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ABSTRACT
Broadband multi-carrier MIMO (MC-MIMO) is a promising
technology that could provide significant capacity gain for
wireless ad hoc networks. For MC-MIMO networks, since
the capacity is affected by potential mutual interference on
subcarriers, scheduling for subcarriers and algorithms for
power control/allocation become key problems to harness
their potential. However, due to non-convexity and large
size of the underlying problem, there are few results on this
important problem. In this paper, we first show that the
non-convex problem for MC-MIMO networks satisfies the
so-called concave perturbation condition, which gives a zero
duality gap for the problem. This important result allows
us to tackle the problem in the dual domain. The dual ap-
proach has the highly desirable benefit of reducing the com-
plexity of the underlying problem, which allows us to design
a near-optimal off-line algorithm. In addition to the off-
line algorithm, we also devise an online adaptive algorithm
(OAA) without the need of channel distribution information
(CDI). We show that OAA is able to achieve the same result
as the off-line algorithm.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communications; G.1.6
[Numerical Analysis]: Optimization—Non-linear Program-
ming, Stochastic Programming

General Terms
Algorithms, Performance, Theory

Keywords
Ad Hoc Networks, MIMO, Multi-Carrier Systems

1. INTRODUCTION
A critical factor affecting the success of wireless ad hoc

networks for wide-scale deployment is network capacity: the
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end user wishes to have their communication experience
over ad hoc networks comparable to that for wireline net-
works. For a wireless network, there are two complemen-
tary approaches to increase capacity. For a given chan-
nel bandwidth, one can increase the data rate per chan-
nel use (measured in bits/s/Hz). This can be done by em-
ploying advanced coding and signal processing techniques
in space, time, and frequency domains (e.g., using multiple-
input multiple-output systems (MIMO) [6, 26]). In fact, re-
searchers have shown that, by employing multi-antenna ar-
rays on both sides of a wireless channel, the capacity of a
MIMO link scales approximately as min{nt, nr} log2(SNR),
where nt and nr are the numbers of transmit and receive an-
tennas, respectively. Such a capacity gain is achieved with-
out extra cost of spectrum bandwidth. The capacity increase
with the number of antennas is known as the spatial mul-
tiplexing gain [7, 33] and is largely responsible for MIMO’s
success.

Another approach is to increase the channel bandwidth,
which can be done by either using broadband channels (i.e.,
increasing the bandwidth of the channel) or by exploiting
idle channels using cognitive radio. For a broadband chan-
nel, a serious problem affecting communication reliability
is the so-called frequency-selective fading effect [21], which
must be addressed carefully. To understand this frequency-
selective fading, consider a broadband channel for which
the channel gain response is shown in Figure 1(a). Here,
frequency-selective fading refers to the phenomenon that the
channel gain response varies with frequency. This problem
creates difficulty in using the entire bandwidth to transmit
data because the transmitted signal’s bandwidth is greater
than the frequency range over which the channel response is
flat. Under frequency-selective fading, the channel in time
domain is associated with time dispersion and induces inter-
symbol interference [21]. As a result, a transmitted symbol
is corrupted by other subsequent transmitted symbols. To
address this problem, multi-carrier (MC) techniques such as
OFDM have been successfully developed to simplify chan-
nel equalization, and the low symbol rate in each subcarrier
makes it much easier to handle time dispersion and elimi-
nate ISI. As shown in Figure 1(b), a multi-carrier system
partitions the entire broadband spectrum into a large num-
ber of narrowband subcarriers (typically, 128 – 4096 [21]).
Within each narrowband subcarrier, the fading can be con-
sidered frequency-flat and can be handled more easily by
error correction coding, simple equalization, or adaptive bit
loading.

The complementary approaches of MIMO and broadband
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Figure 1: An illustration of a broadband wireless
channel.

MC techniques offer great potential for increasing network
capacity for wireless ad hoc networks [12]. The combina-
tion of these two approaches has since been termed multi-
carrier MIMO (MC-MIMO) in the literature, and it has at-
tracted much attention and many research activities, but
mostly at the physical layer (see, e.g., [18, 19, 23, 31]). Un-
der MC-MIMO, a broadband channel is partitioned into a
large number of flat-fading narrowband subcarriers. Then,
on each narrowband subcarrier, MIMO is used to increase
the capacity for the subcarrier.

Although MC-MIMO has great potential to increase net-
work capacity, a number of challenging problems remain to
be addressed to optimize its performance. To illustrate, con-
sider an MC-MIMO based single-hop ad hoc network exam-
ple shown in Figure 2. Suppose that there are a total of
K mutually-interfered MC-MIMO links transmitting con-
currently, with each link representing a single-hop source-
destination pair. The broadband in use is partitioned into M
subcarriers. Due to potential mutual interference on subcar-
riers, appropriate algorithms for scheduling subcarrier usage
and power allocation are necessary. By subcarrier schedul-
ing, we mean that for each link in the network, we need to
determine what subset of subcarriers need to be employed
for transmission. The goal of subcarrier scheduling at each
link is to avoid transmitting over those subcarriers that are
highly interfered by other links or in deep fade modes. On
the other hand, for a subcarrier on a link that is scheduled
to transmit, we need to determine how much power should
be allocated onto that subcarrier. Further, in each subcar-
rier, power allocation decision at each antenna element of a
transmitter also needs to be made. Due to the complicated
interference relationship among the links, optimal subcar-
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Figure 2: Network model of a MC-MIMO ad hoc
network.

rier scheduling and power control/allocation is a non-trivial
problem.

The difficulties associated with subcarrier scheduling and
power control/allocation can be summarized as follows:

• Large Number of Subcarriers: In an MC sys-
tem, the number of subcarriers needs to be large to
ensure near flat fading on each subcarrier. As dis-
cussed, the number of subcarriers is at least 128 and
could be as large as 4096. This results in a large op-
timization space for subcarrier scheduling and power
control/allocation, which is not encountered in other
types of wireless ad hoc networks.

• Mutual Interference on Subcarrier: For simulta-
neous transmissions on the same subcarrier at different
links, there will be mutual interference. The level of
mutual interferences is determined by the power con-
trol/allocation decision on these links. As expected,
interference will affect the capacity on each interfering
link on the same subcarrier, thus affecting the achieved
network capacity.

