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Abstract—Machine Learning (ML) has been increasingly ap-
plied to malware detection in recent years. Adversarial example
(AE) attack, a well-known attack against ML working across
different mediums, is effective in evading or misleading ML-based
malware detection systems. Such an attack could be made more
effective if the generated AEs are transferable so that the AEs
can evade different types of malware detection models. To better
understand AE transferability in the malware domain, in this
paper, we study AE transferability enhancement techniques and
how they impact AE generation and Android malware detection.
Firstly, we adapt the current image-based AE transferability
enhancement techniques (i.e., ensemble sample (ES) and ensemble
model (EM)) to malware. In the adapted ES and EM methods,
we maintain malware functionality and executability while adding
perturbations. Further, we develop a new transfer-based AE
generation method, BATE, using a novel feature evenness metric.
The idea is to spread perturbations more evenly among perturbed
features by incorporating an evenness score in the objective
function. We compare our proposed methods with EM and ES on
a real Android dataset. The extensive evaluations demonstrate the
effectiveness of our method in increasing the upper bound of AE
transferability. We also confirm the effectiveness of our evenness-
score-based method by showing quantitative correlations between
AE transferability and feature evenness score.

Index Terms—malware detection, AE attack, transferability

I. INTRODUCTION

Recent years have seen rapid advancements in machine
learning (ML) in both theory and deployment. A variety of
applications, such as object detection and natural language
processing, have achieved remarkable success, due to the use
of machine learning technologies. ML is also widely used in
the security domain such as network intrusion detection and
malware detection. Compared with the traditional signature-
based detection methods, ML-based detection systems not only
exhibit high detection accuracy but also show the capability of
detecting unseen and/or zero-day attacks.

With the advancement of ML mechanisms, ML-based detec-
tion systems have outperformed their predecessors and become
the mainstream for many security applications. However, they
suffer from the same vulnerabilities that most ML models do.
Adversarial examples (AE) attack is one of the most devastating
attacks on ML models because of their imperceptible nature
and misleading capability. As shown in [1], an ML model will
misclassify a testing image to the attacker’s targeted class by
adding small (even negligible) perturbations to it. As for mal-
ware, an AE attacker is able to mislead a well-trained malware
detector to miss detecting malware by slightly modifying some

features of a piece of malware. AEs can be extremely powerful
as an AE crafted from one ML model can also mislead another
ML model to make the same misclassification. The power that
an AE generated to evade one model can evade other models
of different architectures is called AE transferability.

With transferability, an attacker is able to generate AEs using
a substitute model, apply them to the victim model, and achieve
a high attack success rate without the exact knowledge of
the victim model. This is the so-called “black-box transfer
attack” [2], [3]. The AEs generated from one ML model,
e.g., the substitute model, are also effective for another model,
e.g., the victim model, provided they are somehow related.
One example of the substitute model and the victim model
is that the substitute model and the victim model are obtained
from the same training set with different training algorithms or
settings. A higher transferability indicates that a high portion
of generated AEs from the substitute model is effective for the
victim model. The feasibility of the black-box transfer attack
greatly enhances the attacker’s capability, making the AE attack
a practical one on real-world ML models.

AE transferability is significant for malware research since it
is directly related to the attack success rate. Compared with the
image classification tasks, AEs in the malware domain exhibit
their distinct characteristics. Firstly, as a software intellectual
property, a malware detection model is usually a black box.
The model architecture and parameters of the malware detector
are unknown to the third party (thus including potential AE
attackers). It is challenging for an attacker to generate effective
AEs without knowing this critical information. One way to
overcome such a challenge is to design an approximate feature
extractor and a substitute model and then generate AEs based
on the substitute model. To improve the AE attack success
rate (i.e., the probability that an AE evades the detection),
attackers demand that the generated AE be highly transferable.
Secondly, malware detection usually utilizes an ensemble of
models for performance enhancement in practice. When facing
such ensemble-based detection methods, AEs with high trans-
ferability would be preferred as these AEs are effective across
different detection models.

Therefore, it is essential for us to understand AE trans-
ferability in the malware detection domain well. While AE
attack has been extensively studied in the computer vision
domain, AE transferability is relatively under-researched in
malware detection. In this work, we investigate AE attacks in



malware detection with a particular focus on improving AE
transferability. To start with, we make efforts to adapt and
evaluate the ensemble sample (ES) method (a popular technique
for enhancing transferability) to malware detection models
because most previous techniques from the computer vision
domain, ES included, cannot be directly applied to malware
due to the non-continuous nature of malware. Next, we proceed
to design a new adversarial example generation method, BATE,
to boost AE Transferability.

