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Abstract—The rapid advances of MIMO to date have mainly stayed at the physical layer. Such fruits have not fully benefited MIMO

research at the network layer mainly due to the computational complexity associated with the matrix-based model that MIMO involves.

Recently, there have been some efforts to simplify link layer model for MIMO so as to facilitate research at the upper layers. These

models only require simple numeric computations on MIMO’s degrees-of-freedom (DoFs) to characterize spatial multiplexing (SM) and

interference cancellation (IC). Thus, these models are much simpler than the original matrix-based model from the communications

world. However, achievable DoF regions of these DoF-based models are not analyzed. In this paper, we re-visit this important problem

of MIMO modeling. Based on accounting of how DoFs are consumed for SM and IC, we develop a tractable link layer model for multi-

hop MIMO networks. We show that under common assumptions of DoF-based models and additional assumption of no dependency

cycle, this model includes all the feasible solutions by the matrix-based model under SM and IC for any network topology. This work

offers an important building block for theoretical research on multi-hop MIMO networks.

Index Terms—MIMO, link layer, spatial multiplexing, interference cancellation, degree-of-freedom (DoF), achievable DoF region, ad

hoc network
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1 INTRODUCTION

MIMO is a powerful physical layer technology to in-
crease link capacity [2], [6], [7], [26], [27]. However, most
of the technological advances of MIMO to date have
stayed at the physical layer [2], [11], [13], [14], [15],
[27]. Although there are some early efforts on exploiting
MIMO’s benefits for MAC and routing schemes [10],
[25], fundamental understanding and optimal results
(even in certain limited settings) on translating MIMO
capability to upper layers remain very limited. The
major technical barrier in this stagnation is the lack of
a tractable and accurate MIMO model that is amenable
for cross-layer optimization. Existing models for MIMO
based on physical layer channel gain matrices, although
accurate, are cumbersome to handle, due to the computa-
tional complexity associated with matrix manipulations.
As a result, networking research based on these models
has resulted in very limited success [5], [16].

Recognizing the difficulties in dealing with MIMO
channel gain matrices, some researchers attempted to
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simplify MIMO models for upper-layer networking re-
search (see [1], [9], [17], [21], [24]). Instead of modeling
the maximum achievable rate region (or the capacity
region) under all possible MIMO schemes, these models
focus on a particular MIMO scheme of spatial multi-
plexing (SM) and interference cancellation (IC) [4], [18],
[23] and its degrees-of-freedom (DoFs) representation
[27, Chapter 7]. Under this approach, a node can ex-
ploit its DoFs for either SM or IC1 so that more data
streams can be achieved. Instead of carrying complex
manipulations on matrices, DoF-based MIMO models
only require simple numeric computations to identify
a feasible DoF region, with each DoF corresponds to
one data stream. Such models have since been applied
to study throughput optimization problems [1], [9], [17]
and to design MAC protocols [21], [24].

1.1 Limitation of Existing DoF-based Models

Although DoF-based MIMO modeling offers significant
advantages over traditional matrix-based representation,
such an approach has its own limitations. Most existing
DoF models are based on zero forcing scheme and do
not consider array and diversity gain. As a result, even if
we find the best DoF-based model, it is still sub-optimal
from capacity perspective. This is the price to pay for
using the DoF-based approach.

Moreover, the achievable DoF regions by the existing
DoF-based models have not been carefully analyzed

1. Since interference among neighboring links can be cancelled by
using MIMO’s DoFs, several links can be active simultaneously in the
same vicinity. This is also known as spatial reuse [9], [18].
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and may be much smaller than that by the matrix-
based model under SM and IC. Instead, most existing
DoF-based models [1], [9], [17], [21], [24] focused on
identifying sufficient conditions for feasible data streams
under SM and IC. In particular, Bhatia and Li [1] stated
that IC could be done by both transmitters and receivers.
In [21], Park et al. stated that to have a newly active
transmission join other ongoing transmissions, one could
let the newly active transmitter and receiver to cancel
interference. Sundaresan et al. [24] stated that IC could
be done by receivers only. Hamdaoui and Shin [9] stated
that for each interference between two links, one of the
two nodes (the transmitter of one link and the receiver
of the other link) is sufficient to cancel this interference
(see CiM in [9]). However, there is an unfortunate error
in their CiM modeling that have both transmitter and
receiver use their DoFs for IC. Correct CiM equations
are not available. Therefore, none of DoF-based models
in [1], [9], [21], [24] is optimal (i.e., achieve the same DoF
region as that by the matrix-based model under SM and
IC). The DoF model in [3] was said to be optimal but
there was no proof on either feasibility or optimality.
In [17], we proposed a node-level ordering scheme to
identify which node should perform IC. In particular,
a transmitter should cancel its interference to all non-
intended receivers that are before itself in the node order,
while a receiver should cancel interference from all non-
intended transmitters before itself in the node order. A
model based on a node-level ordering can guarantee
feasibility. Such a model was shown to achieve a larger
feasible DoF region than that by previous DoF-based
models. However, there was no theoretical result on its
performance.

1.2 Main Contributions

The goal of this paper is to develop a DoF-based link
layer model for multi-hop MIMO networks, which can
provide some performance guarantee on its achievable
DoF region for any network topology under certain
assumptions. Specifically, recognizing that the maximum
rate region by considering all possible MIMO schemes
(e.g., multi-user detection, dirty paper coding) is still
an open problem, our investigation will be limited in
the scope of SM and IC, i.e., our model is based on
zero forcing scheme and does not consider array and
diversity gain. Further, our model does not include
solutions with dependency cycles. In Section 4.3, we will
present more details on this limitation and the reason to
introduce this assumption. Under the above assumptions
for MIMO, our main contributions can be summarized
as follows.

• We start from the matrix-based model under SM
and IC to formally derive how DoFs are consumed
in a multi-hop MIMO network. We find that DoF
consumption in IC only needs to involve either the
transmit weight vector or the receive weight vector.

To ensure feasibility, the vectors involved in IC can
be determined by a vector-level ordering.

• We prove that for the purpose of achieving the same
DoF region, it is sufficient to work with a “node-
level” ordering instead of a vector-level ordering.

• Based on the above analysis, we propose a DoF-
based link layer model for any multi-hop MIMO
network topology. This model encompasses the or-
dering of transmitting and receiving nodes and the
number of DoFs consumed for both SM and IC.
Same as previous DoF-based models, our model
only requires simple numeric computations to char-
acterize a feasible DoF region for a multi-hop MIMO
network. But unlike previous DoF models, our
model is proved to include any feasible solution
by the matrix-based model under SM and IC when
there is no dependency cycle.

• To show the application of our DoF model, we apply
it to a cross-layer optimization problem for a multi-
hop MIMO network as a case study. We show that
the resulting problem has a similar mathematical
structure as that for a single-antenna network. We
use CPLEX solver to offer some numerical results
in the case study and leave it as future research to
develop efficient solutions.

1.3 Paper Organization

The remainder of this paper is organized as follows.
In Section 2, we review existing DoF-based models. In
Section 3, we offer necessary background on MIMO and
the matrix-based model under SM and IC. Section 4
analyzes DoF consumption in the matrix-based model
under SM and IC. In Section 5, we develop our new DoF-
based link layer model for multi-hop MIMO networks.
We also compare our DoF model to the matrix-based
model and a previous model in terms of DoF region
and complexity. In Section 6, we apply our model to
study a cross-layer optimization problem for a multi-hop
network. Section 7 concludes this paper.

2 RELATED WORK

Existing DoF-based MIMO models assume that the num-
ber of DoFs at a node is equal to the number of an-
tennas at this node. In [1], Bhatia and Li stated that
if the number of DoFs at a receiver is no fewer than
the total number of its incoming data streams plus all
interfering data streams, then this receiver can receive
its incoming data streams and cancel interference from
all other transmitters. Similarly, if the number of DoFs
at a transmitter is no fewer than the total number of
its transmitting data streams plus all data streams being
interfered by its transmission, then this transmitter can
transmit its data streams and cancel its interference to
all other receivers. Thus, a DoF-based model can be built
based on the above two sufficient conditions. The benefit
of this model is that we do not need to find transmission
and receive weight vectors (physical layer issues), which
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involves complex manipulations on matrices. However,
the problem with this model is that IC is done by
both transmitter and receiver, which is wasteful of DoF
resources.

