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Abstract—Popularized by Bitcoin, proof-of-work (PoW)
blockchain is one of the most widely deployed distributed
consensus systems nowadays. Driven by incentives, PoW-based
blockchain allows for democratized consensus making with cor-
rectness guarantee, as long as majority of the participants in the
network are honest and rational. However, such elegant game
theoretical security model falls apart when it is deployed on
systems with potentially adversarial components and network
conditions. For distributed consensus protocol used in blockchain,
network plays a crucial role in the overall security of the system.
A well-connected adversary with a communication advantage
over honest nodes has a higher chance of winning blockchain
forks and harvesting higher-than-usual mining revenue. Yet,
evaluation of such communication advantage from a network
perspective and its impact on blockchain consensus security have
not received much attention.

In this paper we fill this gap by assessing the impact of network
connectivity on PoW blockchain consensus security via modeling
analysis. Specifically, we perform analysis on two adversarial
scenarios: 1) honest-but-potentially-colluding, 2) selfish mining.
For each scenario, we evaluate the communication capability of
nodes via network modeling and estimate the adversary’s mining
revenue and its impact on blockchain consensus security. Our
analysis serves as a paradigm for future endeavors that seek to
link blockchain security with network connectivity.

Index Terms—Blockchain, network modeling, consensus secu-
rity

I. INTRODUCTION

Decentralization is a foundational principle for blockchain
technology and distributed ledger system. Envisioned by
Nakamoto, the pseudonymous creator of Bitcoin [1], and
later practitioners, blockchain essentially enables consensus
making among mutually distrusted parties without relying on
a central authority. A key premise that ensures the security
of distributed consensus is that an adversary or a group of
colluding adversaries do not control the majority of gross
voting power in the consensus process, and in the case of
proof-of-work (PoW) based blockchains, 50% of computing
(or “mining”) power of the entire network [2].

This honest-majority security premise comes under two
assumptions. First, all nodes have the same communication
capability, i.e. propagating information throughout the network
equally fast. Second, during a blockchain fork race, wherein
several blocks of the same height compete for a place in
blockchain, all competitors have an equal chance of being the
winner. However, in practice, the quality of connections often
differ significantly among different network regions, as has

been demonstrated by various measurements [3], [4], [5], [6].
Those residing in a highly connected cluster can disseminate
blocks faster than those in a less connected region. This
communication advantage translates into a higher chance of
dominating a fork race, and has nontrivial consequence in the
security of distributed consensus. As a result of this advantage
at the network, the adversary will no longer require a 50%
minimum of the gross mining power to succeed.

Following this intuition, various blockchain scaling propos-
als and security analyses [7], [8], [9] have identified the pos-
itive correlation between high blockchain fork rate and weak
consensus security. These works generally adopt the honest-
but-potentially-colluding threat model, in which any size of
honest miners can join the collusion to compromise consensus
security. Specifically, colluding miners can dominate fork races
against the remaining honest miners and achieve unfair mining
gains. As a result, the colluding miners may need less than
50% of mining power to break the consensus. However, these
security analyses are largely qualitative and do not look into
the impact of the actual network connection or information
propagation dynamics.

The security impact of information propagation dynamics in
Bitcoin was studied quantitatively at the macro level in [10].
It proposes a probabilistic model that estimates the average
fork rate of Bitcoin blockchain based on the measurement of
how an average block propagates in the network. The authors
then regard fork rate as a security measure of the underlying
blockchain network. However, this probabilistic model still
assumes all miners have equal communication capability and
equal chance of winning fork races, and does not consider the
impact of heterogeneous network connectivity. It also does
not provide a concrete case of how an adversary exploits the
blockchain forks.

Another line of research focuses on adversarial strategies for
selfish colluding parties [11], [12], [13], [14]. In selfish min-
ing [11], an adversary with superior communication capability
can achieve unfair mining gain by strategically withholding
and releasing blocks. It proactively creates blockchain forks
that nullify the efforts of honest nodes. Although these works
take into account the difference in fork winning chance be-
tween the adversary and honest miners, their analyses treat
the adversary’s communication capability as a preexisting
parameter (denoted by γSM ) rather than deriving it from
the actual network connectivity pattern. Additionally, how the



Fig. 1. Proposed analytical diagram.

expansion process of selfish mining pool in the network affects
its communication capability and overall consensus security is
also an important issue but overlooked in the literature.

Observing that both strategy and network capability are
two key inter-connected factors for the security of distributed
consensus, in this paper, we propose an analytical model to
assess the impact of network connectivity on the security of
PoW-based distributed consensus systems. The model captures
network connectivity by a graph representation of the peer-to-
peer network, and evaluates the communication capability of a
miner node during a blockchain fork race. The communication
capability measures, combined with the consensus protocol
specification and other digests from the network model and
adversary model, are then used to quantitatively estimate the
security provisions of the whole system. An overview of our
analytic diagram is illustrated in Figure 1.

