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Abstract—There has been a growing interest to employ the
so-called degree-of-freedom (DoF) based models to study multi-
hop MIMO networks. Existing DoF-based models differ in their
interference cancelation (IC) behavior and suffer from either loss
of solution space or possible infeasible solutions. Recently, a DoF
model based on a novel node-ordering concept was proposed
to overcome the limitations of the exiting DoF models. In this
paper, we apply this new DoF model to study a throughput
maximization problem in a multi-hop network. The problem
formulation jointly considers half duplex, node ordering, DoF
consumption constraints and flow routing and is in the form of a
mixed integer linear program (MILP). Our main contribution
is the development of an efficient polynomial time algorithm
that offers a competitive solution to the MILP through a series
of linear programs (LPs). The key idea in the algorithm is to
explore (i) the impact of node ordering on DoF consumption
for IC at a node, and (ii) route diversity in the network while
ensuring DoF constraints are satisfied at each node throughout
the iterations. Simulation results show that our solutions by the
proposed algorithm are competitive and feasible.

I. INTRODUCTION

MIMO is widely considered as one of the major break-
throughs in modern wireless communications [3]. Although
significant advances have been made on MIMO at the physical
layer or for single-hop cellular communications, advances of
MIMO for multi-hop networks remain primitive. The main
problem in this research stagnation is the lack of tractable and
accurate MIMO models that are suitable for analysis by the
networking research community.

In recent years, the so-called degree-of-freedom (DoF)
based models have become popular to study MIMO multi-
hop networks [2], [4], [5], [11], [15]. The concept of DoF was
originally defined to represent the multiplexing gain of MIMO
channel in the information theory research community [7],
[17], [18]. This concept was then extended by the networking
research community to characterize a node’s spatial resources
provided by its multiple antennas. The main idea of DoF-
based models is as follows: (i) The number of available DoFs
at a node is equal to the number of its antennas. (ii) A
node consumes DoFs for SM. Specifically, a transmit node
consumes DoFs to transmit its data streams while a receive
node consumes DoFs to receive its desired data streams. (iii)
A node consumes DoFs for IC. Specifically, a transmit node
may cancel its interference to its neighboring receive nodes by
consuming its DoFs; likewise, a receive node may cancel the
interference from its unintended transmit nodes by consuming
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its DoFs. (iv) A node can use some or all of its DoFs for SM
and IC, as long as the total number of DoFs consumed for
SM and IC does not exceed its available DoFs. A key benefit
of DoF-based models is its simplicity. Here, complex matrix-
based representation for SM and IC is avoided by performing
simple addition/subtraction on the number of DoFs.

Since its inception, DoF-based modeling for MIMO has
evolved into two branches: conservative models and optimistic
models. Although both branches of DoF models share the
same accounting of DoF consumption for SM, they differ
significantly in DoF consumption for IC. The conservative
models tend to lose feasible solutions due to duplication in
IC, restriction on receiver-side IC, or some other predefined
IC rules. Examples of conservative models include [2], [11],
[15]. On the other hand, optimistic models tend to incorrectly
enlarge the feasible solution space due to a lack of systematic
scheme for IC among the nodes. As a result, an optimistic
model may offer solutions that are in fact infeasible. Examples
of optimistic DoF-based models include [4], [5].

Very recently, a new DoF-based MIMO model was devel-
oped by Shi et al. [14] based on a novel “node ordering”
concept. The essence of this model is to place an order on
each node in the network through an ordered node list so
that IC can be performed on a “disciplined” manner at each
node. Under this model, a transmit node only needs to cancel
its interference to those receive nodes (within its interference
range) that are before itself in the ordered node list. It does
not need to consume DoFs to cancel its interference to those
receive nodes that are after itself in the ordered list. Likewise,
a receive node only needs to cancel the interference from
those transmit nodes that are before itself in the ordered node
list. It does not need to cancel the interference from those
transmit nodes that are after itself in the ordered node list.
By referencing the position of a node in the ordered node list,
duplication in IC (as in conservative model) can be eliminated.
Further, it was shown in [14] that the solution by the new DoF
model is always feasible in contrast to optimistic models.

Inspired by the new DoF model in [14], we explore how
this model can be applied to study a throughput maximization
problem in a multi-hop network. Specifically, we consider a
set of unicast sessions in a MIMO network. The objective is
to maximize the minimum rate among the sessions. Through
joint formulation of half-duplex, node ordering, DoF allocation
(for SM and IC), and flow routing, we obtain a mixed-integer
linear program (MILP), which is NP-hard in general. Although
a commercial solver (CPLEX) may solve our problem for



small-sized networks, a more efficient (and polynomial time)
algorithm is needed to handle networks of larger sizes.

