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Abstract—Big data analytics is having a profound impact
on many sectors of the economy by transforming raw data
into actionable intelligence. However, increased use of sensitive
business and private personal data with no or limited privacy
safeguards has raised great concerns among individuals and
government regulators. To address the growing tension between
the need for data utility and the demand for data privacy,
trusted execution environment (TEE) is being used in academic
research as well as industrial application as a powerful primitive
to enable confidential computation on the private data with only
the result disclosed but not the original private data. While
much of the current research has been focusing on protecting
the TEE against attacks (e.g. side-channel information leakage),
the security and privacy of the applications executing inside a
TEE enclave has received little attention. The general attitude is
that the application is running inside a trusted computing base
(TCB), and therefore can be trusted. This assumption may not
be valid when it comes to unverified third-party applications.

In this paper, we present PrivacyScope, a static code analyzer
designed to detect leakage of private data by an application code
running in a TEE. PrivacyScope accomplishes this by analyzing
the application code and identifying violations of a property
called nonreversibility. We introduce nonreversibility since the
classical noninterference property falls short of detecting private
data leakage in certain scenarios, e.g., in machine learning (ML)
programs where the program output is always related to (private)
input data. Given its strict reliance on observable state, the nonin-
terference falls short of detecting private data leakage in these sit-
uations. By design, PrivacyScope detects both explicit and implicit
information leakage. The nonreversibility property is formally
defined based on the noninterference property. Additionally, we
describe the algorithms for PrivacyScope as extensions to the run-
time semantics of a general language. To evaluate the efficacy
of our approach and proof-of-feasibility prototype, we apply
PrivacyScope to detect data leakage in select open-source ML
code modules including linear regression, k-means clustering and
collaborative filtering. Also, PrivacyScope can detect intentional
data leakage code injected by a programmer. We responsibly
disclosed all the discovered vulnerabilities leading to disclosure
of private data in the open-source ML program we analyzed.

Index Terms—information flow analysis, privacy, intel sgx
enclave, static analysis, symbolic execution, taint analysis, formal
semantics, machine learning, internet of things

I. INTRODUCTION

With more and more data being collected and analyzed,
there is an increasing concern on privacy implication of
the sensitivity of information on individuals. While we are
enjoying such rapid advancement in data science, many con-
sider this a step backwards on the fundamental civil right

to privacy. In an effort to tackle this fundamental trade-
off between data utility and data privacy, much work has
been done to enable secure computation on confidential data,
where only the results are revealed but not the original
data. Secure computation techniques are generally divided
into two categories, cryptographic techniques [1] and system
mechanisms [2]–[4]. Trusted Execution Environment (TEE) is
one of the more popular system methods designed to ensure
secure computation on private data given its ability to host
arbitrary computation with limited overhead. However, even
though techniques leveraging TEE aim at providing privacy
assurance to users, the security protection of system actually
depends on both the TEE and the TEE-protected applications
themselves. For example, while the Intel SGX architecture
can guarantee the integrity and confidentiality of execution,
it does not address leakage of private data due to program
code vulnerabilities or intentionally injected backdoors within
SGX-protected program. The code executing in a SGX enclave
can inadvertently or maliciously leak private data outside its
trust boundary. Majority of recent research [5]–[7] focus on
addressing potential data leakage on TEE, while few works [8]
focus on private data leakage by TEE-protected applications
themselves.

Since TEE-protected applications may contain malicious
logic embedded by attacker or data leakage bugs brought
by programmers, it is important for users of these secure
applications to audit and validate them. However, ensuring
trustworthiness of TEE-protected applications manually re-
quires security expertise and is not scalable for upcoming
large amount of TEE-protected applications. Therefore, an
automatic verification tool for users to detect leakage in
TEE-protected applications is desired. [8] formally specifies
semantics of TEE-protected application and applies classical
information flow analysis [9] to automatically detect leakage
on it. The classical information flow analysis applies the
noninterference property that essentially ensures no mutation
of sensitive data can lead to observable changes in program
state from the perspective of an outside observer. However, the
noninterference property is not suitable for widely adopted
ML algorithms in the era of IoT and cloud computing.
ML algorithms use private data to train models which are
observable for cloud service provider. Thus, ML programs
always violate classical noninterference property. Therefore,
a new property is desired for defining information leakage in



ML programs.
Inspired by the noninterference property, we formally define

nonreversibility property of enclave application in this paper.
Violations of nonreversibility property implies malicious actor
can infer sensitive input by observing the output generated by
program code running in an enclave. Thus, nonreversibility is
applicable to analyzing data leakage issues in widely adopted
ML code modules. Detecting violation of nonreversibility is
challenging, there are fundamental challenges that are different
from noninterference. First, it is not trivial to determine if the
recovery from output to input is deterministic or not. Second,
even if there is a data flow from sensitive input to output, it is
not entirely clear what the exact relationship is between input
and output, which is crucial in determining recoverability. To
tackle these challenges, we design and develop PrivacyScope,
a static code analyzer that detects violations of the nonre-
versibility property by enclave program code. PrivacyScope
employs symbolic execution to track propagation of private
data and records path conditions when program branches
throughout the exploration based on a symbolic program input.
At the conclusion of program analysis, PrivacyScope generates
a report detailing any leakage of private data. PrivacyScope
works seamlessly with the secure development environment.
As a demonstration, we extend the Intel SGX software devel-
opment ecosystem with PrivacyScope to automatically detect
violation of nonreversibility property on enclave modules.

The main contributions of this work are as following:
• We formally define nonreversibility property to charac-

terize the notion of secret data leakage in ML programs.
Inspired by noninterference property, nonreversibility ac-
complishes this by establishing a deterministic relation-
ship between program input and output in TEE-protected
application.

• We construct PRIML language to formally describe
our proposed innovative approach, PrivacyScope, which
automatically detects violations of the nonreversibility
property in a TEE-protected application.

