
1

Offloading Decision in Edge Computing for
Continuous Applications under Uncertainty

Wei Chang∗†, Yang Xiao†, Wenjing Lou†, Guochu Shou∗
∗Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and

Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
†Virginia Polytechnic Institute and State University, VA, USA

Email: weichang@bupt.edu.cn, {xiaoy, wjlou}@vt.edu, gcshou@bupt.edu.cn

Abstract— Edge computing (EC) is an emerging paradigm
to push sufficient computation resources towards the network
edge, improving application performance significantly by offload-
ing applications to the edge computing node. We investigate
continuous application offloading decision in EC, for which
it is uncertain how users operate continuous applications and
how long continuous applications last before completion. That
means some characteristics of continuous applications, e.g., the
number of user operations, the uploading and downloading data
size for offloading computation of each user operation, and
the number of central processing unit (CPU) cycles required
to execute computation of each user operation, are unknown
when making offloading decision. In this scenario, an energy
consumption constrained average response time minimization
problem among multiple users for continuous applications under
uncertainty is formulated. To tackle this problem, we propose
the Response Time-Improved Offloading algorithm with Energy
Constraint (RTIOEC) to make offloading decision with fewer
characteristics of applications. The evaluation results show that
the RTIOEC algorithm achieves comparatively short average
response time of continuous applications while satisfying the
energy consumption constraint with a predefined upper bound
of violation probability. Our results demonstrate the practicality
of the RTIOEC algorithm in offloading decision in EC for
continuous applications under uncertainty.

Index Terms—Edge computing, uncertainty, chance con-
strained programming, multi-dimensional knapsack problem,
dynamic programming.

I. INTRODUCTION

THE enormous popularity of smart user equipment, e.g.,
smartphones, tablets and wearable devices, has motivated

numerous novel applications, which have become an indis-
pensable part of everyday life over recent years. These novel
applications, such as augmented reality (AR), virtual reality
(VR) and real-time game, are typically computation-intensive
and delay-sensitive, which poses stringent requirements, espe-
cially on delay [1]. However, it is a great challenge for smart
user equipment (UE) to support these applications because
the user equipment is resource-constrained, equipped with

This work is accepted by IEEE Transactions on Wireless Communications
for publication. DOI: 10.1109/TWC.2020.3001012. ©2020 IEEE. Personal
use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

limited computation and battery capacity due to the limited
physical size [2]. The tension between computation-intensive
and delay-sensitive applications and resource-constrained user
equipment have a negative effect on the development of these
novel applications [2] [3].

Edge computing (EC) has emerged as a promising tech-
nique to tackle the aforementioned problem by offloading
computation-intensive and delay-sensitive applications from
user equipment to the edge computing node [4]. The com-
putation resources in EC are deployed at the network edge,
such as at base stations (BSs), adjacent to BSs or adjacent to
access points (APs), which are in close proximity to users and
more computationally capable than that at user equipment [5]
[6]. The proximity and sufficiency of computation resources at
the edge computing node lead to short transfer time and short
execution time, respectively. Therefore, EC is a promising
solution to reduce delay significantly, meeting the stringent
requirement of these novel applications [7] [8]. Additionally,
EC can potentially prolong the battery lifetime of user equip-
ment because the computation-intensive applications, which
demand high energy consumption, can be executed at the edge
computing node instead of user equipment [9] [10]. Due to its
outstanding performances of offloading applications with low
delay and low energy consumption of user equipment, EC
plays a key role in the development of computation-intensive
and delay-sensitive applications.

Despite the aforementioned advantages, the performance of
offloading applications in EC is affected by multiple factors,
including characteristics of applications and user equipment,
wireless channel condition, computation capacity at the edge
computing node and user requirements. To take full benefits
of EC for improving the performance, e.g., reducing delay
and energy consumption of user equipment, the offloading
decision scheme should be well-designed while taking the
aforementioned factors into account. Prior works have made
extensive efforts in this area to make offloading decision effi-
ciently [11] [12] [13]. In these works, it is typically assumed
that some characteristics of applications, e.g., the uploading
and downloading data size for offloading and the number of
central processing unit (CPU) cycles required for execution,
are exactly known when making offloading decision with the
schemes [14] [15] [16].

Such assumption, however, does not hold for continuous
applications. Different from the applications with only one



2

user operation such as facial recognition, a continuous applica-
tion involves multiple subsequent user operations and the user
continues interacting with the application after the offloading
decision is made, for which the application characteristics are
unknown when making offloading decision. User operation
in this paper refers to one single operation which involves
computation during the execution of a continuous application,
such as one movement of the hero for a real-time game
or rendering one frame for AR. Generally, when making
offloading decision for continuous applications, the number of
user operations, the uploading and downloading data size for
offloading computation of each user operation, and the number
of CPU cycles required to execute computation of each user
operation are unknown [17]. For instance, when a user visits a
museum with an AR application or plays a real-time game, it is
uncertain how the user will operate the continuous application
and how long the visit or the real-time game will last before the
visit or the game finishes. Therefore, the parameters presented
above are unknown when making offloading decision. For this
reason, previous offloading decision schemes assuming that
these application characteristics are known are not applicable
for continuous applications.

Notable continuous applications include AR, VR, real-time
game, autonomous driving and navigation. These continuous
applications have greatly enriched our daily life, e.g., VR
providing immersive experience [18], autonomous driving
offering safer transportation [19] and navigation aiding indoor
robots [20]. However, to the best of our knowledge, little
effort has been made to tackle the challenging problem of
designing offloading decision schemes in EC for continuous
applications under uncertainty. Here the uncertainty of contin-
uous applications refers to the unknown parameters presented
above when making offloading decision. In this paper, we
propose a solution to this challenge, that is, making offloading
decision with fewer characteristics of applications. To solve
this optimization problem under uncertainty, we adopt chance
constrained programming. First introduced by Charnes and
Cooper [21], Chance constrained programming falls into a
class of stochastic programming which takes the randomness
in input parameters into consideration. The main feature of
chance constrained programming is that the constraint under
uncertainty is satisfied with a predefined probability. The
advantages of chance constrained programming over other
approaches to solve optimization problems under uncertainty
have been demonstrated by extensive applications [22] [23].
In this paper, the optimization problem under uncertainty
is transformed into a deterministic one based on chance
constrained programming.

A. Main Contributions
The main contributions of this paper can be summarized as

follows:
• We investigate the computation offloading decision in

EC for continuous applications under uncertainty. In the
multi-user scenario, an energy consumption constrained
average response time minimization problem for contin-
uous applications under uncertainty is formulated. No-
tably, the number of user operations, the uploading and

downloading data size for offloading computation of each
user operation, and the number of CPU cycles required to
execute computation of each user operation are unknown
when making offloading decision.

• The Response Time-Improved Offloading algorithm with
Energy Constraint (RTIOEC) is designed to solve the con-
tinuous application offloading decision problem, which is
applicable under uncertainty. To make offloading decision
with fewer characteristics of applications, the RTIOEC al-
gorithm first decomposes this problem under uncertainty
into two sub-problems. The first sub-problem, inheriting
the uncertainty, is transformed into a solvable determin-
istic optimization problem based on chance constrained
programming. The second sub-problem is transformed
into a three-dimensional knapsack problem and solved
by dynamic programming.

• The experimental results and analysis are provided to
evaluate the performance of the RTIOEC algorithm.
The average response time of continuous applications
decreases significantly with the RTIOEC algorithm while
saving the energy of use equipment. The upper bound
of the violation probability of the energy consumption
constraint under uncertainty is controllable and can be
specified by tuning the risk level. Additionally, we reveal
the impacts of the parameters of continuous applications
on offloading with the RTIOEC algorithm in EC.