Specifically, the main contributions of this paper include:

• We propose a novel analytical model that assesses the
impact of network connectivity on consensus security
of PoW blockchain through modeling and probabilistic
analysis. The proposed analytical diagram also works for
a general proof-of-X blockchain that relies on the longest-
chain rule for consensus.

• For honest-but-potentially-colluding adversaries, our
analysis treats every node as honest by default, and com-
pute its mining revenue and relative mining gain based
on its communication advantage over other nodes. With
the distribution of mining revenues, we perform security
analysis w.r.t. fork rate and the 50%-attack threshold.

• For selfish mining adversary, our analysis follows the
classical setting of a selfish mining pool and treats the
selfish mining pool as a consortium that expands among
honest nodes. We provide a novel evaluation of the
core communication capability metric of the pool, γSM ,
using a mining power-weighted betweenness centrality
measure.

• We provide a thorough simulation experiment on PoW
blockchain for each adversarial scenario. The simulation
result validates our analysis.

II. BACKGROUND

A. PoW Blockchain and Distributed Consensus

In public blockchain systems exemplified by Bitcoin, all
networked miner nodes (“nodes” hereafter) work to curate a
unified transaction history through distributed consensus. The
transaction history is recorded in a chain of blocks in which
every block contains a certain number of recently produced
transactions. Every node seeks to generate the next block of
the blockchain via a proof-of-work (PoW) process, namely, by
finding an input to a cryptographic hash function that yields
an output less than a target value. The input (i.e. the “proof”)
is attached in the block header. New blocks are disseminated
immediately to the network via peer-to-peer gossiping. All
nodes reach consensus on only one block at each blockchain
height according to the “longest-chain rule”: choosing the
chain with the highest valid block. The generation of the
next block should be aimed at prolonging the longest chain.
Theoretically as long as the majority computing power is
controlled by honest nodes, the longest chain shall always
contain the most computation effort and thus the longest-chain
rule ensures the security of distributed consensus. The above
consensus scheme is also known as Nakamoto consensus, for
its origin in Nakamoto’s Bitcoin white paper [1].

In practical blockchain network, consensus security is com-
plicated by blockchain forks. Blockchain fork is a scenario
that multiple blocks of the same height are propagating in
the network simultaneously. Under the assumption that all
nodes are honest and follow the consensus rules, blockchain
fork is caused by block propagation delays in that node j
may generate a competing block before being aware of the
existence of node i’s block of the same height. To resolve
blockchain fork, the longest-chain rule dictates that whichever
fork branch gets appended with a new block should be chosen;
blocks in other branches are then discarded. In the presence of
forks, the honest-majority premise can still ensure consensus
security, under an assumption that all competing blocks in a
fork have an equal chance of being the winner [2].

B. Network Connectivity’s Impact on Consensus Security

Due to heterogeneous connectivity of the underlying peer-
to-peer network, the equal-chance fork winning assumption
may not hold true. A well-connected node, say node i, tends
to have superior communication capability that allows it to
disseminate information faster than a less-connected node,
say node j. If node i generates a new block, it takes a
shorter time for node i to propagate this block across the
whole network and thus the rest of the network has a lower
chance of generating a competing block. If node j generates a
competing block before node i’s block reaches j, node i’s
communication advantage can still cause a larger share of
the network to follow its block, which gives node i a higher
chance of winning the fork eventually. As a result, in the long
term well-connected nodes yield higher mining revenue than
what would be expected from their share of computing power.
This discrepancy between the long-term mining revenue and



the actual computing power of a node implies the possibility
that a group of well-connected nodes with minority portion of
computing power can harvest more than 50% of total mining
revenue, which ultimately renders the honest-majority security
premise vulnerable.

Besides exploiting naturally occurred forks, a well-
connected adversary can achieve a significantly higher mining
gain by proactively creating forks. Selfish mining [11] is one
prominent example. Unlike an honest miner who publishes
new block immediately after generation, a selfish mining at-
tacker withholds newly generated blocks in a private chain, and
strategically releases the private chain to the network whenever
he sees his lead over the public chain decreases to a threshold.
Consequently, the blockchain forks caused by the attacker’s
strategic private chain releases nullify the mining effort of
honest nodes and create opportunities for the attacker to profit
from its communication advantage. The detailed selfish mining
strategy and the communication advantage parameter γSM will
be discussed in Section V.

III. SYSTEM MODEL

A. Network Model and Consensus Protocol

We consider a peer-to-peer network of N nodes represented
by an undirected graph G = (V,E) and its adjacency matrix
A. Aij = 1 indicates node i, j share a peer relationship
and can communicate in one hop. The PoW process and the
longest-chain-rule-based consensus scheme are characterized
as follows. To model the output randomness of the crypto-
graphic hash function used for PoW, we assume each node
i generates new blocks according to Poisson process of rate
πi per time unit δ. The block generation rate of the whole
network is evaluated by the merged Poisson rate of π =

∑
i πi.

Note that our model does not adjust mining difficulty, as we
are considering a fixed set of participants with fixed block
generation rate.