Park et al. [21] stated that to have a newly active
transmission join other ongoing transmissions, one can
let the newly active transmitter and receiver to cancel
interference. SM was not considered in [21]. Thus, if the
number of DoFs at the newly active receiver is no fewer
than one plus the number of all interfering transmis-
sions, then this receiver can receive its data stream and
cancel interference from all other transmitters. Similarly,
if the number of DoFs at the newly active transmitter
is no fewer than one plus the number of all interfered
transmissions, then this transmitter can transmit its data
stream and cancel its interference to all other receivers.
Although this model could achieve a larger feasible DoF
region than that in [1], potential benefits from adjusting
the DoFs at other active transmitters and receivers were
not explored. In [24], Sundaresan et al. stated that it is
sufficient to have the receivers meet the requirement as
in [1] (i.e., the number of DoFs at each receiver is no
less than the total number of its receiving data streams
plus all interfering data streams); the requirement on
transmitters can however be relaxed by merely having
each transmitter’s DoFs be no fewer than the total num-
ber of its transmitting data streams (without adding the
number of data streams being interfered by its transmis-
sion). This corresponds to a scheme where IC is done
by receivers only. This model could also achieve a larger
feasible DoF region than that in [1]. However, since IC
was only done by the receivers, potential benefits of
DoFs at the transmitters were not explored.

To fully explore DoFs at all nodes, Hamdaoui and
Shin [9] stated that for each interference between two
links, one of the two nodes (the transmitter of one link
and the receiver of the other link) is sufficient to cancel
this interference (see CiM in [9]). However, there was
an unfortunate error in the CiM equations where both
transmitter and receiver use their DoFs for IC. Since
correct CiM modeling is not available, the only available
model in [9] is NiM, which is the same as the approach
in [1]. In [3], Blough et al. built a DoF model based on the
assumption that one can arbitrarily select a transmitter
or a receiver to perform IC. However, no proof was given
on either feasibility or optimality in [3].

In [17], we proposed a node-level ordering scheme to
identify which node should perform IC. In particular,
we required that a transmitter cancels its interference to
all non-intended receivers before itself in the node order
and a receiver cancels interference from all non-intended
transmitters before itself in the node order. Although
a model based on node-level ordering was shown to
achieve a larger feasible DoF region than previous DoF-
based models, there was no theoretical result on its
performance.

3 LINK LAYER MODEL FOR MIMO NET-
WORKS: A PRIMER

In this section, we formalize a matrix-based model for
linear MIMO transceiver [4], [18], [23] under the scope
of SM and IC and discuss its limitation. This model will
also serve as a starting point in our new DoF-based
modeling in Sections 4 and 5.

Consider a multi-hop MIMO network with N nodes.
Suppose that there are L possible links in this network.
Denote Tx(l) and Rx(l) the transmitter and receiver of
link l, 1 ≤ l ≤ L, respectively. The number of antennas
at nodes Tx(l) and Rx(l) are denoted as ATx(l) and ARx(l),
respectively. Due to potential interference, these links
may not be active at the same time. We consider a time
slot based scheduling. That is, we consider a time frame
with T equal-length time slots and within a time slot t,
1 ≤ t ≤ T , only a subset of these L links can be active.
Since a MIMO link can support multiple data streams
by SM, we denote zl[t] the number of data streams on
link l in time slot t. Then the average DoF of each link l

over T time slots is

cl =
1

T

T
∑

t=1

zl[t] (1 ≤ l ≤ L) . (1)

We now describe SM and IC and their constraints.

SM. Spatial multiplexing refers that a transmitter
multiplexes several data streams in spatial domain when
sending to its receiver. For a link l in time slot t,
denote slj [t] the signal of data stream j, 1 ≤ j ≤
zl[t]. To transmit zl[t] data streams, transmitter Tx(l)
chooses an ATx(l) × 1 transmit weight vector ulj [t] for
each data stream j and sends the combined signal vec-

tor
∑zl[t]

j=1 ulj [t]slj [t] through its ATx(l) antennas. Denote
H(l,l) the ATx(l) × ARx(l) channel gain matrix between
nodes Tx(l) and Rx(l), which is assumed full rank.2

The signal vector at receiver Rx(l)’s ARx(l) antennas is

(
∑zl[t]

j=1 ulj [t]slj [t])
T
H(l,l). Receiver Rx(l) uses an ARx(l)×1

receive weight vector vli[t] to receive data stream i,
1 ≤ i ≤ zl[t]. The received signal rli[t] for data stream
i is

rli[t] =





zl[t]
∑

j=1

ulj [t]slj [t]





T

H(l,l)vli[t]

= ((uli[t])
T
H(l,l)vli[t]) · sli[t]

+

j 6=i
∑

1≤j≤zl[t]

((ulj [t])
T
H(l,l)vli[t]) · slj [t] .

By choosing appropriate u and v vectors, the re-
ceived signal rli[t] can achieve a unit gain (i.e.,
(uli[t])

T
H(l,l)vli[t] = 1) and zero interference (i.e.,

(ulj [t])
T
H(l,l)vli[t] = 0, ∀i 6= j) such that the data

2. This holds when the scattering in the environment is sufficiently
rich, e.g., an urban environment. Note that all channel matrices are
assumed full rank in this paper, which is a common assumption for
DoF-based models (see, e.g., [9], [21]).
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Fig. 1. Interference cancellation between two MIMO links.

stream i can be successfully received. Thus, we have the
following SM constraints for each link l, 1 ≤ l ≤ L.

(uli[t])
T
H(l,l)vli[t] = 1 (1 ≤ i ≤ zl[t]) (2)

(ulj [t])
T
H(l,l)vli[t] = 0 (1 ≤ i, j ≤ zl[t], j 6= i) . (3)

IC. In addition to SM, MIMO nodes can cancel inter-
ference so that several links can be active simultaneously
in the same vicinity.3 This is also known as spatial reuse
[9], [18]. We now consider two links l and k in a time slot
t (see Fig. 1), where the receiver on link k is interfered
by the transmitter on link l. As discussed, transmitter

Tx(l) sends the combined signal vector
∑zl[t]

i=1 uli[t]sli[t]
through its ATx(l) antennas. Denote H(l,k) the full-rank
ATx(l) ×ARx(k) channel gain matrix between nodes Tx(l)
and Rx(k). The interference at receiver Rx(k)’s ARx(k)

antennas is (
∑zl[t]

i=1 uli[t]sli[t])
T
H(l,k). Receiver Rx(k) uses

an ARx(k) × 1 receive weight vector vkj [t] to receive data
stream j from transmitter Tx(k), 1 ≤ j ≤ zk[t]. The
interference to data stream j is
(

zl[t]
∑

i=1

uli[t]sli[t]

)T

H(l,k)vkj [t]=

zl[t]
∑

i=1

((uli[t])
T
H(l,k)vkj [t]) · sli[t].

In order to cancel the interference on each data
stream j, the following IC constraints must be satisfied:

(uli[t])
T
H(l,k)vkj [t] = 0 (1 ≤ i ≤ zl[t], 1 ≤ j ≤ zk[t]) . (4)

Based on the above discussion, a set of values for
(c1, c2, · · · , cL) is feasible if and only if we can find a
feasible solution for all the transmit weight vectors and
receive weight vectors in each time slot such that (1),
(2), (3), and (4) hold. Note that although this matrix-
based MIMO model is optimal in terms of identifying
all feasible sets of values for (c1, c2, · · · , cL) under SM
and IC, its practical utility as an analytic tool is ex-
tremely limited. There are two troubling issues with
this model. First, to obtain the DoF region by (1), one
needs to verify the feasibility of each set of values for
(z1[t], z2[t], · · · , zL[t]) by (2), (3), and (4). Note that each
set of values for (z1[t], z2[t], · · · , zL[t]) yields a different
set of constraints and variables in (2), (3), and (4). Since
one has to solve a different problem for each set of
values for (z1[t], z2[t], · · · , zL[t]), the number of problems
that need to be solved is exponential with L. Second,
verifying the feasibility of a given set of values for
(z1[t], z2[t], · · · , zL[t]) requires to solve a problem with
a large number of bilinear equations (2), (3), and (4).

