [20] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, "Distributed topology control for power efficient operation in multihop wireless ad hoc networks," in *Proc. IEEE Infocom*, pp. 1388–1397, April 22–26, 2001, Anchorage, AK.
- [21] G. Zussman and A. Segall, "Energy efficient routing in ad hoc disaster recovery networks," in *Proc. IEEE Infocom*, pp. 405–421, Mar. 30– Apr. 3, 2003, San Francisco, CA.

Yi Shi (S'02–M'08) received his B.S. degree from University of Science and Technology of China, Hefei, China, in 1998, a M.S. degree from Institute of Software, Chinese Academy of Science, Beijing, China, in 2001, a second M.S. degree from Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, in 2003, all in computer science, and a Ph.D. degree in computer engineering from Virginia Tech, in 2007. He is currently a Senior Research Associate in the Department of Electrical and Computer Engineering at Virginia Tech.

His current research focuses on algorithms and optimization for cognitive radio wireless networks, MIMO and cooperative communication networks, sensor networks, and ad hoc networks. His work has appeared in some highly selective international conferences (ACM MobiCom, ACM MobiHoc, and IEEE INFOCOM) and IEEE journals.

While an undergraduate, he was a recipient of Meritorious Award in International Mathematical Contest in Modeling in 1997 and 1998, respectively. He was a recipient of Chinese Government Award for Outstanding Ph.D. Students Abroad in 2006.

Dr. Shi is active in professional services. He was a TPC member of IEEE Workshop on Networking Technologies for Software Defined Radio (SDR) Networks (held in conjunction with IEEE SECON 2006), Reston, VA, Sept. 25, 2006, and ChinaCom, Hangzhou, China, April 25–27, 2008. He is a TPC member of ACM International Workshop on Foundations of Wireless Ad Hoc and Sensor Networking and Computing (co-located with ACM MobiHoc 2008), Hong Kong, China, May 26–30, 2008; IEEE ICCCN, St. Thomas, U.S. Virgin Islands, Aug. 4–7, 2008; IEEE PIMRC, Cannes, France, Sep. 15–18, 2008; IEEE MASS, Atlanta, GA, Oct. 6–9, 2008; and IEEE ICC, Dresden, Germany, June 14–18, 2009.

Y. Thomas Hou (S'91–M'98–SM'04) received the B.E. degree from the City College of New York in 1991, the M.S. degree from Columbia University in 1993, and the Ph.D. degree from Polytechnic University, Brooklyn, New York, in 1998, all in Electrical Engineering.

Since Fall 2002, he has been with Virginia Tech, the Bradley Department of Electrical and Computer Engineering, Blacksburg, VA, where he is now an Associate Professor. His current research interests are radio resource (spectrum) management

and networking for software-defined radio wireless networks, optimization and algorithm design for wireless ad hoc and sensor networks, and video communications over dynamic ad hoc networks. From 1997 to 2002, Dr. Hou was a Researcher at Fujitsu Laboratories of America, Sunnyvale, CA, where he worked on scalable architectures, protocols, and implementations for differentiated services Internet, service overlay networking, video streaming, and network bandwidth allocation policies and distributed flow control algorithms.

Prof. Hou is a recipient of an Office of Naval Research (ONR) Young Investigator Award (2003) and a National Science Foundation (NSF) CAREER Award (2004). He is active in professional services and is currently serving as an Editor of *IEEE Transactions on Wireless Communications, IEEE Transactions on Vehicular Technology, ACM/Springer Wireless Networks (WINET),* and *Elsevier Ad Hoc Networks Journal*. He is Co-Chair of Technical Program Committee (TPC) of the Second International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM 2007), Orlando, FL, August 1–3, 2007. He was the Chair of the First IEEE Workshop on Networking Technologies for Software Defined Radio Networks, September 25, 2006, Reston, VA. Prof. Hou will serve as Co-Chair of TPC of IEEE INFOCOM 2009, to be held in Rio de Janeiro, Brazil. Prof. Hou holds two U.S patents and has three more pending. He is a member of ACM since 1995.

Hanif D. Sherali is W. Thomas Rice Endowed Chaired Professor of Engineering in the Industrial and Systems Engineering Department at Virginia Polytechnic Institute and State University.

His area of research interest is in discrete and continuous optimization, with applications to location, transportation, and engineering design problems. He has published about 200 papers in Operations Research journals, has co-authored four books in this area, and serves on the editorial board of eight journals.

Dr. Sherali is a member of the U.S. National Academy of Engineering.