Once a node i generates blocki(h) of blockchain height
h, it disseminates blocki(h) throughout the network via peer-
to-peer gossiping. Other nodes decide on the acceptance of
blocki(h) according to the longest-chain rule. That is, if
another node k sees blocki(h) while its local blockchain
has already accepted blockj(h) from node j (j 6= i), it
declares a fork at height h and stops propagating blocki(h).
Conversely, if node l sees blocki(h) before blockj(h), it
declares a fork at height h and stops propagating blockj(h).
Once the two competing blocks completely stop propagating
and the network partitions into two factions each of which
advocates one block, we call this situation a fork stalemate.
And the two blocks are partially propagated. A fork stalemate
can be resolved by a new block of height h + 1 subscribing
either i or j’s block and being fully propagated in the network.

As for the finalization of blockchain, we consider the
blockchain canonized by height h if a block of any origin
block∗(h) gets fully propagated in the network without en-
countering any competing block. We define the completion of
block∗(h)’s propagation as a canonization event. Essentially,

TABLE I
SUMMARY OF NOTATIONS

Network and Model Parameters
G The graph representation of the node network.
N Number of nodes in G.
A The adjacency matrix of G.
δ Timeslot, also the time unit.
π Block generation rate of the entire network (δ−1).
πi Block generation rate of node i (δ−1).
πSM Block generation rate of the selfish mining pool (δ−1)

Analyses
Ui(t) Set of nodes unaware of node i’s block at time t since its

generation. |Ui(t)| is the cardinality of Ui(t).
|Ui(t)|π Combined block generation rate of nodes in Ui(t).
PNC,i(t) Probability of the rest miners not proposing a competing

block by time t of i’s block’s propagation.
h(c) Blockchain height of the cth canonization event
τij(t) Minimum time for node i’s block to reach j starting at

time t from the generation of i’s block.
ωi�j(t) Node i’s likelihood to win the fork race against node j if

j publishes a competing block at time t from node i’s
block’s generation. ω̂i�j(t) is an estimation.

γSM Selfish mining pool’s communication capability, i.e. the
average fraction of honest mining power that will advocate
the pool’s block after it releases private chain.

MRi Mining revenue of node i as percentage of total canonized
blocks.

RMGi Relative mining gain of node i. RMGi =
MRi−πi/π

πi/π
.

Security Metrics
FR Average fork rate of the whole network.

AT50 50%-attack threshold, i.e. minimum number of nodes
whose combined mining revenue exceeds 50% of the total.

PRTH Profitability threshold, i.e. pool size when selfish mining
pool first achieves positive RMG during its expansion.

Fig. 2. Illustration of blockchain canonization and fork stalemate events.
Width of a block denotes its propagation period.

a canonization event at height h rejuvenates the block gener-
ation/competing process as if the past forks and competitions
never happened. Figure 2 illustrates blockchain canonization
and fork stalemate events. Note the canonization concept is
different from probabilistic finality of Nakamoto Consensus
[15], [16], which considers consensus security a probabilistic
measure. We will use canonization events as embedding points
to estimate the mining revenue of each node in the Section IV.



B. Adversary Model

1) Honest-but-Potentially-Colluding: This adversarial sce-
nario characterizes the practical case of the well-known 50%
attack. That is, all nodes operate honestly by default, but
the top miners can potentially collude so that their combined
mining revenue (MR) exceeds 50% of the total. In our analysis,
a well-connected node may obtain positive relative mining
gain (RMG) and collude with other well-connected nodes. The
mining revenue of a node can be viewed as its “enhanced
mining power” in contrast to its actual computing power. In
this scenario we are interested in the 50%-attack threshold
(AT50), i.e. the minimum fraction (computing power weighted)
of the network whose aggregate mining gain exceeds 50% of
the total.

2) Selfish Mining: This adversarial scenario assumes there
are a pool of nodes in the network performing the selfish
mining strategy as described in [11]. We treat the selfish
mining pool as a consortium that expands among honest nodes
and assumes their network connections. As the pool expands,
it acquires the member nodes’ computing power and external
communication links. Under this scenario, AT50 denotes the
pool size when the pool first achieves 50% of total mining
revenue during its expansion. We are also interested in the
pool’s profitability threshold (PRTH), which is defined as the
pool size when the pool first achieves a positive RMG.

IV. ANALYSIS ON HONEST MINING

In this section we calculate the impact of network connec-
tivity on blockchain fork rate and mining gain distribution
under the honest mining assumption. We then and discuss the
security provision under the honest-but-potentially-colluding
adversarial scenario.

A. Fork Rate

Define Mi as the event that node i is the first to generate
the next block at an arbitrary moment of no outstanding
blockchain fork. Denote the time for node i to find a block
by random variable Ti. Then Ti ∼ exponential(πi) and

P (Mi) = P{Ti < Tj ,∀j 6= i} = πi
π

(1)

which can be conveniently derived from properties of Poisson
processes. To facilitate the ensuing analysis, we consider the
physical time slotted into basic time units of δ.