3. IC discussed in this paper is different from successive interference
cancellation (SIC) in [28, Chapter 7]. SIC needs to decode interference
before performing cancellation while IC does not require that interfer-
ence be decoded first. On the other hand, IC requires multiple antennas
at each node while SIC does not.

Unlike linear equation systems, a general solution to
bilinear equation systems remains unknown [12]. In
Section 5.4, we will show the high complexity of the
matrix-based model even for small-sized networks.

4 UNDERSTANDING DOF CONSUMPTION IN

THE MATRIX-BASED MODEL

Before we construct a DoF-based link layer model for
multi-hop MIMO networks, we must have a deep under-
standing of DoF consumption in the matrix-based model
and have accurate accounting of the number of DoFs
consumed for SM and IC, respectively.

4.1 Basic Idea

First, let’s determine the total available DoFs for a
transmit (or receive) weight vector at a node, which is
associated for each data stream transmitted (or received)
at this node. Initially, there is no constraint at a vector.
Then each of its elements is undetermined and can be
set arbitrarily. There is a feasible region (a space) that
includes all possible values by such an unconstrained
vector. The DoFs of this feasible region is equal to the
number of elements in the unconstrained vector (or
the number of antennas at the node). A vector’s total
available DoFs is defined as this initial DoFs.4

We now show how DoFs are consumed when con-
straints are imposed on a vector. This can be illustrated
by a substraction approach, i.e., first finding the vector’s
total available DoFs, then finding the vector’s remaining
DoFs (after constraints are imposed), and finally sub-
tracting this remaining DoFs from the total available
DoFs. Here, a vector’s remaining DoFs is the DoFs of
its feasible region after constraints are imposed, which is
equal to the number of its linearly independent elements.

Alternatively, the number of consumed DoFs can be
determined directly by analyzing the given constraints.
Note that constraints considered in this paper are all
linear constraints. A linear constraint can either set some
element in a vector to a value (e.g., x1 = 1) or set
some linear relationship among multiple elements (e.g.,
x2 + x3 − x4 = 0). In either case, the number of vector’s
DoFs is decreased by 1. When there is no linear depen-
dency among the given constraints, the number of con-
sumed DoFs is equal to the number of constraints. When
there is linear dependency among the given constraints,
we should consider a subset of linearly independent
constraints, and the number of consumed DoFs is equal
to the number of linearly independent constraints. As
an example, consider a vector [x1, x2, x3, x4, x5]

T and the
following three constraints.

2x1 = 1 (5)

2x1 + x3 + 5x4 = 2 (6)

6x1 + x3 + 5x4 = 4 (7)

4. Note that all vectors at a node have the same number of initial
DoFs, which is equal to the number of antennas at this node. This
number is called the node’s DoFs in [1], [9], [21], [24].
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Fig. 2. Our roadmap for DoF analysis.

Since (7) is a linear combination of (5) and (6), we have
only two independent constraints. Thus, the number of
DoFs consumed by these constraints is 2. We summarize
our discussion in the following lemma.

Lemma 1: The number of consumed DoFs of a vector due
to a set of linear constraints among its elements is equal to
the number of linearly independent constraints in this set.

With Lemma 1, we now analyze DoF consumption
in the matrix-based model. Our roadmap for DoF anal-
ysis is shown in Fig. 2. Since the constraints for a
transmit/receive vector are due to SM and IC, we will
analyze each case in Sections 4.2 and 4.3, respectively.
In Section 4.4, we show that the total consumed DoFs is
the sum of DoFs consumed by SM and IC.

4.2 DoF Consumption by SM

We now analyze DoF consumption by SM in transmit
and receive weight vectors in the matrix-based model
(see the top block in Fig. 2). For a time slot t, we first
consider a transmit weight vector uli at transmitter Tx(l).
For simplicity, we omit time slot [t] in this section, e.g.,
using uli instead of uli[t]. Under SM constraints (2) and
(3), uli must satisfy the following constraints.

u
T
li(H(l,l)vli) = 1 (8)

u
T
li(H(l,l)vlj) = 0 (1 ≤ j ≤ zl, j 6= i) (9)

All the constraints in (8) and (9) are linear constraints.
By Lemma 1, we need to analyze linear dependency
among these constraints. We find that these constraints
are all linearly independent. Thus, we have the following
lemma.

Lemma 2: Denote the number of data streams on link l

as zl. Then the number of DoFs consumed by SM in each
transmit weight vector uli at transmitter Tx(l) is zl.

Proof: By Lemma 1, we need to prove that all SM
constraints in (8) and (9) are linearly independent. We
prove this by contradiction.

Suppose that we can represent one constraint in (8) or
(9) as a linear combination of other constraints. Note that
the right-hand-sides (RHS) of all constraints in (9) are
zero and thus the RHS of their linear combination must
be zero. Then we cannot represent (8) as a linear com-
bination of constraints in (9). Now suppose that we can

represent a constraint in (9), say u
T
li(H(l,l)vlj) = 0, as a

linear combination of other constraints. Since any linear
combination that includes (8) has a non-zero RHS, the
linear combination for u

T
li(H(l,l)vlj) = 0 cannot include

(8). Thus, we have H(l,l)vlj =
∑m 6=i,j

1≤m≤zl
wm · H(l,l)vlm

under some weights wm. To find a contradiction, multi-
plying u

T
lj on both sides, we have

u
T
ljH(l,l)vlj = u

T
lj

m 6=i,j
∑

1≤m≤zl

wm ·H(l,l)vlm

=

m 6=i,j
∑

1≤m≤zl

wm · uT
ljH(l,l)vlm

=

m 6=i,j
∑

1≤m≤zl

wm · 0 = 0 ,

where the third equality holds by (3). However, this is a
contradiction since we have u

T
ljH(l,l)vlj = 1 by (2). This

proves that all SM constraints in (8) and (9) are linearly
independent.

Lemma 2 can be explained intuitively as follows. The
constraints in (8) and (9) ensure multiple orthogonal
channels in the spatial domain. Since each data stream
should be transmitted in its own channel, the total num-
ber of channels required (corresponding to the number
of consumed DoFs) is equal to the number of data
streams zl.

Now we consider a receive weight vector. Following
the same token as for a transmit weight vector, we can
prove the following lemma.

Lemma 3: For a link l with zl data streams, the number of
DoFs consumed by SM in each receive weight vector vlj at
receiver Rx(l) is zl.

Lemma 3 can also be intuitively explained by that zl

data streams will need zl channels in the spatial domain
and thus the number of consumed DoFs in each receive
weight vector is zl.

4.3 DoF Consumption by IC

We now analyze DoF consumption by IC in transmit
and receive weight vectors in the matrix-based model
(see the bottom block in Fig. 2). It turns out that unlike
SM, DoFs consumed by IC only involve either a transmit
weight vector or a receive weight vector, but not both.
Now a new problem is: Which vector (transmit or receive
weight vector) should consume its DoFs for IC? We show
that one cannot arbitrarily select a vector to consume
its DoFs for IC. Otherwise, one may end up with some
infeasible solution. To ensure feasibility, we consider
an order-based approach, which follows some order to
determine all the vectors. That is, when we determine a
vector, this vector is determined by considering related
IC constraints and previously determined vectors. Under
this order-based approach, a vector determined later
should consume its DoFs for IC. Formal results for these
findings are given in the rest of this section.
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Based on the ordering concept, we can build a math-
ematical model by calculating DoF consumption for all
vectors. However, such “vector-level” model will involve
many variables and constraints and is cumbersome to
work with. A good question to ask is: Can we simplify
this vector-level model without any loss of DoF region?
We find that it is sufficient to consider a “node-level”
ordering instead of a vector-level ordering. Such a node-
level operation can significantly decrease the number of
variables and constraints. Further, we prove that a model
based on node-level ordering can achieve the same DoF
region as that by a model based on vector-level ordering.