B. Related Work

Due to the potential benefits mentioned above, application
offloading in EC has attracted significant attention over recent
years. To further improve the performance of application of-
floading, extensive efforts have been made to minimize delay.
Ren et al. [24] derive the closed-form expression of minimum
delay and propose an offloading algorithm jointly optimizing
computation and communication resource management to de-
crease the weighted-sum delay in a multi-user EC scenario.
Taking both transfer time and execution time into account,
Fan et al. [25] design an application aware workload allocation
scheme to minimize the delay of applications. Ketykó et al.
[26] propose a general offloading model in EC considering
completion time and investigate the performance of a heuristic
algorithm and an exact algorithm in this scenario. Elbamby et
al. [27] construct a clustering method to group users based on
mutual interests and spatial proximity and solve the offloading
problem in EC as a matching game to minimize completion
time under the reliability constraint. Ni et al. [28] develop a
resource allocation strategy for offloading in EC considering
the completion time of applications and the price cost. The
authors also propose algorithms to predict the completion time.

The energy consumption of user equipment is also a main
concern for offloading in EC and has been jointly studied with
the delay of applications. To reduce the completion time and
application failure under energy constraint, Mao et al. [29]
design an effective computation offloading strategy in a green
EC system. Wang et al. [17] formulate an energy constrained
delay minimization problem and a delay constrained energy
consumption minimization problem, respectively. An optimal



3

offloading algorithm leveraging on univariate search technique
is proposed to tackle the former problem and the latter one
is transformed into a convex problem to find the optimal
solution. Liu et al. [30] formulate an average completion time
minimization problem with the average power constraint at
user equipment and design a search algorithm to efficiently
obtain the optimal solution of the problem. Based on a game
theoretical approach, Chen et al. [1] propose a distributed algo-
rithm to make offloading decision and quantify its efficiency
ratio in terms of reducing delay and saving energy of user
equipment. Dinh et al. [14] present semidefinite relaxation-
based algorithms to achieve the tradeoff between the energy
consumption of user equipment and the delay of applications.
Sardellitti et al. [31] formulate the computation offloading
problem with the objective of minimizing the energy consump-
tion under delay constraint and present an iterate algorithm
with successive convex approximation technique to obtain the
solution.

Besides the extensive research efforts that assume the
characteristics of applications are known, some studies pay
particular attention to offloading in the presence of unknown
parameters, especially the arrival of tasks. To optimize of-
floading schedule in this scenario, Li et al. [32] propose a
resource allocation scheme in EC to improve the throughput
and reduce delay. Xu et al. [33] formulate the offloading
problem as a Markov decision process and design an efficient
reinforcement learning-based algorithm to reduce delay and
operational cost. To generate offloading schedule in EC, Lyu
et al. [34] convert the stochastic optimization problem to
deterministic optimization based on a perturbed Lyapunov
technique and solve it as a knapsack problem. Zhang et al.
[35] propose a predictive combination-mode scheme in EC to
reduce the offloading cost. Mao et al. [36] present an online
offloading algorithm based on Lyapunov optimization in multi-
user EC system to minimize energy consumption.

Different from the previous work assuming that the char-
acteristics of applications are known or just taking the ran-
domness of task arrivals into consideration, we investigate
the offloading decision algorithm among multiple users in EC
for continuous applications under uncertainty, in other words,
making offloading decision with much fewer characteristics of
applications.

II. STOCHASTIC SYSTEM MODEL

We consider a general EC system with multiple users
and an edge computing node as shown in Fig. 1. The set of
users requesting offloading continuous applications to the edge
computing node is denoted by N = {1, 2, . . . , N}, where N is
the total number of users. Each user in the set has a continuous
application that can be offloaded to the edge computing node.
As described previously, some characteristics of continuous
applications are unknown when making offloading decision.
To represent these uncertain characteristics, they are modeled
as random variables. Therefore, the continuous application of
user i is denoted by Fi ≜ (Si, Mi, bi,up, bi,down, ci),
where Mi, bi,up, bi,down and ci are random variables. Si is
the type of continuous application Fi. In this paper, different

Fig. 1. An illustration of offloading continuous applications with multiple
users.

continuous applications that are based on the same technology
are considered of different types. Mi is a random variable rep-
resenting the number of user operations of continuous applica-
tion Fi. As the description in Section I, a user operation in this
paper is one single operation which involves computation dur-
ing the execution of a continuous application, e.g., a movement
of the hero for a real-time game and rendering one frame for
AR. The random vectors bi,up ≜ (bi1,up, bi2,up, . . . , biMi,up)
and bi,down ≜ (bi1,down, bi2,down, . . . , biMi,down) are the
uploading and downloading data size for offloading compu-
tation of all the user operations of continuous application Fi.
ci ≜ (ci1, ci2, . . . , ciMi

) is also a random vector representing
the number of CPU cycles required to execute computation of
all the user operations of continuous application Fi. Although
random variables Mi, bi,up, bi,down, and ci are unknown
when making offloading decision, the probability distributions
governing the variables can be obtained by the previous data
of applications in the same type. The offloading decision algo-
rithm proposed in this paper focuses on this uncertain scenario,
i.e., making offloading decision with fewer characteristics of
applications.

The set of possible execution locations is denoted as
L = {local, offloading}. local represents the continuous
application is executed at the user equipment, i.e., locally.
offloading represents the application is executed at the edge
computing node. It is assumed that both the user equipment
and the edge computing node can support the continuous
application, which is a common assumption in similar works
[1] [29] [37]. Additionally, the application is atomic and
sequentially dependent. Therefore, only full offloading is ap-
plicable in this paper.

A. Local Execution

If continuous application Fi is executed locally, the time for
executing the jth user operation is given as

tlocij =
cij
f loc
i

, (1)

where f loc
i denotes the computation capacity of user i, i.e.,

CPU cycles per second. As mentioned above, the number of
CPU cycles required to execute computation of each user
operation is unknown and modeled as a random variable
when making offloading decision. This is different from other
applications and a difficulty for the offloading decision scheme
design.



4

According to circuit theories and the assumption in [17],
[29] and [38] that the user equipment is low-power and
operates at low voltage, the power consumption for executing
continuous application Fi locally is modeled as in [39] and
[40], i.e., denoted as

ploci = κloc
i

(
f loc
i

)3
, (2)

where κloc
i is the effective switched capacitance of user i,

which depends on the chip architecture at the user equipment.
According to (1) and (2), the total energy consumed by the

user equipment for executing continuous application Fi locally
is denoted as

ẽloci = ploci ∗
Mi∑
j=1

tlocij =
(
f loc
i

)2
κloc
i

Mi∑
j=1

cij . (3)

B. Edge Computing Node Execution

If a continuous application is offloaded to the edge comput-
ing node by user i, the incurred data transmission is bidirec-
tional. In the uplink, user i uploads input parameters to the
edge computing node. In the downlink, user i downloads com-
putation result from the edge computing node. Considering
the frequency division duplex mode, the uplink and downlink
transmission rate for offloading continuous application Fi are
denoted as

Ri,up = W off
i,up log2

[
1 +

Pi,T gi,up(d0/di)
φ

NoW
off
i,up

]
, (4)

Ri,down = W off
i,downlog2

[
1 +

Pi,F gi,down(d0/di)
φ

NoW
off
i,down

]
, (5)

where W off
i,up and W off

i,down are the uplink and downlink channel
bandwidth allocated to user i for offloading, respectively. In
this paper, the fixed bandwidth allocation is adopted [15]
[41]. Pi,T is the transmit power of user i for uploading input
parameters, which can be adjusted for saving energy of user
equipment [15] [42]. Pi,F is the transmit power of the AP at
the edge computing node. gi,up(d0/di)

φ and gi,down(d0/di)
φ

are uplink and downlink channel gain and are approximated
by the average value. gi,up and gi,down are the uplink and
downlink channel fading coefficients, respectively. d0 is the
reference distance. di is the distance from user i to the AP. φ
is the path loss exponent. No is the density of white Guassian
noise power.

The transfer time of uploading for the jth user operation of
continuous application Fi is given as

toffij,up =
bij,up
Ri,up

. (6)

Similarly, the transfer time of downloading for the jth user
operation of continuous application Fi is defined as

toffij,down =
bij,down

Ri,down
. (7)

If a continuous application is offloaded to the edge comput-
ing node, the total energy consumed by the user equipment
is just for uploading and downloading. Because the execution

of the continuous application is at the edge computing node,
which does not consume any energy of the user equipment.
The total energy consumed by the user equipment for offload-
ing continuous application Fi to the edge node is given as

ẽoffi = (Pi,0 + kiPi,T )

Mi∑
j=1

toffij,up + Pi,r

Mi∑
j=1

toffij,down, (8)

where Pi,0 + kiPi,T is the total transmit power for uploading.
Pi,0 accounts for the constant circuit power of user i, which
includes the power used by filter and digital-to-analog con-
verter. ki is the efficient factor of the power amplifier for user
i. Pi,r is the receive power of user i.

