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Abstract—Uploading data streams to a resource-rich cloud server for inner product evaluation, an essential building block in
many popular stream applications (e.g., statistical monitoring), is appealing to many companies and individuals. On the other
hand, verifying the result of the remote computation plays a crucial role in addressing the issue of trust. Since the outsourced
data collection likely comes from multiple data sources, it is desired for the system to be able to pinpoint the originator of errors
by allotting each data source a unique secret key, which requires the inner product verification to be performed under any two
parties’ different keys. However, the present solutions either depend on a single key assumption or powerful yet practically-
inefficient fully homomorphic cryptosystems. In this paper, we focus on the more challenging multi-key scenario where data
streams are uploaded by multiple data sources with distinct keys. We first present a novel homomorphic verifiable tag technique
to publicly verify the outsourced inner product computation on the dynamic data streams, and then extend it to support the
verification of matrix product computation. We prove the security of our scheme in the random oracle model. Moreover, the
experimental result also shows the practicability of our design.
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1 INTRODUCTION

The past few years have witnessed the prolifera-
tion of streaming data generated by a variety of
applications/systems, such as GPS, Internet traffic,
asset tracking, wireless sensors, etc. Retaining a local
copy of such exponentially-growing volume of data
is becoming prohibitive for resource-constrained com-
panies/organizations, let alone offering efficient and
reliable query services on it.

Consider a stream-oriented service (e.g., market
analysis, weather forecasting and traffic managemen-
t), where multiple resource-constrained sources contin-
uously collect or generate data streams, and outsource
them to a powerful external server, e.g. cloud, for
desired critical computations and storage savings. For
example, using inner product computation over any
two outsourced stock data streams from different
sources for correlation analysis, a stock market trader
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is able to spot the arbitrage opportunities [1].
In spite of its merits, outsourcing naturally raises

the issue of trust [2], [3], [4]. The third-party server
may act maliciously due to insider/outsider attack,
software/hardware malfunctions, intentional saving
of computational resources, etc. Thus, it is desirable
for clients to verify the computation result provided
by the server. However, designing a verifiable com-
putation scheme for the above example is not self-
explanatory due to the following challenges.

First of all, the outsourced computation is data-
sensitive, i.e., given forged data from a source, the
final computation result will be erroneous even if
the corresponding query is correctly processed by
the server. Cryptography provides an off-the-shelf
method to tackle this problem, namely, each data
source may be equipped with a unique secret key to
“sign” its data contribution, from which traceability
is readily derived. However, the typical signature
algorithm does not serve on purpose of verifiable
multi-key computation. In deed, most of the existing
verifiable computation schemes only focus on the
single-key setting, i.e., data and its computation are
outsourced from merely one contributor [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21] or from multiple contributors but with
the same key [22]. On the other hand, we may resort
to the powerful fully homomorphic encryption (FHE)
but are hardly willing to use it in practice due to
efficiency concern [23][24]. As a result, we are still
striving to come up with a promising solution in such
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a challenging multi-key setting.
Second, clients may not be in the same trust domain

with data sources. A keyless client is hopefully able to
conduct the result verification [5], [9], [15], [16], [17].
Hence, public verification property is more engaging
here so as to allow any party devoid of secret keys
with sources to check the outsourced computations.

Third, we must take the efficiency into account
when realizing our design from both the viewpoints
of computation and communication cost. In general,
the verification cost is expected to be smaller than
the initially outsourced computation, and constant
communication overhead between client and server
is favorable, independent of the number of data in-
volved in the computation. Otherwise, the client may
carry out the computation on her/his own.

Last but not the least, given potentially-unbounded
data streams, it requires the outsourced functions to
be evaluated over dynamic data. In other words,
the involved data cannot be determined in advance.
Therefore, how to publicly and efficiently verify the
inner product evaluation over the outsourced data
streams under multiple keys still remains an open prob-
lem.

Our contributions. In this paper, we introduce a
novel homomorphic verifiable tag technique and de-
sign an efficient and publicly verifiable inner product
computation scheme on the dynamic outsourced data
stream under multiple keys. Our contributions are
summarized as follows:

1) To the best of our knowledge, this is the
first work that addresses the problem of veri-
fiable delegation of inner product computation
over (potentially unbounded) outsourced data
streams under the multi-key setting. Specifical-
ly, we first present a publicly verifiable group-
by sum algorithm, which servers as a building
block for verifying the inner product of dynam-
ic vectors under two different keys. Then, we
extend the construction of the verifiable inner
product computation to support matrix product
from any two different sources.