The main contribution of this paper is an efficient algorithm
for the MILP. In essence, the proposed solution is an iterative
greedy algorithm that offers a competitive solution through
a series (but limited number) of LPs. The algorithm requires
an initial feasible solution, which can be found based on the
sequential fixing (SF) technique [6]. The SF technique is itself
based on a series of LPs. For the initial feasible solution,
our algorithm first identifies a ”bottleneck” link. Subsequently,
our algorithm attempts to increase DoF allocation (for SM)
on the bottleneck link by altering the ordering of the node
list. This idea exploits the unique property of the new DoF
model in which a node’s DoF consumption for IC depends
on its position in the ordered list. Should the bottleneck link
cannot be “widened”, our algorithm try to find a parallel
route between the transmit and receive nodes of the bottleneck
link. Throughout the iterations, our algorithm ensures that
DoF constraints for SM and IC at each node are satisfied.
Simulation results show that our proposed algorithm can offer
a competitive solution to the MILP. Further, the solution by
our proposed algorithm is feasible.

The reminder of this paper is organized as follows. In
Section II, we develop a problem formulation for the through-
put optimization problem based on the new DoF model. In
Section III, we present an algorithm to solve the throughput
optimization problem. Session IV presents simulation results.
Section V concludes this paper.

II. MODELING AND FORMULATION

In this section, we employ the DoF model in [14] to study
a throughput maximization problem for multi-hop MIMO
networks. For a set of sessions in the network, the objective is
to maximize the minimum rate among the sessions (transport
layer) by optimizing variables in the DoF model (link layer)
and flow routing (network layer).

A. Mathematical Modeling

We consider a multi-hop MIMO network with a set of of
N nodes, with N = |N | being the number of nodes. Each
MIMO node i has Ai antennas. Denote F as a set of sessions
in the network. For each session f ∈ F , denote s(f) and d(f)
as its source and destination nodes, respectively. Denote r(f)
as the achieved throughput of session f ∈ F .

We assume that time slot based scheduling is used at the
link layer. Denote T as the number of time slots in a frame.
Half-duplex Constraint. We assume that wireless
transceivers are half-duplex. That is, a node cannot transmit
and receive at the same time. In a time slot based system, half-
duplex can be implemented by having the transceiver operate
in only one mode in a time slot (transmit, receive, idle). To
model half-duplex in a time slot with binary variables, we
define two binary variables xi[t] and yi[t] to indicate whether
node i is a transmit node or a receive node in time slot t,

respectively. That is,

xi[t] =

{
1 if node i is a transmit node in time slot t;
0 otherwise (either idle or receive).

yi[t] =

{
1 if node i is a receive node in time slot t;
0 otherwise (either idle or transmit).

Then the half-duplex constraint can be modeled as

xi[t] + yi[t] ≤ 1 (i ∈ N , 1 ≤ t ≤ T ) . (1)

Constraints on Data Streams. We assume the total number
of DoFs at a node i is equal to its number of antenna elements
Ai. Denote zij(t) as the number of data streams from node i to
node j in time slot t. If a node i is not an active transmitter in
time slot t, then no data stream is transmitted from this node,
i.e.,

∑
j∈Ti

zij [t] = 0 if xi[t] = 0, where Ti is the set of nodes
within the transmission range of node i. Otherwise, the total
number of DoFs used for transmission cannot exceed the total
number of antennas Ai at this node, i.e., 1 ≤

∑
j∈Ti

zij [t] ≤
Ai if xi[t] = 1. These two cases can be formulated as

xi[t] ≤
∑
j∈Ti

zij [t] ≤ Ai · xi[t] (i ∈ N , 1 ≤ t ≤ T ) . (2)

Similarly, considering whether or not node i is a receive
node in time slot t, we have

yi[t] ≤
∑
j∈Ti

zji[t] ≤ Ai · yi[t] (i ∈ N , 1 ≤ t ≤ T ) , (3)

where we assume node j and node i have the same transmis-
sion range.
Ordering Constraints. The “ordering” concept was pro-
posed in [14] to avoid duplication in IC among the MIMO
nodes in the network. An optimal ordering can be found by
incorporating ordering variables in the problem formulation.

Denote π[t] as a list with length N , with each element
containing a node in the network. The position of the node
in the list defines the “order” of that node. Denote πi[t] as the
order (position) of node i in π[t]. For example, if πi[t] = 5,
then it means that node i is in the fifth element in the ordered
list. Therefore, we have

1 ≤ πi[t] ≤ N (i ∈ N , 1 ≤ t ≤ T ) . (4)

We use a binary variable θji[t] to indicate the relative position
between two nodes i and j in π[t]. θji[t] is defined as:

θji[t] =

{
1 if node j is before node i in π[t];
0 otherwise.