III. PROBLEM FORMULATION

A. Performance Metric: Average Response Time

Many applications to be offloaded are delay-sensitive, which
motivates extensive works on minimizing the completion time
of applications in EC, e.g., [24], [29] and [30]. However,
completion time is not a valid metric for continuous appli-
cation performance. The reason is that the completion time of
a continuous application mainly depends on the continuous
interaction between user and application and other factors
instead of offloading decision scheme. For example, the com-
pletion time of a real-time game mainly depends on when
the user exits the game or when the game is over. In this
paper, the average response time for continuous applications
over all users is introduced as the system performance metric.
The response time is defined as the average completion time
of user operations for a continuous application. It has great
impact on improving quality-of-experience for delay-sensitive
applications. For example, if a user plays table tennis with
AR, the response time, i.e., the average completion time of
rendering one frame, directly impacts when the user sees the
track change after batting the table tennis ball.

For local execution, the completion time of a user operation
is just the execution time at the user equipment. Therefore, the
response time of executing continuous application Fi locally
is given as

tloci =
1

Mi

Mi∑
j=1

tlocij . (9)

For edge computing node execution, the completion time of
a user operation is the sum of the execution time at the edge
computing node and the time of data transmission between
the user equipment and the AP. Therefore, the response time
of executing continuous application Fi at the edge computing
node is denoted as

toffi =
1

Mi

Mi∑
j=1

(
cij

foff
i

+
bij,up
Ri,up

+
bij,down

Ri,down

)
, (10)

where foff
i is the computation capacity allocated to user i

at the edge computing node, which depends on the contract
subscribed by user i from the edge cloud service providers [1].
Here the delay caused by the data transmission between the
AP and the edge computing server is not taken into account.
Because it can be ignored compared to the delay of execution



5

and transmission between user equipment and the AP [15]
[43].

B. Energy Consumption Constrained Average Response Time
Minimization Problem

Continuous applications to be offloaded are computation-
intensive, which demand high energy consumption. Most
of the user equipment is battery-powered and has limited
battery lifetime [2]. Therefore, energy consumption constraint
should be considered for prolonging the battery lifetime of
user equipment. In this paper, this constraint is captured
by a predefined energy threshold θi, which depends on the
type of continuous application Si and the user requirement.
Specifically, θi indicates the energy saving requirement for
offloading continuous application Fi. If the energy of user
equipment saved by offloading is greater than or equal to θi,
it is feasible that user i offloads the continuous application.
Otherwise, the continuous application is executed locally.

Consequently, the energy consumption constrained average
response time minimization problem among multiple users for
continuous applications under uncertainty is formulated as:

P1 min
Iloc
i ,Ioff

i ,Pi,T

N∑
i=1

(
I loci tloci + Ioffi toffi

)
/N

s.t. C1 : ẽloci − ẽoffi ≥ θi, ∀i ∈ N ,

C2 : I loci + Ioffi = 1,∀i ∈ N ,

C3 :

N∑
i=1

Ioffi W off
i,up ≤Wup,max,

C4 :

N∑
i=1

Ioffi W off
i,down ≤Wdown,max, (11)

C5 :

N∑
i=1

Ioffi foff
i ≤ foff

max,

C6 : Pi,T ∈ [0, pi,max] ,∀i ∈ N ,

C7 : I loci ∈ {0, 1} , ∀i ∈ N ,

C8 : Ioffi ∈ {0, 1} , ∀i ∈ N .

I loci is an indicator function with I loci = 1 if continuous appli-
cation Fi is executed locally and I loci = 0 otherwise. Similarly,
Ioffi = 1 indicates that continuous application Fi is offloaded
to the edge computing node. Wup,max and Wdown,max are
the total uplink and downlink channel bandwidth, respectively.
foff
max is the total computation capacity at the edge computing

node. pi,max is the maximum transmit power of user i.
In P1, C1 is the energy consumption constraint, which

involves uncertainty. C2 reflects that the continuous applica-
tion is executed either at the user equipment or at the edge
computing node. C3 and C4 are the uplink and downlink chan-
nel bandwidth constraints, respectively. C5 is the computation
capacity constraint of the edge computing node. C6 is the
transmit power constraint of user i. C7 and C8 reflects the
feasible set of I loci and Ioffi , respectively.

It is worth emphasizing that several inputs are unknown
and modeled as random variables in the objective function
and C1. To provide rich modeling flexibility, the value of θi

can be positive, 0, and even negative. When the response time
is of much more significance than the energy consumption
or the applications are extremely delay-sensitive, e.g., Tactile
Internet applications [44], the value of θi can be set to be 0
or negative.

IV. RESPONSE TIME-IMPROVED OFFLOADING
ALGORITHM WITH ENERGY CONSTRAINT

A. Decomposing P1 into Two Sub-problems

In P1, the presence of inter-dependent variables and un-
known parameters pose a challenge to solving the problem
directly. Instead, we decompose P1 equivalently into two
sub-problems, namely SP1 and SP2, to obtain the transmit
power for uploading and execution locations separately. From
P1, it can be seen that the execution location of continuous
application Fi depends on the transmit power of user i and
execution locations of the other applications due to C3, C4 and
C5. However, the transmit power of user i for uploading does
not depend on execution locations of the other applications
with the given decision that user i will offload continuous
application Fi to the edge computing node. That means if we
assume continuous application Fi will be offloaded to the edge
computing node, the transmit power of user i, i.e., variable
Pi,T , can be decoupled from the execution locations of the
other applications, i.e., other variables in P1. Therefore, we
can first obtain the transmit power of user i for uploading with
the assumption that user i will offload continuous application
Fi to the edge computing node. After that, Pi,T is excluded
from the variables of P1 and the actual execution locations
can be obtained based on the solution of transmit power for
each user. Therefore, P1 can be equivalently decomposed into
two sub-problems, i.e., SP1 to obtain the transmit power for
uploading and SP2 to obtain the execution locations. Finally,
we can obtain the solution to P1 by combining the results of
SP1 and SP2.

B. SP1: Solution for Pi,T

According to P1 and the analysis above, the sub-problem
of obtaining the transmit power to upload input parameters
for each user with the assumption that the user will offload
the continuous application to the edge computing node is
formulated as

SP1 min
Pi,T

1

Mi

Mi∑
j=1

(
cij

foff
i

+
bij,up
Ri,up

+
bij,down

Ri,down

)
s.t. C1, C6,

(12)

wherein (10) is substituted into the objective function, i.e.,
toffi , to facilitate the analysis. It is worth mentioning that I loci

and Ioffi are excluded from the variables of SP1 because
continuous application Fi is assumed to be offloaded to the
edge computing node here.

The sub-problem SP1 involves uncertainty in the objective
function and the constraint, which is a stochastic programming
problem. As mentioned above, much of the difficulty to solve
P1 arises from the uncertainty. To obtain the transmit power
of user i, the objective function of SP1 is first converted



6

into a deterministic form by replacing the response time with
its expected value. The expected value of response time for
continuous application Fi is given by

E(toffi ) =E

 1

Mi

Mi∑
j=1

(
cij

foff
i

+
bij,up
Ri,up

+
bij,down

Ri,down

)
=
E(cij)

foff
i

+
E(bij,up)

Ri,up
+

E(bij,down)

Ri,down
,

(13)

where E(α) is the expected value of α.
After the replacement of the objective function, the uncer-

tainty of this sub-problem only remains in C1. Next C1 is
adapted to convert SP1 into a solvable deterministic optimiza-
tion problem. Based on chance constrained programming, the
constraint C1 under uncertainty is replaced by a probabilistic
constraint to satisfy C1 with a specified high probability,
denoted as

C9 : Prob
{
ẽloci − ẽoffi ≥ θi

}
≥ 1− ϵ, ∀i ∈ N , (14)

where Prob {α} denotes the probability of the event α [45].
ϵ is the predefined upper bound of the probability for C1 to
be violated, i.e., the risk level [22] [46]. Therefor, 1− ϵ is the
probability level to satisfy C1, which is usually high.