• Non-convexity: As we shall soon show, the com-
plicated interference relationship renders a non-convex
structure for a performance optimization problem. Fur-
ther, due to the large design space caused by the num-
ber of subcarriers, finding a global optimal solution
is intractable: the state-of-the-art global optimization
techniques (such as BB/RLT [22]) have an exponential
complexity in MK matrix variables, where M and K
are the numbers of subcarriers and links, respectively.

• Channel Distribution Information: In MC-MIMO
ad hoc networks, the channel response of each sub-
carrier is not only frequency-variant but also time-
variant. As a result, evaluating the ergodic capacity
for each subcarrier requires channel distribution in-
formation (CDI) in time domain. However, acquir-
ing such CDI knowledge needs an off-line training and
measurement process, which is cumbersome and hin-
ders the practical implementation of an MC-MIMO ad
hoc network.
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The goal of this paper is on performance optimization for
MC-MIMO ad hoc networks through subcarrier scheduling
and power control/allocation. We focus on capacity of an
ad hoc network consisting of K links. The specific objective
function we use is to maximize the weighted sum of rates of
all links (simply called the MWSR problem in this paper).
The MWSR problem can be viewed as a generalization of
capacity maximization and is a pillar problem inherent in
many important applications (see, e.g., [1, 4, 17,29]).

1.1 Summary of Main Results
We investigate the MWSR problem by first assuming com-

plete knowledge of CDI, and accordingly design an off-line
solution. Then, we design a practical online adaptive solu-
tion that does not require complete CDI knowledge. The
main results of this paper are summarized as follows:

• For the off-line algorithm, we show that the MWSR
problem is non-convex but satisfies the so-called con-
cave perturbation condition. This concavity property
of the perturbation function guarantees a zero dual-
ity gap, meaning that we can equivalently solve the
MWSR problem in its dual domain.

• The key benefit of the dual approach is that the dual
problem can be decomposed into M subproblems, avoid-
ing the exponential complexity in M that is inherent in
the primal approach. Since each subproblem remains
a non-convex problem that has an exponential com-
plexity in K matrix variables, we develop an efficient
near-optimal algorithm for solving each subproblem.

• In addition to the off-line algorithm, we also develop
an online adaptive algorithm (OAA) that does not re-
quire full CDI. We show that OAA can adapt to any
unknown underlying fading distribution, and converges
with probability one to the same optimal solution ob-
tained by the off-line algorithm.

1.2 Paper Organization
The remainder of this paper is organized as follows. Sec-

tion 2 introduces the network model and problem formula-
tion. In Section 3, we design an off-line algorithm for solving
the MWSR problem in the dual domain. In Section 4, we
present a practical online adaptive algorithm and establish
its convergence property. Section 5 reviews some related
work and Section 6 concludes this paper.

2. NETWORK MODEL AND PROBLEM FOR-
MULATION

Since the mathematical model involves characterizing mu-
tual interference among subcarriers, we first introduce the
notation style used in the paper. We use boldface to denote
matrices and vectors. For a matrix A, we let A† denote the
conjugate transpose; Tr{A} denotes the trace of A; and |A|
denotes the determinant of A. We use A º 0 to represent
that A is Hermitian and positive semidefinite (PSD). We
denote I as the identity matrix with its dimension deter-
mined from the underlying context. 1 and 0 denote vectors
whose elements are all ones and zeros, respectively, again
with their dimensions determined from the context. Finally,
we use the operator “〈·, ·〉” to represent the inner product
operation for vectors.

In this paper, we consider an MC-MIMO ad hoc network
as illustrated in Figure 2. There are a total of K concurrent
transmission pairs (or links) in the network and M subcar-
riers in the given communication band, with a total band-
width B. As a result, the bandwidth of each subcarrier is
B
M

. As discussed earlier, for each subcarrier to be considered
flat fading, M needs to be sufficiently large (e.g., from 128
to 4096 in practice).

Suppose that each node in the network is equipped with

N antennas. We use H
(m)
ij ∈ CN×N to represent the chan-

nel gain matrix from the transmitting node of link i to
the receiving node of link j over subcarrier m. We let

H = {H(m)
ij : i, j = 1, . . . , K, m = 1, . . . , M} denote the

collection of all channel gain matrices (i.e., a total of K2M
matrices). The entries in each channel gain matrix are as-
sumed to be i.i.d. complex Gaussian.

The normalized received base-band signal vector at the
receiving node of link k over subcarrier m can be computed
as

r
(m)
k =

√
ρkkH

(m)
kk t

(m)
k +

K∑

i=1,i6=k

√
ρikH

(m)
ik t

(m)
i + n,

where t
(m)
k ∈ CN and r

(m)
k ∈ CN represent the transmitted

signal vector (with unit power) and the received signal vector
of link k over subcarrier m, respectively; and n represents
the complex additive white Gaussian noise vector with zero
mean and unit variance. In the above expression, ρik denotes
the signal-to-noise ratio (SNR) of link k if i = k, or the
interference-to-noise ratio (INR) from link i to link k if i 6= k.

Denote Q
(m)
k as the covariance matrix for the input sym-

bol vector t
(m)
k , i.e.,

Q
(m)
k = E{t(m)

k · t(m)†
k }.

Physically, Q
(m)
k represents the power allocation among the

antennas of the transmitting node of link k over subcarrier

m, and the trace of Q
(m)
k (i.e., the sum of all its diagonal en-

tries) is the transmit power on link k over subcarrier m. By

the definition of Q
(m)
k , we have Q

(m)
k º 0 and Tr(Q

(m)
k ) ≤ 1,

∀k, m. Since the sum of power over all subcarriers at a trans-
mitting node cannot exceed the node’s maximum transmit
power, we have

EH

[
M∑

m=1

Tr(Q
(m)
k )

]
≤ 1, for k = 1, 2, . . . , K.

where 1 represents normalized maximum power.