We organize this section as follows. We start with
the simple 1 → 1 case, where one link interferes the
other link. The ordering concept and the transition from
vector-level ordering to node-level ordering are intro-
duced here. We then present result for the general M → 1
and 1 → M cases, where multiple links interfere one link
or one link interferes multiple links, respectively.

4.3.1 1 → 1 Case

Let’s consider the 1 → 1 case in Fig. 1, where the receiver
Rx(k) of link k is interfered by the transmitter Tx(l) of a
single link l and the transmitter Tx(l) of link l interferes
the receiver Rx(k) of a single link k. Under the matrix-
based model, some DoFs of transmit weight vectors at
node Tx(l) or receive weight vectors at node Rx(k) will
be consumed by IC constraints (4).

The Concept of Sequential Ordering. One IC con-
straint only consumes one DoF of a vector at either
the transmitter or the receiver, but not both. Intuitively,
this means that an IC constraint can be satisfied by (i)
transmitter Tx(l) does not transmit on a channel (and
thus receiver Rx(k) can receive on that channel) or (ii)
receiver Rx(k) does not receive on a channel (and thus
transmitter Tx(l) can transmit on that channel). As a
result, either vector uli or vector vkj consumes one DoF.

We now determine which vector (transmit or receive
weight vector) should consume its DoFs for each IC
constraint. This can be done by analyzing dependency
relationships among the vectors. When we consider all
vectors, there may or may not exist dependency cycles
among them. Ideally, we should include solutions re-
gardless of dependency cycles in our model. However,
there is no proof to guarantee that we can always find
a feasible weight assignment for arbitrarily specified
dependency cycles among the vectors. Since it is not
clear how to specify dependency cycles to guarantee
a feasible weight assignment, we decide not to model
solutions with dependency cycles. That is, we focus on
an order-based approach to determine all the vectors.

Denote such a sequential order of vectors as Π. For
a transmit weight vector uli, denote Πuli

the position
of this vector in Π. Similarly, denote Πvkj

the position
of the receive weight vector vkj in Π. Given that we
have zl transmit weight vectors and zk receive weight
vectors, the number of vectors in Π is zl + zk. To select a

transmit weight vector uli, a transmitter only considers
IC constraints for those receive weight vectors placed
before uli in Π. As a result, uli consumes its DoFs for
these IC constraints. On the other hand, the selection
of uli does not consider IC constraints for those receive
weight vectors placed after uli in Π. As a result, uli

does not consume its DoFs for these IC constraints.
Instead, these IC constraints will be satisfied by selecting
corresponding receive weight vectors after uli is chosen.
Similarly, a receive weight vector vkj consumes its DoFs
only for transmit weight vectors before itself in Π.

DoF Consumption Under A Sequential Order. We
now analyze DoF consumption for a transmit weight
vector and a receive weight vector, respectively.
Case A: Transmit weight vector uli. By (4), vector uli must
satisfy u

T
li(H(l,k)vkj) = 0 for 1 ≤ j ≤ zk. Let’s begin by

considering one constraint u
T
li(H(l,k)vkj) = 0 for a given

j.

• If Πvkj
< Πuli

, then by the time we consider uli,
vector vkj has already been determined and we now
have a linear constraint on uli, which decreases uli’s
DoFs by one.

• On the other hand, if Πuli
< Πvkj

, i.e., uli is
before vkj in Π, it is not possible to impose any
constraint on uli since vkj is yet to be determined.
Constraint u

T
li(H(l,k)vkj) = 0 will be satisfied when

we consider vkj in the future. As a result, uli does
not need to concern itself with this constraint and
will thus not consume any DoF.

Thus, to analyze uli’s DoF consumption, we only need
to consider the following constraints: u

T
li(H(l,k)vkj) = 0

for 1 ≤ j ≤ zk and Πvkj
< Πuli

. The number of these
constraints is equal to the number of receive weight
vectors that are placed before uli in Π. Further, we
verify that these constraints are all linearly independent
(see Proof of Lemma 4). Therefore, the number of DoFs
consumed by IC in a transmit weight vector uli is equal
to the number of receive weight vectors that are placed
before uli in Π.
Case B: Receive weight vector vkj . Following the same
token, we have that the number of DoFs consumed by
IC at a receive weight vector vkj is equal to the number
of transmit weight vectors that are placed before vkj in
Π.

The following lemma summarizes our discussion.
Lemma 4: Consider the interference from transmitter

Tx(l)’s zl data streams to receiver Rx(k)’s zk data streams
and an order Π for vectors. Based on IC constraint (4) in the
matrix-based model, we have (i) for a transmit weight vector
uli, the number of DoFs consumed by IC in uli is equal to
the number of receive weight vectors at Rx(k) that are placed
before uli in Π; (ii) for a receive weight vector vkj , the number
of DoFs consumed by IC in vkj is equal to the number of
transmit weight vectors at Tx(l) that are placed before vkj in
Π.

Proof: This proof is based on mathematical induc-
tion. Without loss of generality, we assume that the
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last vector in Π is a transmit weight vector. We further
assume that the last x1 ≥ 1 vectors are all transmit
weight vectors. Denote the set of these vectors as X1.
Suppose that the next y1 ≥ 1 vectors are all receive
weight vectors (denote as Y1), the next x2 ≥ 1 vectors
are all transmit weight vectors (denote as X2), the next
y2 ≥ 1 vectors are all receive weight vectors (denote
as Y2), etc. We will first prove that Lemma 4 holds for
vectors in X1. We then prove that if Lemma 4 holds for
vectors in Xj , 1 ≤ j ≤ i + 1, and Yj , 1 ≤ j ≤ i, then
Lemma 4 holds for vectors in Yi+1. Moreover, if Lemma 4
holds for vectors in Xj and Yj , 1 ≤ j ≤ i, then Lemma 4
holds for vectors in Xi+1. Once all these results are
proved, we have Lemma 4 holds for all transmit/receive
weight vectors.

We first prove that Lemma 4 holds for vectors in X1.
When we determine these transmit weight vectors, all re-
ceive weight vectors are already determined. Thus, each
uli ∈ X1 needs to satisfy the following zk constraints.

u
T
li(H(l,k)vkj) = 0 (1 ≤ j ≤ zk) .

We assume a rich scattering environment, which is a
common assumption made by existing DoF models.
Then H(l,k) is of full rank and the above constraints are
linearly independent under given receive weight vectors
vkj , 1 ≤ j ≤ zk. Thus by Lemma 1, each uli ∈ X1

consumes zk DoFs for IC, where zk is the number of
receive weight vectors that are placed before uli in Π.

We now prove that Lemma 4 holds for vectors in Y1,
given that Lemma 4 holds for vectors in X1. When we
determine these receive weight vectors in Y1, the number
of transmit weight vectors that are already determined
is zl − x1. Thus, each of vkj ∈ Y1 needs to satisfy the
following zl − x1 constraints.

(uT
liH(l,k))vkj = 0 (1 ≤ i ≤ zl,uli 6∈ X1) .

For full-rank H(l,k) and given transmit weight vectors
uli, 1 ≤ i ≤ zl,uli 6∈ X1, these constraints are linearly
independent. Thus, each vkj ∈ Y1 consumes zl−x1 DoFs
for IC, where zl − x1 is the number of transmit weight
vectors that are placed before vkj in Π.

Following the same token, we can prove that if
Lemma 4 holds for vectors in Xj and Yj , 1 ≤ j ≤ i,
then Lemma 4 holds for vectors in Xi+1; and if Lemma 4
holds for vectors in Xj , 1 ≤ j ≤ i + 1, and Yj , 1 ≤ j ≤ i,
then Lemma 4 holds for vectors in Yi+1. These proofs
are omitted to conserve space.