Let the moment when event Mi happens be time 0. Denote
Ui(t) the set of nodes unaware of node i’s block at time t,
and |Ui(t)|π the combined block generation rate of Ui(t).
We have |Ui(0)|π = π−πi and |Ui(t)|π = 0 when t exceeds
the minimum time needed for i’s block to reach all nodes.
The probability that the rest of network does not generate a
competing block by time t can be written as:

PNC,i(t) =

t∏
s=δ

(
1− |Ui(s)|π

)
(2)

Since (1 − |Ui(s)|M )ts=δ is an increasing sequence bounded
by (0, 1], thus (PNC,i(t))

∞
t=δ is a convergent sequence.

Then by the law of total probability, the average blockchain
fork rate of the whole network is obtained by weighing (1−
limt→∞ PNC,i(t)) with P (Mi),∀i:

FR =
∑
i

P (Mi)
(
1− lim

t→∞
PNC,i(t)

)
=
∑
i

πi
π

(
1−

∞∏
s=δ

(
1− |Ui(s)|π

)) (3)

When π � 1, N is large (e.g. π=1/600, N≈10, 000 in
Bitcoin), mining power and network connectivity are evenly
distributed, we have πi = π

N , |Ui(s)|M = π
N |Ui(t)| =

π
N |U(t)|,∀i. Further assuming δ → 0, then (3) reduces into
the following form:

FR ≈ 1−
(
1− π

)∫ ∞
0

1
N |U(t)|dt

(4)

which is consistent with the result obtained by Decker et al.
[10]. The approximation (1 − ax) ≈ (1 − x)a for small x is
used.

B. Mining Revenue and Relative Mining Gain

Define a discrete-time random process {Bi(h)}h=1,2,... in
which Bi(h) = 1 if node i is the block generator at height h
in the canonized blockchain; 0 otherwise. The mining revenue
MRi and relative mining gain RMGi of node i in the long
term are defined as follows:

MRi = lim
H→∞

1

H

H∑
h=1

Bi(h) (5)

RMGi =
MRi − πi/π

πi/π
(6)

Next we propose an estimation method for MRi via
probabilistic analysis. Define another discrete-time random
process {Wi(c)}c=1,2,..., which is embedded right after each
blockchain canonization event. Therefore there is no outstand-
ing fork nor propagating block in the network when random
variables Wi(c)|c=1,2,... are evaluated. We further define h(c)
as the blockchain height of the cth canonization event and

Wi(c) =

{
1 if B(h(c) + 1) = i

0 otherwise
(7)

Next we argue that the expectation of Wi(c) at any epoch c,
denoted E[Wi], can be used to estimate MRi in a conservative
manner.

Proposition 1: Wi(c)|c=1,2,... are independent and identi-
cally distributed (i.i.d.) and their common expectation E[Wi]
satisfies the following relation with MRi:

E[Wi]

{
≤MRi if E[Wi] ≥ πi

π

> MRi otherwise
(8)

In other words, E[Wi]−πi/π is a conservative estimate of the
mining gain/loss of node i. Moreover, the gap between E[Wi]
and MRi tightens as the overall fork rate FR decreases.



A proof sketch: Since {Wi(c)}c=1,2,... is embedded right
after each blockchain canonization event when all previous
forks are pruned and block propagation ceases, the competition
for future blocks is oblivious of the block competitions in
the past. And block generation at each node is a memoryless
process. Therefore, Wi(c)|c=1,2,... are i.i.d, and we are able to
compute their common expectation, denoted E[Wi].

For an arbitrary canonization interval c→ c+1, we consider
the blocks within it: those of height h(c)+1, ..., h(c+1). First,
πi

π evaluates the chance of i being the first to generate a block.
E[Wi] >

πi

π implies that i has a communication advantage
over the network average which brings it positive mining gain.
If E[Wi] >

πi

π and i wins block h(c)+1, it will continue with a
higher chance of winning the subsequent blocks from h(c)+2
to h(c+1) because of its enhanced communication advantage
during the fork race. Conversely, if E[Wi] <

πi

π and i does
not win block h(c) + 1, the chance for i to win any block
from height h(c)+ 2 to h(c+1) further decreases because of
its aggravated communication disadvantage. In contrast, Wi(c)
only considers the first block after canonization event c, and
using E[Wi] to estimate MRi would assume i would have
equal chance of winning any subsequent block from h(c) + 2
to h(c + 1) as it won h(c) + 1. Therefore, E[Wi] tends to
underestimate (or overestimate) MRi if E[Wi]>(or <)πi

π .
On the positive side, if the fork rate decreases, so is the

interval c→ c+ 1, and so is the block count h(c+ 1)− h(c)
within the interval. That is, there will be fewer blocks in a fork
incident for E[Wi] to under-/overestimate MRi, and thus the
former can achieve higher estimation accuracy.

