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Abstract—In this paper, we investigate optimal power alloca-
tion to achieve perfect secrecy capacity in Gaussian MIMO wire-
tap channels. The number of antennas in the MIMO wire-tap
channel is arbitrary at the transmitter, the intended receiver, and
the eavesdropper. For this challenging non-convex optimization
problem, we design a novel global optimization algorithm called
branch-and-bound with reformulation and linearization tech-
nique (BB/RLT). As opposed to convex programming methods
that only yield local optimal solutions, our proposed BB/RLT
method guarantees finding a global optimal solution. The main
contribution in this paper is that our proposed BB/RLT algorithm
is the first method that solves the optimal power allocation
problem for achieving perfect secrecy capacity problem in MIMO
wire-tap channels. Numerical examples are also given to demon-
strate the efficacy of the proposed algorithm.

I. INTRODUCTION

Security and privacy protection is one of the most important
issues in wireless communications due to the broadcast nature
of wireless channels – anyone within communication range
can listen to the transmission in the air and could possibly ex-
tract the information. Aside from traditional cryptographic se-
curity mechanisms, information-theoretic-based security tech-
niques have gained increasing attention in recent years.

The present information-theoretic security framework was
established by Wyner [1], who developed the concept of “wire-
tap channel.” Wyner showed that, if a wire-tap channel satisfies
certain degradedness conditions, perfectly secure communi-
cation with non-zero rate between the transmitter and the
intended receiver is achievable. Meanwhile, the eavesdropper
learns nothing about the secret messages from its observations.
The maximum rate of secrecy information from the transmitter
to the intended receiver is called secrecy capacity. A follow-up
work by Leung-Yan-Cheong and Hellman further determined
the secrecy capacity of scalar Gaussian wire-tap channel [2].
Wyner’s work was later extended by Csiszár and Köner to the
case of secret communication over general broadcast channels
[3] and scalar Gaussian multiple access channels [4]–[6].

Recently, researchers began to consider exploiting the phys-
ical layer characteristics of multiple-input multiple-output
(MIMO) channels to further increase the capacity of secrecy
communications. The secrecy communication problem for
MIMO systems was first studied in [7], where Hero showed
that under the restricted case where the eavesdropper is
uninformed about its channel, the transmitter can enforce a
zero information rate to the eavesdropper while delivering

a positive information rate to the intended receiver. In [8],
Negi et al. proposed a scheme to transmit artificial noise in
the intended receiver’s null space so that the eavesdropper’s
channel is degraded. The optimal power allocation strategy
for Gaussian multiple-input single-output (MISO) wire-tap
channels is studied in [9] and [10]. By somewhat different
approaches, both [9] and [10] showed the same result that,
under the relatively simpler MISO setting, the optimization
problem can be transformed into the well-known Rayleigh
quotient problem and thus can be solved analytically.

In a very recent paper, Oggier et al. [11] showed that the
perfect secrecy capacity of general MIMO wire-tap channels
is achieved by Gaussian signaling, thus showing the secrecy
capacity inner bound in [9] is tight. However, finding the
optimal power allocation under Gaussian signalling for MIMO
wire-tap channels is very challenging and remains an open
problem. This is because the power allocation problem for
MIMO wire-tap channels is non-convex and, unlike simple
MISO cases [9], [10], there does not exist a simple way to
get around the complex problem structure. In this paper, our
major goal is to fill this void and design an algorithm that
guarantees finding an optimal solution for such a non-convex
optimization problem.

The main contribution of this paper is that we provide an
effective solution method to solve the optimal power allocation
problem for achieving perfect secrecy capacity in MIMO wire-
tap channels. To solve the power allocation problem, we
propose a global optimization technique called branch-and-
bound with reformulation linearization technique (BB/RLT).
The basic idea of BB/RLT is that we first use RLT to obtain a
linear relaxation for the original problem. By solving the linear
relaxation, a global upper bound for the original problem is
achieved. We then use this relaxation solution as a starting
point to search for a solution that is feasible to the original
problem. This feasible solution serves as a global lower bound
and an incumbent optimal solution. The branch-and-bound
process will then tighten the global upper bound and global
lower bound during each iteration, and stop when the gap
between global upper and lower bounds is sufficiently small.
In this paper, we develop the key problem-specific components
in BB/RLT to solve the problem and the related convergence
speedup techniques. Specifically, we develop a linearization
scheme to generate a higher dimensional upper-bounding prob-
lem. We also utilize a polyhedral outer approximation method
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Fig. 1. A MIMO wire-tap channel consists of a transmitter, a receiver, and
an eavesdropper, each equipped with multiple antennas.