Based on all these results, Lemma 4 is proved.
Since different sequential order Π will yield different

DoF consumption in a transmit/receive weight vector,
such order Π should be subject to optimization in a
particular problem.

From Vector-Level to Node-Level. The sequential
order in Lemma 4 is on vector level. A model based
on such a vector-level ordering would have too many
variables and constraints, which is cumbersome to work
with. To simplify the model, we now consider a special

vector-level ordering, under which we visit each node
following some sequential order π, and once we are at
a node, we can determine all the vectors at this node
following an arbitrary order. That is, now we have an
order π among nodes and when at a node, some order
for vectors at this node. For this special vector-level
order, it is easy to verify that, by Lemma 4, all vectors
at the same node will have the same DoF consumption
and the order among the vectors at the same node does
not affect DoF consumption.

As a result of this finding, we may consider a “node-
level” ordering π among the nodes in the network. There
is no need to consider the ordering among the vectors
at the same node. For a transmitter Tx(l), denote πTx(l)

the position of this node in π. Similarly, denote πRx(k) the
position of a receiver Rx(k) in π. We have the following
lemma.

Lemma 5: Consider the interference from transmitter
Tx(l)’s zl data streams to receiver Rx(k)’s zk data streams
and an order π for nodes. Based on IC constraint (4) in the
matrix-based model, we have (i) if πTx(l) > πRx(k), then the
number of DoFs consumed by IC are zk and 0 at Tx(l) and
Rx(k), respectively; (ii) if πTx(l) < πRx(k), then the number
of DoFs consumed by IC are 0 and zl at Tx(l) and Rx(k),
respectively.

Proof: We first consider (i), i.e., the case when πTx(l) >

πRx(k). We employ such a vector-level ordering Π by
assigning an arbitrary order to all the vectors at the same
node. For any transmit weight vector uli and any receive
weight vector vkj , we always have Πvkj

< Πuli
(due

to πTx(l) > πRx(k) in the node-level order π). Thus, by
Lemma 4, the number of consumed DoFs at a transmit
weight vector uli for IC is equal to the number of all
receive weight vectors zk while the number of consumed
DoFs at a receive weight vector vkj for IC is 0. In other
words, the number of consumed DoFs at transmitter
Tx(l) for IC is zk while the number of consumed DoFs
at receiver Rx(k) for IC is 0. Case (i) is therefore proved.

The proof for (ii) follows the same token as that for (i)
and is omitted to conserve space.

For the DoF region achieved by a node-level ordering,
we have the following lemma.

Lemma 6: For the 1 → 1 case, the achievable DoF region
by the matrix-based model with a node-level ordering is the
same as that under the matrix-based model with a vector-level
ordering.

To prove this lemma, it is sufficient to show that for
any feasible (zl, zk) values that can be achieved by the
matrix-based model with a vector-level ordering Π, we
can construct a node-level ordering π to achieve the same
(zl, zk) values. Let’s see the following example.

Example 1: Consider two links l and k with zl = 2
and zk = 2 data streams, respectively. Assume that there
are 4 antennas on each of the transmitting and receiving
nodes. Then the total available DoFs in each transmit or
receive weight vector is 4. Suppose that the vector-level
ordering Π is ul2,vk1,ul1,vk2 (see the first line in Fig. 3).
We now show how to construct a node-level ordering π
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A vector−level ordering: u k2v

l2u k2v

l1uk1v

l1u k1v

Tx l RxkThe constructed node−level ordering:

The constructed vector−level ordering:

l2

Fig. 3. An example showing the transition from vector-
level ordering to node-level ordering.

based on Π such that zl = 2 and zk = 2 remain feasible.
Denote DoFl(vkj) the DoFs consumed by IC in re-

ceive weight vector vkj . Based on Lemma 4, we have
DoFl(vk1) = 1 and DoFl(vk2) = 2. Since DoFl(vk1) <

DoFl(vk2), vk2 is the bottleneck receive weight vector
at receiver Rx(k), which has the fewest remaining DoFs
(4− 2 = 2) for SM. Similarly, denote DoFk(uli) the DoFs
consumed for IC at transmit weight vector uli. Based on
Lemma 4, we have DoFk(ul2) = 0, and DoFk(ul1) = 1.
We can see that ul1 is the bottleneck transmit weight vec-
tor at transmitter Tx(l), which has the fewest remaining
DoFs (4 − 1 = 3) for SM.

To construct a node-level ordering π, we first re-
order the vectors as ul2,ul1,vk1,vk2, where the first
two vectors are the transmit weight vectors and the
remaining two vectors are the receive weight vectors (see
the second line in Fig. 3). Based on Lemma 4, we have
DoFl(vk1) = DoFl(vk2) = 2 under this new order. We
find that although DoFl(vk1) is increased from 1 to 2, vk2

remains a bottleneck receive weight vector. Thus, zk = 2
is still feasible under this new ordering. Similarly, based
on Lemma 4, we have DoFk(ul2) = DoFk(ul1) = 0 under
this new order. Since DoFk(ul1) is decreased from 1 to
0, this vector has more DoFs remaining than in Π. Thus,
zl = 2 is still feasible under this new order. In summary,
(zl, zk) values remain feasible under the new ordering.

For this new vector-level order, if we group the first
two transmit weight vectors at transmitter Tx(l) and
the other two receive weight vectors at receiver Rx(k),
then we have a node-level order (see the third row in
Fig. 3). Note that for this node-level order, the DoF
consumption in each vector at the same node is identical
(i.e., DoFl(vk1) = DoFl(vk2) = 2 and DoFk(ul2) =
DoFk(ul1) = 0). We call this node-level order π, which
can achieve the same (zl, zk) values as in Π.

A formal proof of Lemma 6 based on the idea in
Example 1 is omitted to conserve space.

4.3.2 M → 1 and 1 → M Cases

In general, we need to analyze (i) DoF consumption
at a receiver that is being interfered by multiple other
links (see the M → 1 case in Fig. 4(a)), and (ii) DoF
consumption at a transmitter that interferes multiple
other links (see the 1 → M case in Fig. 4(b)). When
we determine vectors at different nodes, there may or
may not exist dependency cycles among the vectors.
Ideally, our model should include solutions regardless
of dependency cycles. However, there is no proof to
guarantee that we can always find a feasible weight
assignment for arbitrarily specified dependency cycles
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(a) One link (k) is interfered by multiple links
(l1, l2, · · · , lM ).
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(b) One link (l) interferes multiple links
(k1, k2, · · · , kM ).

Fig. 4. The M → 1 and 1 → M cases.

in a multi-hop MIMO network. Since it is not clear how
to specify dependency cycles to guarantee a feasible
weight assignment, we decide not to model solutions
with dependency cycles. That is, we focus on an order-
based approach to determine all the vectors.

We first analyze (i), which is illustrated in Fig. 4(a).
There are zk data streams on link k and M interfer-
ing links l1, l2, · · · , lM with zl1 , zl2 , · · · , zlM data streams,
respectively, where transmitter Tx(lm) of each link lm
interferes receiver Rx(k) of link k. Under an order-based
approach, only when Πulm,i

< Πvkj
, receive weight

vector vkj at receiver Rx(k) needs to consume its DoFs
to cancel interference from the i-th data stream at trans-
mitter Tx(lm). Thus, among all the IC constraints (4) in
the matrix-based model, vector vkj only needs to satisfy
the following constraints.

(uT
lm,iH(lm,k))vkj = 0 (1 ≤ m ≤ M, 1 ≤ i ≤ zlm ,

Πulm,i
< Πvkj

) (10)

Under the order-based approach, transmitters Tx(lm)
with Πulm,i

< Πvkj
(for some i and j) cannot collaborate

to determine their transmit weight vectors ulm,i. Then it
is unlikely that some IC constraints in (10) are linearly
dependent. Under a given order Π, the total DoFs con-

sumed for IC at vkj is
∑M

m=1

∑zlm

i=1 1+{Πulm,i
< Πvkj

},
where 1+{Πulm,i

< Πvkj
} is an indicator function and is

defined to be 1 when Πulm,i
< Πvkj

and 0 otherwise. We
state this result in the following lemma.