• We present a proof-of-feasibility implementation of Pri-
vacyScope leveraging the Clang Static Analyzer and
demonstrate the viability and efficacy of our approach
by evaluating its performance by analyzing select ML
applications executing in Intel SGX enclaves.

II. BACKGROUND

A. Intel SGX

Intel Software Guard Extensions (SGX) is an extension
of the Intel’s processor architecture designed to safeguard
code and data against unauthorized modification and disclo-
sure. SGX guarantees the integrity and confidentiality of user
code and data by providing a processor-hardened, processor-
protected, trusted execution environment called an enclave.
A user application executing within an enclave is subject
to heightened security measures enforced by the processor.
Remote attestation, key and credential provisioning are other
critical features of the Intel SGX architecture. Remote at-

testation allows a remote party to verify the authenticity of
application code module executing inside an enclave.

Despite its strength, SGX suffers from several hardware
security limitations including SGX page faults, cache timing,
address bus monitoring and processor monitoring [5]. There
has been research working on addressing these limitations like
defending against cache timing attacks in [10]. We consider
these security limitations orthogonal to our intent of this paper
and believe these limitations must be addressed independently
from PrivacyScope.

B. Symbolic Execution

Symbolic execution is a popular program analysis technique
that dates back to the 1970s to test whether certain properties
can be violated by a piece of software [11], [12]. The key idea
is to allow a program to take on symbolic inputs. Then the
program is abstractly interpreted by an symbolic execution
engine. During interpretation, path condition and symbolic
memory store are recorded for each explored control flow path.

By symbolically interpreting TEE-protected applications,
PrivacyScope logs symbolic expression of targeted input ar-
guments and uses logged information to track any explicit
leakages. Additionally, by tracking target input arguments in
path conditions and by combining that information with the
returned result from the application, PrivacyScope can detect
any implicit leakages. An alternative way to find explicit
leakage is to use data flow analysis (DFA) frameworks [13],
[14]. Symbolic execution is orders more complex in terms
of complexity comparing to DFA. However, most data flow
frameworks are path insensitive and are hard to be used for
finding implicit leakages.

C. Clang Static Analyzer

The Clang Static Analyzer is an open source analysis tool
for finding bugs in C/C++, and Objective-C programs during
compilation phase. The analyzer is a symbolic execution
engine that abstractly interprets program code and traces out
possible execution paths. After generating the possible execu-
tion paths, the analyzer performs conceptually a reachability
analysis. During the analysis, the analyzer enters predefined
bug checkers. A bug is found by hitting a state where some
violation of checking invariants are satisfied. PrivacyScope is
a special checker we create, which is implemented on top
of Clang Static Analyzer for identifying explicit and implicit
leakage of enclave program.

Clang Static Analyzer leverages a region-based memory
model to perform path-sensitive symbolic program analy-
sis [15]. The Analyzer can process most forms of C expres-
sions, containing arbitrary levels of pointer dereferencings,
pointer arithmetics, composite arrays and struct data types,
arbitrary type casts, dynamic memory allocations, etc. These
features are critical to PrivacyScope, given that pointer oper-
ation is commonplace in C/C++ code and composite structs
are widely used in all C/C++ software including data analytic
modules.



III. THREAT MODEL AND ASSUMPTIONS

The goal of PrivacyScope is to discover deterministic leak-
age of user private data of an ML application. The threat
model follows that of TEE-based secure computation. User
private data are encrypted for storage outside the environment,
and when they are used for training the mode, the data is
decrypted only inside the container for consumption. With
recent advances in machine learning, along with the packaging,
it is becoming increasingly accessible to the general public,
even to those without a machine learning background. As
privacy concerns continue to grow, it is likely that the majority
of the computation on user data will be conducted in a
privacy-preserving manner. And the security of the applica-
tions running in the container, which are granted unlimited
access to user private data, will be crucial in user privacy
protection. However, with new customizations of individual
training methods for various application domains, it can be
very challenging for an individual user of the ML system,
potentially without any expertise on programming language,
information flow and machine learning to recognize subtle
ways the ML applications can deterministically leak user data.
As a result, we assume that there can be unintentional or
intentional logic in the TEE-protected application that will
leak contents deterministically. PrivacyScope is a detection
framework that can take user-defined privacy leakage rules
written as PRIML language extension detailed in Section V-A,
and automatically analyze TEE-protected programs to see if
there is any deterministic information flowing from the input (
such as user private data) to the output (such as ML models).

Although PrivacyScope aims at preventing the TEE-
protected application from leaking user’s private data in a
deterministic manner. It is not designed to detect potential
information leakage due to various side channels or covert
channels. We provide a brief discussion in Section VIII-A
on potential extension to protect against side/covert channel
information leakage.

IV. NONREVERSIBILITY PROPERTY

In traditional definition of secret leakage, for a user to keep
her data confidential, she would define a policy stating that
change of her confidential data cannot affect any publicly
observable data. This policy allows programs to perform
manipulation and modification on secret data, as long as any
observable outputs of these programs do not reveal information
about the secret data. Since this policy states that no visible
public data is interfered with confidential data, this sort of
policy is called a noninterference policy [16]. Intuitively,
noninterference for programs guarantees that “a variation of
confidential (high) inputs does not cause a variation of public
(low) outputs” [17].

However, noninterference policy is not suitable for our
scenario. In our scenario, machine learning algorithm sits in
enclave. We view secret inputs received by enclave as high and
the training output to the cloud server as low. In traditional
definition, any change of high data would not interfere with
low data. But output trained model changes according to

received input secret data. In this case, noninterference policy
is always violated in machine learning algorithm. Thus, we
need a finer grade policy. In contrast to noninterference,
we define nonreversibility to guarantee that a variation of
a single confidential (high) input could cause a variation of
public (low) outputs, but keeping this single confidential (high)
input and (low) inputs unchange will not always lead to the
same public (low) outputs. We provide the formalization of
nonreversibility in the following.

