
Attribute-Based On-Demand Multicast Group Setup with
Membership Anonymity

Shucheng Yu
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609-2280

yscheng@wpi.edu

Kui Ren
Illinois Institute of Technology

3300 S. Federal Street
Chicago, Illinois 60616
kren@ece.iit.edu

Wenjing Lou
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609-2280

wjlou@wpi.edu

ABSTRACT
In many applications, it is desired to dynamically establish
temporary multicast groups for secure message delivery. It
is also often the case that the group membership information
itself is sensitive and needs to be well protected. However,
existing solutions either fail to address the issue of member-
ship anonymity or do not scale well for dynamically estab-
lished groups. In this paper, we propose a highly scalable
solution for dynamical multicast group setup and yet pro-
tecting group membership anonymity simultaneously. In the
proposed solution, scalability and membership anonymity
are achieved via a novel design that integrates both ciphertext-
policy attribute-based encryption (CP-ABE) and central-
ized flat table (CFT) techniques. In our design, multicast
groups are specified through group member attributes rep-
resented through binary member ID only and thus achieves
scalability. Also, high level of membership anonymity is
guaranteed such that every group member knows nothing
but his own group membership only. The proposed solution
is also efficient in communication, that is, the ciphertext size
is only O(n), where n is the length of a group member ID
and independent to the group size.

1. INTRODUCTION
Multicast is a very important communication function

that allows information to be delivered to a group of desti-
nations simultaneously and efficiently. Multicast Backbone
(MBone) was built over a decade ago as an experimental
backbone for IP Multicast traffic across the Internet. Mul-
ticast also found its many wide deployed applications in en-
terprise networks, such as pay-per-view TV, online game,
file distribution, stock information distribution, and so on.

Confidentiality of the information transmitted in a mul-
ticast session is a fundamental security service to multi-
cast communication. To encrypt a multicast session, a new
group key must be encrypted by some key encryption keys
(KEKs) and then distributed to all group members. Many
approaches for secure multicast communication have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecureComm 2008 September 22 - 25, 2008, Istanbul, Turkey
Copyright 2008 ACM 978-1-60558-241-2 ...$5.00.

proposed in recent years, e.g., [15, 9], in which group estab-
lishment is usually realized via broadcast encryption. These
schemes mostly rely on a central key server to distribute the
new group keys and to perform rekeying operations. The
central key server is responsible to find the minimal set of
KEKs that cover all the group members but are not known
to any non-members, and then distribute the new group key
encrypted by those KEKs to every group member. When we
are dealing with dynamically established groups for large
scale networks, even with a very efficient rekeying coding
scheme such as SD [11], the number of necessary KEKs (thus
the number of encryptions of the group key) may be large
and this represents a big communication, computation and
storage overhead while keys are distributed in the network.

Privacy is another concern for many multicast applica-
tions. In many situations, membership information of the
group should be protected. The system may not want any-
one, including the intended recipients, to know which other
or totally how many members are involved in a task. Ide-
ally, high level of membership anonymity should be achieved
even under powerful attacks. Unfortunately, current con-
structions of broadcast encryption schemes are seldom de-
signed with membership anonymity in mind with the only
exception of [1]. However, [1] is not suitable for large-scale
networks as the size of ciphertext as well as the computation
load grow linearly with the number of users. It is desirable to
introduce an efficient scheme which can provide a high level
of membership anonymity. In addition, user revocability is
often required in most multicast applications.

In this paper, we propose a more efficient group key man-
agement and distribution scheme for dynamically formed
multicast groups. We observed that in many cases, a dynam-
ically formed multicast group is not simply an arbitrary col-
lection of unrelated nodes. Instead, they are members with
certain common attributes. For example, in a battlefield sce-
nario, a commander may need to send secure messages to a
group formed by “Spanish interpreter with rank higher than

second lieutenant”. In this case, we may apply a novel cryp-
tographic primitive called ciphertext-policy attribute-based
encryption (CP-ABE) [2] such that we encrypt the group
key under certain attributes and only those who own the
intended attributes are able to decrypt it. To provide a high
level of membership anonymity, we enhance the current CP-
ABE construction and design a new algorithm. Membership
information such as “who is in the group” and “how many
members are in the group”are well protected. Unlike [1], our
scheme works well in large-scale applications because the ci-
phertext size is linear to the size of user ID and independent

of the number of users. In addition, single user revocability
is possible in our scheme.