Denote Q = {Q(m)
k : k = 1, . . . , K, m = 1, . . . , M} as the

collection of all power allocation matrices (a total of KM
such matrices for the network). The ergodic capacity of link
k over subcarrier m (in b/s/Hz) can be computed by [10]

C
(m)
k = EH

[
log2

∣∣∣I + ρkkH
(m)
kk Q

(m)
k H

(m)†
kk (R

(m)
k )−1

∣∣∣
]
,

where the expectation is taken over the distribution of H,

and R
(m)
k represents the aggregate interference and noise at

the receiving node of link k on subcarrier m, and can be
computed as

R
(m)
k = I +

K∑

i=1,i6=k

ρikH
(m)
ik Q

(m)
i H

(m)†
ik . (1)

With the above expression, the data rate Rk for link k can
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be computed as

Rk =

M∑
m=1

B

M
C

(m)
k .

That is, Rk is the aggregated data rate of link k over all M
subcarriers.

Putting together these constraints, the MWSR problem
can be formulated as follows:

MWSR: Maximize
∑K

k=1 wkRk

subject to EH[
∑M

m=1 Tr(Q
(m)
k )]− 1 ≤ 0,∀k

Q
(m)
k º 0,∀k, ∀m,

(2)

where wi, i = 1, . . . , K, are pre-assigned weights and the

Q
(m)
k -matrices are optimization variables.

Note that the Q
(m)
k -matrices in this formulation capture

both subcarrier scheduling and power control/allocation de-

cisions. If Q
(m)
k is a zero matrix, it means that subcarrier

m will not be scheduled by link k for transmission. If Q
(m)
k

is non-zero, it means that link k will schedule subcarrier
m for transmission. Furthermore, power control/allocation
has two stages. First, the transmitting node of each link
will determine how much power will be allocated on each
subcarrier that is scheduled for transmission. The allocated
power for that particular subcarrier is represented by the

trace of Q
(m)
k . Second, for each subcarrier, the entries in

Q
(m)
k determine the power allocation among each of the an-

tenna elements.
Since the objective function of (2) is not concave in Q

(m)
k ,

MWSR is a non-convex optimization problem. As a re-
sult, solving MWSR is a difficult task. As indicated ear-
lier, to ensure flat fading on each subcarrier, the value of M
is large, whereas state-of-the-art global optimization tech-
niques (e.g., BB/RLT [22]) have an exponential complexity
in the total number of matrix variables KM . Thus, a primal
approach to solving (2) is intractable.

3. AN OFF-LINE SOLUTION TO MWSR
Although the MWSR problem is non-convex, we will show

in Sections 3.1 and 3.2 that this problem in fact has a zero
duality gap. This finding is based on examining the con-
cavity of the perturbation function of the MWSR problem.
This zero-duality gap result enables us to tackle the MWSR
problem in the dual domain. In Section 3.3, we show that
studying the MWSR problem in its dual domain has the
highly desirable benefit of yielding a much lower complexity
that is linear in M , due to the fact that the dual problem
can be suitably decomposed. This complexity reduction is
significant because, as we mentioned earlier, M is large in
MC-MIMO networks. In Section 3.4, we propose an off-line
algorithm to solve the MWSR problem in its dual domain,
and Section 3.5 presents some numerical results for the off-
line algorithm.

3.1 Concavity of Perturbation Function and
Zero Duality Gap

It is well-known that non-convexity usually results in a
non-zero duality gap in optimization. However, under some
special conditions, some non-convex optimization problems
could turn out to have a zero duality gap. If an optimiza-
tion problem has a zero duality gap, it can then be solved
by equivalently analyzing its dual problem. This approach

is particularly relevant when the primal problem is hard
to solve. In this section, we establish such a zero duality
gap condition. In the next section, we will show that the
challenging MWSR problem satisfies this condition, mean-
ing that the MWSR problem has a zero duality gap.

Let us consider the general form of (2), which can be
rewritten (after interchanging summations and expectations)
as

Maximize
∑M

m=1 fm(xm)

subject to
∑M

m=1 gm(xm) ≤ 0,
(3)

where xm ∈ S ⊆ CK , ∀m, are vectors of the optimization
variables; fm(·) : CK → R, ∀m, are functions that may or
may not be concave, and gm(·) : CK → RL, ∀m, are vector-
valued functions that may or may not be convex.

Now, consider problem (3) in the dual domain. By asso-
ciating a dual vector variable u ∈ RL with the constraints,
we can write the Lagrangian of (3) as

L(xm,u) =

M∑
m=1

fm(xm)− uT
M∑

m=1

gm(xm). (4)

The Lagrangian dual function is the unconstrained maxi-
mization with respect to xm: Θ(u) , maxxm L(xm,u). The
Lagrangian dual optimization problem is then given by:

Minimize Θ(u)
subject to u ≥ 0.

(5)

In general, the weak duality theorem [2] says that the opti-
mal objective value of the dual problem provides an upper
bound on that for the primal problem, where the difference
between this upper bound and the primal optimal value is
called the duality gap.

It is worth pointing out that convexity of problem (3) (un-
der suitable constraint qualification [2]) is only a sufficient
condition for obtaining a zero duality gap, but not neces-
sary [8]. In what follows, we will show that a non-convex
problem having the structure of (3) yields a zero duality gap
if its perturbation function is concave. First, let us introduce
the concept of the perturbation function.

Definition 1. The perturbation function of (3), denoted
as ν(y) : RL → R, is defined as the optimal value function
of the following problem:

ν(y) = max

{
M∑

m=1

fm(xm) :

M∑
m=1

gm(xm) ≤ y

}
, y ∈ RL.

From the definition, it is clear that ν(0) yields the same
optimal objective value as that of the primal problem (3).
The idea of perturbation function was first proposed in [9],
where Geoffrion used this concept to study the stability of
the nonlinear programs and its application in duality theory
(later also called “value function” in [5] or “primal function”
in [3]). In this paper, we use the perturbation function to
analyze the duality gap of MWSR since this approach affords
deep geometrical insights and does not require differential
calculus, general minimax theorems, or conjugate function
theory employed by most other studies in duality theory.
Now, we state the concave perturbation condition in the
following theorem.