The intuition of BATE is that if the victim model’s prediction
is dominated by a small number of perturbed features, the AE
generated on the victim model will not succeed in fooling
other models that do not rely heavily on these features. We
observe that current AE generation methods perturb some
features more heavily than other features. This is one factor
that negatively impacts AE transferability and thus negatively
impacts the AE detection capability. To address this problem,
we perturb a larger set of features and make all features have a
similar importance for the model’s prediction. To this end, we
incorporate an evenness score to the AE generation objective
to generate AEs with perturbations spread across features more
evenly. We demonstrate that even perturbation is effective in
improving AE transferability. ”Know your enemy” is always
the first step to building an effective defense. We believe
a good understanding of the attack strategies will provide
valuable insights into designing effective defense mechanisms.
We summarize our contributions as follows.

• We adapt the ES and EM methods to malware detection
from the computer vision domain. Specifically, we define a
perturbation method for malware that performs constrained
manipulation on modifiable features to maintain malware’s
executability and functionality.

• We identify a new direction and propose a new method
to improve AE transferability. Our mechanism, namely
BATE, generates a perturbation that evenly modifies the
modifiable features. Intuitively, if adversarial perturbation
favors partial features, some models that do not rely
heavily on these features will not be fooled. A more even
perturbation of features would be more robust to different
models.

• We perform extensive evaluations to study AE transfer-
ability. For EM methods, we evaluate the impact of the
ensemble models on AE transferability. We observe that
the optimal EM method highly depends on the victim
model. Our observation shed light on how to customize
the ensemble model when facing different victim models.
Further, we demonstrate that BATE can improve the upper
bound of AE transferability among malware detection
models. A correlation between AE transferability and
feature evenness score is also studied to confirm our
intuition in utilizing feature evenness.

II. RELATED WORKS

AE attacks have been well-explored in the computer vision
domain in recent years. We will focus on AE transferability on

ML-based malware detection systems.

A. AE attacks on the malware detection system

Biggio et al. [4] were the first to study evading ML-based
malicious PDF detection systems using gradient information.
Goodfellow et al. [5] discovered that applying a small perturba-
tion to an image input could mislead an ML model prediction
in the testing phase and name a maliciously perturbed input
as AE. Using model gradient information, they proposed the
first AE attack (FGSM) against image classification. In the
problem domains of malware detection [6]–[9], malicious PDF
detection [4], [10], [11], or network intrusion detection [12],
AE attacks needs to additionally maintain the functionality
of original input instances. Grosse et al. [6] then adapted
the FSGM to the malware domain and launched AE attacks
on multiple DNN-based Android malware detectors. To retain
malware’s functionality, the authors applied perturbations to the
Manifest file to not interfere with other features. Rosenberg
et al. [7] added non-operational system calls iteratively to the
binary code to evade Windows malware detection systems.
In [8], Hu et al. implemented an AE attack on RNN-based
malware detectors by inserting some irrelevant API calls into
the original API call sequences. Recently, Anderson et al. [9]
used reinforcement learning to evade the malware detection
system by choosing from a predefined list of transformations
that preserve semantics. A number of AE attacks [13]–[15]
are designed to manipulate portable executable files using
model gradients. Except for the gradient information, Xu et
al. [10] utilized the heuristics algorithms to find the optimal
manipulation of PDFs while maintaining the necessary syntax.

Most of the aforementioned research is based on the white-
box adversary model, where the attacker is assumed to have
access to the victim model. Some work proposed the grey-box
AE attack [8], [16] and black-box AE attack [17]. These meth-
ods still need to query the targeted victim models frequently to
adjust the perturbation in rounds. In a black-box scenario, the
attacker is assumed to know no information about the victim
model. Most of the black-box attack needs to build a substitute
model and generate AEs based on the substitute model. The
attack success rate will highly depend on AE transferability.

B. Transferable AE attacks

The transferability of AEs was first discovered by Goodfel-
low et al. in [5]. They had the observation that the AEs would
have higher transferability in the case that the intersecting or
overlapping decision boundaries (for classification tasks) are
often learned by two models. Later, in [2], [3] researchers found
that even with very different model structures as SVMs, lo-
gistic regression models, or neural networks, AEs successfully
transfer among these different ML models. Current prevailing
methods to improve AE transferability can be split into two
genres. One is inspired by the data augmentation techniques.
Works in [18]–[20] enhance the generated AE transferability by
ensembling multiple samples together. Instead of only using the
original images to generate AEs, they apply data augmentation



Fig. 1. transfer-based AE attacks.

to the input images in iterations as the input to generate the AE
using the base FGSM [5] algorithms. Another genre increases
the AE transferability by utilizing the comprehensive gradients
information from ensembles of models technique [21]–[23]. In
these works, the authors concluded that the ensembled model
would provide a lower-variance model since it achieved a
smoother and more stable decision boundary.