1.1 Our Contribution
Main contributions of this paper are as follows:(1) To the

best of our knowledge, this is the first work on on-demand
multicast group setup with membership anonymity which is
guaranteed even when the system is under powerful attacks,
e.g. collusion attacks; (2) We introduce the concept of level
of membership anonymity in multicast; (3) Our scheme is
highly scalable. In our scheme, both the computation com-
plexity and communication complexity are O(n), where n is
the length of the GM’s ID.

1.2 Related Work
Related work includes two branches: broadcast encryption

and attribute-based encyption (ABE). This section provides
a brief review of both with respect to the aforementioned
requirements.

Broadcast Encryption was first formally explored by
Fiat and Naor[8] in 1993. The main effort of previous work
on broadcast encryption thereafter, e.g.,[3], is on efficient
broadcast and collusion resistance. Receiver anonymity had
not been addressed until a private broadcast encryption scheme
was proposed by Barth et al.[1] in 2006. In this scheme, a
random symmetric key K is generated to encrypt the mes-
sage M, which is the group key if applied to multicast group
setup. K is encrypted once with each receiver’s public key.
The sender attaches its signature on M to the ciphertext
to prevent chosen-ciphertext attack. Each receiver deduces
M by decrypting his part of ciphertext using his private
key. This scheme can protect receivers’ identities effectively.
However, the length of ciphertext is linear to the number
of receivers. Moreover, this scheme does not protect the
privacy information of “how many GMs are in the group”.
Eavesdroppers can easily deduce the number of receivers
from the length of the ciphertext. Although the authors
claim that this information can be hidden by padding the
recipient set to a given size using dummy recipients, we argue
that this will make the scheme inefficient and unscalable.

Ciphertext Policy Attribute-Based Encryption (CP-
ABE) was first proposed by Bethencourt, Sahai and Waters
[2]. In CP-ABE, each user is associated with a set of at-
tributes. On each attribute, the user is assigned a secret
key. When encrypting a message, the encrypter generates
an access tree specifying the threshold access structure for
his interested attributes and sends it in plaintext. Message is
then encrypted based on this access tree such that only those
whose attributes satisfy the access structure can decrypt it.
CP-ABE makes per message access control possible. Com-
munication and computation complexity is just linear to the
number of attributes and independent of the number of re-
cipients. Secrecy of the message is protected even under
collusion attacks. However, current schemes of CP-ABE [2,
7] are not designed with membership anonymity in mind.
Eavesdroppers can easily derive who is the intended receiver
from the access tree which is send in plaintext.

Based on CP-ABE, Cheung et al.[6] proposed a collusion
resistant group key management scheme. In this paper, the
authors defined each bit of user’s ID as an attribute. Match
between ciphertext and user’s attributes is actually that be-
tween user’s ID and the sender’s intended ID. Our design
shares the similar idea on attribute definition in this paper.

One significant difference between the two is that the access
tree is no longer transmitted in our design. A high level
of anonymity is therefore achieved. Moreover, unlike their
scheme, the ciphertext size in our design is well controlled
as we will discuss in the following sections.

The rest of this paper is organized as follows. Section 2
discusses models and assumptions. Section 3 gives some
technique preliminaries. Section 4 presents our solution.
Section 5 analyzes our solution in terms of security and per-
formance. We conclude this paper in Section 6.

2. MODELS AND GOALS
In this section, we first discuss models and assumptions

used in our design. We then define several levels of anonymity
that can be used to evaluate the strength of anonymity pro-
tection. Finally, we clearly present our security goals.