We extend notations from [17] and rigorously formalize
noninterference and nonreversibility using the machinery of
programming-language semantics. We assume that computa-
tion starts in an input state s = (sH , sL). sH and sL contain
the initial values of variables of high and low, respectively.
sh represents any single variable inside sH and sl represents
any single variable inside sL. The program either terminates in
an output state s′ = (s′H , s

′
L) with output values for the high

and low variables, or diverges. Thus, the semantics [[P ]] of a
program P is a function [[P ]] : S → S⊥ (where S⊥ = S ∪ ⊥
and ⊥ /∈ S) which maps an input state s ∈ S either to
an output state [[P ]]s ∈ S, or to ⊥ if the program fails to
terminate. We define equivalence relations =L and =h. =L

means two states are the same if they are equal on all the
low variable (i.e. s =L s′ if and only if ∀sl ∈ sL and
∀s′l ∈ s′L, sl = s′l). =h means there exists one variable inside
the high variables are the same for two states (i.e. s =h s′

if and only if sh = s′h). We characterize the observation
power of an attacker by a relation ≈L on behaviors such
that two behaviors are related by ≈L if and only if they are
indistinguishable to the attacker. Relation ≈L implies that the
attacker can observe the low variables. For a given semantic
model, noninferference is formalized as follows. P is secure
if and only if ∀s1, s2 ∈ S, s1 =L s2 =⇒ [[P ]]s1 ≈L [[P ]]s2.
This reads “if two input states share the same low values,
then the behaviors of the program executed on these states are
indistinguishable by the attacker.” Whereas, nonreversibility is
formalized as below. P is secure if and only if

∀s1, s2 ∈ S

s1 =L s2

s1 =h s2

∃h′ 6= h, s1h′ 6= s2h′ =⇒ [[P ]]s1 6≈L [[P ]]s2

which reads “if two input states share the same low values
and the same value of one single high variable, then there
exists one other high variable that when it is different for
the two input states, attacker will observe different behaviors
of the program executed on these states.” If this other high
variable does not exist, then one single high variable will be
leaked and P will not be secure. Because, an attacker would
be able to look at P and reverse the related computations of
that single high variable. According to the formal definition
of nonreversibility, the program l := h1 + 4 is insecure and
the value of h1 can be inferred by attacker by observing l.



However, the program l := h1 + 4 + h2 is secure because if
h2 is changed, l observed by attacker will also be changed.
And attacker cannot infer value of h1 without knowledge of
h2. Note that, the probability distribution of inferring h1 from
l will thus be determined by h2 in this case.

V. PRIVACYSCOPE

A. A General Language: PRIML

For precise declaration of how PrivacyScope works under
the hood, we extend notations in [18] and introduce a language
called PRIML: PRivacyscope InterMediate Language. PRIML
is used for precise declaration purpose, while no compiler or
symbolic execution engine is implemented for PRIML. We
create PRIML because of the complex semantic model of
C/C++ language. PRIML captures the primal semantic model
of C/C++. We describe how PrivacyScope analyzes programs
written in PRIML to reveal the core ideas. In addition to
the PRIML examples in this section, we also show how
PrivacyScope is implemented on top of Clang Static Analyzer
and is applied to C/C++ enclave modules in section VI.

The Backus normal form grammar for PRIML is presented
below. A PRIML program is composed of a sequence of
statements. Statements consist of assignments and conditional
branches. By design, all PRIML expressions are free from any
side effects - they do not change the program state. We use
“�b” and “�u” to represent binary (e.g. addition, subtraction
and etc.) and unary operators (e.g. logical negations, XOR and
etc), respectively. The statement get secret(secret) retrieves
high variable from secret while the statement declassify(exp)
uncovers a value to the outside world (this is potentially
observable for a malicious actor). For simplicity, we only
consider expressions (constants, variables, etc.) which evaluate
to 32-bit integer values. We also omit type-checking semantics
of PRIML and assume all program under evaluation are well
typed, e.g. binary operands are integers or variables.

stmt s ::= skip | var := exp | s1; s2

| if exp then s1 else s2

exp e ::= exp �b exp | �u exp | var
| get secret(secret) | v | declassify(exp)

�b ::= typical binary operators
�u ::= typical unary operators
value v ::= 32-bit unsigned integer

The operational semantics of a language specify unambigu-
ously how the program should be interpreted in that language.
We first define the base operational semantics before we
specify program analysis. Each statement rule is of the form:

computation
< current state >, stmt < end state >, stmt’

Rules are read from bottom up and left to right. Given a
statement, PRIML interpreter pattern-matches at statement to
find an applicable rule. For instance, the statement x := e

is interpreted according to ASSIGN rule. Then the interpreter
evaluates the computation given on the top of the rule, and if
successful, transitions to the end state. If no rule matches, then
the machine halts abnormally. ∆ maps a variable to its value
for a given execution context, e.g. ∆[x] denotes the current
value of variable x. We denote updating a context variable x
with value v as x ← v. Thus, updating the value of variable
x to the value 10 in context ∆ is denoted as ∆[x← 10]. We
denote evaluation of an expression e to a value v in the context
of ∆ by ∆ ` e ⇓ v. PRIML interpreter evaluates expression e
by matching e to an expression evaluation rule and performing
the corresponding computation.