Extensive works have recognized the importance of the
transferability property of AE, but there is still a lack of effort
in the malware domain. Compared with computer vision data,
malware perturbation is more challenging because of the need
to maintain functionality and execution.

C. Transferable AE attacks on malware classifiers

A few recent works [16], [24] explored the success rate of
the transfer-based AE attacks on malware classifiers, and these
works show much lower transferability compared with that in
the CV domain. The transferable AE attacks on malware are
an under-studied problem.

In this paper, we study how existing transferability en-
hancement techniques [20], [22] would impact malware AE
transferability. We will demonstrate the limitations of current
transferability enhancement techniques on malware classifiers
and propose a new AE generation method to improve AE
transferability. We hope our work on transferable AE attacks
in the malware domain could advance the understanding of
effective AE attack strategies and provide useful inputs to
promote a more robust malware detection design.

III. SYSTEM MODEL AND ADVERSARIAL MODEL

A. System Model

In this work, we aim to generate AEs with higher transfer-
ability, which can evade different detection models in the grey-
box scenario. We assume that the attacker has no information
about the victim model except the feature representation X
and the training data D of the targeted victim model. The
attacker first builds a substitute model fs(x) using the feature
representation X and the training data D. Attackers also have
a set of testing samples that have been classified as malware
by the victim model. Then AEs would be generated on this
substitute model fs(x). In such a case, the victim model is a
grey box for the attacker. Then the generated AEs are evaluated
on the victim model again to see if they can successfully evade
the victim model. Note that the attacker’s goal is to improve the
probability that AEs generated from the substitute model could

TABLE I
CATEGORIZATION OF ATTACK CAPABILITY.

Attack Category Attacker’s Information Defense Difficulty
White-box attacks D,X, f̂v , ŵ Low
Grey-box attacks X and a subset of D Medium
Black-box attacks None Difficult

also successfully evade the targeted victim model. Figure 1
illustrates the process of a transfer-based AE attack. Attackers
train the substitute and generate AE from it for attacking the
targeted victim model.

B. Adversary Model

Attackers’ Goal is to increase the transferability of AE
attacks on malware classifiers. The transferability is defined as
the probability that AEs crafted from one white-box malware
detection model (e.g., a substitute model to which the attacker
has full access) can successfully evade/mislead the unknown
victim model. A higher probability corresponds to a ‘higher’
transferability, which indicates that the AEs are more powerful.

Attackers’ Capability refers to the amount of information
the attacker knows about the victim model. From an attacker’s
viewpoint, there are four types of information about the victim
model—the training dataset D, the feature representation of a
sample X , the model architecture f̂v , and the model parameters
ŵ. Depending on the amount of information the attacker has,
we can divide attacks into three categories: white-box attacks,
grey-box attacks, and black-box attacks. A white-box attacker
knows all the information about the targeted victim model,
i.e., {D,X, f̂v, ŵ}, a black-box attacker knows nothing about
the victim model, and a grey-box attacker knows a subset of
{D,X, f̂v, ŵ}. We also illustrate the differences in Table I. In
this work, we adopt a grey-box attack in which the attacker
knows X and a subset of D while she does not know f̂v and ŵ.
The grey-box assumption is realistic since an attacker should
be able to obtain some training samples and X while much
more challenging to obtain f̂v and ŵ.

Attackers’ Strategy. Transferable AE attacks under the
grey-box adversary model consist of two steps. In Step One, the
attacker builds a substitute model for the victim model using
any resources she has under her disposal, including X and a
subset of D. The substitute model is expected to make similar
decisions as the victim model. Note that the substitute model
is a white-box model to the attacker as she builds it by herself.
In Step Two, given a malicious clean sample X , the attacker
generates the corresponding AE X ′ for the substitute model,
i.e., X ′ is a successful AE on the substitute model. In Step
Three, the attacker applies X ′ to the victim model to see if X ′

works on the victim model or not. The higher the probability
that X ′ works on the victim model, the higher the transferability
of our attack.