2.1 Models and Assumptions
Network Model In this paper, we assume traffic is trans-

mitted via open channels. Therefore, eavesdropping is possi-
ble. Also, computation power on each network node is rich,
e.g., we can assume each network node has at least the same
computation power than a modern PC.

Trust Model In our design, participants are one Group
Controller (GC) and many Group Members (GMs). GC is
a trusted party. It holds each GM’s private key and the sys-
tem master secret key as we will discuss later. GMs are not
trustworthy both to GC and between themselves. There-
fore, any GM is not expected to know others’ membership
information as well as the size of the group.

Adversary Model The adversary could be any party
except for GC. He has the ability to control t out of n GMs,
where t≪n. However, he has no way to compromise or spoof
GC. The adversary’s main goal of anonymity violation is
to learn the information such as “who is in the group” and
“how many GMs are in the group”. Such an attack could
be executed either by a single adversary or by a group of
cooperative adversaries.

2.2 Level of Anonymity
Pfitzmann [13] defined anonymity by the following state-

ment: “Anonymity is the state of being not identifiable within

a set of subjects, the anonymity set”. This general definition
gives the abstract semantic for the term anonymity. In prac-
tice, however, anonymity may have its concrete semantic. To
define the concrete semantic of anonymity in practice, we
believe two questions should be answered: “what subject is

not identifiable?” and “to whom it is not identifiable?”. The
answer to the first question actually defines the subject of
anonymity. The answer to the other one reflects who is the
potential adversary. To measure the strength of anonymity
protection, the following question also needs to be answered:
“What type of attacks the adversary may execute?”

In our interested applications, we believe two kinds of sub-
jects should be unidentifiable: “the identities of the intended

GMs”, and “the number of the intended GMs”. They should
be unidentifiable to external eavesdroppers, unintended GMs,
and intended GMs. We distinguish two kinds of attacks: at-

tacks executed by single adversary and attacks executed by

colluding adversaries. Based on these considerations, we de-
fine three coarse-grained levels of anonymity:

Level 0 No anonymity. Membership information is trans-
mitted in plaintext and identifiable by anyone.

Level 1 Identities of the group members are protected
from the adversaries, including both outsider attackers and
colluding intended GMs. An intended GM only knows his/her
own membership status but not other intended GMs’.

Level 2 In addition to the requirement to level 1 anonymity,
the number of the group members is also protected from the
adversaries, including both outsider attackers and colluding
intended GMs. GC is the only entity that is aware of the
size of the group.

According to this definition, we can see that most of cur-
rent work is on Level 0 and [1] is on Level 1.

2.3 Security Goals
Our main security goals are as follows:
• Confidentiality of the group key. The group key can

only be decrypted by intended GMs. Unintended recipients
should not have the ability to derive the group key even if
they collude.

• High level of anonymity The system should achieve the
anonymity level 2.

• Revocability The system should have the ability to re-
voke any single GM or a group of GMs sharing common
attributes.

• Backward secrecy A new GM should not have the ability
to access data that were transmitted before he joined.

3. PRELIMINARIES
This section briefly discusses preliminary techniques used

by our design.

3.1 Centralized Flat Table
Waldvogel et al.[14] first introduced a flat table (FT) for

group key management. This scheme assumes that any
potential GM has a n-bit ID, denoted by Xn−1Xn−2...X0,
where Xi = 0|1, i ∈ Zn. For each bit, GC generates two
KEKs corresponding to bit value 0 and 1 respectively. Any
GM holds one of the two KEKs for each bit of his ID. KEK
for ith bit can be denoted by KEKi,b, where 0 ≤ i ≤ n − 1,
b = 0|1. For example, GM with ID 1010 holds KEK3,1,
KEK2,0, KEK1,1, and KEK0,0. Besides the KEKs, GC
and each GM also hold the group key TEK. We show how
CFT deals with member leave events as follows. For space
limitation, member join events are not discussed here.