The complete operational semantics for PRIML are shown
below. In addition, the context and statement ∆, skip indicates
a termination.

v is input from secret

∆ ` get secret(secret) ⇓ v
INPUT

∆ ` var ⇓ ∆[var]
VAR

∆ ` e ⇓ v, v′ = �uv
∆ ` �ue ⇓ v′

UNOP
∆ ` v ⇓ v

CONST

∆ ` e1 ⇓ v1, ∆ ` e2 ⇓ v2, v
′ = v1 �b v2

∆ ` e1 �b e2 ⇓ v′
BINOP

∆ ` e ⇓ v,∆′ = ∆[var ← v]

∆, var := e ∆′, skip
ASSIGN

∆ ` e ⇓ 1

∆, if e then s1 else s2  ∆, s1
TCOND

∆ ` e ⇓ 0

∆, if e then s1 else s2  ∆, s2
FCOND

∆′ = ∆, s1

∆, s1; s2  ∆′, s2
COMP

∆, skip; s ∆, s
SKIP

∆ ` e ⇓ v, declassify v
∆, declassify(e) ∆, skip

DECLASS

B. PrivacyScope Program Analysis

In this section, we describe how PrivacyScope analyzes
programs written in PRIML language. We present how Pri-
vacyScope works for PRIML to shed light upon how Pri-
vacyScope works for C/C++. The objective of the analysis
is to detect any violation of nonreversibility property in
PRIML programs. PrivacyScope achieves this by combining
taint tracking and forward symbolic execution. Taint tracking
is used to track the flow of high information from its sources
to its sinks. Forward symbolic execution is used to reason
about the behavior of the program under analysis given initial
inputs. PrivacyScope represents the path condition of program
execution as a logical formula, thus reducing the reasoning of
a program’s behavior to domain of logic. PrivacyScope rep-
resents variables symbolically and thus can examine program
execution spanning multiple input space of the program at one
time.



Component Policy Check
Pget secret(secret) tn

Pconst() ⊥
Punop(t), Passign(t) t

Pbinop(t1, t2), Pcond(t1, t2) see Fig. 2
Pdeclassify check(v, t, π, τ∆[π]) see Alg. 1

TABLE I: PrivacyScope’s policy for nonreversibility violation.

We express PrivacyScope in terms of the operational se-
mantics of PRIML. To keep track of the taint status of each
program value, we redefine values in PRIML to be tuples of
the form < v, τ >, where v is a value in the initial language,
and τ is the taint status of v. τ is modeled by a security
semi-lattice with join operation only shown in Fig. 1. In this
semi-lattice, sensitive data is labeled by t1, t2 and more. If a
variable is labeled by ⊥, it means it is not sensitive. While if a
variable is labeled by >, it means it is tainted by two or more
taint sources, so revealing it would not break nonreversibility.
We also introduce a new mapping τ∆ which maps variables
to taint status.

>

t1 t2 t3 tn

⊥

Fig. 1: Security semi-lattice for taint status

To enable forward symbolic execution in PRIML, we intro-
duce the following changes to PRIML.

value v ::= 32-bit unsigned integer | exp
π ::= Contains current constraints on symbolic

variables due to path branches

These changes make partially evaluated symbolic ex-
pressions valid for a value in PRIML. Thus, when
get secret(secret) is evaluated symbolically, it can return a
symbol instead of a concrete value.

t1 t2 Pbinop(t1, t2), Pcond(t1, t2)
> > >
> t2 >
t1 > >
t1 t2 > if t1 6= t2 else t1
t1 ⊥ t1
⊥ t2 t2
⊥ ⊥ ⊥

Fig. 2: Truth table for Pbinop(t1, t2) and Pcond(t1, t2)

1¬ operator negates the most recent added path constraint in π

Algorithm 1: Pdeclassify check

1: if t 6= ⊥ or > then
2: abort and report explicit leakage;
3: end if
4: if τ∆[π] 6= ⊥ or > then
5: if π is in hashmap hm then
6: if v 6= hm[π] then
7: abort and report implicit leakage;
8: else
9: remove π in hm

10: continue program analysis
11: end if
12: else
13: hm[¬1π] := v
14: continue program analysis
15: end if
16: else
17: continue program analysis
18: end if

After introducing the aforementioned changes, Table I
presents PrivacyScope policy for detecting nonreversibility
violation. It introduces taint status into the system by marking
up all values returned by get secret(secret) with different
tainted status. Taint is then propagated through the program
according to propagation rules. For constants, they are labeled
as insensitive. For assignment and unary operations on a
variable, they keep the same taint label for the variable. Fig.
2 shows taint label propagation rule for binary operation
and conditional branches. The policy checks if declassify(e)
leaks secret whenever a value is revealed. Alg. 1 depicts
declassify(e) process. It first checks if the variable is labeled
as sensitive. If yes, it reports an explicit leakage. If no, it then
checks if the path constraint is sensitive. It uses a hashmap
hm to assist with checking whether the revealed variable
differs in distinct branches. Finally, at the end of the last
path’s interpretation, declassify(e) checks if there is any
item in hashmap hm. If so, it concludes that there is an
implicit violation of nonreversibilitity. Note that, this last step
is omitted in Alg. 1 to simplify the explanation. We summarize
the PrivacyScope operational semantics as following.

v is a fresh symbol
τ∆,∆ ` get secret(secret) ⇓< v, Psecret(secret) >

PS-INPUT

τ∆,∆ ` var ⇓< ∆[var], τ∆[var] >
PS-VAR

τ∆,∆ ` e ⇓< v, t >, < v′, t′ >= �u < v, t >

τ∆,∆ ` �ue ⇓< v′, Punop(t) >
PS-UNOP

τ∆,∆ ` v ⇓< v, Pconst() >
PS-CONST

τ∆,∆ ` e1 ⇓< v1, t1 >, τ∆,∆ ` e2 ⇓< v2, t2 >

τ∆,∆ ` e1 �b e2 ⇓< v1 �b v2, Pbinop(t1, t2) >
PS-BINOP

τ∆,∆ ` e ⇓< v, t >,∆′ = ∆[var ← v],

τ ′∆ = τ∆[var ← Passign(t)]

τ∆,∆, var := e τ ′∆,∆
′, skip

PS-ASSIGN



Statement ∆ τ∆ abort
h1 := 2∗ get secret(secret) {h1 → 2 ∗ s1} {h1 → t1} false
h2 := 3∗ get secret(secret) {h1 → 2 ∗ s1, h2 → 3 ∗ s2} {h1 → t1, h2 → t2} false

x := h1 + h2 {h1 → 2 ∗ s1, h2 → 3 ∗ s2, x→ 2 ∗ s1 + 3 ∗ s2} {h1 → t1, h2 → t2, x→ >} false
declassify(x) {h1 → 2 ∗ s1, h2 → 3 ∗ s2, x→ 2 ∗ s1 + 3 ∗ s2} {h1 → t1, h2 → t2, x→ >} false
declassify(h1) {h1 → 2 ∗ s1, h2 → 3 ∗ s2, x→ 2 ∗ s1 + 3 ∗ s2} {h1 → t1, h2 → t2, x→ >} true