Theorem 1 (Concave Perturbation Condition). If
the perturbation function ν(y) is concave, then the non-
convex optimization problem in (3) and its dual problem in
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(5) has the same optimal objective value, i.e., the duality gap
is zero.

Theorem 1 can be proved from a geometric perspective.
If the condition stated in Theorem 1 holds, i.e., the pertur-
bation function is concave, then there exists a supporting
hyperplane to the hypograph of ν(y) at y = 0. This sup-
porting hyperplane condition is in turn a necessary and suf-
ficient condition for the existence of a saddle point [2, The-
orem 6.2.7], i.e., no duality gap.1

3.2 Perturbation Function for MWSR Prob-
lem

In the previous section, we have discussed that the con-
cavity of the perturbation function leads to a zero duality
gap for non-convex optimization problems. In this section,
we show that the perturbation function of the MWSR prob-
lem in (2) is indeed concave. This result allows us to tackle
the MWSR problem in its dual domain. Let ν(y) be the
perturbation function of (2), i.e.,

ν(y) , max

{
K∑

k=1

wk

M∑
m=1

B

M
C

(m)
k

∣∣∣∣
M∑

m=1

EH [Tr(Qk(f))]− 1 ≤ yk, ∀k
}

, (6)

where y ∈ RK and Qk(f) º 0 ∀k, f . We use a constructive
approach to show that the perturbation function of (2) is
concave. We first consider the problem (6) over one sub-
carrier, where the channel gain responses for all links are
frequency-flat (as shown in Figure 3) due to the large value
of M . Then, we will extend the concavity property of (6)
to the case where channel response functions are frequency-
varying. For each subcarrier, we have the following result.
We note that the proof of time-sharing property in [30] is
somewhat related to the idea in here. But our approach in
showing the concave perturbation condition is much cleaner
and straightforward.

Lemma 1. For each subcarrier where the channel gain re-
sponses Hik are frequency-flat for all i, k ∈ {1, . . . , K}, prob-
lem (2) satisfies the concave perturbation condition.

Proof. Suppose that Q∗
y1(f) and Q∗

y2(f) solve the prob-
lems to evaluate ν(·) over subcarrier m when y = y1 and
y = y2, respectively, where f ∈ subcarrier m. Let 0 ≤ µ ≤
1. To prove that the perturbation function ν(y) is concave
over subcarrier m, we need to show that ν(µy1+(1−µ)y2) ≥
µν(y1) + (1 − µ)ν(y2) for all 0 ≤ µ ≤ 1. The basic idea of
the proof is as follows. We construct a solution Q(f) that
is feasible to the problem for evaluating ν(µy1 + (1−µ)y2).

Denote the objective value of (6) under Q(f) as Ĉ. Clearly,

we have ν(µy1 + (1 − µ)y2) ≥ Ĉ. Note that if we can con-

struct Q(f) such that Ĉ ≥ µν(y1) + (1 − µ)ν(y2) for all

1
Incidentally, Hande et al. [11] and Yu et al. [30] also provided suffi-

cient conditions for a zero duality gap. We note that the terms “opti-

mized total utility function” [11] and “time-sharing property” [30] are,

in essence, the same as our concave perturbation condition. However,

the proof in [30] is mostly by visualization. In [11], the claim of the

zero duality gap result following from “min common max crossing du-

ality” in [3] is not accurate because the duality result in [3] is proved

using stronger convexity assumptions. In fact, the result in [11] can

be proved directly from [2, Theorem 6.2.7], as we have presented here.

|H|
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Figure 3: Constant channel responses in each sub-
carrier.
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Figure 4: The frequency-flat solution structure in a
subcarrier.

0 ≤ µ ≤ 1, then we will have established the concavity of
ν(·).

Without loss of generality, consider Q∗
y1(f), which solves

the perturbation function ν(y1). Note that since all channel
response functions Hik are constant, Q∗

y1(f) must also be
flat for all f ∈ subcarrier m, as shown in Figure 4. Likewise,
we can conclude that Q∗

y2(f) is flat over subcarrier m.
Now, suppose that C∗y1 and C∗y2 are the optimal objec-

tive values of ν(y1) and ν(y2), respectively. A construc-
tion of Q(f) is illustrated in Figure 5. We will show that
this constructed Q(f) is feasible to the problem for ν(µy1 +
(1 − µ)y2) and achieves at least µC∗y1 + (1 − µ)C∗y2 for all
0 ≤ µ ≤ 1. Now, we divide the whole subcarrier into two
subbands as shown in Figure 5. We assign a µ portion of
the subcarrier as one subband, where we adopt Q∗

1(f) as
the scheduling and power allocation scheme. We assign the
remaining (1−µ) portion of the subcarrier as the second sub-
band, where we adopt Q∗

2(f) as the scheduling and power
allocation scheme. Evidently, the resultant Q(f) is feasi-
ble for ν(µy1 + (1 − µ)y2) because from the linearity of

the power constraints in (6), we have
∑M

m=1 Tr(Q(f))−1 =∑M
m=1(µTr(Q∗

1(f))+(1−µ)Tr(Q∗
2(f)))−1 ≤ µy1+(1−µ)y2.

Also, it is apparent that Q(f) achieves an objective value
of µC∗1 + (1 − µ)C∗2 over subcarrier m. Hence, the concave
perturbation condition holds for subcarrier m.

Now, for problem (2), we have the following result:

Theorem 2. When the number of carriers M is suffi-
ciently large, the MWSR problem satisfies the concave per-
turbation condition.
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Figure 5: Solution construction for Q(f).

Proof. As discussed earlier, for MC-MIMO, the num-
ber of subcarriers is sufficiently large (e.g., 128 ≤ M ≤
4096) so that the fading on each subcarrier can be consid-
ered flat. That is, for each i, j ∈ {1, . . . , K} and for each

m ∈ {1, . . . M}, H
(m)
ij is a constant. Based on Lemma 1,

we conclude that the concave perturbation condition is sat-
isfied for each subcarrier. Since we can construct a solution
to show the concavity of the perturbation for each subcar-
rier, we can then construct a solution to show the concavity
of the perturbation function for the entire band by com-
bining the solutions for all subcarriers. Thus, the concave
perturbation condition holds for the entire band.