Based on the definition of θji[t], it can be easily verified that
the following relationships hold between πi[t] and πj [t]:

πi[t]−N · θji[t] + 1 ≤ πj [t] ≤ πi[t]−N · θji[t] +N − 1

(i, j ∈ N , i ̸= j, 1 ≤ t ≤ T ) . (5)

DoF Consumption Constraints. A node can use its DoFs
for either SM or IC, as long as the number of consumed
DoFs does not exceed its total available DoFs. Depending on



whether the node is a transmit or receive node in time slot t,
it has different IC behavior as follows:

• If the node is a transmit node, in addition to SM, the node
should use its DoFs to cancel its interference to all the
unintended receive nodes (within its interference range)
that are before itself in the ordered node list π[t]. Further,
the number of DoFs consumed by this transmit node for
IC is equal to the sum of intended data streams received
by those unintended receive nodes.

• If the node is a receive node, in addition to SM, the
node should use its DoFs to cancel interference from
all unintended transmit nodes (whose interference range
covers this receive node) that are before itself in the
ordered node list π[t]. Further, the number of DoFs
consumed by this node for IC is equal to the sum of data
streams transmitted by those unintended transmit nodes.

Note that in either case (transmitter or receiver), the node
only needs to consider the nodes before itself in π[t] for IC.
Interference to/from nodes that are after the current node in
the ordered node list π[t] will be taken care of by those nodes
later. This is the key in the new DoF model for IC.

We now model both cases mathematically as follows:

If xi[t] = 1, then
∑
j∈Ti

zij [t] +
∑
j∈Ii

θji[t]

k ̸=i∑
k∈Tj

zkj [t]


≤ Ai (i ∈ N , 1 ≤ t ≤ T ) , (6)

where on the left side of the inequality, the first and second
terms represent the number of DoFs consumed by node i for
SM and IC, respectively.

If yi[t] = 1, then
∑
j∈Ti

zji[t] +
∑
j∈Ii

θji[t]

k ̸=i∑
k∈Tj

zjk[t]


≤ Ai (i ∈ N , 1 ≤ t ≤ T ) , (7)

where on the left side of the inequality, the first and second
terms represent the number of DoFs consumed by node i for
SM and IC, respectively.
Flow Balance Constraints. For flexibility and better load
balancing, we allow flow splitting in the network. That is,
the flow of a session may split and merge inside the network
in whatever manner as long as it can help to achieve a high
data rate. Denote rij(f) as the data rate on link (i, j) that is
attributed to session f ∈ F , where i ∈ N and j ∈ Ti. Then
we have the following flow balance constraints:

• If node i is the source node of session f (i.e., i = s(f)),
then ∑

j∈Ti

rij(f) = r(f) (f ∈ F) . (8)

• If node i is an intermediate relay node for session f (i.e.,
i ̸= s(f), i ̸= d(f)), then

j ̸=s(f)∑
j∈Ti

rij(f) =

k ̸=d(f)∑
k∈Ti

rki(f) (f ∈ F , i ∈ N ) . (9)

• If node i is the destination node for session f (i.e., i =
d(f)), then ∑

j∈Ti

rji(f) = r(f) (f ∈ F) . (10)

It can be easily verified that once (8) and (9) are satisfied,
(10) must also be satisfied. As a result, it is sufficient to just
include (8) and (9) in the formulation.
Link Capacity Constraints. For each link (i, j), the sum
of the data rates over all sessions that traverse this link cannot
exceed the average data rate on this link. For simplicity,
we assume that fixed modulation and coding scheme (MCS)
is used for each data stream and that each data stream
corresponds to one unit data rate. Then on each link (i, j),
we have:∑

f∈F

rij(f) ≤
1

T

T∑
t=1

zij [t] (i ∈ N , j ∈ Ti) , (11)

where T is the number of time slots in a frame.

B. Formulation

Based on the mathematical models for the link and network
layers, we study a throughput maximization problem (at trans-
port layer) in multi-hop MIMO networks. There are various
objectives that can be considered. In this paper, we employ
the objective of maximizing the minimum data rate among
the sessions. Denote rmin as the minimum throughput among
all sessions. The problem can be formulated as follows:

OPT-raw
max rmin

s.t rmin ≤ r(f), f ∈ F ;
half duplex constraints: (1);
constraints on data streams: (2), (3);
node ordering constraints: (4), (5);
DoF consumption for transmitters: (6);
DoF consumption for receivers: (7);
flow balance constraints: (8), (9);
link capacity constraints: (11).

In this formulation, note that the two sets of constraints in (6)
and (7) are stated in the form of sufficient conditions rather
than in the form of mathematical programming. Therefore, a
reformulation of (6) and (7) is needed.

For constraint (6), if xi[t] = 1, then we have
∑

j∈Ti
zij [t]+∑

j∈Ii

(
θji[t]

∑k ̸=i
k∈Tj

zkj [t]
)

≤ Ai. On the other hand, if
xi[t] = 0, then no DoF is consumed. Constraint (6) can be
reformulated by incorporating binary variable xi[t] into the
expression as follows:

∑
j∈Ti

zij [t] +
∑
j∈Ii

θji[t]

k ̸=i∑
k∈Tj

zkj [t]


≤ Aixi[t] + (1− xi[t])Bi (i ∈ N , 1 ≤ t ≤ T ) , (12)

where Bi =
∑

j∈Ii
Aj is an upper bound of∑

j∈Ii
(θji[t]

∑k ̸=i
k∈Tj

zkj [t]).