Member Leave Assume Xn−1Xn−2...X0 is the leaving GM’s
ID. For forward secrecy, GC needs to update TEK and
KEKi,Xi

for each i ∈ Zn. GC first updates TEK by
encrypting the new key TEK′ once under each KEK of
ID X̄n−1X̄n−2...X̄0. Because any other GM has at least
one bit different from the leaving GM, he can decrypt the
new TEK for sure. The leaving GM can not decrypt the
new TEK because he does not share any KEK with ID
X̄n−1X̄n−2...X̄0. GC then updates KEKi,Xi

for each i ∈ Zn

by encrypting the new key KEK′
i,Xi

first under the new
group key TEK′ , then under its corresponding old key, i.e.,
{KEK′

i,Xi
}TEK′ ,KEKi,Xi

. The leaving GM does not hold

the new TEK and can not decrypt the KEK′s.
Multiple Leaves Although multiple leaves can be achieved

by repeating the above member leave process, it is not effi-
cient in case of a large number of leaving GMs. A group from
IBM [5] proposed an efficient solution for multiple leaves us-
ing Boolean function minimization (BFM) techniques. This
scheme takes the n bits of ID Xn−1Xn−2...X0 as input of

a Boolean function f . Member leaving event is denoted by
the output of f . If GM with ID Xn−1Xn−2...X0 is leaving,
f(Xn−1Xn−2...X0) = 0, otherwise, f(Xn−1Xn−2...X0) = 1.
In case of multiple leaves, GC can reduce f to a sum of
products expression (SOPE) using the Quine-McCluskey al-
gorithm [4]. By this means, GC can achieve“(1) the smallest
possible number of ORs, and (2) given the number of ORs,
the smallest possible number of literals.” [6].

3.2 CP-ABE Algorithm
A typical CP-ABE scheme consists of four algorithms:
Setup This algorithm generates a master key MK and

the public parameter PK.
Encrypt This algorithm takes as input the public param-

eter PK, a message M, and an access structure T. It outputs
the cihphertext CT which has the following format:

CT = (T, C̃, C,∀y ∈ Y : Cy),

where C̃ = M ·X and X is a blind factor used to hide M . Y
is the intended attribute set. C and all the Cy are credentials
for helping decryptors reconstruct X and thus derive M .

KeyGen This algorithm takes as input a set of attributes
S associated with the user and outputs a secret key SK that
identifies with S.

Decrypt This algorithm takes as input the ciphertext CT

and a secret key SK for an attributes set S. If only S satisfies
the access structure T, does it return the message M.

Note that, the access structure T is transmitted to the
recipients in plaintext. We refer to [2, 7] for more details on
CP-ABE.

3.3 Bilinear Maps
Our design is based on some facts about groups with effi-

ciently computable bilinear maps.
Let G0 and G1 be two multiplicative cyclic groups of prime

order p. Let g be a generator of G0. A bilinear map is is
an injective function e : G0 × G0 → G1 with the following
properties:

1. Bilinearity : for ∀ u, v ∈ G0 and a, b ∈ Zp, we have
e(ua, vb) = e(u, v)ab.

2. Non-degeneracy : e(g, g) 6= 1.
3. Computability : There is an efficient algorithm to com-

pute e(u, v) for ∀ u, v ∈ G0.

4. OUR SCHEME
Our scheme is composed of four algorithms: Setup, Key-

Gen, Encrypt, and Decrypt. The functionality of each algo-
rithm is similar with that of the CP-ABE algorithm. The
main differences are the following: First, our scheme is de-
signed in the way that the encryptor does not need to trans-
mit the access tree T . The recipients’ identities are thus
protected. Second, our scheme defines attributes on each
GM’s identity and thus makes single user revocability pos-
sible. Third, our current design is not a public-key solution.
Therefore, only the GC can setup the multicast group. Such
a construction may satisfy the requirements of applications
where group setup should be strictly controlled. We leave
the public-key construction as a future work. In the follow-
ing part of this section, we first introduce how attributes
and the access structure are defined in our scheme. Then,
we present each algorithm of our scheme.

31 01019 1428

Unique IDLanguageGenderRank … ...