Next we calculate E[Wi]. By the law of total expectation:

E[Wi] = P (Mi)E[Wi|Mi] +
∑
j 6=i

P (Mj)E[Wi|Mj ] (9)

We separated the summation because the two conditional
events Wi|Mi and Wi|Mj occur under different condition.
Wi|Mi consists of two subcases:

• No-fork win: No conflicting blocks are proposed by the
rest of the network during the propagation of node i’s
block.

• Fork win: Conflicting blocks are proposed by the rest of
the network during the propagation of node i’s block,
whereas node i’s block still wins.

The probability of no-fork win equals to PNC,i(∞), as was
evaluated by (3). The probability of fork win is slightly more
complicated. During the propagation of node i’s block, the
number of conflicting blocks generated by the rest of network
at time slot (t, t+ δ] conforms to a Bernoulli distribution with
rate |Ui(t)|M . If node j happens to generate a competing
block during (t, t + δ], node i’s block will need to win the
support of the majority computing power of the network before
it encounters node j’s block in a stalemate. We denote the
chance of node i winning the fork under this condition by

Fig. 3. Explanation of (12). Light blue (grey) area denotes portion of the
network that advocates i’s (j’s) block. ω̂i�j(t) is evaluated by the total
computing power covered by light blue area at stalemate.

ωi�j(t). Therefore:

E[Wi|Mi]

= E[Wi,No-fork win|Mi] + E[Wi,Fork win|Mi]

= lim
t→∞

PNC,i(t) +

∞∑
t=δ

PNC,i(t)
∑

j∈Ui(t)

πiωi�j(t)

(10)

Notably, in the derivation above we only considered two-tine
forks for simplifying analysis; the likelihood of three or more-
tine forks is negligible compared to that of two-tine forks.

In contrast, the conditional event Wi|Mj in (9) can only
happen via a fork race. That is, node i needs to generate a
competing block during the propagation of node j’s block,
and eventually wins the fork. Similarly to (10), we have:

E[Wi|Mj ]

= E[Wi, fork win|Mj ]

=

∞∑
t=δ

PNC,j(t)πi1{i∈Uj(t)}
(
1− ωj�i(t)

) (11)

1{i∈Uj(t)} is an indicator function, returning 1 if the condition
holds true; 0 otherwise. The winning chance of node i under
this circumstance is 1− ωj�i(t).

Evaluating ωi�j(t). ωi�j(t) essentially measures the
communication advantage of node i over node j when j
generates a competing block. For i to win the fork race against
j, it has to have the majority of the network advocate its block
before the two competing blocks end up in a stalemate. Let the
moment when i publishes its block be time 0. Define τik(t) as
the minimum time for i’s block to propagate to node k starting
from time t. Then ωi�j(t) can be evaluated as follows:

ω̂i�j(t) =
∑
k

πk
(
1{τik(t)<τjk(0)} +

1

2
1{τik(t)=τjk(0)}

)
(12)

Figure 3 explains the calculation of ω̂i�j(t). As a result, we
can finally obtain E[Wi] by substituting (1), (10), (11), (12)
into (9).

C. Security Analysis
We consider all nodes are honest-but-potentially-colluding.

The fork rate FR provides an overall measure of how much
mining power is wasted, while the 50%-attack threshold AT50
measures the system’s security in the worst case scenario that
the colluding group consists of the highest mining revenue
earners. Next we analyze how network connectivity impacts
FR and AT50.



1) Lower overall network connectivity leads to higher FR
and lower AT50, thus weaker consensus security: We assume
the block generation rate πi is fixed for any node i. First,
lower overall network connectivity means it takes longer for
any node to disseminate a new block across the network. This
can be caused by a protocol change that lowers the minimum
peer number requirement. As for the calculation in (2) (3),
this leads to a higher |Ui(s)|π , a lower limt→∞ PNC,i(t),∀i,
and thus a higher FR. Moreover, a lower limt→∞ PNC,i(t)
means that more of MRi comes from fork races and the
distribution of mining revenue is deeper influenced by each
node’s communication capability. As a result, MRi moves
farther from πi

π and AT50 moves lower.
Notably, for a certain network connectivity profile, higher

block generation rate across all nodes (thus a higher π) would
lead to a higher |Ui(s)|π,∀i and have the same impact of
lower overall network connectivity.

2) Higher heterogeneity of network connectivity also leads
to lower AT50: We still assume the block generation rate πi,∀i
is fixed. Higher heterogeneity of network connectivity means
there is a greater divergence of communication capability
among nodes. For instance, if node i resides in a highly-
connected cluster in the network while node j resides in a
sparsely-connected region, i will have a significant commu-
nication advantage over nodes in the sparse network region
including j. As a result, i can disseminate a block to majority
of the network much faster than j. ω̂i�j(t), as is evaluated
by (12), will be close to 1 and ω̂j�i(t) will be much lower
than 0.5. Therefore, i can harvest more mining revenue from
fork races than j or other nodes in sparse network region.
Consequently, E[Wi] climbs higher above πi

π and E[Wj ] drops
lower below πj

π . This ultimately results in a more unequal MR
distribution and hence lower AT50.