2) Our scheme is efficient enough for practical use
in terms of communication and computation
overhead. Specifically, the size of the proof gen-
erated by the server to authenticate the compu-
tation result is constant, regardless of the input
size n of the evaluated function. In addition,
the verification overhead on the client side is
constant for inner product querie1. For matrix
product query, the verification cost is O(n2) in
stark contrast to the super-quadratic computa-
tional complexity for matrix product.

3) Our scheme achieves the public verifiability, i.e.,
a keyless client is able to verify the computation

1. Constant verification cost is achieved by a pre-computation in
an offline phase.

results.
4) We formally define and prove the security of

our scheme under the Computational Diffie-
Hellman assumption [25] in the random oracle
model.

Organization. The rest of the paper is organized as
follows. Section 2 gives the related work. In section 3,
we define the system model, design goals, proposed
algorithms and security model. We present a group-
by sum algorithm as a building block and introduce
our verifiable inner product computation scheme in
section 4, and an extension to matrix product in
section 5, respectively. The security analysis is given
in section 6, and we evaluate the performance of our
scheme in section 7. Finally, section 8 concludes this
paper.

2 RELATED WORK

The problem of verifying the outsourced algebraic com-
putation has attracted extensive attention in the past
few years. These schemes can be divided into two
categories: under single-key setting [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22] and under multi-key setting [23][24].

Single-key Setting. Fully homomorphic message
authenticators [6], [7], [8] allow the holder of a public
evaluation key to perform computations on previous-
ly authenticated data, in such a way that the produced
proof can be used to certify the correctness of the
computation. More precisely, with the knowledge of
the secret key used to authenticate the original data,
a client can verify the computation by checking the
proof. For the asymmetric setting, Boneh and Freeman
[9] proposed a realization of homomorphic signatures
for bounded constant degree polynomials based on
hard problems on ideal lattices. Although not all the
above schemes are explicitly presented in the context
of streaming data, they can be applied there under
a single-key setting. In this scenario, the data source
continually generates and outsources authenticated
data values to a third-party server. Given the public
key, the server can compute over these data and
produce a proof, which enables the client to privately
[6], [7], [8] or publicly [9] verify the computation
result.

Our work is also related to a line of verifi-
able schemes [10], [11], [12], [13], [14], where a
resource-constrained data source can outsource a
computationally-intensive task to a third-party server
and efficiently verify computation result. Recently,
several works towards public verification either for
specific classes of computations [15], [16] or for arbi-
trary computations [17] have been proposed. Howev-
er, the outsourced data [15], [16] has to be a priori
fixed. Another interesting line of works [18], [19], [20]
considered a different setting for verifiable computa-
tion. In their models, the client needs to know the
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Fig. 1. System model

input of the outsourced computation and runs an
interactive protocol with the server in order to verify
the results. In memory delegation [21], the stream
outsourcing was considered but with the restraint that
the size of the steam has to be a priori bounded.

There are several works customized for the data
stream outsourcing scenario. Specifically, a publicly
verifiable grouped aggregation queries on outsourced
data stream was proposed in [5]. In this work, clients
are only allowed to query the server for the summa-
tion of a grouped data specified by the data source. A
scheme of outsourced computations including group-
by sum, inner product, matrix product with pri-
vate verifiability was considered in [22]. Other works
considering the verification of outsourced operations
such as ranges and joins, were presented in [26], [27],
[28], [29], [30], [31] .

Multi-key Setting. Recently, a multi-key non-
interactive verifiable computation scheme was pro-
posed in [23], followed by a stronger security
guarantee scheme [24]. In their constructions, n
computationally-weak users outsource to an untrust-
ed server the computation of a function f over a series
of joint inputs (x

(i)
1 , x

(i)
2 , ..., x

(i)
n ) without interacting

with each other, where i denotes the ith computa-
tion. In their schemes, after the generation of system
parameters, data sources Pj(j ∈ [1, n]) outputs an
encoded function f to the server. Then for the ith
computation, Pj outsources the encoding of x(i)

j to the
server and computes a secret τ (i)j for the verification.
However, these schemes may not be applied to the
stream setting since sources lost data control after
the outsourcing and thus cannot generate the corre-
sponding secrets for the verification. Besides, both of
them based on FHE are not practically efficient. As
shown in [32], it takes at least 30 seconds to run one
bootstrapping operation of FHE for weaker security

parameter on a high performance machine.
In this work, we consider publicly verifiable del-

egation of inner product computation over dynamic
data streams under the multi-key setting. The proposed
scheme is extremely lightweight for both data sources
and clients.