Figure 1: An example of ID

4.1 Attributes and Access Structure
In our scheme, each GM is assigned a n-bit unique ID

which is composed of several segments. Each segment rep-
resents one attribute. Fig. 1 gives an example for the ID in
the aforementioned military scenario.

Access Structure We use 1-level AND and NOT gates
to represent the access structure. OR gate can be sim-
ulated using concatenation. For each attribute, we sup-
port relation predicates such as equal, greater than and
less than. Therefore, a valid access structure has the form
like “(gender = male) ∧ (age < 40) ∧ (rank > captain) ∧
(not married)”. We believe this kind of access structure is
descriptive enough for most applications. Note that, this
access structure is only used by GC and not transmitted to
the GMs.

Attributes As mentioned previously, we use each seg-
ment of ID to represent an attribute. We refer to these
attributes as high level attributes. Besides these high level
attributes, we also define lower level attributes for each bit
of ID. The string “bit i is b” defines the attribute for bit
i which we denote by Atti,b, b=0|1. Therefore, each bit is
associated with two lower level attributes:Atti,0 and Atti,1,
i ∈ Zn. Each GM holds n lower level attributes, each for
one bit of his ID. This definition of lower level attributes
follows the similar way in which CFT defines the KEKs.
Any high level attribute can be represented by lower level
attributes. In the remaining part of this section, the term
attribute refers to the lower level attribute.

4.2 Scheme Description
The four algorithms of our scheme are defined as follows.

System Setup This algorithm chooses a bilinear group
G0 of prime order p with generator g. Each attribute is
then mapped to an element of group G0. Let hi,b denote the
corresponding element in group G0 of attribute Atti,b. We
have

hi,0 = gai , hi,1 = gbi

ai and bi are randomly generated from Zp. Let γi = ai + bi.
ai and bi should be chosen in the way that ai, bi, and γi are
all non-trivial.

This algorithm also chooses other two random numbers
α, β ∈ Zp. The system master secret key (MSK) is output
as follows

MSK = (α, β, ∀i ∈ Zn : hi,0, hi,1)

MSK is only known to GC.

KeyGen This algorithm takes as input a GM’s ID and
generates his secret key as follows

SK = (D = g(α+r+r′)/β, D′ = gr′

, D′′ = gβr,

∀i ∈ Zn : Di = grhr′

i,X̄i
)

r and r′ are two random numbers chosen from Zp. Xi is the

Table 1: Vector for product X̄3X2X0

gsi Ci,0 Ci,1

C3 gs3 hs3+t3
3,0 hs3

3,1

C2 gs2 hs2

2,0 hs2+t2
2,1

C1 gs1 hs1

1,0 hs1

1,1

C0 gs0 hs0

0,0 hs0+t0
0,1

ith bit of the GM’s ID and X̄i is its inverse.

Encryption To deliver the group key (GK) to GMs of
his interested attributes, GC first reduces the combination
of these attributes to a sum of products expression (SOPE).
Then, for each product in the SOPE, GC encrypts GK once
and outputs a ciphertext of the following format:

CT = 〈C, C′, C′′,∀i ∈ Zn : Ci〉

where C = (GK||MAC) · X and X is a blind factor used
to hide (GK||MAC). MAC is the message authentication
code for GK. “||” means concatenation. C′, C′′, and all the
Ci’s are credentials for helping decryptors to reconstruct X
and thus derive GK. Each bit of the GM’s ID corresponds
to a credential Ci, which actually includes a pair (Ci,0, Ci,1)
for bit value 0 and 1 respectively.

Now, we present the detailed steps for CT generation. No-
tation is defined as follows: Each symbol in a SOPE product
is called a literal, denoted by X ′

j if it is the jth bit of ID.
If the symbol has the form X̄, X ′

j = 0. Otherwise X ′
j = 1.

We denote a SOPE product by S, a set of literals. The
string “the ith bit of a GM’s ID Xi is in S” is represented
by “Xi ∈ S”.