to accurately approximate the logarithmic function. To speed
up the branch-and-bound convergence process, we propose a
variable selection policy based not only on the relaxation error,
but also on the relative significance of the variables in our
problem. To the best of our knowledge, our proposed method
is the first one that guarantees finding a global optimal solution
for the optimal power allocation problem in MIMO wire-tap
channels.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model and problem formu-
lation. Section III introduces our proposed BB/RLT solution
procedure. A convergence speedup technique for the proposed
BB/RLT algorithm is presented in Section IV and a numerical
example is given in Section V. Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, in a Gaussian MIMO wire-tap channel,
a transmitter equipped with nt antennas wishes to reliably
communicate a secret message to an intended receiver in the
presence of an eavesdropper. The intended receiver has nr

antennas and the eavesdropper has ne antennas.
A secret message S of rate R is a random integer from

the set {1, 2, . . . , 2nR}, which is transmitted in n channel
uses. The transmitter transmits the coded signal x ∈ C

nt to
the receiver, who decodes S based on the output y ∈ C

nr .
The eavesdropper overhears the output z ∈ C

ne . Define the
equivocation rate Δ as Δ = H(S|z)/H(S), i.e., the ratio
between the conditional entropy conditioned on the overheard
signal and the unconditional entropy. The equivocation rate is
a measure of the amount of information the eavesdropper can
learn about the message and quantifies the secrecy level [3]. In
this paper, we focus on the case Δ = 1, i.e., the eavesdropper
learns arbitrary little information regarding message S.

The received signals at the receiver and the eavesdropper
can be respectively written as

y =
√

ρHHx + n1, z =
√

ρGGx + n2, (1)

where H ∈ C
nr×nt and G ∈ C

ne×nt are the channel
gain matrices from the transmitter to the intended receiver
and to the eavesdropper, respectively, ρH and ρG are the
corresponding signal-to-noise ratios (SNR), respectively, and
n1 ∈ C

nr , n2 ∈ Cne are the corresponding normalized
complex circularly symmetric Gaussian random noise terms

with identity covariance matrix. In this paper, it is assumed
that the transmitter has full knowledge of both channels.

Denote Q the covariance matrix of the input signal, i.e.,
Q = E[xx†]. Then, the power constraint on Q is Q � 0 and
Tr(Q) ≤ 1. In a very recent paper [11], Oggier et al. showed
that the perfect secrecy capacity of general MIMO wire-tap
channels is achieved by Gaussian signaling. As a result, the
perfect secrecy capacity problem of MIMO wire-tap channels
can be written as follows:

Maximize log |I + ρHHQH†| − log |I + ρGGQG†|
subject to Tr(Q) ≤ 1, Q � 0, Q = Q†. (2)

Clearly, problem (2) is a challenging non-convex optimiza-
tion problem and many local maxima may exist. This can be
seen by noticing that the objective function is a difference of
two concave functions (in the the form of log | · |). As a result,
the convexity is not definite. For such a non-convex optimiza-
tion problem, conventional convex optimization methods do
not work well since they yield local optimal solutions at best.
In the next section, we will develop an algorithm based on
global optimization approach.

III. A GLOBAL OPTIMIZATION APPROACH

We develop our algorithm by using a state-of-the-art
global optimization technique called branch and bound with
reformulation-linearization technique (BB/RLT) [12]. The ba-
sic idea of BB/RLT is rather simple: First, by using RLT,
we obtain a linear relaxation for the original problem. By
solving the linear relaxation, we have a relaxation solution that
provides a global upper bound UB for the original problem. If
this relaxation solution is infeasible to the original problem, we
can use it as a starting point to do a local search to determine
a feasible solution. Then, this feasible solution will serve as
a global lower bound LB and an incumbent optimal solution
to the original problem. The branch-and-bound process will
then tighten UB and LB during each iteration, and stop when
LB ≥ (1 − ε)UB is satisfied.