Obviously, the uploading data size for offloading is positive.
We substitute (3), (6), (7) and (8) into (14) and rewrite C9 as

Prob

{
kiPi,T + Pi,0

Ri,up
≤

κloc
i

(
f loc
i

)2 Mi∑
j=1

cij − θi −

Mi∑
j=1

bij,down

Ri,down
Pi,r

Mi∑
j=1

bij,up


≥ 1− ϵ, ∀i ∈ N ,

(15)

where, as mentioned above, bij,up, bij,down and cij are not
known when making offloading decision, raising the uncer-
tainty and difficulty of the problem. For notation convenience,

we define
Mi∑
j=1

bij,up ≜ b̃i,up,
Mi∑
j=1

bij,down ≜ b̃i,down and

Mi∑
j=1

cij ≜ c̃i.

To convert the probabilistic constraint (15) into a deter-
ministic form, we perform the following transformations from
(16) to (19). First, we denote the bulky right-hand side of the
probability in (15) by G. That is

G ≜ g
(
b̃i,up, b̃i,down, c̃i

)
=

κloc
i

(
f loc
i

)2
c̃i − θi − b̃i,down

Ri,down
Pi,r

b̃i,up
.

(16)

Then, based on chance constrained programming, we need to
obtain the cumulative distribution function of G. Since there
are three random variables in (16), the cumulative distribution

function of G can be obtained by triple integral, which is given
as

F (G) =
∫∫∫
Ω

fi

(
b̃i,up, b̃i,down, c̃i

)
db̃i,updb̃i,downdc̃i (17)

where fi

(
b̃i,up, b̃i,down, c̃i

)
is the joint probability

density function (PDF) of b̃i,up, b̃i,down and c̃i, which
can be obtained by the previous data of applications
in the same type. Ω is the domain defined by{
g
(
b̃i,up, b̃i,down, c̃i

)
≤ G, b̃i,up ≥ 0, b̃i,down ≥ 0, c̃i ≥ 0

}
on the three-dimensional Euclidean space because the
uploading and downloading data size and the number of
CPU cycles required for execution are obviously positive.
As described in Section III, the value of θi can be positive,
0 and even negative. For notation convenience, we define
b̂i,down ≜ max

{
0,− θi+Gb̃i,up

Pi,r/Ri,down

}
to invert (17) to a unified

form. Then, F (G) can be expressed as

F (G) =
∫ +∞

0

∫ +∞

b̂i,down

∫ θi+
Pi,r

Ri,down
b̃i,down+Gb̃i,up

κloc
i (floc

i )
2

0

fi

(
b̃i,up, b̃i,down, c̃i

)
dc̃idb̃i,downdb̃i,up.

(18)

Therefore, the deterministic form of (15) is given by

C10 :
kiPi,T + Pi,0

Ri,up
≤ F−1 (ϵ) ,∀i ∈ N , (19)

where F−1 is the inverse function of F .
With the derivation based on chance constrained program-

ming for C1, the deterministic equivalent of SP1 is given by

SP⋆
1 min

Pi,T

(
E (cij)

foff
i

+
E (bij,up)

Ri,up
+

E (bij,down)

Ri,down

)
s.t. C6, C10.

(20)

Substituting (4) into (19), the function of the left-hand term
of C10 is given as

h (Pi,T ) =
kiPi,T + Pi,0

W off
i,up log2

[
1 +

Pi,T gi,up(d0/di)
φ

NoW
off
i,up

] . (21)

The unimodality of function h (Pi,T ) can be conveniently
proven by calculating its first derivative (Please refer to
Appendix). Specifically, it is strictly decreasing on interval
(0, p0i,T ) and is strictly increasing on interval (p0i,T ,+∞),
where p0i,T represents the extreme point. In the objective
function of SP⋆

1, only term 1
Ri,up

is related to variable Pi,T .
And Ri,up is a strictly increasing function of variable Pi,T

on interval (0,+∞) according to Eq. (4). That means the
objective function of SP⋆

1 is a strictly decreasing function
of variable Pi,T on interval (0,+∞). Therefore, the solution
to transmit power of user i for uploading is unique and can
be obtained by solving SP⋆

1 if the intersection of C6 and
the solution set of C10 is a nonempty set. In this case, it is
feasible that user i offloads the continuous application to the
edge computing node with the obtained transmit power for
uploading. However, the intersection of C6 and the solution



7

set of C10 may be empty in some cases. For example, the
uploading and downloading data size for offloading is large
and the number of CPU cycles required for execution is small.
With the given parameters, any value of the Pi,T on the
interval of C6 is not available to satisfy C1 with the specified
high probability in this case. For that, continuous application
Fi cannot be offloaded to the edge computing node.

C. SP2: Offloading Decision

If any value of the Pi,T is not available to offload continuous
application Fi with the constraints of SP⋆

1, continuous appli-
cation Fi will be executed locally. For user i, if the transmit
power for uploading can be obtained by solving SP⋆

1, the
offloading needs to satisfy an additional response time con-
straint. The constraint is that the response time of continuous
application Fi executed at the edge computing node is shorter
than that of local execution. Because it is obvious that for
minimizing the average response time, continuous application
Fi will be executed locally if user i can not reduce the response
time of continuous application Fi by offloading. The set of
these users, of whom the continuous applications can only
be executed locally due to the two properties, is denoted by
N1. For these users, we have the functions I loci = 1 and
Ioffi = 0 to indicate the actual execution locations of their
continuous applications. The other users, i.e., the ones who
satisfy the constraints of SP⋆

1 and can reduce the response
time by offloading, are the candidate users to offload their
continuous applications. Such set of users, denoted by N2, can
be obtained by solving SP⋆

1 and comparing the response time
of executing the continuous application at different locations.
The cardinality of N2 is denoted by N2.

Due to the constraints of the total uplink channel bandwidth,
the total downlink channel bandwidth and the total computa-
tion capacity at the edge computing node, it may be impossible
for all the users in N2 to offload their continuous applications.
Therefore, the second sub-problem for solving P1 is to obtain
the execution locations of the continuous applications for users
in N2. Because the continuous applications of users in N1

can only be executed locally, only the execution locations of
the continuous applications for users in N2 can be optimized
to reduce the average response time. Similar to SP⋆

1, the
response time is also replaced by the expected value. The
response time of executing continuous application Fi at the
edge computing node is given as (13). The response time of
executing continuous application Fi locally is given by

E
(
tloci

)
= E

 1

Mi

Mi∑
j=1

tlocij

 =
E (cij)

f loc
i

. (22)

Then, the sub-problem is formulated as

SP2 min
Iloc
i ,Ioff

i

N2∑
i=1

(
I loci E(tloci ) + Ioffi E(toffi )

)
/N2

s.t. C11 : I loci + Ioffi = 1,∀i ∈ N2,

C12 :

N2∑
i=1

Ioffi W off
i,up ≤Wup,max,

C13 :

N2∑
i=1

Ioffi W off
i,down ≤Wdown,max, (23)

C14 :

N2∑
i=1

Ioffi foff
i ≤ foff

max,

C15 : I loci ∈ {0, 1} , ∀i ∈ N2,

C16 : Ioffi ∈ {0, 1} , ∀i ∈ N2.

It is worthwhile to note that the transmit power to upload
input parameters for each user in N2 is excluded from the
variables of SP2 because it has been obtained by solving SP1.
Additionally, SP2 does not involve uncertainty, which can be
solved as a deterministic optimization problem.

From SP2, we can see that the objective of minimizing the
expected value of the average response time can be converted
into maximize the expected value of the total response time
reduced by offloading compared to that of local execution.
Therefore, the equivalent of SP2 is given by

SP⋆
2 max

Ioff
i

N2∑
i=1

[
Ioffi

(
E(tloci )− E(toffi )

)]
s.t. C12, C13, C14, C16.