• Step 1. Random Number Generation. GC chooses n
random numbers s0, s1, ..., sn−1 ∈ Zp, and set s =

∑n−1
j=0 sj

and δ =
∑n−1

j=0 γisi.

• Step 2. Ci Computation. Here Ci = (gsi , Ci,0, Ci,1),
i ∈ Zn. First, GC initializes each Ci as follows: Ci,0 = hsi

i,0

and Ci,1 = hsi
i,1. Next, for each X ′

j , GC chooses a non-zero

random number tj ∈ Zp and computes h
tj

j,X′

j

. Then, the item

Cj,X′

j
in the tuple Cj is updated as follows: Cj,X′

j
=Cj,X′

j
·

h
tj

j,X′

j

= h
sj+tj

j,X′

j

. Table 1 illustrates the vector (C3, C2, C1, C0)

for product X̄3X2X0, where n = 4.
• Step 3. C′ and C′′ Computation. GC first computes a

value gs′ as follows:

gs′ =

n−1∏

i=0

(Ci,0Ci,1)

=

n−1∏

i=0

(hi,0hi,1)
si ·

∏

∀j, X′

j
∈S

h
tj

j,X′

j

(1)

=

n−1∏

i=0

gγisi ·
∏

∀j, X′

j
∈S

h
tj

j,X′

j

(2)

= gδ ·
∏

∀j, X′

j
∈S

h
tj

j,X′

j

(3)

= gδ+x

Eq. (2) to Eq. (3) holds because δ =
∑n−1

j=0 γisi. x is

some number in Zp such that

gx =
∏

∀j, X′

j
∈S

h
tj

j,X′

j

, x ∈ Zp (4)

Then, GC computes another value gs′′ as follows:

gs′′ =
gs

gs′
= gs−s′ .

Finally, C′ and C′′ are computed as follows:

C′ = gβs′ , C′′ = gs′′/β.

• Step 4. Ciphertext Generation. Ciphertext is output as
follows:

CT = 〈C = (GK||MAC)e(g, g)αs′ , C′, C′′,∀i ∈ Zn : Ci〉 (5)

where MAC = hash(GK). hash(·) is an one way hash
function using algorithms such as SHA-1 [12].

Decryption This algorithm takes as input the ciphertext
CT . It returns the group key GK if the GM’s attributes
satisfy the access structure. Otherwise, it returns an error
symbol ⊥.

• Step 1. Credential Pairing. Assume the GM’s ID is
Xn−1Xn−2...X0. She picks Ci,Xi

from Ci and computes a
value Fi for each bit i ∈ Zn of her ID as follows:

Fi = e(Di, g
si)e(D′, Ci,Xi

)

= e(grhr′

i,X̄i
, gsi)e(gr′

, hsi+ti
i,Xi

), (ti = 0, if Xi /∈ S)

(6)

= e(g, g)rsie(g, hi,X̄i
hi,Xi

)r′sie(g, hi,Xi
)r′ti

= e(g, g)rsie(g, g)r′γisie(g, hi,Xi
)r′ti

In (6), ti = 0 if Xi /∈ S. Otherwise, ti 6= 0.
• Step 2. Pairing Aggregation. GM aggregates the Fi’s

and computes another value F as follows:

F =
n−1∏

i=0

Fi

=
n−1∏

i=0

e(g, g)rsie(g, g)r′γisie(g, hi,Xi
)r′ti (7)

= e(g, g)rse(g, g)r′δ
n−1∏

i=0

e(g, hi,Xi
)r′ti (8)

= e(g, g)rse(g, g)r′δe(g, g)r′x′

(9)

Eq. (7) to Eq. (8) holds because s =
∑n−1

j=0 sj and δ =∑n−1
j=0 γisi. x′ is some number (unknown) in Zp such that

gx′

=

n−1∏

i=0

hti
i,Xi

, (ti = 0, if Xi /∈ S)

=
∏

∀i, Xi∈S

hti
i,Xi

, x′ ∈ Zp (10)

Therefore,

e(g, g)r′x′

=

n−1∏

i=0

e(g, hi,Xi
)r′ti , x′ ∈ Zp (11)

By Eq. (4) and Eq. (10), we have the following theorem:

Theorem 1. x = x′ iff the GM’s ID contains all the lit-

erals of the product, i.e., the GM is in the multicast group.