The motivation of using BB/RLT is that BB/RLT guarantees
the convergence to a global optimal solution for any non-
convex optimization problem as long as the feasible region
of the problem is compact (see [12] for further details). This
condition is clearly satisfied for problem (2). We summarize
the general framework of BB/RLT in Algorithm 1.

We note that the BB/RLT method in Algorithm 1 is a
general framework. In order to use Algorithm 1 to solve
problem (2), several key problem-specific components remain
to be developed and the design is far from trivial. First
and foremost, how to construct an RLT linear relaxation for
problem (2) is critical to the success of using BB/RLT. Also,
the branch-and-bound strategy and the according convergence
speed up technique is also very important. In what follows, we
will describe in detail how to develop these problem-specific
components.

A. Objective Function Linearization

In problem (2), the objective function is nonlinear. To
linearize it, we introduce two new variables A = ln |I +
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Algorithm 1 BB/RLT Algorithmic Framework
Initialization:

1. Let optimal solution ψ∗ = ∅. The initial lower bound LB = −∞.
2. Determine partition variables (variables associated with nonlinear

terms) and derive their initial value intervals
3. Let the initial problem list contains only the original problem, denoted

by P1.
4. Introduce one new variable for each nonlinear term. Add linear

constraints for these variables to build a linear relaxation.
5. Denote the solution to linear relaxation as ψ̂1 and its objective value

as the upper bound UB1.
Main Loop:

1. Select problem Pz that has the largest upper bound among all
problems in the problem list.

2. Find, if necessary, a feasible solution ψz via a local search algorithm
based on the solution of problem Pz . Denote the objective value of
ψz by LBz .

3. if (LBz > LB) then
Let ψ∗ = ψz and LB = LBz .
if (LB ≥ (1 − ε)UB) then stop with the ε-optimal solution ψ∗;
else remove all problems P

z
′ with (1 − ε)UB

z
′ ≤ LB.

endif
4. Compute relaxation error for each nonlinear term.
5. Select a partition variable with the maximum relaxation error and

divide its interval into two new intervals at the point ψ̂z

6. Remove the selected problem Pz from the problem list, construct two
new problems Pz1 and Pz2 based on the two partitioned intervals.

7. Compute two new upper bounds UBz1 and UBz2 by solving the
linear relaxations of Pz1 and Pz2, respectively.

8. if (LB < (1 − ε)UBz1) then add problem Pz1 to the problem list.
if (LB < (1 − ε)UBz2) then add problem Pz2 to the problem list.

9. If the problem list is empty, we stop with the ε-optimal solution ψ∗.
Otherwise, repeat step 1.

ρHHQH†| and B = ln |I + ρGGQG†|. The objective
function can then be linearized to

Maximize
1

ln 2
(A − B) .

For convenience, we let D � I + ρHHQH† and R � I +
ρGGQG†. It is clear that, to evaluate A and B, we need to
compute ln |D| and ln |R|.

Generally, determinant computation is cumbersome because
a matrix’s determinant is in essence a high-order polynomial of
all matrix entries. Fortunately, in problem (2), there exist spe-
cial structures in D and R to make determinant computation
easier. Noting that D and R are positive definite Hermitian
matrices, Cholesky decompositions of D and R exist. Take D
for example, we have

A = ln |D| = ln |D〈L〉 · (D〈L〉)†|
= ln(

∏nr

i=1 ‖d〈L〉
(i,i)‖2) =

∑nr

i=1 ln ‖d〈L〉
(i,i)‖2

=
∑nr

i=1

[
ln(Re2(d〈L〉

(i,i)) + Im2(d〈L〉
(i,i)))

]
,

where D〈L〉 is a lower triangular matrix and d
〈L〉
(i,i) denotes the

ith diagonal entry of D〈L〉. Noting that A is a summation
of the log values of the square of d

〈L〉
(i,i)’s norm, we can

introduce two new groups of variables Yi and Xi to perform
reformulation as follows:

A =
∑nr

i=1 Yi,
Yi = ln Xi,

Xi = Re2(d〈L〉
(i,i)) + Im2(d〈L〉

(i,i)).
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Fig. 2. A convex envelope for y = ln x.