3 PROBLEM FORMULATION

3.1 System Model

We consider our system architecture as illustrated
in Fig.1. There are a set of machines (data sources)
M1,M2, ...,Ml, each of which owns a unique public
and private key pair. These machines collect or gen-
erate potentially unbounded data streams and out-
source them to a third-party server. We assume that
these machines are not required to directly communi-
cate with each other. More precisely, for a new data
value Xj,i generated at time i, machine Mj (1 ≤ j ≤ l)
computes a homomorphic and publicly verifiable tag
σj,i, and outsources a tuple {i,Xj,i, σj,i} to the server.
The time measured in our scheme is discrete and
increased with the arrival of a new tuple. In addition,
we assume that the clocks of the data sources’ ma-
chines, the server and the client are (at least loosely)
synchronized. This requirement is inherent in most
streaming applications [5], [22]. A client requests the
server to compute inner product of any two machines’
outsourced data streams by sending a corresponding
query. Apart from the computation result res, the
server also provides its proof π to the client. With
π and some auxiliary information, the client is able
to verify the correctness of the received computation
result res.

We assume that the third-party server is untrusted
because it sits outside of the trust domain of the
sources. We also assume that clients are untrusted by
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the data sources, because they may be compromised,
malicious, or collude with the server for financial
incentives in practice. Therefore, the secret keys used
by data sources to generate tags will not be transferred
to clients for the result verification; otherwise, a mali-
cious client with the private keys can collude with the
server to modify the data and generate corresponding
tags to deceive other clients. In this paper, we focus on
the verification of the outsourced computation over
public data streams, while sensitive data protection is
outside the scope of our work.

3.2 Design Goals
Our scheme aims to achieve the following goals:

• Multi-key setting: Given different secret keys,
multiple data sources can upload their data
streams along with the respective verifiable ho-
momorphic tags generated by the corresponding
secret keys to the cloud. As such, no source can
deny his/her contribution to the outsourced com-
putations. In addition, the inner product evalu-
ation can be performed over any two sources’
outsourced streams, and the result can be verified
using the associated tags.

• Query flexibility: The client should be free to
choose any portion of the data streams as the
input of the queried computation.

• Public verifiability: All the participants involved
in the protocol should be able to publicly verify
the outsourced computation results without shar-
ing secret keys with data sources.

• Efficiency: More precisely, we expect that 1) the
communication overhead between a client and
the server is constant, i.e., independent of its
input size of the queried computation, and that
2) verification overhead on the client side should
be smaller than performing the outsourced com-
putation by the client.

3.3 Algorithm Formulation
In this subsection, we provide the formal algorithm
definition of our proposed scheme.

Definition 3.1. Our public verifiable inner product
computation scheme includes a tuple of algorithms
as follows:

• KeyGen(1κ) → (pkj , skj): A probabilistic algo-
rithm run by each machine Mj takes a security
parameter κ as input, and outputs a public key
pkj and a secret key skj .

• TagGen(skj , i,Xj,i) → σj,i: A (possibly) proba-
bilistic algorithm run by machine Mj , takes as
input its secret key skj , the current discrete time
i and data Xj,i, and outputs a publicly verifiable
tag σj,i.

• Evaluate(FIP ,Xi,Xj) → res: Let Xi =
{Xi,1,Xi,2, ...,Xi,n} and Xj = {Xj,1,Xj,2, ...,Xj,n}

denote the outsourced data streams of machines
Mi and Mj , respectively. This deterministic algo-
rithm is run by the server to compute the inner
product of streams Xi and Xj . It takes as inputs
the inner product function FIP , two data streams
Xi and Xj , and outputs a computation result res.

• GenProof(FIP , σi, σj ,Xi,Xj) → π: Let σi and σj

denote the tag vectors for Xi and Xj generated
by machine Mi and machine Mj , respectively.
This algorithm is run by the server to generate
a proof for the result res. It takes as input the
inner product function FIP , two tag vectors σi

and σj , as well as two data streams Xi and Xj ,
and outputs a proof π.