• Step 3. GK Derivation. GM derives the GK as follows

M ′ =
C

e(C′, D)e(C′′, D′′)/F

=
C

e(gβs′ , g(α+r+r′)/β)e(gs′′/β, gβr)/F

=
(GK||MAC)e(g, g)αs′

e(g, g)(αs′+rs+r′s′)/(e(g, g)rse(g, g)r′(δ+x′))

=
(GK||MAC)e(g, g)r′(δ+x′)

e(g, g)r′s′

= (GK||MAC)e(g, g)r′(x′
−x) (12)

• Step 4. GK Verification. We assume GK and MAC
have fixed lengths of n1 and n2 bits respectively. To verify
if she is in the intended multicast group, each GM takes the
first n1 bits and the remaining n2 bits from M ′, denoted by
M1 and M2 respectively, and checks if M2 = hash(M1).

From Theorem 1 and Eq. (12), we know that only the in-
tended GMs can recover (GK||MAC) correctly. Therefore,
only for the intended GMs, equation M2 = hash(M1) holds
and M1 equals GK.

5. SCHEME EVALUATION
For the space limitation, this section just presents the re-

sults of our evaluation. Proofs to the theorems as well as
other detailed evaluations can be available in the extended
version.

5.1 Security Analysis
We analyze security of our scheme in terms of its correct-

ness and fulfillment of our security goals.
Correctness of our design can be shown by the following

theorems.

Theorem 2. GM can decrypt GK iff she holds all the

attributes required by the GC.

Theorem 3. Except for the GC, it is hard for any other

parties to generate a valid credential Di for attribute Atti,Xi

even if they have already known credentials of other attributes.

From above theorems, we can conclude that: One, only
the GMs with intended attributes can decrypt GK. Two,
Any GM can not generate valid credentials for those at-
tributes which are not assigned to him. Therefore, our de-
sign is correct.

Security goals can be shown met as follows.
Confidentiality of the GK As is shown above, only in-

tended GMs can decrypt the GK. Moreover, it can be shown
that collusion does not help the unintended GMs decrypt the
GK. This is because each GM’s SK is blinded by a unique
blind factors r and r′.

Anonymity In our design, GM does not know if she is in
the multicast group until she has decrypted the ciphertext.
The Decryption algorithm takes all the credentials in SK
as input. GM can not tell which credentials grant her ac-
cess to the GK, nor how many credentials contribute to the
access grant. Therefore, any GM, no matter intended or un-
intended, can not tell, even partially, how many bits of her

ID match the intended ID. Moreover, because of the unique
blind factors r and r′ in each GM’s SK, collusion does not
help reveal this information.

Backward Secrecy For backward secrecy, any new GM can
not decrypt the messages sent before she joined the group.
To achieve this goal, we can update the master secret key
(MSK) α before any new GM joins. Similar to the process

of delivering GK, we can deliver gα′/β to all GMs. Upon

gα′/β, each GM updates α as follows: g(α+r+r′)/β · gα′/β =

g(α+α′+r+r′)/β . In this way, α is updated as (α+α′) securely.
Member Revocation Similar to delivering GK, we can up-

date MSK α to all GMs but those to be revoked. Because
each GM has a unique ID, our member revocation algorithm
has the ability to revoke any single GM.

5.2 Performance Evaluation
For one product of SOPE, our encryption algorithm needs

1 pairing, (4n+ k +2) exponentiations and (n+ k) multipli-
cation operations, where n is the number of bits in ID and
k means the number of literals in the product (k < n). Our
decryption algorithm requires (n + 3) pairings, 2n exponen-
tiations and one hash operation. Our ciphertext contains
(3n + 3) group elements in the whole. If GM’s ID has 32
bits, our scheme needs 210 ms for decryption and the cipher-
text size is 6336 bytes if SS curves are used. If MNT curves
are adopted, decryption requires 490 ms and the size of ci-
phertext is 3506 bytes. This result is based on our testing
on the Pairing-Based Crypto (PBC) library[10].