Likewise, after introducing two more groups of variables Vi

and Wi, B can be computed using the same method.
Another difficulty in linearizing the objective function lies

in handling ln{·}. Our basic idea to linearize the curve of the
log function is to construct a polyhedral outer approximation.
As shown in Fig. 2, the curve y = lnx over an interval can be
relaxed to a polyhedron formed by three tangential segments
I, II, and III, which are constructed at (xL, ln xL), (xβ , ln xβ),
and (xU , ln xU ), where xβ is computed as follows:

xβ =
xLxU (ln xU − lnxL)

xU − xL
. (3)

Here, xβ is the x-value for the point at the intersection of the
extended tangent segments I and III. Segment IV is the chord
that joins (xL, ln xL) and (xU , ln xU ). The polyhedron defined
by the four line segments can be described by the following
four linear constraints:

xL · y − x ≤ xL(ln xL − 1),
xβ · y − x ≤ xβ(ln xβ − 1),
xU · y − x ≤ xU (ln xU − 1),

(xU − xL)y + (lnxL − lnxU )x ≥ xU · lnxL − xL · lnxU .

We remark that this polyhedral approximation is a very
accurate approximation of the log function. For illustrative
purpose, the xL-value in Fig. 2 is deliberately chosen to be
close to zero to generate a significant curvature. Otherwise,
segments I, II, III, and IV almost superimpose one another,
making the figure hard to discern.

B. Linear Relaxation of Chelosky Decomposition

As indicated earlier, D and R can be decomposed into a
product form by Cholesky decomposition. Now, it remains to
linearize the product terms in the Cholesky decompositions.
Take D for example, we have the following relationship
between the entries of D and the entries of D〈L〉:

d(i,j) =
j∑

k=1

d
〈L〉
(i,k)d

〈L〉
(j,k) (4)
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for 1 ≤ i ≤ nt, 1 ≤ j ≤ i, and 1 ≤ k ≤ j. Expanding the
RHS of (4), we have

Re(d(i,j)) =
j∑

k=1

[
Re(d〈L〉

(i,k))Re(d〈L〉
(j,k)) + Im(d〈L〉

(i,k))Im(d〈L〉
(j,k))

]

Im(d(i,j)) =
j∑

k=1

[
Im(d〈L〉

(i,k))Re(d〈L〉
(j,k)) − Re(d〈L〉

(i,k))Im(d〈L〉
(j,k))

]

For the diagonal entries of D, we can further simplify the
expansions to

Re(d(i,i)) =
i∑

k=1

[
Re2(d〈L〉

(i,k)) + Im2(d〈L〉
(i,k))

]
, Im(d(i,i)) = 0.

Now, we introduce the so-called RLT variables to linearize
these expansion expressions. For convenience, we use a
generic term (xy) to represent the terms Re(d〈L〉

(i,k))Re(d〈L〉
(j,k)),

Im(d〈L〉
(i,k))Im(d〈L〉

(j,k)), Im(d〈L〉
(i,k))Re(d〈L〉

(j,k)), and

Re(d〈L〉
(i,k))Im(d〈L〉

(j,k)). Also, we use a generic term x2

to represent the terms Re2(d〈L〉
(i,k)) and Im2(d〈L〉

(i,k)).
For a product term xy, we have

x − xL ≥ 0, xU − x ≥ 0, y − yL ≥ 0, yU − y ≥ 0, (5)

where xL and yL denote the lower bounds on x and y,
respectively, and xU and yU denote the upper bounds on x
and y, respectively. From (5), we can derive the following
four bounding factor constraints:

(x − xL) × (y − yL) ≥ 0, (x − xL) × (yU − y) ≥ 0,

(xU − x) × (y − yL) ≥ 0, (xU − x) × (yU − y) ≥ 0,

which can be further expanded to the following four con-
straints:

xy − yLx − xLy ≥ −xLyL, −xy + yUx + xLy ≥ xLyU ,
−xy + yLx + xUy ≥ xUyL, xy − yUx − xUy ≥ −xUyU .

(6)

Similarly, for a general square term x2, we have

x − xL ≥ 0 xU − x ≥ 0 (7)

From (7), we can derive the following three bounding con-
straints:

(x − xL)2 ≥ 0, (xU − x)2 ≥ 0, (x − xL) × (xU − x) ≥ 0

which can be expanded to the following three constraints:

x2 − 2xLx ≥ −x2
L, x2 − 2xUx ≥ −x2

U ,
x2 − (xL + xU )x ≤ xUyL.