3.3 Problem Decomposition and Complexity
Reduction

In previous sections, we have shown that the MWSR prob-
lem has a zero duality gap and thus can be solved in its dual
domain. Note that when we solve the MWSR problem in
the dual domain, the dual problem is of higher dimensional-
ity since we introduce K dual variables. However, the dual
domain approach has the desirable benefit of reducing the
complexity of the primal problem since the dual problem
can be decomposed into M subproblems, thus removing the
exponential complexity in M (a large value) inherent in the
primal problem. This complexity reduction far outweighs
the dimensionality increase of the dual problem.

To see this, let us first associate a dual variable ui with
each constraint in (2) and denote u , [u1 u2 . . . uK ]T the
collection of such dual variables. Then, the Lagrangian
L(Q,u) can be computed as

L(Q,u) =

K∑

k=1

wkEH

[ M∑
m=1

log2

∣∣∣I + ρkkH
(m)
kk Q

(m)
k H

(m)†
kk

·(R(m)
k )−1

∣∣∣
]

+

K∑

k=1

uk

[
1− EH

[ M∑
m=1

Tr(Q
(m)
k )

]]
.

The Lagrangian dual function is defined as

Θ(u) , max
Q

{
L(Q,u) : Q

(m)
k º 0, ∀k, ∀m

}
. (7)

Then, the dual problem can be written as follows:

D-MWSR: Minimize Θ(u)
subject to u ≥ 0.

(8)

After interchanging expectation and summation, we can rewrite

Algorithm 1 Solution to D-MWSR

1. Choose an initial starting solution u(0). Let n = 0.
2. Compute Q∗(n) by solving M subproblems, each of which corre-

sponds a subcarrier m.
3. Compute the subgradient duk

(n) using (10) with Q∗(n), and
choose an appropriate step size sn.

4. Update the dual variables u(n) with using (11).
5. If ‖uk(n+1)−uk(n)‖ < ε, then return Q∗(n) as the final optimal

solution and stop. Otherwise, let n ← n + 1 and goto Step 2.

(7) as

Θ(u) =

M∑
m=1

EH

[
max

Q
(m)
k

º0

∀k

{ K∑

k=1

F (Q
(m)
k )

}]
+ 〈u,1〉, (9)

where

F (Q
(m)
k ) , wk log |I + ρkkH

(m)
kk Q

(m)
k H

(m)†
kk (R

(m)
k )−1|

−ukTr(Q
(m)
k ).

Now, we can see that the Lagrangian dual function Θ(u)
is decomposed into M subproblems, thus avoiding the ex-
ponential complexity in M that is inherent in the primal
problem (2).

3.4 Solving the Dual Problem
In this section, we develop an algorithm to solve the dual

problem in (8). Since Θ(u) is a point-wise minimum of a set
of linear functions (in u), it is convex regardless of the con-
vexity property of the primal problem [2]. Thus, D-MWSR
is a convex minimization problem and we can solve it by a
subgradient algorithm [2]. The subgradient components at
the nth iteration can be computed as

duk (n) = 1− EH

[ M∑
m=1

Tr(Q
(m)∗
k (n))

]
, ∀k. (10)

where Q
(m)∗
k (n), ∀k, m, represents the optimal solution in

(9) with u being replaced by u(n). The updates of dual
variables can be computed as

uk(n + 1) = [uk(n)− snduk (n)]U+ , ∀k, (11)

where [·]U+ , min{max{·, 0}, U} with U being some upper
bound on uk (for numerical stability), and where sn is the
step size during the nth iteration. Based on the subgradi-
ent algorithm’s property [2], we have that if the step size
selection satisfies

sn → 0,

∞∑
n=1

sn →∞, and

∞∑
n=1

s2
n < ∞, (12)

then the iterates generated by the subgradient method con-
verge to the optimal solution u∗ [2]. The subgradient algo-
rithm is summarized in Algorithm 1.

A nice property for Algorithm 1 is that it can be imple-
mented in a distributed fashion. This is because the subgra-
dient computation in (10) and the dual variable updates in
(11) only involve local power variables at each node and do
not require global information.

Next, we describe how to solve the M subproblems in
Step 2 of Algorithm 1, where each subproblem corresponds
to a subcarrier. From (9), we find that each subproblem is a
maximization problem in K N -dimensional matrix variables
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Algorithm 2 Solution to each subcarrier subproblem

1. Initialize Q
(m)
1 (0), Q

(m)
2 (0),. . .,Q

(m)
K (0). Let n = 0, k = 1.

2. Compute the gradients G
(m)
k (n).

3. Compute Q̂
(m)
k (n+1) = Q

(m)
k (n)+znG

(m)
k (n) with step size zn.

4. Let Q̄
(m)
k (n+1) be the projection of Q̂

(m)
k (n+1) onto the positive

semidefinite cone.
5. Choose an appropriate step size αn. Let Q

(m)
k (n+1) = Q̄

(m)
k (n+

1) + αn(Q̄
(m)
k (n + 1)−Q

(m)
k (n)).

6. If ‖Q(m)
k (n + 1) −Q

(m)
k (n)‖ ≤ ε, for k = 1, 2, . . . , K, then stop;

else let n ← n + 1, k ← (k + 1)modK and go to Step 2.

in the following form:

Maximize
∑K

k=1

[
wk log2

∣∣I + ρkkH
(m)
kk Q

(m)
k H

(m)†
kk ·

(R
(m)
k )−1

∣∣− ukTr(Q
(m)
k )

]

subject to Q
(m)
k º 0, ∀k.

(13)

In (13), R
(m)
k is defined in (1), which represents the total

power of interferences plus noise that link k experiences on
subcarrier m. It is this term that renders (13) a non-convex
program. Such a non-convex optimization problem has ex-
ponential complexity in the K matrix variables. Therefore,
solving (13) remains non-trivial. In this paper, we devise
a distributed gradient projection (DGP) algorithm to solve
(13), where the input covariance matrices for the links are
updated in an iterative manner: In each iteration, we use the
gradient projection method [2] to update the power matrix
variable for a particular link to maximize (13) while all the
other links’ matrix variables are held fixed. Thus, except
at the initiation, only link (n mod K) and link (n + 1 mod
K) (where a zero modulus value is replaced by K) need to
exchange information (the information of K Q variables) in
the nth iteration. We summarize our solution method for
solving the subcarrier subproblem in Algorithm 2.