IV. BATE DESIGN

A. Intuition

ML models, particularly deep learning models, tend to be
overfitted because of iterative training [25], which makes a
trained model very sensitive to a small portion of ‘important’



features. In other words, small perturbations over these features
could significantly change the output layer, thus making a
trained model vulnerable to AE attacks. In [25]–[27], the
authors showed that ML models are more robust against sparse
attacks if the feature importance for model prediction is dis-
tributed more evenly across the features. Let I(xi) denote the
importance of xi, i = 1, 2, · · · , nd (xi is the i-th features in
x). If variance(I(x)) is smaller, the corresponding ML model
is likely to be more robust. On the contrary, assuming that
different ML models have different sets of important features
for their predictions (even under the same feature presentation
X), it is intuitive that if the victim model’s prediction is
dominated by a small number of perturbed features, the AE
generated on the victim model will not succeed in fooling other
models that do not rely heavily on these features. In BATE’s
design, we aim to perturb a larger set of features and make all
features of similar importance for the model’s prediction. We
call the scenario where crafted AEs are only effective in the
model used for AE generation ’overfitting’. We can avoid the
generated AE from overfitting to a specific model by making
all features with even contributions to the final prediction.

B. Evenness Score

The uniqueness of our transferable attack is that we aim
to generate AEs with high evenness scores such that they are
more likely to achieve high transferability. Our definition of
evenness score can be easily illustrated in two steps. Recall
that we denote an ML model and its input feature vector by
y = f(x) and x, respectively.

1) Step One, we use explainable ML techniques [26], [28]
to compute the importance of each feature in x on the
prediction result (i.e., f(x)). As a result, we obtain the
contribution vector I of which Ii corresponds to the
importance of xi on f(x).

2) Step Two, we compute an Evenness Score, r, using the
following equation.

r =
||I||1

nd||I||∞
. (1)

Here I = {Ii}i∈[1,nd],
∑nd

i=1 Ii = 1, nd is the number
of features in x, and ||I||1 and ||I||∞ represent the L-1
norm and L-∞ norm of vector I .

Intuitively, we can boost AE transferability by minimizing
the variance of {I(x′

1), I(x
′
2), ..., I(x

′
nd
)} of the generated x′s,

which makes x′s become more likely to succeed in attacking
the targeted victim model fv(·).

C. Objective Function

Our objective is to find AE x′ from x so that x′ is classified to
a targeted class t while its evenness score r(x′) is maximized.
We formulate the objective function to generate AEs as:

maximize
δ

r(x+ δ),

subject to fs(x+ δ) = t,

x+ δ ∈ Fnd .

(2)

where r(·) is the evenness score function, x is the feature repre-
sentation of an input malware, δ is the adversarial perturbations
for x, fs(·) is the substitute model from the attacker, t is the
targeted class, and Fnd denotes all valid input feature vectors.
The crafted AE x′ is x′ = x+ δ. An attacker typically aims to
generate x′ which is still malware but classified by fs(·) as a
benign application. We denote malware with label 1, then the
target class t = 0.

Due to the nonlinear property of fs(x + δ) = t, Formula 2
is not solvable. We follow the approach in [29] and replace
fs(x+ δ) = t by g(x+ δ) ≤ 0 where g(x) is defined as:

g(x) = max{0.5−fs(x), 0}. (3)

Then the formulation of our optimization problem in For-
mula 2 is stated as follows:

minimize
δ

− r(x+ δ),

subject to g(x+ δ) ≤ 0,

x+ δ ∈ Fnd .

(4)

Moreover, we further modify the objective function as fol-
lows by Lagrangian relaxation:

minimize
δ

− r(x+ δ) + cg(x+ δ),

subject to x+ δ ∈ Fnd ,
(5)

where c ≤ 0 is a penalty constant and a hyper-parameter.
Different c can lead to quite different δ thus x′. In practice, we
conduct a grid search to find a better c. Since we remove the
constraint in Formula 4, the minimum of objective in formula
4 will be smaller. Then we add a penal term in Formula 5 to
penalize the original objective function. There exists a c such
that the optimal solution to the objective in Formula 5 is equal
to the optimal solution of the objective in Formula 4 with the
constraints.

D. Solving the Objective Function

Here we focus on solving Equation 5 covering how to find
c and handle the constraints.

Finding the constant c. As mentioned above, we use a grid
search to find a proper c for Formula 5. Specifically, we start
from 0.01 to 1000. For each c, we then use stochastic gradient
descent (SGD) to obtain δp, i.e., the optimal δ. Note that it
is possible that we cannot obtain δp for some x when solving
Equation 5. If c exceeds the threshold (i.e., 1000) and still
cannot meet the requirements, we will abort the search and fail
to generate an AE for the x.