(8)

Now, by treating xy and x2 as independent variables rather
than the products of two terms, all constraints in (6) and (8)
become linear constraints.

C. Entrywise Expansions of D and R with Respect to Q

So far, D and R are expressed using matrix products of
Q, H, and G. However, such matrix product expressions
are not convenient to use under BB/RLT framework. Thus,
it is necessary to expand these matrices products entry-wise
for algorithm design. For example, by expanding D = I +
ρHHQH†, the real and imaginary parts of d(i,j), i �= j, can
be written as the following linear equalities with respect to
Re(q(x,y)) and Im(q(x,y)):

0 = Re(d(i,j)) − ρH

nt∑
x=1

Re(q(x,x))Re(h(i,x)h(j,x))

−ρH

nt∑
x=2

x−1∑
y=1

Re(q(x,y))
[
Re(h(i,x)h(j,y)) + Re(h(i,y)h(j,x))

]

−ρH

nt∑
x=2

x−1∑
y=1

Im(q(x,y))
[
Im(h(i,y)h(j,x)) − Im(h(i,x)h(j,y))

]

0 = Im(d(i,j)) − ρH

nt∑
x=1

Re(q(x,x))Im(h(i,x)h(j,x))

−ρH

nt∑
x=2

x−1∑
y=1

Re(q(x,y))
[
Im(h(i,y)h(j,x)) + Im(h(i,x)h(j,y))

]

−ρH

nt∑
x=2

x−1∑
y=1

Im(q(x,y))
[
Re(h(i,x)h(j,y)) − Re(h(i,y)h(j,x))

]

For the diagonal elements d(i,i), the expansion can be simpli-
fied to

Re(d(i,i)) = ρH

nt∑
x=1

Re(q(x,x))
∥∥h(i,x)

∥∥2

+ρH

nt∑
x=2

x−1∑
y=1

Re(q(x,y)) · 2Re(h(i,x)h(i,y))

+ρH

nt∑
x=2

x−1∑
y=1

Im(q(x,y)) · 2Im(h(i,y)h(i,x)) + 1 (9)

and Im(d(i,i)) = 0. Since Im(d(i,i)) = 0, ∀i, we can remove
these variables from our RLT-based relaxation to reduce the
number of variables and constraints without changing the
problem. Following the same line, we can derive the expansion
of R = I + ρGGQG† and the expressions are omitted here
for brevity.

D. Linear Relaxation for Power Covariance Matrix Q

In problem (2), the input covariance matrix Q is subject to
Q � 0 and Tr(Q) ≤ 1. The trace constraint on Q is simply
the following linear constraint:

nt∑
i=1

Re(q(i,i)) ≤ 1. (10)

However, it is more involved to express the PSD constraint of
Q in a linear form. In what follows, we will uncover the hidden
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entrywise relationship implied by Q � 0. We first introduce
the following result, for which the proof can be found in [13].

Theorem 1. For any Hermitian PSD matrix Q ∈ C
n×n, the

entry having the largest modulus must appear on the main
diagonal of Q. Further, the entries in Q satisfy the following
inequality:

‖q(i,j)‖ ≤ q(i,i) + q(j,j)

2
, 1 ≤ i, j ≤ n. (11)

Since |Re(q(i,j))| ≤ ‖q(i,j)‖ and |Im(q(i,j))| ≤ ‖q(i,j)‖, by
Theorem 1, we have the following relaxation constraints on
the entries of Q:

|Re(q(i,j))| ≤ 1
2
(Re(q(i,i)) + Re(q(j,j))), ∀i, (12)

|Im(q(i,j))| ≤ 1
2
(Re(q(i,i)) + Re(q(j,j))), ∀i. (13)

E. RLT-Based Linear Relaxation

By putting together all new variables and constraints, we
have the final RLT linear relaxation of problem (2) as follows:

Max 1
ln 2 (A − B)

s.t. A − ∑nr

i=1 Yi = 0
B − ∑nr

i=1 Wi = 0
Polyhedral approximation for (Yi, Xi)
Polyhedral approximation for (Wi, Vi)
Xi − Re2(d〈L〉

(i,i)) − Im2(d〈L〉
(i,i)) = 0,∀i

Vi − Re2(r〈L〉
(i,i)) − Im2(r〈L〉

(i,i)) = 0,∀i

Bounding factor constraints for terms in the forms
of Re(·)Re(·), Im(·)Im(·), and Re(·)Im(·).
Entrywise expanssion for D and R w.r.t. Q∑nt

i=1 Re(q(i,i)) ≤ 1
|Re(q(i,j))| ≤ 1

2 (Re(q(i,i)) + Re(q(j,j))),∀i
|Im(q(i,j))| ≤ 1

2 (Re(q(i,i)) + Re(q(j,j))),∀i.