(24)

The problem SP⋆
2 is essentially a three-dimensional knapsack

problem. The continuous application of each user in set N2

is an item which has a three-dimensional size, i.e., the uplink
channel bandwidth, the downlink channel bandwidth and the
computation capacity allocated at the edge computing node.
The value of an item is the expected response time reduction
of the continuous application for offloading. We solve SP⋆

2

by dynamic programming in the following, which can obtain
the optimal solution of a three-dimensional knapsack problem
[47]. The expected response time reduction of offloading the
continuous application for user i is first expressed as

Vi = E(tloci )− E(toffi ). (25)

To break down the three-dimensional knapsack problem into a
sequence of steps based on dynamic programming, we define
the maximum expected response reduction at the x-th (0 ≤
x ≤ N2) step as

Vx

(
Wup,Wdown, f

off
)
≜ max

{
x∑

i=1

Ioffi Vi |

x∑
i=1

Ioffi ≤Wup,NO.,

x∑
i=1

Ioffi ≤Wdown,NO.,

x∑
i=1

foff
i,NO. ≤ ⌊f

off
max

/foff
unit ⌋

}
,

(26)

where Wup,NO. and Wdown,NO. are the number of uplink and
downlink channels based on the bandwidth allocation. ⌊α⌋
denotes the floor function of α. foff

unit is the unit of computation
resources provided by the edge cloud service providers for
users to subscribe. foff

i,NO. represents the number of units that
user i subscribes, which is an integer. As a special case, we



8

define V0

(
Wup,Wdown, f

off
)
≜ 0. The recursive function to

obtain Vx

(
Wup,Wdown, f

off
)

is given as

Vx

(
Wup,Wdown, f

off
)
=

Vx−1

(
Wup,Wdown, f

off
)
, if 0 ≤ foff < foff

i,NO.,

max
{
Vx−1

(
Wup,Wdown, f

off
)
, Vx−1 (Wup − 1,

Wdown − 1, foff − foff
i,NO.

)
+ Vx

}
,

if foff
i,NO. ≤ foff ≤ ⌊foff

max
/foff

unit ⌋.
(27)

We can determine solution Ioffi corresponding to the proce-
dure of obtaining VN2

(Wup,Wdown, foff
)
. Then, indicator

function I loci is calculated according to C11.

D. RTIOEC Algorithm

As mentioned above, the RTIOEC algorithm first decom-
poses P1 into two sub-problems, i.e., SP1 and SP2. After
that, the process of the RTIOEC algorithm is divided into two
stages, each of which solves a sub-problem. The goal in the
first stage is to obtain the transmit power of each user for
uploading with the assumption that each user will offload its
continuous application to the edge computing node. The sub-
problem SP1 inherits the uncertainty of P1, which is the main
difficulty to solve both P1 and SP1. To solve the problem,
SP1 is transformed into a solvable deterministic optimization
problem based on chance constrained programming, i.e., SP⋆

1.
By solving SP⋆

1, we can see if it is feasible that user i offloads
the continuous application to the edge computing node with
the constraints. And the transmit power of user i for uploading
is obtained if the offloading of user i is feasible. In the
second stage, the actual execution location is obtained based
on the transmit power for uploading obtained in the first stage.
The sub-problem SP2 is transformed into a three-dimensional
knapsack problem, i.e., SP⋆

2, which is solved by dynamic
programming. The detailed steps of the RTIOEC algorithm
are given in Algorithm 1.

Algorithm 1 RTIOEC algorithm

Input: N , Wup,max, Wdown,max, foff
max, ϵ, f loc

i , foff
i , W off

i,up ,
W off

i,down, Pi,F , Pi,0, Pi,r, pi,max, gi,up, gi,down, d0,
di, φ, No, κi, ki, θi, E (bij,up), E (bij,down), E (cij),
fi

(
b̃i,up, b̃i,down, c̃i

)
Output: I loci , Ioffi , Pi,T

1: N2 ← ∅
2: for i← 1 to N do
3: Initialize SP1

4: Calculate F (G) according to (5) and (18)
5: Obtain C10 according to (19)
6: Covert SP1 into SP⋆

1

7: Solve problem SP⋆
1 to obtain the Pi,T

8: if the Pi,T of problem SP⋆
1 exists then

9: Calculate E(toffi ) according to (13)
10: Calculate E(tloci ) according to (22)
11: if E(toffi ) < E(tloci ) then
12: N2 ← N2 ∪ {i}
13: end if

14: else
15: I loci ← 1, Ioffi ← 0
16: end if
17: end for
18: Wup ← 0, Wdown ← 0, foff ← 0,

V0

(
Wup,Wdown, f

off
)
← 0

19: With Pi,T , calculate Vi according to (13), (22) and (25)
20: for x← 1 to N2 do
21: for Wup ← 1 to Wup,NO. do
22: for Wdown ← 1 to Wdown,NO. do
23: for foff ← 1 to⌊foff

max
/foff

unit ⌋ do
24: Calculate Vx

(
Wup,Wdown, f

off
)

according to
(27)

25: end for
26: end for
27: end for
28: end for
29: for x← N2 to 1 do
30: if Vx(Wup,Wdown, f

off ) = Vx−1(Wup − 1,Wdown −
1, foff − foff

i,NO.) + Vx, then
31: Ioffx ← 1, I locx ← 0, Wup ← Wup − 1, Wdown ←

Wdown − 1, foff ← foff − foff
i,NO.

32: end if
33: end for

In the EC system, the RTIOEC algorithm can be deployed
and integrated at the edge computing node to make offloading
decision for users in the coverage. The users first send the
offloading requests to the edge computing node, which contain
the parameters of users, i.e., computation capacity, location,
effective switched capacitance, efficient factor of power ampli-
fier, maximum transmit power, receive power, constant circuit
power and type of the continuous application. After that,
the edge computing node inquires the other parameters for
offloading and makes offloading decision with the RTIOEC
algorithm. The offloading decision is then sent to the user
equipment. Finally, based on the offloading decision, the user
executes the continuous application locally or offloads it to the
edge computing node.

Fig. 2 shows an example of making offloading decision for
continuous applications by the RTIOEC algorithm with the
same mean but different distributions of random variables.
By the definition in Section II, Fi denotes the continuous
application of user i, for i = 1, 2, ..., N . To demonstrate the
impact of PDFs on the offloading decision, here the random
variables across different continuous applications have the
same mean but potentially different PDFs. And we assume that
the fixed parameters are the same for all applications. The PDF
of random variables for FN is flatter than that for F1. That
means the actual values of random variables for F1 are more
squeezed and the constraint under uncertainty of F1 is more
likely to be satisfied. Consequently, the RTIOEC algorithm
tends to offload F1 to the edge computing node while FN is
executed at the user equipment, although the random variables
of them have the same mean.

The computational complexity of the RTIOEC algo-
rithm mainly comes from two parts—solving SP1 for
each user and solving SP2. The computational com-



9

Fig. 2. An illustration of making offloading decision for continuous applications by the RTIOEC algorithm.

plexity of solving SP1 is O (N) because the opera-
tions in Line 3-7 only involve basic arithmetic oper-
ations. It takes O(N2Wup,NO.Wdown,NO.⌊foff

max
/foff

unit ⌋)
computational time to solve SP2 by dynamic program-
ming [48]. Because N2 is a subset of N , the computa-
tional complexity of solving SP2 by dynamic program-
ming is O(NWup,NO.Wdown,NO. ⌊foff

max
/foff

unit ⌋) in the
worst case. Therefore, the computational complexity of the
RTIOEC algorithm can be obtained by adding them up,
i.e., O(NWup,NO.Wdown,NO.⌊foff

max
/foff

unit ⌋). The number of
users in an AP/BS coverage and satisfying the constraints
is not large. And the number of channels and the total
computation capacity at the edge computing node are usually
limited [15]. Considering the low computational complexity,
the RTIOEC algorithm is applicable to make offloading deci-
sion for continuous applications.

V. EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, we perform experiments to evaluate the
performance of the RTIOEC algorithm. In our experiments,
parameters are set in accordance with prior works for mean-
ingful evaluation. The number of users requesting offloading
continuous applications to the edge computing node is set to
be 20 [10]. The AP has a coverage of 50 meters (m) and the
distance from each user to the AP is uniformly distributed
within (0, 50) m [49]. The computation capacity of the user
equipment is assigned randomly from set {0.5, 0.6, ..., 1.0}
GHz [10]. The effective switched capacitance of users is 10−27

[38]. The efficient factor of power amplifier is set as 18 based
on the user equipment [17] [50]. As is described above, we
consider the frequency division duplex mode in this paper and
set the maximum transmit power and the receive power of
users as 0.1 Watt (W) and 0.4 W, respectively [17] [51]. The
transmit power of the AP at the edge computing is 0.1 W
[52]. The constant circuit power of users is 0.4 W [50]. The
uplink and downlink channel bandwidth allocated to a user
for offloading is 1 MHz. The uplink and downlink channel
fading coefficients are -40 dB. The reference distance is 1
m [29]. The density of white Guassian noise power is set
to be -174dBm/Hz [38]. The path loss exponent is 4 [29].
The total uplink and downlink channel bandwidth are both 10
MHz. The total computation capacity at the edge computing

node is assumed to be 20 GHz based on the actual resource
state of the Nokia Airframe Cloud Server architecture [53].
The computation capacity allocated to each user at the edge
computing node is randomly from {1.5, 2.0, 2.5} GHz. The
number of user operations, the uploading and downloading
data size for offloading computation of each user operation,
and the number of CPU cycles required to execute computation
of each user operation are considered as normal distribution.
The means of them are 20000, 50 kbits, 50 kbits and 50
Megacycles, respectively [54]. And the ratio of variance to
squared mean is 0.1. The risk level, i.e., the predefined upper
bound of the violation probability, is set to be 5%. The
parameters of the experiments are set as the description above
unless otherwise specified. We repeat experiments 1000 times
and show the average results.

In this paper, the RTIOEC algorithm is compared with
four schemes, namely local computing (local), Dynamic Pro-
gramming algorithm based on the Mean of Random Variables
(DPMRV), Dynamic Programming algorithm based on the
Actual Value of Random Variables (DPAVRV) and Compu-
tation Offloading algorithm based on Game Theory (COGT)
proposed in [1]. The local computing scheme is that each user
only executes its continuous application locally. The DPMRV
algorithm is that the random variables, i.e., Mi, bij,up, bij,down

and cij , are replaced by their mean values, which transforms
the problem into a deterministic problem rather than a problem
under uncertainty. And the offloading decision made by the
DPMRV algorithm is based on dynamic programming. The
DPAVRV algorithm is that making offloading decision based
on dynamic programming algorithm with the actual value
of random variables. Although it is impractical to obtain
the actual value of the random variables when making of-
floading decision, the DPAVRV algorithm can be regarded
as the benchmark in this paper. Because it achieves the
optimal performance, that is, minimizing the average response
time without violating any uncertain constraint. The COGT
algorithm is that making offloading decision based on the
game theoretical approach admitting the Nash equilibrium, for
which the weight of each user is assigned randomly from set
{1, 2, ..., 5}.

Fig. 3 shows the relationship between the violation proba-
bility of the energy consumption constraint and the risk level



10

Fig. 3. The violation probability of the constraints with different risk levels.

by varying the energy saving requirement of each offloading
user. We observe that the violation probability by the RTIOEC
algorithm decreases with the risk level and is consistently
much lower than that by the DPMRV algorithm and the
COGT algorithm. This is due to the fact that the violation
probability by the RTIOEC algorithm is constrained by the
risk level. While the violation probability by the DPMRV
algorithm and the COGT algorithm is not related to the risk
level and out of control. Therefore, the DPMRV algorithm
and the COGT algorithm are not applicable to solve the
offloading decision problem under uncertainty. In addition, the
violation probability by the RTIOEC algorithm stays below the
risk level, since the energy consumed by user equipment for
offloading is also constrained by the maximum transmit power
of users (constraint C6). With the property, the upper bound
of the violation probability can be controlled and specified by
the RTIOEC algorithm, which is critical to solve the problem
under uncertainty and satisfy the energy saving requirement
for most users.

Fig. 4 shows the violation probability of the constraints
with different ratios of variance to squared mean. For different
energy saving requirements, the violation probability by the
RTIOEC algorithm increases as the ratio of variance to squared
mean increases in the first half of the stage. Different from
the consistently high violation probability by the DPMRV
algorithm and the COGT algorithm, the violation probability
by the RTIOEC algorithm shows different trends in the second
half of the stage for different energy saving requirements. For
a low energy saving requirement, e.g., 100 J, the violation
probability increases slightly because the constraint of risk
level is active for more users in this case. When the energy
saving requirement is high, e.g., 200 J and 300 J, the violation
probability by the RTIOEC algorithm decreases noticeably and
approaches 0 for low risk levels. The reason is that when the

energy consumption constraint is stringent, few users can sat-
isfy the energy consumption constraint and offload continuous
applications to the edge computing node, leading to a low
violation probability by the RTIOEC algorithm. Besides, the
violation probability by the RTIOEC algorithm stays below the
risk level and is far lower than that by the DPMRV algorithm
and the COGT algorithm even that the random variables are
distributed with large variance. Therefore, offloading by the
RTIOEC algorithm can satisfy the energy saving requirement
while tolerating wider random variable distributions.

Fig. 5 shows the average energy consumed by user equip-
ment versus different energy saving requirements of each
offloading user. The average energy consumption barely fluc-
tuates at the beginning because the loose constraint has little
impact on offloading at this stage. Compared to the DPMRV
algorithm, the DPAVRV algorithm and the COGT algorithm,
the RTIOEC algorithm takes a more conservative approach
to offloading continuous applications for considering the un-
certainty. Therefore, the average energy consumption by the
RTIOEC algorithm decreases and reaches the minimum earlier
than that by the other three algorithms. As the energy saving
requirement continues rising, the average energy consumption
increases, and finally stabilizes around that of local execution
when almost no user can satisfy the energy consumption con-
straint and offload continuous applications. Since the RTIOEC
algorithm takes into account the uncertainty of application
characteristics in order to achieve low violation probability,
the average energy consumption may not be the lowest in
some cases. However, the significantly lower violation prob-
ability means that more user requirements are satisfied. And
offloading continuous applications by the RTIOEC algorithm
can generally save the energy of user equipment compared to
executing all the continuous applications locally.

Fig. 6 reveals the impact of energy saving requirement



11

Fig. 4. The violation probability of the constraints with different ratios of variance to squared mean.

-400 -200 0 200 400 600 800 1000 1200 1400

energy saving requirement of each offloading user (J)

300

350

400

450

500

550

600

av
er

ag
e 

en
er

g
y

 c
o

n
su

m
ed

 b
y

 t
h

e 
u

se
r 

eq
u

ip
m

en
t 

(J
)

local

DPMRV

DPAVRV

COGT

RTIOEC

Fig. 5. The average energy consumed by user equipment with different energy
saving requirements of each offloading user.

of each offloading user on average response time. We ob-
serve that the average response time by the four offloading
schemes is significantly lower than that of local execution,
especially when the energy saving requirement is low. For
instance, the average response time by the RTIOEC algorithm
is approximately 35% lower than that of local execution when
the energy saving requirement is 0 J. Although the average
response time by the RTIOEC algorithm is higher than that
by the other three offloading schemes when the energy saving
requirement is high, the RTIOEC algorithm has the following
advantages. As discussed previously, the violation probability
by the RTIOEC algorithm is far lower and can be specified,
which is important in actual implementation. Meanwhile the
violation probability by the DPMRV algorithm and the COGT

-400 -200 0 200 400 600 800 1000 1200 1400

energy saving requirement of each offloading user (J)

45

50

55

60

65

70

75

av
er

ag
e 

re
sp

o
n

se
 t

im
e 

(m
s)

local

DPMRV

DPAVRV

COGT

RTIOEC

Fig. 6. The average response time with different energy saving requirements
of each offloading user.