Lemma 7: For the scenario in Fig. 4(a), the number of DoFs
consumed by IC in a receive weight vector vkj at receiver

Rx(k) is
∑M

m=1

∑zlm

i=1 1+{Πulm,i
< Πvkj

} under an order Π
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for vectors.

We now analyze (ii), which is illustrated in Fig. 4(b).
Similarly, under an order-based approach, a transmit
weight vector uli at Tx(l) only needs to satisfy the
following constraints.

u
T
li(H(l,km)vkm,j) = 0 (1 ≤ m ≤ M, 1 ≤ j ≤ zkm

,

Πvkm,j
< Πuli

) (11)

These receivers Rx(km) with Πvkm,j
< Πuli

for some i

and j may or may not collaborate to determine their
receive weight vectors ukm,j . If they do not collaborate,
then we have the following lemma.

Lemma 8: For the scenario in Fig. 4(b), the number of DoFs
consumed by IC in a transmit weight vector uli at transmitter
Tx(l) is

∑M

m=1

∑zkm

j=1 1+{Πvkm,j
< Πuli

} under an order Π
for vectors.

Remark 1: Note that our order-based IC scheme does not
include potential feasible solutions with dependency cycles
among the vectors. As a consequence, our model via Lemmas 7
and 8 cannot achieve the same DoF region as that under SM
and IC. However, our model includes all feasible solutions
under SM and IC where dependency cycles are not allowed.

From Vector-Level to Node-Level. Similar to that
for the 1 → 1 case, we may consider a node-level
ordering π, instead of a vector-level ordering Π. Then
for (i), constraints in (10) under vector-level ordering are
changed to the following constraints

(uT
lm,iH(lm,k))vkj = 0 (1 ≤ m ≤ M, 1 ≤ i ≤ zlm ,

πTx(lm) < πRx(k)) (12)

and receiver Rx(k) only needs to determine each of its
receive weight vectors to satisfy the above constraints.
Thus, we have the following theorem.

Theorem 1: For the scenario in Fig. 4(a), the number of
DoFs consumed by IC at receiver Rx(k) is

∑M

m=1 zlm ·
1+{πTx(lm) < πRx(k)} under an order π for nodes.

For (ii), constraints in (11) under vector-level ordering
are changed to the following constraints

u
T
li(H(l,km)vkm,j) = 0 (1 ≤ m ≤ M, 1 ≤ j ≤ zkm

,

πRx(km) < πTx(l)) (13)

and transmitter Tx(l) only needs to determine each of its
transmit weight vectors to satisfy the above constraints.
Thus, we have the following theorem.

Theorem 2: For the scenario in Fig. 4(b), the number of
DoFs consumed by IC at transmitter Tx(l) is

∑M

m=1 zkm
·

1+{πRx(km) < πTx(l)} under an order π for nodes.

For the achievable DoF region by a node-level or-
dering, we can prove the following lemma by using a
similar construction in the proof of Lemma 6.

Lemma 9: For the general case of multiple links, the DoF
region by a node-level ordering is the same as that under the
matrix-based model with a vector-level ordering.

4.4 Total Consumed DoFs

We have analyzed DoF consumptions by SM and IC in
Sections 4.2 and 4.3, respectively. The remaining question
becomes: Is the total number of consumed DoFs a simple
sum of those by SM and IC? The analysis for this
question is the last step shown in Fig. 2.

To answer this question, we need to find out whether
there is any linear dependency between the set of SM
constraints and the set of IC constraints. For example,
for a transmit weight vector, we need to check whether
any SM constraint in (8) and (9) or IC constraint in (13)
can be represented as a linear combination of other SM
and IC constraints. We will prove that there is no linear
dependency between these two sets of constraints. Thus,
the answer to our question is positive and we have the
following lemma.

Lemma 10: The total consumed DoFs in the matrix-based
model is the sum of DoFs consumed by SM and IC.

Proof: Suppose that we are considering DoF con-
sumption for a transmit weight vector uli. (The proof for
a reception vector vkj is similar and is omitted.) Based
on the proof of Lemma 2, all the SM constraints in (8)
and (9) are linearly independent. Based on Theorem 2,
all the IC constraints in (13) are linearly independent. By
Lemma 1, we need to prove that the union of linearly
independent SM constraints in (8) and (9) and linearly
independent IC constraints in (13) is a linearly indepen-
dent set. That is, we need to prove that a constraint in (8),
(9), or (13) cannot be represented as a linear combination
of some constraints in (8) or (9) and some constraints in
(13). Since (8) is the only constraint with non-zero RHS,
it cannot be represented as a linear combination of other
constraints. Moreover, since any linear combination that
includes (8) has a non-zero RHS, a constraint in (9)
and (13) cannot be represented by a linear combination
that includes (8). Thus, we only need to prove that
a constraint in (9) or (13) cannot be represented as a
linear combination of some constraints in (9) and some
constraints in (13).

We now prove, by contradiction, that a constraint in
(9) cannot be represented as a linear combination of
some constraints in (9) and some constraints in (13).
Suppose that we can represent an SM constraint in (9),
say u

T
li(H(l,l)vlj) = 0, as a linear combination of other

SM constraints in (9) and some IC constraints in (13).
Then we have

H(l,l)vlj =

i6=j
∑

1≤i≤zl

wiH(l,l)vli

+

πRx(km)<πTx(l)
∑

1≤m≤M

∑

1≤i≤zkm

wmiH(l,km)vkm,i

under some weights wi and wmi. To find a contradiction,
multiplying u

T
lj on both sides of the above equality, we
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have

u
T
ljH(l,l)vlj

=

i6=j
∑

1≤i≤zl

u
T
ljwiH(l,l)vli

+

πRx(km)<πTx(l)
∑

1≤m≤M

∑

1≤i≤zkm

u
T
ljwmiH(l,km)vkm,i

=

i6=j
∑

1≤i≤zl

wi · u
T
ljH(l,l)vli

+

πRx(km)<πTx(l)
∑

1≤m≤M

∑

1≤i≤zkm

wmi · u
T
ljH(l,km)vkm,i

= 0

where the last equality holds by (3) and (4). On the
other hand, we have u

T
ljH(l,l)vlj = 1 by (2). This is a

contradiction.
Similarly, we can prove that a constraint in (13) cannot

be represented as a linear combination of some con-
straints in (9) and some constraints in (13). The details
are omitted to conserve space.

5 A DOF-BASED MODEL

5.1 Mathematical Modeling

Based on the results in the previous section, we are now
ready to develop a DoF-based link layer model for a
multi-hop MIMO network. We have the following four
sets of constraints.

Half-Duplex Constraint. Due to the half-duplex
property, a node cannot be the transmitter of one link
and the receiver of another link in the same time slot.
We use a binary variable xi[t], 1 ≤ i ≤ N and 1 ≤ t ≤ T ,
to indicate whether node i is a transmitter for some link
in time slot t. That is, if node i is a transmitter in time
slot t, then xi[t] = 1, otherwise xi[t] = 0. We use another
binary variable yi[t], 1 ≤ i ≤ N and 1 ≤ t ≤ T , to indicate
whether node i is a receiver for some link in time slot t.
Then the half-duplex property can be modeled as

xi[t] + yi[t] ≤ 1 (1 ≤ i ≤ N, 1 ≤ t ≤ T ) . (14)

Constraints for Node Activity. Denote Lin
i and Lout

i

the set of possible incoming and outgoing links at node
i, respectively. Note that a node can be the transmitter
of multiple links (i.e., multi-packet transmission) or the
receiver of multiple links (i.e., multi-packet reception) in
the same time slot by IC.