A key component in Algorithm 2 is the gradient computa-
tion in Step 2. By using the identity ∂

∂X
ln det(A+BXC) =[

C(A + BXC)−1B
]T

from matrix differential calculus [16],
we are able to obtain the gradients as (for simplicity, we
drop the iteration index n in all Qk and uk variables):

G
(m)
k =

2wkρkk

ln 2
H

(m)†
kk

(
Rk + ρkH

(m)
kk QkH

(m)†
kk

)−1

H
(m)
kk

+

K∑

j=1,j 6=k

2wjρjk

ln 2
H

(m)†
jk

[
(R

(m)
j + ρjjH

(m)
jj Q

(m)
j H

(m)†
jj )−1

−(R
(m)
j )−1

]
H

(m)
jk − ukI. (14)

3.5 Numerical Results
We provide some numerical examples to illustrate the per-

formance of the Algorithms 1 and 2. First, we examine the
gap between the solution obtained by Algorithm 2 and the
optimal solution obtained via exhaustive search. We first
consider the ergodic rate region in the dual domain, i.e., the
K-dimensional subspace for the maximum achievable link
rates of problem (13). To visualize the capacity regions on
2-D graphs, we plot the ergodic rate region for a 2-link 2-
antenna example with u = [0.8 0.8]T . By varying the non-
negative weights w1 and w2 subject to w1+w2 = 1, the entire
rate region can be achieved. In this case, we are interested
in the performance of Algorithm 2 under the strong inter-
ference (stressful situation) since each subproblem becomes

less convex as INRs increase. The SNRs in this example are
ρ11 = ρ22 = 20 dB. The INRs in this example are ρ12 = 10
dB and ρ21 = 11 dB. The ergodic rate region of this example
is plotted in Figure 6(a). We find that even under strong
interference, the gap between Algorithm 2 and exhaustive
search remains close.

Next, we consider the optimal dual objective values of a
number of 5-link 2-antenna examples under 5 different sets of
dual variables. The first set of dual variables have identical
values (randomly chosen to be u = 0.8 · 1 in this example).
The second and the third sets of dual variables are randomly
generated with mean 1 and 1.3, respectively. The fourth and
the fifth sets use randomly generated weights and dual vari-
ables. For each set, we examine 16 different combinations
of mean SNR and INR values. The optimal dual objective
values computed by DGP and exhaustive search are plotted
in Figures 6(b) to 6(f). Again, from all 80 cases, we observe
that the performance of DGP and exhaustive search is very
close. For example, under u = 0.8 · 1, when SNR for each
link is 10 dB and INR for each link is 15 dB, i.e., the inter-
ference is much stronger than the intended signal, the dual
objective values computed by DGP and exhaustive search
are 11.17 and 12.13, respectively. In this extreme case, the
gap is only 7.9%.

We use two 5-link network examples to see the conver-
gence behavior of the subgradient algorithm. As shown in
Figures 7(a) and 7(c), the five links are uniformly distributed
in a 2000m×2000m square region. Each node in the network
is equipped with 4 antennas. The path-loss index is 4. The
solid lines represent intended transmissions and the dotted
lines represent interferences. The total number of subcarri-
ers is 128.

Figures 7(b) and 7(d) show the convergence process of
the subgradient algorithm for minimizing the dual problem.
It can be seen that after approximately 500 iterations, the
subgradient algorithm converges and yields a dual objective
value of 5.68 b/s/Hz and 7.57 b/s/Hz, respectively. For Ex-
ample 1, we recover the corresponding primal feasible solu-
tion and find that the primal objective value is 5.65 b/s/Hz,
i.e., the gap is less than 1%. Compared with the starting
point before optimization (equal power allocation to all sub-
carriers and antennas at each node), which yields an objec-
tive value of 3.83 b/s/Hz, we can see the performance gain
after optimization is significant (47.5%).

4. AN ONLINE ADAPTIVE ALGORITHM
Algorithm 1 is an off-line algorithm for the MWSR prob-

lem since it requires full CDI to compute the subgradients in
(10). Such CDI usually requires a training process to acquire
before communication takes place, thus making Algorithm 1
cumbersome to implement in practice.

In this section, we present an online adaptive algorithm
(OAA) for the MWSR problem. The main goal of OAA is to
avoid the use of a training process and to adapt to unknown
underlying fading distributions on the fly, thus rendering
itself to an online algorithm desirable for practical imple-
mentation. In Section 4.1, we give a sketch of the main idea
of the proposed online algorithm. Section 4.2 studies the
convergence behavior and optimality characteristics of this
algorithm.

4.1 Main Idea
As discussed, the primary reason that Algorithm 1 is an
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(c) Objective value comparison (equal weights, ran-
domly generated dual variables, mean = 1).
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(d) Objective value comparison (random weights, ran-
domly generated dual variables, mean = 1.3).
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(e) Objective value comparison (random weights, mean
= 1, randomly generated dual variables, mean = 1).

0 5 10 15
0

5

10

15

20

25

30

35

40

INR (dB)

E
rg

od
ic

 L
ag

ra
ng

ia
n 

O
bj

 V
al

ue

Exhaustive Search
Distributed GP

SNR = 10dB

SNR = 15dB

SNR = 20dB

SNR = 25dB

(f) Objective value comparison (random weights, mean
= 1, randomly generated dual variables, mean = 1.2).

Figure 6: Performance comparison between Algorithm 2 and exhaustive search.

off-line algorithm is that the subgradients in (10) require
computing the expectation EH(·). For an online algorithm,
we ask the following question: Can we remove the expec-
tation computation while retaining the structure of Algo-

rithm 1? If this can be done, then we will have a good
chance of transforming Algorithm 1 to an online algorithm.

Upon a closer look at Algorithm 1, we realize that, to elim-
inate the expectation computation, the key step is to have
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(d) Convergence process of Example 2.