algorithm is out of control, for which the two algorithms are
not applicable to solve the problem under uncertainty. For the
DPAVRV algorithm, it is the idealistic benchmark and not
practical because it is not likely to obtain the actual value
of the random variables when making offloading decision.
The average response time increases at the middle stage with
the energy saving requirement increasing. This is due to two
reasons: The offloading users upload the input parameters
with a smaller transmit power for satisfying more stringent
energy consumption constraint with the specified risk level,
which leads to longer transfer time. Additionally, few users
can satisfy the energy consumption constraint and offload
continuous applications with the energy saving requirement
increasing. The average response time fluctuates slightly at the



12

0
50

10

100
150

20

100d
ec

re
as

e 
ra

ti
o
 o

f 
th

e 
av

er
ag

e 
re

sp
o
n
se

 t
im

e 
 (

%
)

200
90

30

80250
uploading data size (kbit)

70300

number of CPU cycles (M
egacycle)

40

60350
50

40400
30450

20500
10

(a) θi = −100 J

0
50

10

100
150

20

100d
ec

re
as

e 
ra

ti
o

 o
f 

th
e 

av
er

ag
e 

re
sp

o
n

se
 t

im
e 

(%
)

200
90

30

80250
uploading data size (kbit)

70300

number of CPU cycles (M
egacycle)

40

60350
50

40400
30450

20500
10

(b) θi = 100 J

0
50

10

100
150

20

100d
ec

re
as

e 
ra

ti
o

 o
f 

th
e 

av
er

ag
e 

re
sp

o
n

se
 t

im
e 

(%
)

200
90

30

80250uploading data size (kbit)

70300

number of CPU cycles (M
egacycle)

40

60350
50

40400
30450

20500
10

(c) θi = 300 J

Fig. 7. The decrease ratio of the average response time with different uploading and downloading data size and different number of CPU cycles for the
computation of a user operation.

beginning and finally stabilizes around the result of executing
all the continuous applications locally for the same reasons as
that of the average energy consumed by user equipment shown
in Fig. 5.

Fig. 7 shows the decrease ratio of the average response
time with different uploading and downloading data size and
different number of CPU cycles for the computation of a user
operation. In the experiments, the downloading data size is set
the same as that of uploading. As the description in Section
III, the negative value of θi in the experiments means that
the energy consumed by user equipment for offloading can be
greater than that of local execution in the scenario that the
response time is of much more significance than the energy
consumption or the applications are extremely delay-sensitive.
Because the average response time naturally increases as the
number of CPU cycles required for execution increases, the
decrease ratio of the average response time is introduced to be
a unified metric for quantifying the efficiency of the RTIOEC
algorithm. As shown in Fig. 7, the decrease ratio of the average
response time increases as the number of CPU cycles increases
and the uploading and downloading data size decreases. The
reason is that the larger number of CPU cycles required to
execute computation leads to more significant decrease of
execution time due to the sufficient computation resources in
EC. And the smaller uploading and downloading data size
leads to shorter transfer time and lower energy consumed by
user equipment. It is also observed that the decrease ratio
of the average response time is high with low energy saving
requirement. Because low energy saving requirement indicates
that the offloading users can upload the input parameters with
high transmit power to reduce transfer time, and more users
may satisfy the energy consumption constraint and offload
continuous applications to the edge computing node.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate the computation offloading
decision in EC for continuous applications under uncertainty.
Due to the uncertainty in user operations, the number of
user operations, the uploading and downloading data size
for offloading computation of each user operation, and the

number of CPU cycles required to execute computation of each
user operation are unknown when making offloading decision.
An energy consumption constrained average response time
minimization problem among multiple users is formulated in
this scenario. To tackle the minimization problem, the RTIOEC
algorithm is proposed to make offloading decision with fewer
characteristics of applications. We carry out experiments to
evaluate the performance of the RTIOEC algorithm and com-
pare the RTIOEC algorithm with four offloading decision
schemes. The results show that the average response time
of continuous applications decreases significantly with the
RTIOEC algorithm while satisfying the energy consumption
constraint with the predefined upper bound of the violation
probability. That means the violation probability of the energy
consumption constraint under uncertainty is controllable and
the energy saving requirement to prolong the battery lifetime
of user equipment can be satisfied for most users. Therefore,
the RTIOEC algorithm with the salient features is applicable
under uncertainty, meeting the challenge of making offloading
decision in EC for continuous applications.

By pushing sufficient computation resources towards the
network edge, EC potentially improve the application perfor-
mance significantly, e.g., delay and energy consumption of
user equipment. Offloading continuous applications in EC is
still an ongoing research and many challenges remain to be
solved. For future work, we will look into the impact of user
mobility, adopt dynamic bandwidth and computation resource
management and take the energy consumed by edge computing
server into consideration. Other extensions are to implement
partial offloading and extend the work to the scenario with
multiple edge computing nodes.

APPENDIX
UNIMODALITY PROOF OF h(Pi,T )

Considering the proposed scenario, all the parameters in
h(Pi,T ) are obviously positive in which we obtain the proof.
For notation convenience, we define ri ≜ gi,up(d0/di)

φ

NoW
off
i,up

. The



13

first derivative of h (Pi,T ) is given as

h
′
(Pi,T ) =

ki (1 + riPi,T ) ln (1 + riPi,T )− ri (kiPi,T + Pi,0)

ln 2W off
i,up (1 + riPi,T )

[
log2

(1+riPi,T )
]2

(28)
The proof of monotonicity is equivalent to prove the numerator
of h

′
(Pi,T ) is negative on interval (0, p0i,T ) and is positive on

interval (p0i,T ,+∞) because the denominator is positive on
both intervals. We first denote the numerator of h

′
(Pi,T ) by

Z (Pi,T ). That is

Z (Pi,T ) ≜ ki (1 + riPi,T ) ln (1 + riPi,T )− ri (kiPi,T + Pi,0)
(29)

The first derivative of Z (Pi,T ) is given by Z
′
(Pi,T ) =

kiriln (1 + riPi,T ). Obviously, Z
′
(Pi,T ) is positive on inter-

val (0,+∞), which means that Z (Pi,T ) is strictly increasing
on (0,+∞). Additionally, we have Z (0) = −riPi,0 <0 and
Z (+∞) >0. We denote the zero point of Z

′
(Pi,T ) as p0i,T .

Z (Pi,T ) is negative on internal (0, p0i,T ) and is positive on
interval (p0i,T ,+∞). Therefore, h(Pi,T ) is strictly decreasing
on interval (0, p0i,T ) and is strictly increasing on interval
(p0i,T ,+∞). That means h(Pi,T ) is unimodal.

ACKNOWLEDGMENT

Chang and Shou’s work is supported by National Natural
Science Foundation of China (Grant No. 61471053), Beijing
Laboratory of Advanced Information Networks and the 111
project (Grant No. B17007). Xiao and Lou’s work was sup-
ported in part by US National Science Foundation under grants
CNS-1800650, and by the Virginia Commonwealth Cyber
Initiative (CCI).

REFERENCES

[1] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795–2808, 2016.

[2] M. Othman, S. A. Madani, S. U. Khan et al., “A survey of mobile
cloud computing application models,” IEEE communications surveys &
tutorials, vol. 16, no. 1, pp. 393–413, 2013.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mo-
bile edge computing: Survey and research outlook,” arXiv preprint
arXiv:1701.01090, 2017.

[5] “Mobile edge computing,” Available:
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-
edge computing - introductory technical white paper v%12018-
09-14.pdf, ETSI White Paper, [Online].

[6] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. De Foy, and Y. Zhang,
“Mobile edge cloud system: Architectures, challenges, and approaches,”
IEEE Systems Journal, vol. 12, no. 3, pp. 2495–2508, 2017.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[8] J. Xue and G. Shou, “How far can optical access networks support
in multi-access edge computing for low delay?” in Optical Fiber
Communication Conference. Optical Society of America, 2018, pp.
Tu2G–4.

[9] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[10] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaranteed
computation offloading for mobile-edge cloud computing,” IEEE Wire-
less Communications Letters, vol. 6, no. 6, pp. 774–777, 2017.

[11] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[12] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[13] J. Liu, G. Shou, Q. Wang, Y. Liu, Y. Hu, and G. Zhigang, “Load-
balanced service function chaining in edge computing over fiwi access
networks for internet of things,” in unpublished, 2019.