Box constraint. As introduced in Section V-A1, xi for
an Android apk corresponds to whether or not a specific
permission or API call is declared in the corresponding An-
droidManifest.xml file. As a result, xi is either 0 (i.e., not
declared) or 1 (i.e., declared). So we replace the constraint in
formula 5 as:

x+ δ ∈ {0, 1}nd , (6)



which is called as “box constrait”. Following [29], we set
another form constrait in Equation 5:

δi =
1

2
(tanh(wi) + 1)− xi, (7)

where wi is the replacement variable for the ith dimension of
optimization variable δi. Since 0 < 1

2 (tanh(wi) + 1) < 1, the
new modified vector δi+xi would always fall into valid range.
Instead of optimizing δ directly, we modify the input vector x
on variable w of function tanh and valid the box constraints
automatically.

L∞ and L1 adjustment. Based on the optimization for-
mulation and evenness score function defined above, the final
objective is:

minimize
δ

cg(x+ δ)− ||I||1
nd · ||I||∞

. (8)

We normalize the ||I||1 each iteration to further simplify the
optimization formulation. We observe that directly solving
Formula 8 does not generate effective AEs. One possible
reason is that it is hard to realize the gradient search on
component ||I||∞. The infinity norm ||I||∞ is solely related
to the dimension with the largest value, so it penalizes only
one dimension at one time. It is possible that the value of
Ij increases when we penalize Ii. Thus, a few dimensions
may change back and forth without any optimization progress
in gradient descent. We aim to obtain the gradient descent
direction toward the decrease of all dimensions with a ”large
value”. As a remedy, we modify Formula 8 as follows.

minimize
δ

cg(x+ δ) +

∑
i[Ii − λ]

nd
. (9)

where λ is a hyper-parameter used to penalize all Ii ≥ λ to
avoid only penalizing one dimension at one iteration. We also
introduce a decay factor, γ ≤ 1, to λ, i.e., λk+1 = λγ

k so
that the algorithm could optimize Ii gradually and smoothly. k
denotes the k-th iteration round.

We summarize how to generate an AE in our transfer attack
and illustrate it in Algorithm 1.

V. PERFORMANCE EVALUATION

A. Experimental Setup

1) Dataset and Data Processing: We use Drebin dataset, one
of the most popular datasets for evaluating malware classifiers
[30], for evaluation. The dataset includes SHA256 values of
129,013 android applications, of which 123,453 are benign,
and 5,560 are malicious. Based on the given SHA256 value,
we collect the APK files from the APK markets, including
VirusTotal for the malware APKs and GooglePlay store or
AppChina for benign APKs. We follow the framework of [30]
to statically analyze Android applications.

The dataset contains 545, 333 features, each is represented
by a binary value that indicates whether the feature is present
in an application. As shown in Table II, Drebin constructs 8
feature classes based on manifest and dexcode files. Subsets
S1 to S4 are extracted from AndroidManifest.xml and S5 to

Algorithm 1 The Proposed Algorithm
Input: training dataset Dtrain, validation dataset Dv , testing

set Dtest, maximum threshold cmax, minimum threshold
cmin, penalizer λ, decay factor γ, malware example x̂ to
be modified

Output: AE x̂′

1: fs(·)← train model(Dtrain, Dv, Dtest) # Train the sub-
stitute model

2: x̂′ ← x̂
3: c← cmin

4: while c < cmax do
5: r ← contribution compute(fs(·), x̂′) #Compute the

evenness score
6: δ ← gradient descent(fs(·), x̂′, λ, r) # Optimization

step based on Equation 9
7: x̂′ ← x̂+ δ
8: if fs(x̂′) == 0 then
9: break # Successfully evade the substitute model

10: end if
11: λ← λγ

12: end while
13: return x̂′

TABLE II
OVERVIEW OF THE DREBIN FEATURE SETS.

manifest dexcode
S1 Hardware components S5 Restricted API calls
S2 Requested permissions S6 Used permission
S3 Application components S7 Suspicious API calls
S4 Filtered intents S8 Network addresses

S8 are extracted from Class.dex file. An APK file z ∈ Z then
will be mapped in to a feature vector x ∈ X through a mapping
function Z −→ X , where x = (x1, ..., xnd)T ∈ X = {0, 1}nd .
Each dimension of x indicates whether this feature exists in the
APK file z. We further select 10,000 (nd = 10, 000) features
out of 545, 333 features with high frequencies as the input
vector for ML models.

2) Victim and Substitute Model Training: According to the
adversarial model in Sec. III-B, we train two models for
each experiment: the victim model and the substitute model.
Note that the attacker’s knowledge is formed as the quadruple
{D,X, f̂ , ŵ}. For the training set D, We train the victim model
and the substitute model using the full training set of Drebin.
We assume the attacker and the victim use the same feature
representation X .

For each experiment, we choose one victim model and
one substitute model from {Support Vector Machine(SVM),
Logistics Regression(LR), Ridge Regression(RR), Neural Net-
work(NN), Ensemble Model(EM)}. For each substitute model
and the victim model, we end the training process when the
validation accuracy no longer improves.