• CheckProof(FIP , pki, pkj , res, π) → 0, 1: A de-
terministic algorithm is run by the client to check
the correctness of res. It takes as input the func-
tion FIP , two public keys pki and pkj , the result
res, as well as the proof π, and outputs 1 (accept)
or 0 (reject).

Note that, Evaluate and GenProof can be combined
together in our verifiable non-interactive inner prod-
uct computation scheme. Here, we separate them to
stress that they are two independent processes..

3.4 Security Definition
Definition 3.2. We state the security definition via
the following experiment Exp1κ

A , which is a variation
of the standard existential unforgeability under an
adaptive chosen-message attack [33]. Intuitively, the
experiment captures that an adversary cannot suc-
cessfully construct a valid proof, unless it follows the
client’s query.

Setup: The challenger runs algorithm KenGen to
generate a public key vector

−→
pk = (pk1, pk2, ..., pkl)

and a secret key vector
−→
sk = (sk1, sk2, ..., skl). The

adversary A is given the public key vector
−→
pk.

Query: The adversary A can adaptively query
TagGen oracle for tags on the discrete time and
the message of its choice. Specifically, A sends a
tuple (Mj , i,Xj,i)(1 ≤ j ≤ l) to the challenger. The
challenger proceeds as follows: it first initializes an
empty list L to record tuples (Mj , i,Xj,i, σj,i). If (Mj , i)
has not been queried before, the challenger runs al-
gorithm TagGen(skj , i,Xj,i) and returns σj,i to A. In
addition, the challenger adds a tuple (Mj , i,Xj,i, σj,i)
into the list L. If (Mj , i) has been queried before
and (Mj , i,Xj,i) ∈ L, the challenger retrieves σj,i and
returns it to A. Otherwise, the challenger rejects this
query.

Request: In this phase, a client requests the adver-
sary A to evaluate the inner product of Xi and Xj .

Forge: The adversary A outputs a tuple (res, π)
with the restriction res ̸= Xi ⊗ Xj , where ⊗ denote
the inner product operation.

If CheckProof(FIP , pki, pkj , res, π) returns 1, then
the adversary A wins this experiment.
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KeyGen(1κ) :
1. for j = 1 to l do
2. choose a random number skj = sj ∈ Z∗

q as
the secret key

3. compute pkj = gsj

4. output (pkj , skj)
5. end for

TagGen(skj , i,Xj,i) :

1. compute σj,i = (g
h1(Mj ,i)
1 g

h2(Mj ,i)
2 g

Xj,i

3 )skj

2. output σj,i

Evaluate(FGS ,Xj) :
1. compute res =

∑
i∈∆ Xj,i

2. output res
GenProof(FGS , σj ,Xj):

1. compute π =
∏

i∈∆ σj,i

2. output π
CheckProof(FGS , pkj , res, π) :

1. set S∆ = (S1, S2)
2. compute S1 =

∑
i∈∆ h1(Mj , i) and S2 =∑

i∈∆ h2(Mj , i)

3. if (e(π, g) = e(gS1
1 gS2

2 gres3 , pkj)) then
4. output 1
5. else
6. output 0
7. end if

Fig. 2. Publicly verifiable computation for group-by sum
query

We say that a publicly verifiable computation on out-
sourced data stream scheme is secure, if for any proba-
bilistic polynomial time adversary A the probability that
A succeeds in the above experiment is negligible, i.e.,
Pr[Exp1κ

A (A) = 1] ≤ negl(κ).

4 OUR CONSTRUCTION
The public system parameters
{e,G1, G2, q, g, g1, g2, g3, h1, h2} used in this work are
defined as follows. G1 and G2 are two multiplicative
cyclic groups of the same prime order q, and e denotes
a bilinear map G1 × G1 → G2 satisfying bilinearity,
Non-degeneracy and computability [34]. {g, g1, g2, g3}
are four generators randomly selected from group
G1. h1 : {0, 1}∗ → Z∗

q and h2 : {0, 1}∗ → Z∗
q represent

two different collision-resistant hash functions,
respectively. Let f : Z∗

q × {0, 1}∗ × {0, 1}∗ → Z∗
q be a

pseudo-random function (PRF) and fλ(x, y) denote a
PRF f with key λ on input (x, y).