Similarly, constraint (7) can be reformulated as follows:

∑
j∈Ti

zji[t] +
∑
j∈Ii

θji[t]

k ̸=i∑
k∈Tj

zjk[t]


≤ Aiyi[t] + (1−yi[t])Bi (i ∈ N , 1 ≤ t ≤ T ) . (13)

Note that constraints (12) and (13) have nonlinear terms∑
j∈Ii

(θji[t]
∑k ̸=i

k∈Tj
zkj [t]) and

∑
j∈Ii

(θji[t]
∑k ̸=i

k∈Tj
zjk[t]),

respectively. To remove the nonlinear terms in the formulation,
we employ the Reformulated-Linearization Technique (RLT)
[13]. For constraint (6), we introduce a new variable λji[t] =

θji[t]
∑k ̸=i

k∈Tj
zkj [t]. Then constraint (6) can be replaced by the

following linear constraint:

∑
j∈Ti

zij [t] +
∑
j∈Ii

λji[t] ≤ Aixi[t] + (1− xi[t])Bi

(i ∈ N , 1 ≤ t ≤ T ) . (14)

Now we need to add constraints for λji[t]. Since θji[t] is a
binary variable and 0 ≤

∑k ̸=i
k∈Tj

zkj [t] ≤ Aj , we can use the
following three constraints to specify λji[t]:

λji[t] ≤
k ̸=i∑
k∈Tj

zkj [t] (i ∈ N , j ∈ Ii, 1 ≤ t ≤ T ) (15)

λji[t] ≤ Aj · θji[t] (i ∈ N , j ∈ Ii, 1 ≤ t ≤ T ) (16)

λji[t] ≥ Aj · θji[t] +
k ̸=i∑
k∈Tj

zkj [t]−Aj

(i ∈ N , j ∈ Ii, 1 ≤ t ≤ T ) . (17)

Similarly, for constraint (7), we introduce a new variable
uji[t] = θji[t] ·

∑k ̸=i
k∈Tj

zjk[t]. Then, constraint (7) can be
replaced by the following set of linear constraints:

∑
j∈Ti

zji[t] +
∑
j∈Ii

uji[t] ≤ Aiyi[t] + (1− yi[t])Bi

(i ∈ N , 1 ≤ t ≤ T ), (18)

uji[t] ≤
k ̸=i∑
k∈Tj

zjk[t] (i ∈ N , j ∈ Ii, 1 ≤ t ≤ T ), (19)

uji[t] ≤ Aj · θji[t] (i ∈ N , j ∈ Ii, 1 ≤ t ≤ T ), (20)

uji[t] ≥ Aj · θji[t] +
k ̸=i∑
k∈Tj

zjk[t]−Aj

(i ∈ N , j ∈ Ii, 1 ≤ t ≤ T ) . (21)

The problem is now reformulated as follows:

OPT
max rmin

s.t rmin ≤ r(f) f ∈ F ;
half duplex constraints: (1);
constraints on data streams: (2), (3);
node ordering constraints: (4), (5);
DoF consumption for transmitters: (14)-(17);
DoF consumption for receivers: (18)-(21);
flow balance constraints: (8), (9);
link capacity constraints: (11).

In this formulation, Ai and Bi are constants,
xi[t], yi[t], zij [t], πi[t] and θji[t] are integer variables,
and rmin, r(f), λji[t] and µji[t] are continuous variables.
This optimization problem is in the form of a mixed-integer
linear program (MILP), which is NP-hard in general. It
is not solvable via commercial solvers even for moderate
sized networks. Thus, we need to develop a competitive and
efficient algorithm to find a solution.

III. AN EFFICIENT SOLUTION PROCEDURE

A. Overview

The proposed solution is an iterative greedy algorithm. To
start the algorithm, an initial feasible solution to OPT is
needed. There are many ways to obtain an initial feasible
solution. But we recommend to use the so-called sequential
fixing (SF) technique in [6], which can offer an excellent initial
feasible solution.

Figure 1 shows the flow chart of the proposed algorithm.
The initial feasible solution includes a set of feasible values
for x[t], y[t], z[t], and θ[t], where x[t] and y[t] represent the
vectors [x1[t], x2[t], ..., xN [t]] and [y1[t], y2[t], ..., yN [t]].
z[t] and θ[t] represent matrices [zij [t]]N×N and [θji[t]]N×N .
Based on these values, in Step 1 of the algorithm, we find the
current rmin and identify the session with this bottleneck rate.
For the session with this minimum rate,1 we identify the link
associated with this bottleneck rate among all links traversed
by this session.2

In Step 2, we try to enlarge the “pipe” of the bottleneck link
by increasing the number of data streams on this link. This is
done by examining: (i) at the transmit and receive nodes of
this link, if there is any remaining DoF (in any time slot); and
(ii) for nodes that are behind these two nodes in the ordered
node list, if there are enough remaining DoFs for IC should a
new data stream is added to the bottleneck link.