Another factor affecting the performance is the number of
product in a SOPE. Because our scheme limits the access
structure to the forms such as “(gender = male) ∧ (age <
40)∧(rank > captain)∧(not married)” , we can assure that
the combination of intended attributes can be reduced to a
SOPE with very small number of products.

5.3 Comparison
Membership anonymity in multicast group setup is rarely

addressed except for a similar work proposed by A.Barth
et al.[1]. Identities of the recipients in this scheme are pro-
tected by encrypting the GK using every GM’s public key.
The computational load as well the ciphertext size are lin-
ear to the group size. This makes this scheme applicable to
small-scale applications only. Our scheme, on the contrary,
is suitable for large-scale applications since the computa-
tional load and the ciphertext size are linear to the length
of a GM’s ID and independent to the group size. Moreover,
our scheme also protects the number of the group members
while [1] does not.

6. CONCLUSION AND FUTURE WORK
In this paper, we analyzed a novel issue of on-demand mul-

ticast group setup with membership anonymity. Based on
current techniques such as CP-ABE and CFT, we proposed
a scheme in which not only the multicast group members’
identities but also the number of members in a multicast
group are protected. Anonymity is well protected even un-
der powerful attacks, e.g., colluding attacks. Both attribute-
based multicast group setup and single user revocability are
supported by our scheme. Analysis shows that our scheme
is suitable for large-scale applications since its efficiency is
just linear to the length of GM’s ID. We believe our scheme
presents one point on the privacy-performance curve. One

interesting future work could be reducing the computation
and communication load while keeping the same level of
anonymity.

Acknowledgment
This work was supported in part by the US National Science
Foundation under grants CNS-0716306 and CNS-0626601.

7. REFERENCES
[1] A. Barth, D. Boneh, and B. Waters. Privacy in

encrypted content distribution using private broadcast
encryption. In Financial Cryptography ’06, pages
52–64, 2006.

[2] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-policy attribute-based encryption. In SP

’07, pages 321–334, 2007.

[3] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. CRYPTO ’05, pages 258–275, 2005.

[4] J. C.H. Roth. Fundamentals of Logical Design.
Thomson Engineering, 5 edn edition, 2003.

[5] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and
D. Saha. Key management for secure lnternet
multicast using boolean function minimization
techniques. INFOCOM ’99, pages 689–698 vol. 2,
1999.

[6] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport.
Collusion-resistant group key management using
attribute-based encryption. Cryptology ePrint
Archive, Report 2007/161, 2007.

[7] L. Cheung and C. Newport. Provably secure ciphertext
policy abe. In CCS ’07, pages 456–465, 2007.

[8] A. Fiat and M. Naor. Broadcast encryption. In
CRYPTO ’93, pages 480–491, 1994.

[9] C. Grosch. Framework for anonymity in ip-multicast
environments. GLOBECOM ’00., pages 365–369 vol.
1, 2000.

[10] B. Lynn. Pbc library.

[11] D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. In CRYPTO

’01, pages 41–62, 2001.

[12] NIST. Secure hash standard. Federal Information

Processing Standard, FIPS-180-1, April,1995.

[13] A. Pfitzmann and M. K. Anonymity, unobservability,
and pseudeonymity − a proposal for terminology. In
International workshop on Designing privacy

enhancing technologies, pages 1–9, 2001.

[14] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and
B. Plattner. The versakey framework: versatile group
key management. Selected Areas in Communications,

IEEE Journal on, 17(9):1614–1631, Sep. 1999.

[15] N. Weiler. Secure anonymous group infrastructure for
common and future internet applications. ACSAC

2001. Proceedings 17th Annual, pages 401–410, 2001.