B. Evaluation Metric

We use the transferability of AEs as the major metric.
Attackers generate AEs on the substitute model and examine



these generated AEs on the victim model. It is evaluated by the
transferability:

TSR =
Nv

Ns
, (10)

where Ns is the number of generated AEs that successfully
evade the substitute model and Nv is the number of gener-
ated AEs evade the attacker’s substitute model fs(·) and also
successfully evade the targeted victim model fv(·).

C. Benchmarks

We use three algorithms as the benchmarks, including orig-
inal FGSM [1] and FGSM attack with two transferability
enhance techniques, i.e., ensemble-sample (ES) and ensemble-
model (EM). We briefly introduce them here.

1) FGSM: Fast Gradient Sign Attack attack(FGSM) [1]
performs only one gradient update in the direction of the
gradient sign at each pixel. The perturbation form is:

x′ = x+ αsign(∇xJθ(x, y)),

where α is the magnitude of the perturbation and Jθ is the cost
function for the ML model.

2) Ensemble Sample: ES is basically from the data augmen-
tation idea. ES ensembles multiple samples together at first
or in the middle process of generating AE to enhance the
transferability of generated AE. Dong et al. [20] propose an
ES method, namely Translation-Invariant Attack. ES method
generates AEs by utilizing a set of translated samples from the
original sample:

argmin
δ

∑
i,j

wi,jJθ(Ti,j(x+ δ), y∗),

subject to D(x, x+ δ) < ε

x+ δ ∈ [0, 1]nd ,

where Tij(x) is a translation operation that shifts the image
x along two dimensions of i and j pixels respectively. ES can
generate AEs that are less sensitive to the discriminative regions
of the attacker’s substitute model. In malware, we adapt it by
randomly flipping a specific number of 0 to 1 in the feature
space as the translation operation.

3) Ensemble Model: EM [22] is another major technique
in the computer vision domain to improve AE transferability.
The idea is to integrate multiple models to generate trans-
ferable AEs. Given a set of models {fn(x)} and a set of
weights {an}, an attacker first compute an ensemble model
F (x) =

∑n
i=1 aifi(x) which is the weighted average of the

set of models. The attacker then generates AEs from F (x).
The EM method solves the following problem:

argmin
δ

− log((

n∑
i=1

aifi(x+ δ)) · 1y∗) + λD(x, x+ δ),

subject to x+ δ ∈ [0, 1]nd ,

where ai is the ensemble weight,
∑n

i=1 ai = 1, and y∗ is the
target label which the attacker want to mislead.

D. Adapt ES and EM to Malware Data

An attacker generates an AE x+δ based on the original mal-
ware input vector x to evade the victim model. The generated
AE must maintain the original application’s integrity and mali-
cious functionality. Therefore, we redefine the manipulation δ
instead of using the default x+ δ ∈ [0, 1].

We consider feature addition strategy ( i.e., ’0’ to ’1’ strat-
egy). In the feature addition strategy, attackers can flip the value
in the input vector from ’0’ to ’1’, meaning injecting features in
the original APK file, such as adding more permission requests
in AndroidManifest.xml or another system call in Class.dex file.
The ’0’ to ’1’ change is a much safer manipulation compared
with the ’1’ to ’0’ change. Generally, adding more features to
the original sample at AndroidManifest.xml would not affect
its functionality(e.g., more permission requests). The ’0’ to ’1’
change at the Class.dex file means adding some dead code that
has never been called or executed, which is also safe.

Further, following the work in [6] we pre-define a modifiable
feature set. And modifications on features in this set would not
harm the functionality and the executability. We gradually in-
crease the percentage of modifiable features in the modification
restriction set ϵ from 0.01 to 0.50 and observe the performance.

E. Evaluation Results

We examine the effectiveness of transfer-based AE attacks on
malware in different aspects, including the substitute models,
the size of the modifiable features set, and the transferability
enhancement techniques ES and EM. Finally, we investigate
the proposed methodology. We give the experimental results
and analysis as follows:

1) Evaluate FGSM in Malware Classifiers: We first train the
victim model (i.e., a neural network (NN) with three hidden
layers and 100 neurons at each layer, denoted as NN(3,100)).
We train multiple substitute models to simulate a grey-box
scenario, including SVM, LR, RR, and NN. The substitute NN
is with two layers and 100 neurons at each layer, denoted as
NN(2,100).

Table III shows the experimental results of the FGSM attack.
The attack transferability increases as the modification restric-
tion get looser (ϵ gets higher), indicating AEs can successfully
evade the malware detection system with a higher probability
when attackers are given permission to modify more features.
And the transferability stops increasing after ϵ hits a certain
level.