If Step 2 is not successful, then in Step 3, we try to see if
any change in node ordering can change the DoF consumption
at a node. This step is motivated by the fact that the relative
position of a node in the ordered node list affects its IC
behavior and DoF consumption.

If Step 3 is not successful, we try to modify the current
routes for the bottleneck session. The design space here is large
and will have different complexity and performance trade-off.

1In case of a tie, we choose the session with the smallest session number
(index). This will eliminate any randomness in choosing a session.

2In case of a tie, we may randomly choose one from the bottleneck links.
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Fig. 1. Flow chart for the proposed algorithm.

As an illustration, we propose a simple algorithm in this step.
Specifically, for the underlying bottleneck link (which already
failed Steps 2 and 3), we check if we can find a nearby relay
node so that we can add a new route in parallel to this link.

The algorithm will continue its iteration as long as any
of Steps 2 to 4 is successful, in which case we update z[t]
and corresponding x[t], y[t] and θ[t] variables as needed. The
algorithm terminates when none of Steps 2 to 4 is successful.
In the rest of this section, we give details of these four steps.

B. Details

In this section, we give detailed descriptions of each step
in the algorithm.
Step 1: Finding bottleneck link. In this step, we are
given a feasible solution which gives values for x[t], y[t], z[t]
and θ[t]. With these fixed values for x[t], y[t], z[t], problem
OPT degenerates into a LP. By solving this LP, we can find
the current rmin. Subsequently, we identify a session with
rate rmin, which we denote f . A tie is broken by choosing
the session with the smallest session number (index). Such
deterministic tie-breaking mechanism ensures that we keep
working on the same session before moving on to the next
one. For the chosen session, we find a bottleneck link, i.e.,
constraint (11) is binding. A tie among multiple bottleneck
links may be broken arbitrarily.
Step 2: Adding a data stream. Denote (i, j) as the
bottleneck link that we have identified for session f in Step
1, where i is the transmit node and j is the receive node. In
Step 2, we try to increase one data stream on this link in some
time slot over a frame. This increment is a successful one if
the following conditions are satisfied:

• (C-1): Both transmit and receive nodes i and j have at
least one remaining DoF.

• (C-2): For receive nodes after i (and within i’s interfer-
ence range) in the ordered node list, there is at least one
DoF available for IC. Likewise, for transmit nodes after
j (and have j in their interference range) in the ordered
node list, there is at least one DoF available for IC.

In the case when the above increment is successful, then
zij [t] is incremented by 1, and xi[t] and yj [t] are updated to 1
if otherwise. Since we have T time slots in a frame, we will
check each time slot in Step 2.
Step 3: Adjusting node ordering. Step 2 will fail if
condition (C-1) or (C-2) cannot be satisfied in the same time
slot. Note that the ordering of nodes has a profound impact
on each node’s DoF consumption for IC. Therefore, in Step 3,
we will try to adjust the node ordering π[t] in each time slot
to see if both conditions (C-1) and (C-2) can be satisfied. We
propose a two-phase ordering change, denoted (A-1) and (A-
2), to address the requirements in (C-1) and (C-2), respectively.
(A-1): Since condition (C-1) is not satisfied, we have that
either transmit node i or receive node j does not have any
remaining DoF. We consider the case for transmit node i first.
The case for receive node j is similar.

The ordered list L1 in Fig. 2 shows the current ordering of
nodes in the network, in which we have shown the position
of transmit node i in this order as well as those nodes (i.e., p,
m and k in this example) that are receive nodes before node
i in L1 and are within node i’s interference range. We do not
identify other receive nodes (except p, m and k) before node
i in L1 because they are outside the interference range of i.
Among receive nodes p, m and k, k is closest to node i in L1.
Our idea of adjusting node ordering for node i is as follows.
Since transmit node i has run out of DoFs, it is likely that
it is using some of its DoFs for IC to nodes p, m, and k. If
we could move node i before one of these nodes, then the
IC burden on node i will be reduced, allowing some DoFs to
be freed up for SM of one more data stream. The outcome
of such reordering (successful or not) depends on the DoF
consumption on each node (after reordering) and whether the
DoF constraints (6) and (7) can be met. There are many ways
to move up node i (before p, m or k) in the ordered list. In
the following, we present an algorithm that we have designed
for this purpose.