[14] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584,
2017.

[15] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency tradeoff for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2633–2645, 2018.

[16] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2016.

[17] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[18] E. Bastug, M. Bennis, M. Médard, and M. Debbah, “Toward intercon-
nected virtual reality: Opportunities, challenges, and enablers,” IEEE
Communications Magazine, vol. 55, no. 6, pp. 110–117, 2017.

[19] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[20] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog
computing: Focusing on mobile users at the edge,” arXiv preprint
arXiv:1502.01815, 2015.

[21] A. Charnes and W. W. Cooper, “Chance-constrained programming,”
Management science, vol. 6, no. 1, pp. 73–79, 1959.

[22] J. R. Birge and F. Louveaux, Introduction to stochastic programming.
Springer Science & Business Media, 2011.

[23] S. Li, Y. Huang, C. Li, B. Jalaian, S. Russell, Y. T. Hou, W. Lou,
and B. MacCall, “A real-time solution for underlay coexistence with
channel uncertainty,” in 2019 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2019, pp. 1–6.

[24] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 17, no. 8, pp. 5506–5519, 2018.

[25] Q. Fan and N. Ansari, “Application aware workload allocation for edge
computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2146–2153, 2018.

[26] I. Ketykó, L. Kecskés, C. Nemes, and L. Farkas, “Multi-user com-
putation offloading as multiple knapsack problem for 5g mobile edge
computing,” in 2016 European Conference on Networks and Communi-
cations (EuCNC). IEEE, 2016, pp. 225–229.

[27] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive edge computing
in latency-constrained fog networks,” in 2017 European conference on
networks and communications (EuCNC). IEEE, 2017, pp. 1–6.

[28] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation
strategy in fog computing based on priced timed petri nets,” ieee internet
of things journal, vol. 4, no. 5, pp. 1216–1228, 2017.

[29] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[30] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Information
Theory (ISIT), 2016 IEEE International Symposium on. IEEE, 2016,
pp. 1451–1455.

[31] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 1, no. 2, pp. 89–103, 2015.

[32] S. Li, N. Zhang, S. Lin, L. Kong, A. Katangur, M. K. Khan, M. Ni,
and G. Zhu, “Joint admission control and resource allocation in edge
computing for internet of things,” IEEE Network, vol. 32, no. 1, pp.
72–79, 2018.

[33] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscal-
ing in energy harvesting mobile edge computing,” IEEE Transactions on



14

Cognitive Communications and Networking, vol. 3, no. 3, pp. 361–373,
2017.

[34] X. Lyu, W. Ni, H. Tian, R. P. Liu, X. Wang, G. B. Giannakis, and
A. Paulraj, “Optimal schedule of mobile edge computing for internet
of things using partial information,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 11, pp. 2606–2615, 2017.

[35] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Vehicular Technology Magazine, vol. 12,
no. 2, pp. 36–44, 2017.

[36] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in 2016 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[37] L. Yang, H. Zhang, X. Li, H. Ji, and V. Leung, “A distributed com-
putation offloading strategy in small-cell networks integrated with mo-
bile edge computing,” IEEE/ACM Transactions on Networking (TON),
vol. 26, no. 6, pp. 2762–2773, 2018.

[38] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 16, no. 9, pp. 5994–6009, 2017.

[39] T. D. Burd and R. W. Brodersen, “Processor design for portable
systems,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 13, no. 2-3, pp. 203–221, 1996.

[40] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The en-
ergy/frequency convexity rule: Modeling and experimental validation
on mobile devices,” in International Conference on Parallel Processing
and Applied Mathematics. Springer, 2013, pp. 793–803.

[41] H. Guo and J. Liu, “Collaborative computation offloading for multiac-
cess edge computing over fiber–wireless networks,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526, 2018.

[42] S. Li, Y. T. Hou, W. Lou, B. Jalaian, S. Russell, and B. MacCall,
“Optimal power control with channel uncertainty in ad hoc networks,”
in MILCOM 2019-2019 IEEE Military Communications Conference
(MILCOM). IEEE, 2019, pp. 652–657.

[43] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,” IEEE Transactions on Vehicular Tech-
nology, vol. 66, no. 8, pp. 7432–7445, 2017.

[44] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[45] A. Prékopa, Stochastic programming. Springer Science & Business
Media, 2013, vol. 324.

[46] S. Li, Y. Huang, C. Li, B. A. Jalaian, Y. T. Hou, and W. Lou, “Coping
uncertainty in coexistence via exploitation of interference threshold vio-
lation,” in Proceedings of the Twentieth ACM International Symposium
on Mobile Ad Hoc Networking and Computing, 2019, pp. 71–80.

[47] P. Gilmore and R. E. Gomory, “The theory and computation of knapsack
functions,” Operations Research, vol. 14, no. 6, pp. 1045–1074, 1966.

[48] A. Fréville, “The multidimensional 0–1 knapsack problem: An
overview,” European Journal of Operational Research, vol. 155, no. 1,
pp. 1–21, 2004.

[49] T. Q. Quek, G. de La Roche, I. Güvenç, and M. Kountouris, Small
cell networks: Deployment, PHY techniques, and resource management.
Cambridge University Press, 2013.

[50] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, 2015.

[51] A. R. Jensen, M. Lauridsen, P. Mogensen, T. B. Sørensen, and P. Jensen,
“Lte ue power consumption model: For system level energy and perfor-
mance optimization,” in 2012 IEEE Vehicular Technology Conference
(VTC Fall). IEEE, 2012, pp. 1–5.

[52] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam,
T. Yoo, O. Song, and D. Malladi, “A survey on 3gpp heterogeneous
networks,” IEEE Wireless communications, vol. 18, no. 3, pp. 10–21,
2011.

[53] “Nokia airframe data center solution executive summary,” Available:
http://networks.nokia.com/sites/default/files/document
lndcs3xecutive su mmary 290515rm.pdf, Nokia, Tech. Rep., 2015 [On-
line].

[54] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp.
1784–1797, 2018.

Wei Chang is currently pursuing the Ph.D. de-
gree with School of Information and Communica-
tion Engineering at Beijing University of Posts and
Telecommunications. Prior to beginning her Ph.D.
studies, she received the B.E. degree in communica-
tion engineering from Tianjin University in 2014.
She has been a Visiting Ph.D. Student with the
Virginia Polytechnic Institute and State University
since 2018. Her research interests are mainly edge
computing, network planning and cyber security.

Yang Xiao is currently pursuing the Ph.D. degree
with the Bradley Department of Electrical and Com-
puter Engineering at Virginia Tech, supervised by
Prof. Wenjing Lou. He received his B.S. degree from
the School of Electrical and Information Engineering
at Shanghai Jiao Tong University and M.S. degree
from the Electrical Engineering and Computer Sci-
ence Department at University of Michigan, Ann
Arbor. His research interests lie in network security,
blockchain, and IoT security.

Wenjing Lou is the W. C. English Endowed Pro-
fessor of Computer Science at Virginia Tech and a
Fellow of the IEEE. She holds a Ph.D. in Electrical
and Computer Engineering from the University of
Florida. Her research interests cover many topics
in the cybersecurity field, with her current research
interest focusing on wireless networks, privacy pro-
tection in machine learning systems, and security
and privacy problems in the Internet of Things (IoT)
systems. Prof. Lou is a highly cited researcher by the
Web of Science Group. She received the Virginia

Tech Alumni Award for Research Excellence in 2018, which is the highest
university level faculty research award. She received the INFOCOM Test-
of-Time paper award in 2020. She is the TPC chair for IEEE INFOCOM
2019 and ACM WiSec 2020. She is the Steering Committee Chair of IEEE
CNS conference series, steering committee member of IEEE INFOCOM
conference and IEEE Transactions on Mobile Computing. She served as a
program director at US National Science Foundation (NSF) from 2014 to
2017.

Guochu Shou is a professor with School of In-
formation and Communication Engineering, Beijing
University of Posts and Telecommunications. His
research interests include access network, edge com-
puting, fiber and wireless network virtualization,
network construction and routing, mobile internet
and applications.