V. INCORPORATING NETWORK CONNECTIVITY INTO
SELFISH MINING ANALYSIS

In this section we evaluate the impact of network con-
nectivity on selfish mining pool’s communication capability
and analyze its security implication under an expanding-
consortium setting.

A. Selfish Mining Strategy

The core idea of selfish mining is to withhold newly
generated blocks in a private chain, and release the private
chain when the selfish mining pool sees the honest chain
catch up close enough with the private chain. The detailed
selfish mining strategy is illustrated in Figure 4, which we
replicated from [11] and added with more description. Let α,
β be the computing power share of the selfish mining pool
and the honest nodes. Then α = πSM/π and β = 1 − α,
where πSM is the selfish mining pool’s block generation
rate. The state number denotes the private chain’s lead over
the honest chain. State transition is triggered by any block
generation event. Transitions from state 1 to 0′ and 2 to 0 are
accompanied by the selfish mining pool releasing the private
chain. Any transition destined to state 0 marks a canonization

Fig. 4. Selfish mining strategy in [11]. State number denotes the private
chain’s lead over the honest chain. State transition is triggered by block
generation.

event. γSM is defined as the long-term average fraction of
honest computing power that will advocate the selfish mining
pool’s private chain when the pool and an honest miner release
competing blocks simultaneously.

To incorporate network connectivity into the analysis, we
model the selfish mining pool’s network function as follows:
• Information exchanges within the selfish mining pool are

instantaneous. The pool members are fully connected and
synchronized. Any pool member who receives a new
block from an honest node can make decision (changing
state, switching chain, publishing the private chain) on
behave of the entire pool.

• Once the selfish mining strategy determines to release the
private chain, all pool members release the private chain
to all peers simultaneously.

• Selfish mining pool members still relay blocks for honest
miners, as long as the block does not trigger the pool to
release its private chain. The reason is two-fold for the
pool: to avoid suspicion of being a “blackhole” attacker,
and to avoid network partitioning which would paralyze
the blockchain system altogether.

Based on this model, we consider γSM the selfish mining
pool’s communication capability measure and evaluate it from
the network connectivity profile.

B. Evaluating γSM Using Betweenness Centrality
Based on the assumption that nodes in the selfish min-

ing pool are synchronous and can communicate with each
other instantaneously, we treat these pool nodes as a fully-
interconnected cluster and equivalently a super node denoted
by SMPOOL, which preserves the pool members’ all external
communication links to the remaining honest nodes. We show
that a betweenness centrality measure of SMPOOL within the
network accurately evaluates γSM .

Proposition 2: γSM can be evaluated by the mining power
weighted betweenness centrality measure of SMPOOL:

γSM

=
∑

i 6=j 6=SMPOOL

σ(i, j|SMPOOL)

σ(i, j)
· πi
π − πSM

· πj
π − πSM − πj

(13)

wherein σ(i, j) is the number of shortest paths between i and
j, and σ(i, j|SMPOOL) is the number of such paths that pass
through SMPOOL.



A proof sketch: Let i and j denote a pair of honest
nodes, with i being the miner of a new block which triggers
SMPOOL to release its private chain according to the selfish-
mine strategy. For j to switch to SMPOOL’s private chain
instead of accepting i’s new block, the highest block of
SMPOOL’s private chain must be propagated to j before i’s
new block. In the graph model, this is necessitated by SMPOOL
residing on a shortest communication path between i and
j. Therefore, σ(i,j|SMPOOL)

σ(i,j) gives the likelihood that SMPOOL
delivers its private chain to j ahead of i’s block. The weight

πi

π−πSM
· πj

π−πSM−πj
evaluates the pair 〈i, j〉’s mining power

contribution to γSM among all pairs of honest nodes. As
a result, the mining power weighted betweenness centrality
measure of SMPOOL computes the average fraction of hon-
est mining power that will advocate SMPOOL’s block after
SMPOOL releases its private chain, thus accurately evaluates
γSM .

Equation (13) can be conveniently computed with the Bran-
des algorithm [17]. If there are M honest nodes and they have
equal mining power, i.e. πi = π−πSM

M ,∀i 6= SM , then the
weight πi

π−πSM
· πj

π−πSM−πj
becomes 1

M(M−1) and (13) reduces
to the standard normalized betweenness centrality measure.

With γSM obtained, the calculation of the selfish mining
pool’s mining revenue follows the procedure of [18]. Notably,
the mining revenue of pool is proportional to γSM .

C. Security Analysis

We consider the selfish mining pool as an expanding
consortium among the network of honest nodes. Under this
setting, we discuss how network connectivity affects γSM and
consensus security w.r.t. security thresholds AT50 and PRTH.