Figure 7: Network examples and convergence processes of Algorithm 1.

an adequate approximation for the subgradient expression
in (10). More importantly, this approximation should not
rely on full CDI. This motivates us to resort to stochas-
tic approximation techniques [14]. An easy and practical
choice for such an approximation is the following: Instead
of using full CDI to accurately compute (10), we only use
one observation of the current channel state to compute the
subgradient at each iteration. More precisely, the subgradi-
ent during the nth iteration is computed using the following
approximation:

d̂uk (n) = 1−
M∑

m=1

Tr(Q
(m)∗
k ), ∀k. (15)

Accordingly, in Algorithm 1, the dual variable update is
modified to:

ûk(n + 1) = [ûk(n)− snd̂uk (n)]U+, ∀k. (16)

The reason to use (15) as an approximation is that (15) is
an unbiased estimation of (10), and can be viewed as a vari-
ant of the recursive stochastic approximation algorithm [14].
Comparing the use of (15) in lieu of (10) in Algorithm 1, we
find that the expectation computation has been removed
and each subgradient computation is solely based on the

off-line algorithm

Starting Point
Convergence path of OAA

Near-Optimal SolutionConvergence path of

Figure 8: Illustration of OAA’s convergence path
with respect to that of the off-line algorithm.

current channel state. Also, the basic structure of OAA
remains the same as that of the off-line algorithm, which
means that OAA can also be implemented in a distributed
fashion. Thus, the approach based on subgradient approxi-
mation in (15) and dual updates in (16) meets our goal.

However, we note that the such changes in (15) and (16)
could have a profound impact on the algorithm’s conver-
gence behavior. This is because the iterates of OAA are no
longer deterministic and the convergence path may deviate
randomly from that of the off-line algorithm, as shown in
Figure 8. As a result, the convergence behavior of OAA
needs to be investigated. Further, even if OAA converges,
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the quality of the achieved solution (how far it deviates
from the near-optimal solution achieved by the off-line al-
gorithm) remains unclear. These issues will be our focus in
Section 4.2.

4.2 Convergence and Optimality
In this section, we show that OAA converges with proba-

bility one to the same near-optimal solution obtained by the
off-line algorithm. We employ recent results in stochastic
approximation theory [14] to establish the convergence and
near-optimality of OAA. Our approach is similar to that by
Zhang et al. in [32], which studied the impact of noisy mes-
sage exchanges on the well-known distributed network util-
ity maximization (NUM) framework [13]. The goal of [32]
is to understand how an existing algorithm would fare un-
der a new environment where some ideal assumptions may
not hold. By contrast, our goal here is to design a new on-
line algorithm to approximate an off-line algorithm so as to
eliminate the requirement of CDI. Due to this difference, dif-
ferent algorithms are used in the dual domain: we use a dual
decomposition algorithm with dual updates only, while [32]
employs a primal-dual algorithm, where primal and dual
variables are updated simultaneously.

In this section, we outline the main results on the con-
vergence and near-optimality of OAA and the key steps of
the proofs. First, we will show that the iterates {û(n) : n =
1, 2, . . .} generated by OAA are recurrent with probability
one to an arbitrarily small neighborhood of the optimal so-
lution u∗.

Defining a Lyapunov function V (û) , ‖û− u∗‖2 and de-

noting a ball of radius
√

ε centered at u∗ as Bε , {û :
V (û) ≤ ε} for some given ε > 0, we have the following
lemma.

Lemma 2. If the step sizes {sn} satisfy (12), then the it-
erates {û(n) : n = 1, 2, . . .} generated by OAA are recurrent
with probability one to Bε.

The main idea of the proof is similar to that in [32], so
we just give a sketch of the important steps here. The re-
currence of {û(n) : n = 1, 2, . . .} to Bε can be proved by
showing that V (û) has a negative drift [14]. To see this,
we first examine the structure of the stochastic subgradi-
ents during the nth iteration. It can be readily verified
that the stochastic subgradient d̂uk (n) can be decomposed

as d̂uk (n) = duk (n) + ξuk (n), where ξuk (n) is a noise term
and is defined as

ξuk (n) , d̂uk (n)− E(n)
H

[
d̂uk (n)

]

= E(n)
H

[
M∑

m=1

Tr(Q
(m)∗
k (n))

]
−

M∑
m=1

Tr(Q
(m)∗
k (n)). (17)

In (17), E(n)
H [·] denotes the expectation over the distribution

of H conditioned on the previous (n−1) iterates. Then, the
stochastic dual variable updates can be written as

ûk(n + 1) = ûk(n)− sn [duk (n) + ξuk (n)] + zuk (n), ∀k,

where zuk (n) is a correction term that projects the stochastic
subgradient back to the non-negative orthant. Noting that
the correction term ξuk (n) is a non-expansive mapping [3,
Prop. 2.2.1], which does not increase the norm of ûk(n) −

sn [duk (n) + ξuk (n)], we have

|ûk(n + 1)− u∗k|2 ≤ |ûk(n)− u∗k|2 − 2sn(ûk(n)− u∗k)×
[duk (n) + ξuk (n)] + s2

n [duk (n) + ξuk (n)]2 .

Suppose that the primal problem is feasible. Then, the dual
objective function Θ(u) is bounded from below. Thus, its
subgradient duk (n) is bounded. From OAA’s dual updates
in (16), we conclude that ûk(n) is bounded for all n. Thus,

Θ(û(n)) is bounded, which in turn implies that d̂uk (n) is also

bounded. Since d̂uk (n) is bounded, we have that |ξuk (n)|
is bounded as well. The boundedness of these terms im-
plies that they can be driven to zero by the diminishing

step size sn as n → ∞. Also, since E(n)
H [ξuk (n)] = 0, we

have sn(ûk(n)− u∗k)E(n)
H [ξuk (n)] = 0. Thus, by rearranging

terms and taking expectation on both sides, it follows that
(in vector form),

E(n)
H

[‖û(n + 1)− u∗‖2]− ‖û(n)− u∗‖2 ≤
−2sn〈û(n)− u∗,du(n)〉+ O(s2

n). (18)