The transferability is also impacted by substitute models. As
Table III shows, NN(2,100) achieves the fastest-growing trans-
ferability performance while the other three ML models (SVM,
LR, and RR) grow much slower to achieve their maximum
transferability value. Using NN(2,100) as the substitute model
gets much better transferability in the lower ϵ range (0.01 to
0.03 in this experiment). This is due to the very similar structure
between the substitute model NN(2,100) and the victim model
NN(3,100). Note that we tried several NNs with a different
number of layers and neurons at each layer and found they



TABLE III
AE TRANSFERABILITY OF FGSM.

Different Substitute models Victim model(NN(3,100))
ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06 ϵ = 0.10 ϵ = 0.20 ϵ = 0.50

SVM 4% 27% 73% 91% 91% 91% 91% 91% 91%
LR 5% 46% 84% 96% 96% 96% 96% 96% 96%
RR 5% 46% 84% 96% 96% 96% 96% 96% 96%

NN(2,100) 27% 68% 93% 94% 94% 94% 94% 94% 94%

TABLE IV
AE TRANSFERABILITY FGSM WITH ES ENHANCEMENT.

Different Substitute models Victim model(NN(3,100))
ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06 ϵ = 0.10 ϵ = 0.20 ϵ = 0.50

SVM 4% 28% 74% 92% 92% 92% 92% 92% 92%
LR 5% 46% 84% 96% 96% 96% 96% 96% 96%
RR 5% 46% 84% 96% 96% 96% 96% 96% 96%

NN(2,100) 28% 68% 93% 94% 94% 94% 94% 94% 94%

TABLE V
AE TRANSFERABILITY OF FGSM WITH EM ENHANCEMENT.

Different Victim models Corresponding attacker’s EM Modification restrictions

ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06

NN SVM-LR-RR 6% 44% 83% 95% 96% 96%
SVM-NN-LR-RR 0% 1% 6% 17% 55% 55%

SVM NN-LR-RR 8% 9% 16% 16% 17% 17%
SVM-NN-LR-RR 8% 9% 16% 17% 19% 19%

LR SVM-NN-RR 6% 9% 13% 21% 24% 24%
SVM-NN-LR-RR 1% 5% 23% 30% 39% 40%

RR SVM-NN-LR 3% 5% 11% 11% 12% 12%
SVM-NN-LR-RR 2% 3% 16% 21% 30% 30%

TABLE VI
AE TRANSFERABILITY OF BATE

Different Substitute models Victim model(NN(3,100))
ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06 ϵ = 0.10 ϵ = 0.20 ϵ = 0.50

SVM 0% 24% 47% 68% 76% 81% 90% 95% 95%
LR 1% 33% 58% 75% 88% 92% 97% 97% 98%
RR 1% 33% 58% 75% 88% 92% 97% 97% 98%

NN(2,100) 14% 43% 72% 89% 95% 96% 98% 98% 98%

have a similar experimental trend as NN(2,100). So here, we
only show NN(2,100) in the results.

We also validate the previous criterion [31] that lower-
complexity models (with stronger regularization) provide better
substitute models. As the ϵ increases, SVM LR and RR also
achieve higher than 90% transferability. SVM is designed to
generate more complex decision boundaries [32] than LR and
RR. LR and RR consistently outperform SVM in all ϵ settings.

2) Evaluate ES in Malware Classifier: Table IV shows
the results of the FGSM method enhanced by ES technique.
Compared with Table III, we can see that ES only has minor
improvements for a few settings, such as SVM(ϵ = 0.02 to
ϵ = 0.50) and NN(2,200)(ϵ = 0.01). ES does not improve the
AE transferability significantly.

3) Evaluate EM in Malware Classifier: We designed mul-
tiple victim models and substitute models to examine how the
two settings impact the AE transferability of EM methods.

We use NN(3,100) as the victim model and SVM-LR-RR as
the ensemble substitute model. As shown in Table V, the SVM-
LR-RR achieves as high as 96% transferability when ϵ = 0.05,
which slightly surpasses baseline FGSM and ES FGSM at the
same perturbation level (i.e., the same ϵ). When we ensemble
one more model NN(3,100) (the same structure as the victim
model) and get SVM-NN-LR-RR, the transferability gets even
lower than SVM-LR-RR in every ϵ setting. The reason can
be that the substitute model becomes more complicated after

adding NN. Generating AE on a complicated model but attack-
ing a rather simple model would result in lower transferability.
It is also consistent with our previous argument in baseline
FGSM experimental results.