1) Lower overall network connectivity leads to higher γSM ,
lower AT50, and lower PRTH, thus less secure against selfish
mining: Lower overall network connectivity leads to reduced
communication capability of both the selfish mining pool and
honest nodes. However, since the selfish mining pool consists
of originally honest nodes and preserve all their external com-
munication links with the remaining honest nodes, communi-
cation capability reduction of an average honest node will be
more significant than that of the selfish mining pool. Therefore,
SMPOOL will be residing in the shortest communication paths
of more honest pairs, yielding a higher γSM for every α value.
Consequently this yields lower AT50 and PRTH.

2) Compared to AT50, PRTH is more sensitive to network
connectivity changes: According to [11], PRTH is reached
much earlier than AT50 for any γSM . Due to the gradualism of
selfish mining pool’s expansion, the rate of the selfish mining
pool harvesting new external communication links initially
increases, then gradually slows down as the pool takes in
more nodes. Thus as α increases from 0 to 50%, γSM grows
quickly at first then slower as it becomes closer to 1. Also
the mining revenue of selfish mining pool is proportional
to γSM . Therefore, a moderate reduction of overall network
connectivity would lead to significant decrease in PRTH, but
limited decrease in AT50. PRTH is also a more practical
security measure than AT50 in the sense that once the pool

(a) GR(1000, 4) (b) GR(1000, 4)F10 (c) GE(1000, 4)

(d) GR(100, 4) (e) GR(1000, 8)F10 (f) GE(1000, 8)

Fig. 5. Visualization of six network graphs used in our experiments. Dot
represents mining node, grey line segment represents communication link.

size hits PRTH, joining the pool will be financially attractive
to the remaining honest nodes in the network.

3) Selfish mining pool can take advantage of heterogeneity
of network connectivity to achieve lower AT50 and PRTH: If
the selfish mining pool is aware of the peer-to-peer network’s
topology, it can prioritize its expansion into well-connected
regions of the network to maximize the growth of γSM and
its mining revenue. As a result, heterogeneity of network
connectivity can be exploited by selfish mining pool to achieve
lower AT50 and PRTH.

VI. EVALUATION

We conducted simulation experiments to validate our model
and security analysis. The simulation program was written
in Python and follows a time-driven fashion and takes the
following as input: graph representation of the network, block
generation rates of all nodes, adversarial setting (honest or
selfish mining), and simulation time (slots).

A. Setup

We use three types of network graph for evaluation with the
following notations:
• GR(N,D): a regular graph with N nodes and degree D.
• GR(N,D)FX : a GR(N,D) but with the first X% of

nodes being fully-interconnected.
• GE(N,D): a graph with N nodes and exponentially

distributed node degrees with an average D.
The latter two graph types are designed to simulate different
heterogeneous network connectivity profiles. The six network
graphs used in our experiments are visualized in Figure 5.

To focus on evaluating the impact of network connectivity
and provide a fair ground for comparing security thresholds,
we assign all nodes the same block generation rate: πi = π

N ,∀i
while using π as a variable to represent the aggregate block
generation rate.

The follow metrics are used to evaluate our model and anal-
ysis: FR, AT50 and PRTH for security metrics, rooted mean



(a) GE(1000, 4), π = 0.1 (b) GE(1000, 4), π = 0.05 (c) GE(1000, 8), π = 0.1 (d) GE(1000, 8), π = 0.05

(e) GR(1000, 4)F10, π = 0.1 (f) GR(1000, 4)F10, π = 0.05 (g) GR(1000, 8)F10, π = 0.1 (h) GR(1000, 8)F10, π = 0.05

Fig. 6. Relative mining gain (RMG) results of eight experiments.

TABLE II
HONEST MINING EXPERIMENT RESULT CORRESPONDING TO FIGURE 6

Configuration Metrics
Graph(N,D) π FR-SIM FR-ANA AT50-SIM AT50-ANA RMSE

a GE(1000, 4) 0.1 0.3148 0.3136 459/1000 470/1000 0.0325
b GE(1000, 4) 0.05 0.1773 0.1670 478/1000 484/1000 0.0205
c GE(1000, 8) 0.1 0.2409 0.2248 475/1000 479/1000 0.0187
d GE(1000, 8) 0.05 0.1315 0.1159 487/1000 489/1000 0.0123
e GR(1000, 4)F10 0.1 0.3117 0.3099 457/1000 470/1000 0.0423
f GR(1000, 4)F10 0.05 0.1758 0.1649 479/1000 485/1000 0.0232
g GR(1000, 8)F10 0.1 0.2309 0.2124 480/1000 484/1000 0.0195
h GR(1000, 8)F10 0.05 0.1250 0.1090 490/1000 491/1000 0.0113

square error (RMSE) between analytical RMG distribution and
simulated RMG distribution for the model accuracy metric.