TABLE II: Simulation of PrivacyScope detecting explicit leakage

Statement ∆ π τ∆ hm abort

h := 2∗ get secret(secret) {h→ 2 ∗ s} true
{π → ⊥
h→ t1} {∅} false

if h− 5 == 14 then declassify(0) else declassify(1) {h→ 2 ∗ s} [(2 ∗ s)− 5 == 14]
{π → t1
h→ t1}

{¬[(2 ∗ s)− 5 == 14]→ 0} false

if h− 5 == 14 then declassify(0) else declassify(1) {h→ 2 ∗ s} ¬[(2 ∗ s)− 5 == 14]
{π → t1
h→ t1}

{¬[(2 ∗ s)− 5 == 14]→ 0} true

TABLE III: Simulation of PrivacyScope detecting implicit leakage

τ∆,∆ ` e ⇓< e′, t′ >, π′ = π ∧ (e′ = 1),

τ ′∆ = τ∆[π ← Pcond(t′, τ∆[t])]

π, τ∆,∆, if e then s1 else s2  π′, τ ′∆,∆, s1
PS-TCOND

τ∆,∆ ` e ⇓< e′, t′ >, π′ = π ∧ (e′ = 0),

τ ′∆ = τ∆[π ← Pcond(t′, τ∆[t])]

π, τ∆,∆, if e then s1 else s2  π′, τ ′∆,∆, s2
PS-FCOND

τ ′∆,∆
′ = τ∆,∆, s1

τ∆,∆, s1; s2  τ ′∆,∆
′, s2

PS-COMP

τ∆,∆, skip; s τ∆,∆, s
PS-SKIP

τ∆,∆ ` e ⇓< v, t >, Pdeclassify check(v, t, π, τ∆[π])

τ∆,∆, declassify(e) τ∆,∆, skip

PS-DECLASS

Next, we present two simplified code segments written in
PRIML to further explain the program analysis function of
PrivacyScope.

Example 1. Consider the following program:

h1 := 2 ∗ get secret(secret)

h2 := 3 ∗ get secret(secret)

x := h1 + h2

declassify(x)

declassify(h1)

We can easily see that declassifying x does not violate
nonreversibility property. Knowledge of the value of x does
not immediately reveal the value of the first secret. However,
declassifying h1 allows an attacker to infer the value of the
first secret by dividing the observed value with 2. Table. II
presents a simulation of how PrivacyScope detects a leakage.
Row 5 shows a leakage since the taint status of h1 is t1, while
row 4 does not because the taint status of x is >.

Example 2. Consider the following code snippet:

h := 2 ∗ get secret(secret)

if h− 5 == 14 then declassify(0) else declassify(1)

By observing the declassified output, an attacker can easily
infer if h is equal to 19 or not and, ultimately recover the
secret. Table. III illustrates how PrivacyScope detects implicit
leakage. Row 3, for instance, reports a leakage since the taint
status for π is t1, and the value retrieved from the hashmap
hm is 0 which is different from what declassify is outputting
(1). Row 2 of Table. III, on the other hand, does not report
a leakage even though the taint status for π is t1. Because
nothing is stored in the hashmap hm before the interpretation.

C. Incorporating PrivacyScope in an Intel SGX enclave

Intel SGX enclave modules are typically written in C/C++.
Therefore, the following part incorporates aforementioned core
ideas written in PRIML and presents how PrivacyScope is
integrated into Intel SGX ecosystem. Each Intel SGX enclave
declares one or more entry points into the enclave. Referred
to as ECALLS by the Intel SGX SDK, these interfaces allow
untrusted outside applications access trusted code running
inside the enclave. An enclave may also have OCALLS,
which allow trusted enclave code to call out to the untrusted
application. To configure an application to run in an Intel
SGX enclave, an enclave interface definition file is created.
An EDL file resembles a traditional C header file and contains
prototype declarations for all ECALL and OCALL interfaces.
The enclave EDL file defines how data is marshalled between
enclaves trusted code and the outside untrusted applications.

To pass secret data to enclave code for further processing,
enclave uses ECALL type interface. Similar to C function
prototypes, the ECALL interface parameters are annotated
with attributes like [in] and/or [out]. A parameter with [in]
attribute is used for marshalling data from outside untrusted
application into the enclave. So in our example, secret data is
passed into enclave via [in] parameter(s). Interface parameters
with [out] attribute are used to marshal data from inside the
enclave to the outside untrusted application. The Intel SGX
SDK abstracts out the details of the data marshalling by



generating the necessary proxy code. In short, [in] parameters
correspond to get secret(secret) in the previous section.

Prior to performing code analysis, PrivacyScope processes
an XML configuration file, provided by user, containing func-
tion names that the user is interested in evaluating. Priva-
cyScope also extracts information included in the SGX EDL
configuration file. Following a quick initialization step, Priva-
cyScope analyzes program code using the approach outlined
in the previous section and generates a report summarizing the
outcome of the code analysis including any violations of non-
reversibility property. For explicit information leakage cases,
the report describes how program output can be used to infer
its (secret) input thus assisting developers in securing their
code. For implicit information leakage, the report provides
path conditions and returns results which can result in leakage
of secret data.

VI. EVALUATIONS

A. Implementation

For our proof-of-concept prototype, we use the Intel SGX
SDK version 2.0 to construct a trusted application running in a
SGX enclave powered by an Intel NUC, running under Ubuntu
14.04 TLS. Built on top of Clang v7.0.0, we build a prototype
of PrivacyScope by adding over 1 KLOC. We have evaluated
the prototype of PrivacyScope by porting open source machine
learning programs written in C/C++ to Intel SGX enclaves and
analyzing the enclave modules for data leakage.