To reduce the IC burden on node i, we want to choose a
receive node (i.e., p, m and k in this example) and put it after
node i. This move will add IC burden on the chosen node
(p, m or k) as it will be responsible for IC for more transmit
nodes (transmit nodes that are among the nodes between itself
and node i in L1). To reduce the number of these new transmit
nodes for IC, we first move node i to position πk[t] + 1. This
will cause the set of nodes between node k and node i in
L1 to be shifted to the right by one position, as shown in
L2 in Fig. 2. Note that this operation will not change DoF
consumption at any node in the network and DoF constraints
at all nodes remain satisfied.

Now we need to choose a receive node among p, m and k



Fig. 2. A schematic illustrating adjusting node ordering.

in L2 and move it after node i. A receive node is eligible for
selection if it has enough DoFs available to cancel interference
from all the interfering transmit nodes before itself in the node
list after it is moved behind node i. We check nodes p, m, and
k individually for its eligibility. Among the eligible nodes,3 we
choose the one (say m) that has the largest remaining DoFs
after this move.4 L3 in Fig. 2 shows the ordered node list after
m is moved after node i, where all the nodes between node
m and i in L2 have been shifted by one position to the left.
In L3, transmit node i is before receive node m and is no
longer responsible for canceling its interference to node m.
As a result, node i now has at least one DoF available and
can use it for SM of one more data stream on the bottleneck
link (i, j).

For receiver node j, it is not hard to see that a similar
approach can be applied to increase its available DoFs. To
conserve space, we omit its discussion.
(A-2): Since condition (C-2) is not satisfied, we know that
either (i) for a receive node after transmit node i (and within
i’s interference range) in the ordered node list, there is no DoF
left for IC; or (ii) for a transmit node after receive node j (and
has j in its interference range) in the ordered node list, there
is no DoF left for IC.

For (i), denote h as such a receive node. Then we will try
to change the order for node h so that it will have at least
one DoF available. But this is precisely the same reordering
problem that we would have done for receive node j in (A-1).
Therefore, the same node reordering procedure can be applied
to node h. For (ii), again the reordering problem is precisely
the same as that for transmit node i in (A-1) and therefore the
same node reordering procedure for i can be applied.

Both (A-1) and (A-2) are performed in each time slot until
a data stream can be added or they fail in all time slots.
Step 4: Improving route diversity. In Step 2 and 3, we try
to increase one data stream on the bottleneck link (i, j). When
both steps fail, it suggests that it may be futile to add one more
data stream on this bottleneck link (i, j). A plausible approach
is to open up some other routes (i.e., multiple parallel paths)
between nodes i and j so that the extra data stream can be
diverted over the new path. There has been extensive research
on finding multiple paths between two nodes [9], [10] and the
design space is large. For the purpose of this paper, we show

3When there is no eligible node, we move on to the next time slot.
4In case of a tie, we choose the node with the smallest node index.

one simple algorithm that only employs one extra relay node
to create a second path between nodes i and j.

A node k can be considered as a relay node only if k can
serve as node i’s receive node in one time slot and transmit
node of node j in a different time slot. For k, we need to
check whether both links (i, k) and (k, j) can support one
more data stream. For either link (i, k), or link (k, j), we are
addressing the same problem for link (i, j) in Steps 2 and
3. Therefore, our algorithms in Steps 2 and 3 can be applied
here. If both links (i, k) and (k, j) can support one more data
stream, then we update z[t], x[t], y[t] and θ[t], and return to
Step 1. Otherwise, the algorithm terminates.

Lemma 1: A solution following the successful outcome of
Step 2, 3, or 4 is feasible.

Proof: The feasibility of the solution following the suc-
cessful exit of Step 2, 3, or 4 can be verified by checking
whether the DoF constraints (6) and (7) are satisfied at each
node. Specifically, during Step 2, one more data stream can
be added to the bottleneck link only if (C-1) and (C-2)
are satisfied. If (C-1) and (C-2) are satisfied, then the DoF
constraints (6) and (7) must remain satisfied at each node after
the extra data stream is added to the bottleneck link. Therefore,
if Step 2 is successful, then the DoF constraints (6) and (7)
must be satisfied at each node.

If Step 2 fails, it indicates that either (C-1) or (C-2) cannot
be satisfied under current node ordering. Then in Step 3, we
try to alter the node ordering by using (A-1) and (A-2). (A-
1) and (A-2) address the requirements in (C-1) and (C-2),
respectively. If operations in Step 3 are successful, (C-1) and
(C-2) are satisfied and therefore the DoF constraints (6) and
(7) must remain satisfied at each node.

If Step 3 fails, it indicates that either (C-1) or (C-2) cannot
be satisfied. Then in Step 4, we try to employ a relay node
to create a second path between the transmit node and receive
node of the bottleneck link. A node can be chosen as a relay
node only if constraint (1) is satisfied at this node. Then the
same algorithms in Step 2 and Step 3 are applied to these
two new links. Thus, Step 4 is successful only if (C-1) and
(C-2) are satisfied and therefore the DoF constraints (6) and
(7) must remain satisfied at each node.

Moreover, after each iteration, the number of data streams
on each link either remains the same or is increased by one.
Therefore, the current rmin can still be supported.