We have interesting findings by using various victim models.
When using SVM as the victim model, NN-LR-RR achieves
only 17% transferability at ϵ = 0.06. It is because the substitute
model is complicated (i.e., NN is included). For the LR and RR
victim models, we get similar results. When we ensemble one
more model the same as the victim model and get SVM-NN-
LR-RR, we can see the upper bound of transferability increased
to 19%. We get a similar increase for the LR victim and RR
victim models. However, ensembling NN into SVM-LR-RR
will harm the transferability. This is because NN increases
the complexity of SVM-LR-RR. Therefore, ensembling one
more model into the substitute model would be beneficial
for enhancing AE transferability if the added model does not
increase the complexity of the current substitute ensemble
models.

Based on the results above, we conclude that the transfer-
ability performance of EM is unstable. With a small ϵ, simpler
models would provide higher transferability. At larger ϵ set-
tings, transferability is highly relevant to the model complexity
level between the victim model fv and the substitute model fs.
For the attacker, a simpler substitute model (Or ensemble of
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Fig. 2. Evenness scores as the adversarial step increases.

very simple models) would be a safer choice.
4) Evaluate BATE in Malware Classifier: In this experiment,

we use the same settings as the FGSM and ES experiments.
Table VI shows transferability of BATE. The transferability
increases with ϵ and exceeds the maximum value of the
previous baseline methods though the transferability at small
ϵ is relatively lower than baselines. Specifically, when the ϵ
is up to certain values, the transferability will reach the peak,
which excels FGSM and EM baseline by 2% to 4%. The more
modifiable features, the higher evenness score our method could
optimize, thus the higher transferability results the attacker
could get.

Is the evenness score optimized?
To further validate BATE works and whether the evenness

score gets optimized, we examine the average evenness score
change as the adversarial steps increase in the gradient descent
process. We plot the average evenness score over 100 testing
samples when proceeding with optimization in different ϵ
settings from 0.01 to 0.5 in Figure 2. When the ϵ is in small
values (e.g., ϵ = 0.01), average evenness scores remain constant
as the adversarial steps increase since the optimization space is
limited. As the ϵ gets large, the substitute model NN has the
fastest growth rate in evenness score. The LR is slightly higher
than RR, while the SVM is the slowest one. This phenomenon
is because the NN has more nonlinear relationships in model
space and could get overfitted more easily. Therefore, it has
more potential to be optimized even in small ϵ. Also, since LR

TABLE VII
CORRELATION BETWEEN TRANSFERABILITY RATE AND EVENNESS SCORE.

EACH RESULT IS OBTAINED FROM 100 TESTING SAMPLES.
coefficients value p-value

SVM
Pearson 0.68 1e-5
Spearman Rank 0.65 1e-5
Kendall’s Tau 0.48 1e-5

LR
Pearson 0.75 1e-5
Spearman Rank 0.72 1e-5
Kendall’s Tau 0.51 1e-5

RR
Pearson 0.75 1e-5
Spearman Rank 0.72 1e-5
Kendall’s Tau 0.51 1e-5

NN(2,200)
Pearson 0.82 1e-5
Spearman Rank 0.94 1e-5
Kendall’s Tau 0.81 1e-5

has no regularization penalty as in RR, it will get overfitted
more easily than RR.

Even though the model non-linearity affects evenness score
optimization space, it would be a minor factor if the ϵ value is
large enough. From Figure 2, we can observe that the evenness
scores are very close in all models when ϵ = 0.50.

What is the relationship between Evenness Score and
Transferability?

Here we investigate the relationship between the Evenness
Score and the transferability to examine our intuition further. To
investigate the statistical significance of evenness score to AE
transferability, we compute the associated correlation values
with three metrics, including Pearson value, Spearman Rank
value, and Kendall’s Tau value. The correlation is shown in



Table VII. We observed that the hypothesis that the evenness
score and the transferability have no correlation failed. We
obtained the test value from the transferability and the average
evenness score of 100 testing samples in different ϵ settings
(0.01 to 0.5). All the p-values are smaller than 10−5, which
confirms 99% statistical significance.

VI. CONCLUSION AND FUTURE WORK

We have studied how transferability enhancement techniques
ES and EM perform in the malware detection domain. We
propose a novel formulation for transfer-based AE attacks based
on the contribution of each feature toward the prediction result.
Comprehensive experiments show that ES and EM have no
apparent improvement in transferability, while our proposed
methodology performs better in large modifiable feature sets
due to the larger evenness score optimization space. From the
attacker’s viewpoint, simpler models provide a better substitute
for transfer-based AE attacks. We hope this paper will inspire
more research into the context of adversarial malware detection.
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