If node i is not an active transmitter, then we have
∑

l∈Lout
i

zl[t] = 0. Otherwise, by the fact that the total

available DoFs of a vector at node i is equal to Ai

(the number of antennas at node i), we have 1 ≤
∑

l∈Lout
i

zl[t] ≤ Ai by Lemmas 2. These two cases can

be formulated by the following constraint.

xi[t]≤
∑

l∈Lout
i

zl[t]≤ Ai · xi[t] (1 ≤ i ≤ N, 1 ≤ t ≤ T ). (15)

Similarly, considering whether or not node i is an active
receiver, we have

yi[t]≤
∑

l∈Lin
i

zl[t] ≤ Ai · yi[t] (1 ≤ i ≤ N, 1 ≤ t ≤ T ). (16)

Ordering Constraints. For any order π[t], we have

1 ≤ πi[t] ≤ N (1 ≤ i ≤ N, 1 ≤ t ≤ T ) . (17)

To model the “relative” ordering between any two
nodes i and j in π[t], we use a binary variable θji[t] and
define it as follows: θji[t] = 1 if node i is after node
j in π[t] (not necessarily consecutive) and 0 otherwise.
It is easy to verify that the following relationships hold
among πi[t], πj [t], and θji[t].

πi[t]−N · θji[t]+1 ≤ πj [t] ≤ πi[t]−N · θji[t]+N−1

(1 ≤ i ≤ N, j ∈ Ii, 1 ≤ t ≤ T ) , (18)

where Ii is the set of nodes within node i’s interference
range.

DoF Consumption Constraints. It is clear that
the total consumed DoFs at a node cannot exceed its
total available DoFs (or the number of antennas at
this node). Thus, if node i is a transmitter, then we
have

∑

l∈Lout
i

zl[t] +
∑

j∈Ii
θji[t]

∑Tx(k) 6=i

k∈Lin
j

zk[t] ≤ Ai by

Lemma 2 and Theorem 2. Otherwise, if node i is not
a transmitter, then

∑

l∈Lout
i

zl[t] = 0 and there is no

constraint on
∑

j∈Ii
θji[t]

∑Tx(k) 6=i

k∈Lin
j

zk[t]. To develop one

constraint for both cases, we introduce a large constant
Bi (e.g., setting Bi =

∑

j∈Ii
Aj) to ensure that Bi is an

upper bound of
∑

j∈Ii
θji[t]

∑Tx(k) 6=i

k∈Lin
j

zk[t]. Then we have

∑

l∈Lout
i

zl[t]+
∑

j∈Ii

θji[t]

Tx(k) 6=i
∑

k∈Lin
j

zk[t] ≤ Aixi[t]+(1−xi[t])Bi ,

(1 ≤ i ≤ N, 1 ≤ t ≤ T ). (19)

Now we consider the case of whether or not node i is
a receiver. Following the same token, we have

∑

k∈Lin
i

zk[t]+
∑

j∈Ii

θji[t]

Rx(l) 6=i
∑

l∈Lout
j

zl[t] ≤ Aiyi[t]+(1−yi[t])Bi ,

(1 ≤ i ≤ N, 1 ≤ t ≤ T ). (20)

Note that zl[t] is the number of data streams on link l

in time slot t. By (1), we can calculate the achievable
DoF cl, which is the average of zl[t] over all T time
slots. Thus, a model for the set of (c1, c2, · · · , cL) values
includes constraints (1), (14)–(20). Note that there is no
matrix representation involved in this DoF-based model.
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5.2 Linearization

One thing we can improve upon the above model is
to remove the non-linearity in (19) and (20). The non-
linear terms in (19) and (20) are products of one binary

variable (θji[t]) and another linear term (
∑Tx(k) 6=i

k∈Lin
j

zk[t]

or
∑Rx(l) 6=i

l∈Lout
j

zl[t]). Such non-linear terms can be removed

by introducing new variables and adding new linear
constraints. To do this for (19), we define new variables

λji[t] = θji[t]
∑Tx(k) 6=i

k∈Lin
j

zk[t]. Then we can re-write (19) as

∑

l∈Lout
i

zl[t] +
∑

j∈Ii

λji[t] ≤ Aixi[t] + (1 − xi[t])Bi ,

(1 ≤ i ≤ N, 1 ≤ t ≤ T ). (21)

Since θji[t] ∈ {0, 1} and 0 ≤
∑Tx(k) 6=i

k∈Lin
j

zk[t] ≤ Aj , the new

constraints among λji[t], θji[t], and
∑Tx(k) 6=i

k∈Lin
j

zk[t] that we

need to add are

λji[t] ≤

Tx(k) 6=i
∑

k∈Lin
j

zk[t] (1 ≤ i ≤ N, j ∈ Ii, 1 ≤ t ≤ T ), (22)

λji[t] ≤ Aj · θji[t] (1 ≤ i ≤ N, j ∈ Ii, 1 ≤ t ≤ T ), (23)

λji[t] ≥ Aj · θji[t] +

Tx(k) 6=i
∑

k∈Lin
j

zk[t] − Aj

(1 ≤ i ≤ N, j ∈ Ii, 1 ≤ t ≤ T ). (24)

Similarly, by letting µji[t] = θji[t]
∑Rx(l) 6=i

l∈Lout
j

zl[t], we can

replace (20) by
∑

k∈Lin
i

zk[t] +
∑

j∈Ii

µji[t] ≤ Aiyi[t] + (1 − yi[t])Bi

(1 ≤ i ≤ N, 1 ≤ t ≤ T ), (25)

µji[t] ≤

Rx(l) 6=i
∑

l∈Lout
j

zl[t] (1 ≤ i ≤ N, j ∈ Ii, 1 ≤ t ≤ T ), (26)

µji[t] ≤ Aj · θji[t] (1 ≤ i ≤ N, j ∈ Ii, 1 ≤ t ≤ T ), (27)

µji[t] ≥ Aj · θji[t] +

Rx(l) 6=i
∑

l∈Lout
j

zl[t] − Aj

(1 ≤ i ≤ N, j ∈ Ii, 1 ≤ t ≤ T ). (28)

5.3 Complexity and Performance Comparison

After removing non-linear constraints (19) and (20), we
now have a model for the set of (c1, c2, · · · , cL) values
with linear constraints (1), (14)–(18), (21)–(28).

Complexity Comparison. We now show that, com-
paring to the matrix-based model (1)–(4), our model
is much simpler. First, note that for the matrix-based
model, the set of constraints and variables in (2), (3),

and (4) depend on the set of (z1[t], z2[t], · · · , zL[t]) values.
Since we have to solve one problem for each set of
values of (z1[t], z2[t], · · · , zL[t]), the number of problems
that need to be solved is exponential with L. Second,
in the matrix-based model, verifying the feasibility of a
given set of (z1[t], z2[t], · · · , zL[t]) requires to solve a large
number of bilinear equations (2), (3), and (4), which are
very difficult.

In our DoF-based model, the set of constraints
and variables does not depend on the set of (z1[t],
z2[t], · · · , zL[t]) values. Thus, we only need to solve one
problem. Moreover, all constraints in this problem are
linear.

Achievable DoF Region. Since our scheme is solely
based on SM and IC, it does not include those solutions
beyond SM and IC (e.g., multi-user detection, dirty
paper coding). Moreover, during our analysis on DoF
consumption for IC, we made the assumption that all
transmit and receive weight vectors involved in IC are
determined by following some order. As we discussed
in Remark 1, our model cannot include all feasible
solutions under SM and IC. Instead, our model includes
all feasible solution by SM and IC when dependency
cycles among the vectors are not allowed. Thus, we have
the following theorem.

Theorem 3: Our DoF-based link layer model includes all
feasible solutions for a multi-hop MIMO network under
the matrix-based model for SM and IC when there is no
dependency cycle among the vectors.