B. Illustration: a Leakage Example in C

To illustrate PrivacyScope operation on real Intel SGX
enclave module written in C, we provide an illustrative
example here. For simplicity, our example neglects decryp-
tion of secret data. However, PrivacyScope does consider
decryption of encrypted secret data, it records decryption
function names from Intel SGX IPP library in a prede-
fined list. And when PrivacyScope meets predefined de-
cryption functions, it assigns the symbolic value of secret
data to decrypted secret data. For illustration, we define
ECALL function in EDL file for processing secret data as
int enclave process secret( [in] secrets, [out] output).
Source code of enclave process secret function is shown
in Listing 1. In this simplified example, we can easily see
that secrets[0] is explicitly leaked and secrets[1] is implicitly
leaked.

1 i n t e n c l a v e p r o c e s s d a t a ( c h a r * s e c r e t s , c h a r * o u t p u t
) {

2 i n t t e m p o r a r y = s e c r e t s [ 0 ] + 100 ;
3 o u t p u t [ 0 ] = t e m p o r a r y + 1 ;
4 i f ( s e c r e t s [ 1 ] == 0)
5 r e t u r n 0 ;
6 e l s e
7 r e t u r n 1 ;
8 }

Listing 1: Code snippet of illustrative example in C

Next we show how PrivacyScope explores the illustrative
example and identifies explicit and implicit privacy leakage
using the symbolic execution engine of Clang Static Analyzer.
First, we need to define the state that the symbolic execu-
tion engine must maintain. We define the state as a 4-tuple
(stmt, env, σ, π) similar to [15] where:
• stmt represents the next statement in source code to be

evaluated. In our illustrative example, a stmt can be an
assignment, a conditional branch, or a return statement.

• env is the environment which maps from lvalue (an
lvalue is an expression with an object type according
to C standard [19]) expressions to memory regions (ab-
stract representation of memory objects) regi. A memory
region can be the subregion of another region. And when
a variable of array type is defined, it has subobjects called
elements. For array elements, we have ElementRegion
like regi[0] with its super region regi to represent the
array region. As for when a pointer is pointing to some
unknown memory block, we have SymRegion for rep-
resenting the memory block pointed to by the symbolic
pointer. SymRegion represents a region that serves as
an alias for either a real region, a NULL pointer, etc. It
essentially is used to map the concept of symbolic values
into the domain of regions.

• σ is a store which maps from memory regions to concrete
values, symbolic values αi or memory regions regi.

• π denotes path constraints on symbolic values. At the
beginning of a symbolic execution, π is set to True. As
the symbolic execution engine explores the program state-
ments, π grows when branches are met and assumptions
on taking any branch are recorded in π as a formula. This
formula indicates how execution can reach any stmt in
the program code under analysis.

Depending on stmt, the symbolic engine of Clang Static
Analyzer changes states as following:
• The evaluation of an assignment x = e updates the envi-

ronment env and store σ. e can be any legal expression
involving unary or binary operators over symbolic or
concrete values. If e contains unknown lvalue expres-
sions in the context of current execution state, new regis
are initialized for the unknown expressions in updated
env and mapping between newly initialized regi and
context of current execution state is created in updated
σ. Assuming es is the symbolic expression of evaluating
e, es is associated with x in updated env.

• The evaluation of a conditional branch if e then
stmtstrue else stmtsfalse affects the path constraints π.
When a conditional branch is met, the symbolic engine
will fork and create two new execution states, one with
path condition πtrue = π ∧ es and the other with
πfalse = π∧¬es, where es is the symbolic expression by
evaluating e. Symbolic engine will follow the two newly
created execution states one by one.



Execution State Line # stmt env σ π
A 2 int temporary = secrets[0] + 100; ∅ ∅ True

B 3 output[0] = temporary + 1;
secrets→ reg0

secrets[0]→ reg1

temporary → reg1 + 100

reg0 → SymRegion
reg1 → reg0[0]

True

C 4 if (secrets[1] == 0)

secrets→ reg0

secrets[0]→ reg1

temporary → reg1 + 100
output→ reg2

output[0]→ reg1 + 101

reg0 → SymRegion
reg1 → reg0[0]

reg2 → SymRegion
True

D 5 return 0;

secrets→ reg0

secrets[0]→ reg1

temporary → reg1 + 100
output→ reg2

output[0]→ reg1 + 101
secrets[1]→ reg3

reg0 → SymRegion
reg1 → reg0[0]

reg2 → SymRegion
reg3 → reg0[1]

reg0[1] == 0

E 7 return 1;

secrets→ reg0

secrets[0]→ reg1

temporary → reg1 + 100
output→ reg2

output[0]→ reg1 + 101
secrets[1]→ reg3

reg0 → SymRegion
reg1 → reg0[0]

reg2 → SymRegion
reg3 → reg0[1]

reg0[1] 6= 0

TABLE IV: Exploration of illustrative example

Box 1: Report generated by PrivacyScope for the illustrative example.

illustrative example.c:5:9: warning: The memory region ‘reg $3 <char element {SymRegion {reg $0 <char*
secrets>}, 1 S64b, char}>’ and its concrete value ‘{0, 0}’ breaks privacy and implicitly leaks sensitive data!
illustrative example.c:8:6: warning: The memory region ‘SymRegion{reg $1 <char* output>}’ and its symbolic value
‘(reg $2 <char* secrets>}, 0 S64b, char}>) + 101’ breaks privacy and explicitly leaks sensitive data!