C. Complexity

Referring to Fig. 1, the complexity of obtaining an initial
feasible solution depends on the specific algorithm. We rec-
ommend to use the SF technique [6]. An algorithm based on
this technique to find an initial feasible solution is given in
[12], which has a computational complexity of O(N2V 3),
where V is the number of variables. In [12], we showed that
V = O(N2 ·max{T, |F|}).

We now analyze the complexity of the main algorithm
in Fig. 1, which includes the number of iterations and the
complexity of each iteration.
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Fig. 3. Ratio between objective values from our algorithm and those from
CPLEX for 50 network instances.

In each iteration, the complexity involves solving an LP and
identifying a bottleneck link (Step 1), increasing data streams
on this link (Step 2 and 3) and adding a parallel path for
this link (Step 4). The complexity of solving an LP is O(V 3)
[1]. It is not hard to see that solving an LP is the dominant
component of complexity among the four steps in an iteration.
Therefore, the complexity of an iteration is O(V 3).

We now analyze the total number of iterations. Since the
links in the network is upper bounded by O(N2), and for
each link, we can increase its data streams by at most Ai times
in each time slot. Therefore, the total number of iterations is
O(N2AT ), where A = maxi∈N {Ai}. As a result, the main
algorithm has an overall complexity of O(N2AT · V 3).

In summary, our algorithm has a complexity of O(N2V 3)+
O(N2AT · V 3) = O(N2AT · V 3).

IV. SIMULATION RESULTS

In this section, we use simulation results to demonstrate the
performance of our proposed algorithm. We also use a case
study to demonstrate the feasibility of a final solution.
Simulation Setting. We consider a multi-hop ad hoc
network, with nodes being randomly deployed in a 100 ×
100 area. For scalability, we normalize all units for distance,
time, bandwidth, and data rate with appropriate dimensions.
We assume that each node in the network is equipped with
four antennas and that a node’s transmission and interference
ranges are 30 and 50, respectively. There are four time slots
in a time frame.

We present our results for 50 random network instances,
each with 20 nodes and 2 sessions. The source and destination
nodes of each session are randomly selected in the network.
Results. For 20-node networks, a commercial solver such
as CPLEX is able to find an optimal solution. So we compare
the performance of our proposed algorithm to the results from
CPLEX. Fig. 3 shows the ratio between the objective values
(rmin) from our algorithm and those from CPLEX for 50
network instances. We find that the average ratio is 85.6%,
with standard deviation of 0.12.

To see more details, we pick one network instance (the 8-
th) from the 50 network instances and show the results. Fig. 4

shows the locations of the 20 nodes, where s(1), d(1),s(2) and
d(2) represent the source and destination nodes for sessions 1
and 2, respectively. The objective values (rmin) found by our
algorithm and CPLEX are both 0.75, indicating the optimality
of our solution for this network instance.

Although the two objective values by our algorithm and
CPLEX coincide for this network instance, the flow routing
and scheduling behavior under the two solutions are different.
Figures 5 and 6 show the routing topologies and scheduling for
each session by our algorithm and CPLEX, respectively, where
the tuple next to each link represents the time slot index of
a frame in which the number of data streams are transmitted.
For example, in Fig. 5, (1, 3) next to link (N2, N3) denotes
that in time slot 1, there are 3 data streams on this link. In
the case when there are multiple such tuples next to a link,
it means that this link is active over multiple time slots in a
frame.

Now let’s focus on our solution for this network instance.
The node ordering in each time slot is as follows:

• Time slot 1: {N19, N3, N11, N8, N12, N1, N15, N5, N20,
N16, N6, N2, N4, N7, N9, N10, N13, N14, N17, N18}.

• Time slot 2: {N13, N1, N3, N8, N20, N19, N6, N2, N4,
N5, N7, N9, N10, N11, N12, N14, N15, N16, N17, N18}.

• Time slot 3: {N1, N3, N11, N4, N5, N20, N18, N12, N9,
N6, N7, N10, N2, N8, N13, N14, N15, N16, N17, N19}.

• Time slot 4: {N5, N8, N11, N8, N3, N20, N17, N16, N15,
N7, N4, N6, N13, N1, N2, N9, N10, N12, N14, N19}.

Table I shows the set of active nodes in each time slot and
the DoF allocation for SM and IC at these nodes. As an exam-
ple, consider the set of active nodes in time slot 1 in Table I,
which is shown in Fig. 7. The interference relationships among
these transmit and receive nodes are shown by the dashed
arrows, i.e., node N2 interferes N19, node N9 interferes nodes
N3 and N13, and node N18 interferes N19. It can be easily
verified that by following the relative ordering of these 7 nodes
in time slot 1, i.e., N19, N3, N2, N9, N13, N14, N18, the DoF
constraints in (6) and (7) are satisfied at each of these 7 nodes
.