B. Honest Mining Experiment

We performed eight experiments on four network graphs
with different settings. Each experiment was run for 10 million
timeslots. The configuration and evaluation results are shown
in Table II and the RMG histograms are shown in Figure 6.
We made the following observations:

1) The analytical RMG result conservatively estimates the
simulation result. The accuracy improves when π decreases
or D increases. The obvious gap between analytical re-
sult and simulation in Figure 6(c) demonstrates the fully-
interconnected top-10% have a significant higher block win-
ning chance than that expected by E[Wi]. Nonetheless, as is
shown in Table II, for either graph type when π decreases
from 0.1 to 0.05 or D increases from 4 to 8 the fork rate
decreases and so does RMSE. This validates Proposition 1
that the estimation accuracy improves when fork rate drops.

2) FR decreases and AT50 increases when π decreases or D
increases. This validates the security analysis in IV-C in that
higher overall network connectivity or lower block generation

rate leads to stronger consensus security in the presence of
potentially colluding nodes.

C. Selfish Mining Experiment
We switched the adversary setting from honest to selfish

mining and performed three experiments. Each experiment
targeted a certain network graph and consisted of seven simu-
lations, each took an α value from {2, 5, 10, 20, 30, 40, 45}%
and ran for 10 million timeslots. Figure 7(a) shows the ana-
lytical result of γSM . The configuration and evaluation results
are shown in Table III and Figure 7(b). For graph GE [1000, 4]
we configured the selfish mining pool to expand from the
highest-degree node to lower-degree nodes in a descending
order. This was purposed as an example of selfish mining
pool’s expansion strategy. RMSE here measures the averaged
estimation accuracy of the analytical RMG over all α values.

To estimate the thresholds AT50 and PRTH, for each of the
three experiments we fitted the simulated RMG points using
degree-7 polynomials and obtained AT50 and PRTH using the
fitted curve. The following observations are made:

1) The analytical result matches simulation. The close
match between analytical RMG and simulation in Figure 7(b)
validates our betweenness centrality-based calculation of γSM .



(a) Analytical γSM . (b) Analytical RMG and simulation.

Fig. 7. Comparison of simulation and analytical result for selfish mining.

TABLE III
SELFISH MINING EXPERIMENT RESULT CORRESPONDING TO FIGURE 7

Configuration Metrics
Graph (N,D) π PRTH-SIM PRTH-ANA AT50-SIM AT50-ANA RMSE

1 GE(1000, 4) 0.01 52/1000 55/1000 369/1000 369/1000 0.0290
2 GR(1000, 4) 0.01 122/1000 114/1000 368/1000 370/1000 0.0338
3 GR(100, 4) 0.01 22/100 21/100 38/100 38/100 0.0311

2) When N decreases from 1000 to 100, PRTH changes
more dramatically than AT50. This validates our security
analysis that PRTH is more sensitive to network connectivity
changes. Particularly, the analytical curves of γSM in Figure
7(a) demonstrates that as the selfish mining pool size expands
from α = 0 to α = 50%, γSM grows quickly at first then
gradually slows down when it comes closer to 1.

3) As is shown in Figure 7(a), γSM rapidly crosses the
profitability threshold and grows close to 1 when the selfish
mining pool expands in GE(1000, 4). This demonstrates the
feasibility for selfish mining pool to choose a particular expan-
sion strategy to exploit heterogeneity of network connectivity
for faster revenue growth.

VII. DISCUSSION AND FUTURE WORK

On Potential Model Deficiency In our model we only
consider two-tine forks. That is, at most two blocks of the
same height could be propagating in the network concurrently.
Though the possibility of three-tine forks or more is signifi-
cantly lower than two-tine forks, it could still affect the long-
term mining revenue distribution, especially when the network
is large and block propagation delays are high. To tackle this
issue we would need a more delicate model that takes into
account the subtleties of the progression of a fork race. We
leave it to future work.

On Model Practicality In practical networks, it can be chal-
lenging to monitor the block propagation progress (i.e. Ui(t)).
To overcome this difficulty, a block propagation progress-
agnostic model is needed to estimate the communication
capability and forecast the revenue of a node via congregate
network statistics. Furthermore, practical PoW blockchain

networks tend to be structurally volatile and may conform to
a scale-free growth pattern [3]. To take that into account, it
is possible to model structural changes of the network with a
certain random process and evaluate its impact on information
propagation and consensus security. The impact of the selfish
mining pool’s internal communication routine and structural
dynamicity is also a potential issue to explore.

VIII. CONCLUSION

We presented a modeling study on the impact of network
connectivity on consensus security of PoW blockchain un-
der two adversarial scenarios, namely honest-but-potentially-
colluding and selfish mining. For the first scenario, we
demonstrated the communication advantage of a node over its
competitors in a fork race and provided a method to estimate
its long-term mining revenue and relative mining gain. For
the second scenario, we introduced a practical model for the
selfish mining pool’s network functions and showed that the
communication capability of selfish mining pool, γSM , can
be accurately evaluated by the mining power-weighted be-
tweenness centrality measure. For both scenarios, we showed
that low network connectivity and excessive heterogeneity of
network connectivity lead to poor consensus security. Our
analysis can serve as a paradigm for associating consensus
security with network connectivity. In future work we will
incorporate more realistic network settings into our model and
extend the analysis to other blockchain consensus protocols.
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