Our order-based approach converts a (zero-forcing)
matrix formulation into a simpler, DoF-based formula-
tion that provably produces a feasible solution. Theo-
rem 3 shows that this approach considers a restricted
MIMO model (no dependency cycle), so the DoF region
computed by our approach may be smaller than that
achieved by a more general MIMO model with consid-
eration of dependency cycles. This is the price we pay
for a DoF-based formulation which, on the other hand,
is useful to simplify the cumbersome task of computing
MIMO weights.

Our model includes all possible orders while previous
DoF-based models in [1], [9], [21], [24] only consider
some pre-determined order. For example, the model in
[24] considers the case that all receivers placed after all
transmitters in an order. As a result, these models only
consider some special cases within our model, i.e., they
all have a smaller DoF region than that by our model.

5.4 Numerical Examples

We now compare the DoF region and complexity be-
tween our DoF-based model and the matrix-based model
for a three-link network. We will show that they achieve
the same DoF region while our DoF-based model incurs
significantly less complexity. We will also show that the
DoF region under a previous DoF-based model, NiM [9],
is smaller than that under our model. As discussed in
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our DoF-based model coin-
cides with that by the matrix-

based model for a three-link
network. Also shown within the

dashed lines is the DoF region

by NiM.

Section 2, the NiM model is the same as the approach in
[1].

Fig. 5 shows the topology of three active links, where
links 1 and 2 are interfering with each other and links
2 and 3 are interfering with each other. Suppose that
the number of antennas at both the transmitter and the
receiver of link 1 are six, the number of antennas at both
the transmitter and the receiver of link 2 are four, and
the number of antennas at both the transmitter and the
receiver of link 3 are two.

We now show how to obtain the DoF region for this
three-link network under the matrix-based model and
our DoF-based model.

• Under the matrix-based model, to compute
(c1, c2, c3) by (1), we need to verify the feasibility
of each set of values for (z1[t], z2[t], z3[t]). We
use (z1[t], z2[t], z3[t]) = (3, 1, 1) as an example.
We need to check whether we can find three
6 × 1 transmit weight vectors u11[t],u12[t], and
u13[t] at Tx(1), three 6 × 1 receive weight vectors
v11[t],v12[t], and v13[t] at Rx(1), one 4 × 1 transmit
weight vectors u21[t] at Tx(2), one 4 × 1 receive
weight vectors v21[t] at Rx(2), one 2 × 1 transmit
weight vectors u31[t] at Tx(3), and one 2 × 1
receive weight vectors v31[t] at Rx(3) such that
bilinear constraints (2), (3), and (4) hold. There are
(z1[t])

2+(z2[t])
2+(z3[t])

2+2z1[t]z2[t]+2z2[t]z3[t] = 19
constraints and 12z1[t]+8z2[t]+4z3[t] = 48 variables
(note that a 6 × 1 vector has six variables) in these
bilinear constraints. Since a general solution to
bilinear equation systems remains unknown [12],
it can only be solved via exhaustive search. We
finally find vectors to satisfy all the constraints and
thus (3, 1, 1) is feasible. This verification process for
a single set of (z1[t], z2[t], z3[t]) = (3, 1, 1) is already
very complex.
Now suppose we want to check the feasibility of
(z1[t], z2[t], z3[t]) = (1, 2, 1). We have a problem
of 14 bilinear constraints with 32 variables. Thus,

TABLE 1
Complexity comparison between the matrix-based model

and our DoF-based model for a three-link network.

Matrix-based model DoF-based model
Number of Problems 105 1

Type of Problems Bilinear problems Linear program

the problem for different set of (z1[t], z2[t], z3[t]) is
different.
Since z1[t] ∈ {0, 1, 2, 3, 4, 5, 6}, z2[t] ∈ {0, 1, 2, 3, 4},
and z3[t] ∈ {0, 1, 2}, we need to solve 7×5×3 = 105
bilinear problems to determine feasibility of each set
of (z1[t], z2[t], z3[t]). Then we obtain the DoF region
in Fig. 6.

• Now we compute the DoF region under our DoF-
based model. Instead of verifying each set of values
for (z1[t], z2[t], z3[t]) by solving 105 different prob-
lems as in the matrix-based model, our DoF-based
model only needs to solve one linear problem and
obtain all possible sets of (z1[t], z2[t], z3[t]) values.
The problem we are solving now is to find zl[t] on
each link l and an order π[t] such that all constraints
in Section 5.1 hold. After solving this linear pro-
gram, we have z3[t] ≤ 2, z1[t]+z2[t] ≤ 6, z2[t]+z3[t] ≤
4. This DoF region is shown in Fig. 6, which is the
same as that by the matrix-based model.

Table 1 summarizes the above discussion. Although
the DoF regions by both models are identical, our DoF-
based model can be solved with a much lower com-
plexity because (i) it only requires to solve one prob-
lem, instead of many problems under the matrix-based
model, and (ii) the problem under our DoF-based model
is a linear problem while the problems under the matrix-
based model are bilinear problems.

We also show the DoF region under CiM in Fig. 6,
which is the inside tetrahedron. The ratio between the
DoF regions under CiM and our model is 3

10 .

6 AN APPLICATION OF OUR MODEL

As an application of our model, we show how to apply
it to formulate a cross-layer throughput maximization
problem for a multi-hop MIMO network. We study how
to maximize, say, the sum of weighted rates for a set
of sessions F in a multi-hop MIMO network. For each
session f ∈ F , denote r(f) the rate of session f and
w(f) the weight of session f . Denote rl(f) the amount
of rate on link l attributed to session f . We assume that
one data stream corresponds to one unit data rate. The
transmission and interference ranges are 300 and 500,
respectively. At the network layer, minimum-hop routing
is employed. Since the total data rate on any link cannot
exceed its achievable rate, we have

∑

f∈F

rl(f) ≤ cl (1 ≤ l ≤ L) . (29)

The problem formulation is then to maximize
∑

f∈F w(f) · r(f), subject to constraints (1), (14)–(18),
(21)–(29).
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Fig. 7. A 50-node multi-hop MIMO network.
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Fig. 8. Scheduling result on each link for the 50-node

network.

TABLE 2

Node ordering results in each time slot of a frame for the
50-node network.

i πi[1] πi[2] πi[3] πi[4]
1 7 13 8 11
2 11 8 10 8
6 12 7 7 3
8 2 1 3 9

11 9 12 5 12
14 8 9 11 6
19 3 14 14 10
21 6 6 4 4
22 13 11 9 7
26 10 5 12 13
29 14 10 2 2
34 5 3 6 5
37 1 4 1 1
43 4 2 13 14

As a case study, consider a multi-hop MIMO network
consisting of 50 nodes in Fig. 7. Each node in the network
is equipped with four antennas. There are four sessions
in the network: N11 to N34, N21 to N37, N29 to N43,
N8 to N6 with weights 0.7, 0.4, 0.8 and 0.9, respectively.
Suppose that there are T = 4 time slots in each time
frame. This cross-layer optimization problem may be
solved by CPLEX when the number of variables is not
large. We have the objective value 2.425, the scheduling
solutions in Fig. 8, and the node ordering in Table 2,
where only those active nodes (involved in multi-hop
routing) are shown in Table 2. As an example, the shaded
box next to link N8 → N14 contains z[2] = 2, z[4] = 1,
which means that there are two data streams on this link
in time slot 2 and one data stream on this link in time
slot 4. In other time slots (time slots 1 and 3), this link
is not active.

7 CONCLUSIONS

Matrix-based MIMO model is too complex for network
level analysis and cross-layer optimization. Simple mod-
els based on DoF abstraction only require numeric com-
putations on DoFs for SM and IC and thus offer sig-
nificant advantages over the matrix-based model. How-
ever, existing DoF-based models are based on sufficient
conditions on DoFs and data streams and may have a
much smaller DoF region than that under the matrix-
based model. In this paper, we developed a DoF-based
model for a multi-hop MIMO network. It retains the
same simplicity as previous DoF models while includes
the same set of feasible solutions under SM and IC
when there is no dependency cycle among the vectors.
Our DoF model is well suited as a reference model for
studying multi-hop MIMO networks.
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