Now we discuss the details of DoF consumption at each
active node following the order of their positions in the ordered
list in time slot 1.

• The first active node in the ordered node list is N19. It
is a receive node. For SM, N19 consumes one DoF to
receive one data stream from N9. For IC, since it is the
first node in the node list, it does not consume any DoF
for IC.

• The second active node in the ordered node list is N3. It
is a receive node. For SM, N3 consumes three DoFs to
receive three data streams from N2. For IC, since there
is no active transmit node before N3 in the node list, it
does not consume any DoF for IC.

• The third active node in the ordered node list is N2. It
is a transmit node. For SM, N2 consumes three DoFs
to transmit three data streams to node N3. For IC, only
receive node N19 is within its interference range and
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Fig. 4. An instance of 20-node network.

before it in the ordered node list. So N2 needs to consume
one DoF to cancel its interference to node N19.

• The fourth active node in the ordered node list is N9.
It is a transmit node. For SM, N9 consumes one DoF
to transmit one data stream to node N19. For IC, only
transmit node N3 is within its interference range and
before it in the ordered list. So N9 needs to consume
three DoFs to cancel its interference to node N3.

• The fifth active node in the ordered node list is N13. It is a
receive node. For SM, N13 consumes two DoFs to receive
two data streams from node N18. For IC, only transmit
node N9 is within its interference range and before it in
the ordered node list. So N13 needs to consume one DoF
to cancel its interference to node N9.

• The sixth active node in the ordered node list is N14.
It is a receive node. For SM, N14 consumes one DoF
to receive one data stream from node N18. For IC, since
there is no active transmit node before N14 in the ordered
node list, it does not consume any DoF for IC.

• The seventh active node in the ordered node list is N18.
It is a transmit node. For SM, N18 consumes two DoFs
to transmit two data streams to node N13 and one DoF
to transmit one data stream to node N14. For IC, only
receive node N19 is within its interference range and
before it in the ordered node list. So node N18 needs
to consume one DoF to cancel its interference to node
N19.

Note that the DoF constraints for SM and IC at each node
are satisfied in time slot 1. Based on Table I, the readers can
easily verify that the DoF constraints at each node are also
satisfied in time slot 2, 3, and 4 per its respective node ordering
in the corresponding time slot.

When the network size becomes large, CPLEX is no longer
able to compute a solution in a reasonable amount of time.
On the other hand, the proposed algorithm is polynomial and
is able to offer a solution very quickly. Readers are referred to
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Fig. 5. Solution for flow routing and scheduling by our algorithm.
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TABLE I
DOF ALLOCATION AT EACH ACTIVE NODE IN EACH TIME SLOT FOR A

20-NODE NETWORK INSTANCE.

Time Slot 1
Node Active Node DoF DoF

Ordering Node Status for SM for IC
1 N19 receive 1 0
2 N3 receive 3 0
12 N2 transmit 3 1
15 N9 transmit 1 3
17 N13 receive 2 1
18 N14 receive 1 0
20 N18 transmit 3 1

Time Slot 2
Node Active Node DoF DoF

Ordering Node Status for SM for IC
3 N3 transmit 2 0
5 N20 receive 1 0
6 N19 transmit 1 0
8 N2 transmit 1 0
9 N4 receive 2 1
11 N7 transmit 2 2
14 N11 receive 2 0
15 N12 receive 1 3
16 N14 receive 1 2
19 N17 transmit 1 3

Time Slot 3
Node Node Node DoF DoF

Ordering ID Status for SM for IC
4 N4 transmit 2 0
7 N18 receive 2 0
8 N12 transmit 2 0
9 N9 receive 2 0
10 N6 transmit 2 2
15 N13 receive 1 2
16 N14 transmit 1 2
18 N16 receive 2 2

Time Slot 4
Node Active Node DoF DoF

Ordering Node Status for SM for IC
3 N11 transmit 2 0
4 N18 receive 1 0
6 N20 transmit 1 1
7 N17 receive 1 2
8 N16 transmit 2 1
10 N7 receive 2 2
12 N6 transmit 1 3
15 N2 transmit 1 0
18 N12 receive 1 0
19 N14 receive 2 2

see [12] for additional results by our algorithm for large sized
networks.

V. CONCLUSIONS

In this paper, we studied a throughput maximization prob-
lem in a multi-hop MIMO network. The foundation of this
study is a new DoF model based on a novel node ordering
concept. We formulated a throughput maximiation problem by
taking into consideration of half duplex, node ordering, DoF
constraints and flow routing. Since the problem formulation
is in the form of MILP, we proposed a polynomial time
solution. Some highlights of our proposed solution include

(i) it offers a feasible solution to the MILP through a series
of LPs, (ii) it exploits the impact of a node’s ordering on its
DoF consumption for IC, and (iii) it exploits route diversity
in the network to circumvent bottleneck between two nodes.
Simulation results show that the solutions by our proposed
algorithm are competitive and feasible.
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