Since sn > 0, we can see from (18) and the definition of
V (û) that in order for V (û) to have a negative drift, it is
equivalent to showing that 〈û(n) − u∗,du(n)〉 ≥ 0. This
holds because for û(n), we have

〈û(n)− u∗,du(n)〉 ≥ Θ(û(n))−Θ(u∗) ≥ 0. (19)

In (19), the first inequality follows from the convexity of
Θ(u) (the convexity of Θ(u) implies Θ(û(n)) ≥ Θ(u∗) +
du(n)T (û(n) − u∗)). The second inequality follows from
the fact that u∗ is a global minimizer of Θ(u). This shows
that, when û(n) /∈ Bε, there exists δε ≥ 0 such that 〈û(n)−
u∗,du(n)〉 ≥ δε, which means that the drift in (18) is nega-
tive. It then follows that {û(n) : n = 1, 2, . . .} returns to Bε

with probability one.
After showing the recurrence of {û(n) : n = 1, 2, . . .} in

Lemma 2, we now show that, if the noise term ξu(n) drives
û(n) away from Bε, the deviation of the iterates {û(n)} is
bounded. This result is stated in the following lemma.

Lemma 3. If the step sizes {sn} satisfy (12), then for any
ε > 0, there exists an n0 such that for n ≥ n0, the trajectory
of {û(n) : n > n0} is bounded by the contraction region B3ε

almost surely.

The proof of this lemma is similar to that in [32] and so
we only give a brief sketch of the proof here. We first show
that if n0 is sufficiently large and û(n0 +1) moves out of Bε,
then û(n0 + 1) resides in B2ε with probability one. This is
true because by Chebyshev’s inequality, we have

Pr (sn0‖ξu(n0)‖ > ε) ≤ s2
n0E

(n)
H [‖ξu(n0)‖2]

ε2
. (20)

Since s2
n → 0, then when n0 is large enough, the change in

one step is almost surely no greater than ε. Thus, û(n0 +1)
resides in B2ε with probability one.

Let B̄ε denote the complement of Bε. We now show that
if û(n0 + 1) ∈ B2ε ∩ B̄ε, then for all n > n0 + 1, û(n) ∈ B3ε

with probability one. That is, the trajectory of the series
starting from û(n0 +1) stays in B3ε almost surely. By using
the inequality [14, Eq. (1.4)], we have that, for m ≥ n0 + 1,

Pr

{
sup

∣∣∣∣∣
m∑

n=n0+1

sn‖ξ(n)
u ‖

∣∣∣∣∣ ≥ ε

}
≤ Ē(n)

H [‖ξ(n)
u ‖2]

ε2

∞∑
n=

n0+1

s2
n,
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Figure 9: Convergence of the OAA algorithm.

where Ē(n)
H [‖ξu(n)‖2] , lim supn E

(n)
H [‖ξu(n)‖2]. It then fol-

lows from the conditions on sn in (12) and the boundedness
of ‖ξu(n)‖ that

lim
m→∞

Pr

{
sup

∣∣∣∣∣
m∑

n=n0+1

sn‖ξu(n)‖
∣∣∣∣∣ ≥ ε

}
= 0, ∀ε > 0.

In other words, the accumulated distance deviating from
û(n0 + 1) is almost surely less than ε. It then follows that
the trajectory resides in B3ε with probability one.

Combining Lemmas 2 and 3, and noting that ε can be
made arbitrary small, we have the following theorem.

Theorem 3. If the step sizes {sn} satisfy (12), then the
iterates {û(n), n = 1, 2, . . .} generated by OAA converge to
the same near-optimal solution u∗ of (8) with probability
one.

We use the previous two 5-link MC-MIMO ad hoc net-
work examples to illustrate the convergence behavior of the
OAA algorithm. For comparison, we plot the convergence
processes of OAA and the off-line algorithm in Figures 9(a)
and 9(b), respectively. It can be seen that after approxi-
mately 500 and 700 iterations, respectively, OAA converges
to the same solutions obtained by the off-line algorithm in
these two examples. We note that although the number of
iterations of OAA is slightly larger than that for the off-line
algorithm, the running time of OAA is shorter because OAA
does not require computing expectations over the fading dis-
tribution.

5. RELATED WORK
There has been great interest on MC-MIMO at the physi-

cal layer in recent years, e.g., joint transceiver design [18,19],
channel estimation [23, 31], multiple access strategies [27],
limited feedback and antenna selection techniques [20]. An
excellent overview of MC-MIMO physical layer techniques
can be found in [12]. Another closely-related line of re-
search is on joint subcarrier scheduling and power spectrum
optimization for multi-carrier communications systems with
single-antenna [1, 15, 24, 25, 28]. Andrews and Zhang [1]
studied the multiple carrier scheduling problem for WiMAX

downlink and designed several constant factor approxima-
tion algorithms to solve the problem. Wong et al. [28] showed
that adaptive subcarrier loading and modulation can sub-
stantially increase the capacity of a multi-carrier communi-
cation system. Song and Li [24,25] proposed a framework for
subcarrier assignment and power allocation in OFDM wire-
less networks and designed various optimization algorithms
based on this framework. However, their framework did not
consider the channel variations in time domain. In [15] ,
Liu et al. proposed a scheduling algorithm at the MAC
layer for multiple connections with different QoS require-
ments, where each connection employs adaptive modulation
and coding schemes at the physical layer over fading chan-
nels. The limitation of [15] is that the scheduling algorithm
does not consider power control.

6. CONCLUSION
In this paper, we investigated the important problem of

subcarrier scheduling and power control/allocation for broad-
band MC-MIMO ad hoc networks. We considered the so-
called MWSR problem, which is a challenging non-convex
optimization problem. With the use of a perturbation func-
tion, we showed that the MWSR problem has a zero duality
gap, thus enabling us to study the problem in its dual do-
main. This approach is highly desirable as it is able to signif-
icantly reduce the problem complexity. We designed an off-
line algorithm in the dual domain, which can achieve near-
optimal performance. We also proposed an online adaptive
algorithm (OAA) that eliminates the full CDI requirement
in the off-line algorithm. We showed that this OAA con-
verges with probability one to the same solution obtained
by the off-line algorithm.
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