Table IV presents the symbolic exploration of our illustra-
tive example. Initially (execution state A), the path condition
is set to true and env and σ are null. During the evaluation
of line 2 right-hand side (RHS), the first evaluated expression
is secrets, so a new region reg0 is generated and associated
with secrets in env and reg0 is mapped to SymRegion in
σ. Then it follows the evaluation of secrets[0] which leads to
a new expression region map of secrets[0] to reg1 in env.
σ is also updated with a new map of reg1 to reg0[0]. After
the evaluation of RHS, the result, reg1 + 100, is associated
with temporary. Next (execution state B), the evaluation of
RHS of line 3 returns reg1 +101 within the execution context
and the result is associated with the evaluation of line 3’s
left-hand side (LHS). The evaluation of line 3’s LHS brings
a new region reg2 and it is associated with output in env.
Meanwhile, reg2 is mapped to SymRegion in σ. Besides, the
result of line 3’s RHS, reg1+101, is associated with output[0]
in env. When a conditional branch is met (execution state
C), the engine will fork into two execution states (D and E)
with opposite path constraints on the comparison statement.
During execution of state C, a new region reg3 is assigned
to secrets[1] in env and reg3 is an ElementRegion of
reg0. By evaluating the comparison statement, two opposite
path conditions, reg0[1] == 0 and reg0[1]¬ = 0, are
added into π of execution states D and E. The evaluation of
return statement calls the procedure of policy check similar to

previous Pdeclassify check.
When PrivacyScope starts exploring the target function

enclave process data, it first goes into EDL file and fetches
parameters as specified by user predefined rules. If no rules
are predefined, the default action is to mark [out] attribute
parameters as potential leaking point, and [in] attribute pa-
rameters as secrets. Then PrivacyScope starts exploration of
source code as described in previous paragraphs. During the
exploration, PrivacyScope introduces taint status to secret
variables and propagates the tainting as mentioned in program
analysis for PriML. When enclave process data function
returns or ends, PrivacyScope performs a policy check sim-
ilar to Pdeclassify check. For explicit privacy leakage check,
PrivacyScope checks [out] parameters to see their taint status.
In the illustrative example case, output[0] is tainted by t1, so
output[0] explicitly leaks the value of secrets[0]. For implicit
privacy leakage check, PrivacyScope utilizes hashmap hm and
find that the returned values are different for different π which
branch on subobject of secrets. The warning report generated
for the illustrative example is shown in Box 1.

C. Performance Evaluation

Our primary objective is to detect any violation of non-
reversibility property in a trusted code executing inside a
SGX enclave. However, current version of SGX SDK does
not support easy migration of legacy application even if it



Open Source ML Code Size (LoCs) Execution Time (sec.)
LinearRegression 161 2.549s

Kmeans 179 4.654s
Recommender 117 1.758s

TABLE V: Performance evaluation

is written in C/C++ and there is no existing open source
implementation of ML algorithms implemented inside enclave
using the Intel SGX SDK. Thus, we had to port open source
ML algorithms so that they can be executed inside a SGX
enclave. We selected three popular open source ML projects
from the public Github repository and ported them using
Intel SGX SDK. They included LinearRegresssion, Kmeans
and Recommender [27]–[29]. To evaluate the efficacy of
PrivacyScope, we inserted malicious code inside the ported
ML code. The results were examined by the authors and the
efficacy of PrivacyScope solution was verified by the authors
manually. During this process, we also detected multiple
preexisting secret leakage in the open source Recommender
implementation. We provide a detailed explanation of these
findings in the next section. Table V summarizes performance
data, including the PrivacyScope code analysis time for each
of the three open source ML projects. The analysis time was
measured using the Linux OS built-in time utility. The total
execution time was computed by summing up the usr and sys
times.

D. Case Studies

The goal of PrivacyScope is to assist users and developers
in identifying potential information leakage vulnerabilities in
program code intended to run in a TEE-protected environment.
PrivacyScope accomplishes this objective by identifying any
violations of the nonreeversibility property. In this section,
we present two case studies to demonstrate PrivacyScope’s
capabilities by analyzing the behavior of two open source ML
programs. These two examples by no means cover all the
possible scenarios. In the first case, PrivacyScope uncovers
implementation defects caused by inadvertent coding errors
during software development. In the second case, we illustrate
how PrivacyScope can detect malicious code inserted into the
codebase by a malicious actor.

1) Finding information leakage in Recommender: Our first
case study is the analysis of a C library for product recom-
mendations/suggestions using collaborative filtering (CF) [27].
Recommender analyzes and learns from collective feedback
of a large number of users. It then uses user preference to
predict and recommend the most appropiate products for a
particular user. We found 6 violations of the nonreversibility
property in this open source ML project. We detail this process
in Appendix [30].

2) Verifying effectiveness of PrivacyScope in Kmeans: Our
second case study is mimicking a malicious enclave writer
and embedding sensitive data leakage logic inside enclave
programs. We add explicit and implicit leakage logic to open
source machine learning program Kmeans [29]. We show the
details of how we insert malicious logics in Appendix [30].

VII. RELATED WORK

A. Information Flow Analysis Methods

Use of information flow analysis to detect information
leakage within programs has been the subject of much research
in the past decades. Language-specific methods typically aug-
ment type systems so that they can statically check the flow
of private data within programs that manipulate the data. [9],
for example, integrates information flow analysis into the Java
language type system, while [9], [25], [26] propose innovative
analysis methods for imperative and concurrent language. [21]
detects security vulnerabilities in hardware design written
in HDL. In these solutions, they focus on addressing the
noninterference property in programs.

In addition to aforementioned information flow analysis,
a plethora of methods have focused on detecting, measuring
and understanding the nature of privacy leakage on different
platforms. Static and dynamic tainting analysis are two major
categories of methods for detecting privacy leakage. Dynamic
methods typically monitors the system at runtime and examine
the system as it executes the code. Static methods on the other
hand use compile time analysis to predict the impact of code
execution on private data. Static methods can have a higher
false positive rate as compared to dynamic methods [23]. [20]
leverages dynamic tainting to detect intentional leakage of
private data in the Android operating system environment
while [22] examines system-wide information flow for mal-
ware detection in the Windows platform. Finally, [8] uses
model checking to verify the information flow properties of
code running in a trusted enclave. Table VI summarizes key
recent research work in the area of information analysis meth-
ods, highlighting the target environment for each approach.