(14)

F. Partitioning Variables and Their Bounds

In BB/RLT, partitioning variables are those that are involved
in nonlinear terms, for which we have therefore defined new
variables, and whose bounding intervals will need to be
partitioned during the BB process [12]. In RLT relaxation
(14), these BB variables include Xi, Vi, Re(d〈L〉

(i,j)), Im(d〈L〉
(i,j)),

Re(r〈L〉
(i,j)), and Im(r〈L〉

(i,j)). For these variables, we need to
derive tight upper and lower bounds, which are crucial to the
convergence speed of BB/RLT.

1) Re(d〈L〉
(i,k)), and Im(d〈L〉

(i,k)): To derive upper and lower

bounds for Re(d〈L〉
(i,k)), and Im(d〈L〉

(i,k)), we need the following
result.

Lemma 1. For any PSD Hermitian matrix M ∈ C
n×n, the

summation of the modulus of all off-diagonal elements satisfy
the following inequality:

n∑
i=2

i−1∑
j=1

∥∥m(i,j)

∥∥ ≤ n − 1
2

Tr{M}.

Lemma 1 follows directly from Theorem 1. Due to space
limitation, we refer readers to [13] for more details. From

Lemma 1, we have the following theorem and the proof is
also relegated to [13] due to space limitation.

Theorem 2. The mth diagonal entry of D can be upper
bounded by(

d(i,i)

)
U

=
[
ρH

(
D

(1)∗
(i) + D

(2)∗
(i)

)]
+ 1, (15)

where D
(1)∗
(i) = max

∥∥h(i,x)

∥∥2
, for 1 ≤ i ≤ nr, 1 ≤ x ≤ nt,

and D
(2)∗
(i) is the optimal objective value of the following linear

programming problem:

max
∑nt

x=2

∑x−1
y=1

[
Re(q(x,y)) · 2Re(h(i,x)h(i,y))

+Im(q(x,y)) · 2Im(h(i,y)h(i,x))
]

s.t. −nt−1
2 ≤ ∑nt

x=2

∑x−1
y=1 Re(q(x,y)) ≤ nt−1

2

−nt−1
2 ≤ ∑nt

x=2

∑x−1
y=1 Im(q(x,y)) ≤ nt−1

2

−1 ≤ Re(q(x,y)),Im(q(x,y)) ≤ 1, ∀x, y

With Theorem 2, we are ready to bound Re(d〈L〉
(i,k)) and

Im(d〈L〉
(i,k)). Since d(i,i) =

∑i
k=1

[
Re2(d〈L〉

(i,k)) + Im2(d〈L〉
(i,k))

]
,

we can bound all Re(d〈L〉
(i,k)) and Re(d〈L〉

(i,k)), 1 ≤ k ≤ i, 1 ≤
i ≤ nt, in the the following intervals[
−

√
[ρH(D(1)∗

(i) + D
(2)∗
(i) )] + 1,

√
[ρH(D(1)∗

(i) + D
(2)∗
(i) )] + 1

]
.

Since D and R are of the identical form, the upper and
lower bounds of Re(r〈L〉

(i,k)) and Re(r〈L〉
(i,k)), 1 ≤ k ≤ i, 1 ≤ i ≤

nt can be derived in exactly the same way and are omitted in
here for brevity.

2) Xi, and Vi: Since Xi and Vi are of identical form,
we only show how to derive upper and lower bounds for
Xi and omit the derivations of Vi for brevity. Recall that
Xi = Re2(d〈L〉

(i,i)) + Im2(d〈L〉
(i,i)), we can upper bound Xi as

follows:
Xi = ‖d〈L〉

(i,i)‖2 ≤ d(i,i) ≤
(
d(i,i)

)
U

.