B. Secure Systems on Trusted Hardware

There have been many recent advances in the area of trusted
hardware platforms including the development of commercial
off-the-shelf secure processors. ARM TrustZone [31] offers a
processor capable of executing in a secure world as well as
a normal world with isolated address spaces. TPM+TXT [32]
provides attestation on the execution state of a platform, but
all privileged software must execute in the trusted computing
base. SGX [33]–[36], an extension to the Intel Architecture,
offers confidentiality and integrity guarantees via a trusted pro-
cessor without requiring any trust on the part of infrastructure
software.

Multiple secure systems have been recently built on top of
these trusted hardware platforms [2]–[4], [37], [38]. VC3 [2]
and Opaque [4] offer SGX-protected data processing platform,
assuming that, the code executing inside each enclave is
trusted. Thus, their confidentiality guarantee is based on the
assumption that enclave code does not leak secrets. In these
cases, PrivacyScope can be used to confirm this assumption.
Ryoan [3] and Chiron [38] utilize sandboxing to prevent
untrusted enclave module from leaking secret data from side
channels. To be adopted, these methods require a certain level
of trust to be established between users, service providers



Approach Target Leakage
Target SystemType Dynamic Static Explicit flow Implicit flow

System Analysis Analysis NonInt* NonRev* NonInt* NonRev* Termination Timing Probability
Taintdroid [20] X X Android

HDL Checker [21] X X X Hardware Design
Panorama [22] X X Windows OS

Androidleaks [23] X X Android
Covert Flow Checker [24] X X An Imperative Language

Timing Leaks Transformer [25] X X An Imperative Language
Multithread Possibilistically NonInt*[26] X X A Concurrent Language

Jflow [9] X X X Java
Moat [8] X X X Intel SGX Enclave

This work X X X Intel SGX Enclave
* NonInt is short for noninterference, NonRev is short for nonreversibility.

TABLE VI: Systematic approaches for detecting secret leakage

and their solution. PrivacyScope can strengthen users’ trust
in these scenarios. All of these methods require a modicum
of trust between the user and the trusted computing platform.
PrivacyScope is designed to address this concern in the Intel
SGX architecture.

C. Privacy Leakage in Machine Learning

Using ML to train models on big data poses many privacy
challenges. ML models can uncover and expose surprising
and unexpected personally identifiable information such as
relationships and associations violating privacy. [39]–[41] take
a first step to conceptualize privacy in the new era and enforce
data use rules through designing new policy specification
languages and corresponding enforcing systems. [40] creates
a language for specification of origin-based privacy rules
and implements a prototype of a type system to enforce
such policies. In [41], the authors present LEGALEASE -
a language to specify privacy specifications and restrict how
private data must be handled. [39] presents Thoth which
provides data use policies enforcement through a kernel-level
compliance layer. PrivacyScope can integrate such policies and
enforce more rules other than nonreversibility in the future.

VIII. DISCUSSION AND FUTURE WORK

A. Covert and Side Channels

In this section, we briefly highlight potential covert channels
that can be exploited to leak private data in the Intel SGX
computing environment. Each covert channel compromises
PrivacyScope’s security goals. We will address mitigation
techniques to safeguard against these attacks in future works.
• Timing channel: Malicious actor can infer secret through

recording the time spent for program executions. Priva-
cyScope can be extended to simulate the execution time
for program paths and detect if execution time depends
on secret in the future.

• Probabilistic channel: Malicious actor can infer secret
through observing probability distribution of declassified
data.

• Power channel: Malicious actor can measure the power
consumption cost for program executions and infer secret.

PrivacyScope does not address side channels brought by
hardware limitations on Intel SGX processor itself. We con-

sider these limitations orthogonal to PrivacyScope and we list
them as following.

• SGX page faults: Privileged software, e.g. OS or hyper-
visor, can maliciously control page tables of an enclave
to observe a memory access pattern of enclave program
execution.

• Cache timing: Side channel exists for two processes
running on the same core. These two processes can use
cache timing to infer knowledge of the other.

• Address bus monitoring: While all processed data is
encrypted prior to exiting the SGX processor package,
a malicious user using sniffer or a modified RAM chip
can monitor the address bus and achieve a memory access
pattern side channel.

B. Prior Knowledge on User Data

When the adversary has prior knowledge of user private data
(e.g. knows the distribution of variable values), PrivacyScope
requires that knowledge to be incorporated in the model
specification to ensure the soundness of the privacy leakage
analysis. For instance, given the function F (A,B) = A+B,
where A is a privacy-sensitive scalar variable and B has a value
of zero 99% of the time, and 1 otherwise. Then the attacker
can conclude with a high degree of confidence (i.e. 99%)
that the output value is the same as the value of the privacy-
sensitive input variable A. To mitigate this problem, the users
of PrivacyScope are required to incorporate that knowledge by
extending PRIML language and the analysis engine so that it
can handle with new semantics.

C. Limitations and Future Work

PrivacyScope is built on top of symbolic execution en-
gine and symbolic execution is known to have limitation on
scalability. Although enclave code does not have large size,
they will become larger in the future. Also, our design needs
enclave writer and cloud service provider to send user the
source code of enclave for validation. This may hurt the
intellectual property of cloud service provider. In the future,
we plan to analyze on binary enclave code directly instead
of C/C++ source code. This would protect the intellectual
property of cloud service provider.



IX. CONCLUSION

In this work, we formally define new nonreversible property
on top of classical noninterference property, which is more
suitable for machine learning programs. Using our newly pro-
posed language, PRIML, we describe our innovative program
analysis approach using formal semantics. PRIML’s formal
semantics can be extended by users who wish to introduce
their own specialized notion of nonreversibility. We design
and implement PrivacyScope, a prototype static analysis tool
that implements the rules as defined in PRIML to detect
nonreversibility violation in programs executing inside Intel
SGX enclave. We show the efficacy of our prototype by
applying PrivacyScope to find sensitive data leakage and
maliciously embedded code in open source machine learning
programs.
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