Since det(I + A) ≥ 1 + detA for any A � 0 (Minkowski
inequality [14]), we have |D| = |I + ρHHQH†| =∏nr

i=1 ‖d〈L〉
(i,i)‖2 ≥ 1. Hence, Xi can be lower bounded by

Xi = ‖d〈L〉
(i,i)‖2 ≥ 1∏nr

j=1
j �=i

∥∥d(j,j)

∥∥2 ≥ 1∏nr
j=1
j �=i

(
d(j,j)

)
U

.

G. Local Search Algorithm

As indicated earlier, the solution to the linear relaxation
(14), denoted by Q̂, may not be feasible to the original
problem (2). Therefore, during each iteration, we need to
obtain a feasible solution based on Q̂ via a local search
algorithm if Q̂ is infeasible. The basic idea of our local search
is to project Q̂ onto the positive semidefinite cone.

This projection task can be formulated as the following
minimization problem: given a Hermitian matrix Q̂, we wish
to find a matrix Q satisfying Q � 0 and Tr{Q} ≤ 1 such that
Q minimizes ‖Q−Q̂‖F , where ‖·‖F represent the Frobenius
norm. Mathematically, this can be written as

Minimize 1
2‖Q − Q̂‖2

F

subject to Tr(Q) ≤ 1, Q � 0.
(16)
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Due to space limitation, we refer reader to [13] for more details
about how to solve problem (16).

IV. CONVERGENCE SPEEDUP TECHNIQUE

BB/RLT has exponential complexity due to the NP-hardness
of problem (2). However, it is possible to exploit the special
structure of problem (2) to significantly speedup its conver-
gence. From our computational experience, we note that the
decrease of the global upper bound plays the most important
role in the convergence process. Thus, Xi and Vi, should be
partitioned with higher priority since they directly impact the
global upperbound. We summarize our convergence speedup
technique in Algorithm 2.

Algorithm 2 BB Variable Selection Strategy
1. Among all Xi and Vi, choose the one having the largest relaxation error

and denoted it as Z∗
i .

2. If (ln(Z∗
l )U − ln(Z∗

l )L ≤ ε1) then

a) Among all Re(d
〈L〉
(i,k)

)’s, Im(d
〈L〉
(i,k)

)’s, Re(r
〈L〉
(i,k)

)’s, and

Im(r
〈L〉
(i,k)

)’s, choose one with the largest relaxation error. Denote this
relaxation error as Ep;

b) If Ep ≤ ε2, then remove this subproblem; else return the selected
variable; else return Z∗

l .

V. NUMERICAL EXAMPLE

In this section, We use a numerical example to demonstrate
the computational experience of BB/RLT. The simulation
setting is as follows: nt = nr = ne = 4, ρH = 10dB, and
ρG = 5dB. We plot the convergence process of BB/RLT in
Fig. 3, where the global UB and LB for the secrecy capacity
(in b/s/Hz) are illustrated in each iteration. The desired error
bound is chosen to be ε = 0.01. In this example, after
approximately 30000 iterations, the UB and LB values are
both driven to 5.45 b/s/Hz, meaning that the secrecy capacity
is 5.45 b/s/Hz. Although the number of iterations is seemingly
large, the running time of BB/RLT is quite short thanks to the
efficiency and robustness of modern day linear programming
solvers.

However, we remark that the convergence speedup tech-
nique discussed in Section IV is crucial for the success
of BB/RLT. For this example, without using the speedup
technique, the BB process would easily stall, although it
should converge theoretically. This is because without careful
consideration in selecting partitioning variables, the algorithm
may waste most of its time in partitioning those variables who
have very minor effect on closing the gap between global
upper and lower bounds. Also, the size of the subproblem
list in BB/RLT may become large quickly.

VI. CONCLUSION

In this paper, we investigated the optimal power alloca-
tion problem of Gaussian MIMO wire-tap channels. For this
challenging non-convex optimization problem, we designed a
global optimization algorithm called branch-and-bound with
reformulation and linearization technique (BB/RLT). We de-
veloped key problem-specific components for BB/RLT and the
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Fig. 3. Convergence process of BB/RLT.

related convergence speedup technique for solving the optimal
power allocation problem. To the best of knowledge, our
proposed BB/RLT algorithm is the first method that guarantees
finding the global optimal power allocation to achieve perfect
secrecy capacity for Gaussian MIMO wire-tap channels.
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