Definition 4.1. The CDH Assumption [25]: Given
g, gs, g1 ∈ G1 for unknown s ∈ Z∗

q , no probabilistic
polynomial-time algorithm can compute gs1 with non-
negligible advantage.

4.1 Building Block
Before introducing our construction for publicly

verifiable inner product evaluation scheme, we first

consider a publicly verifiable group-by sum computation
scheme over the outsourced dynamic stream under multiple
keys , which is of independent interest and serves as
a building block for the verification of inner product
query.

Specifically, we assume that machine Mj has out-
sourced the data stream Xj = {Xj,1,Xj,2, ...,Xj,n} to
the server. A client requests the server to compute the
sum function FGS on a subset Xj,∆(∆ ⊆ [1, n]), i.e.,

res = FGS(Xj,∆) =
∑
i∈∆

Xj,i (1)

We term such query a group-by sum query. The scheme
for the public verification of a group-by sum query
consists of five algorithms as shown in Fig.2, by
substituting inner product function FIP with group-
by sum function FGS in Definition 3.1.

The rationale behind this construction is
straightforward. Machine Mj computes a
homomorphic and publicly verifiable tag
σj,i = (g

h1(Mj ,i)
1 g

h2(Mj ,i)
2 g

Xj,i

3 )skj for Xj,i. Given
two tags σj,1 and σj,2, anyone can compute a tag
σ = σj,1 · σj,2 for Xj,1 + Xj,2. The value {Mj , i} can
be regarded as a one-time index of data Xj,i such
that it will not be reused for computing other tags
later. More precisely, machine Mj(1 ≤ j ≤ l) runs
algorithm KeyGen to generate a public/secret key
pair (pkj , skj) in setup phase. When a new data value
Xj,i is collected or generated at time i, machine Mj

runs algorithm TagGen to compute a tag σj,i and
outsources (i,Xj,i, σj,i) to the server.

A client sends a group-by sum query {Mj ,∆} to the
server for res = FGS(Xj,∆) =

∑
i∈∆ Xj,i. Upon receiv-

ing the request, the server calls algorithm Evaluate
and GenProof , and then returns res, π to the client.
Finally, the client runs algorithm CheckProof to
check the validity of the computation result res.

Correctness. The correctness of the verification al-
gorithm can be deduced from the following equation.

e(π, g)
= e(

∏
i∈∆ σj,i, g)

= e(g
∑

i∈∆ h1(Mj ,i)

1 g
∑

i∈∆ h2(Mj ,i)

2 g
∑

i∈∆ Xj,i

3 , pkj)

= e(gS1
1 gS2

2 gres3 , pkj)

(2)

Discussion. The outsourced computation is data-
sensitive, i.e., given forged data from a source, the
final computation result will be erroneous even if
the corresponding query is correctly processed by the
server. In our construction, each data source needs to
attach its outsourced stream with tags. The server can
check the validity of a tag by verifying whether equa-
tion e(σj,i, g) = e(g

h1(Mj ,i)
1 g

h2(Mj ,i)
2 , g

Xj,i

3 , pkj) holds.
In section 6, we will prove that the tag is unforgeable,
i.e., no source can deny his/her tags that have been
outsourced to the server. Thus, given a disputed
data value, we can trace back to the source with a
corresponding tag.
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Each data source needs to store only the private
key and its identity, and the storage consumption is
O(κ + logl), where κ is the security parameter and l
denotes the number of sources. It takes machine Mj

O(n) modular exponentiations, O(n) multiplications
in G1, and O(n) hash operations to generate tags for a
data stream Xj = {Xj,1, ...,Xj,n}. Note that these tags
are computed once and can be used for each query.
Thus, the computation cost for each machine can be
amortized over the future executions. The storage
overhead for the tags at the server side includes O(n)
elements in G1. To compute a proof, the server needs
O(n) multiplications in G1. The proof is an element
in G1. Finally, the online burden at the client to
verify the proof includes two parings, three modular
exponentiations and two multiplications in G1, since
the auxiliary information S∆ is independent of Xi and
can be pre-computed.

Let us consider the case without outsourcing. Ma-
chine Mj needs to store O(n) elements in Z∗

q for
Xj . When receiving a group-by sum query {Mj ,∆},
machine Mi either performs the computation itself
or transmits the data sets Xi,j(j ∈ ∆) to the clien-
t. The former may incur a substantial computation
overhead to Mi, because there are O(2n) possible
∆ for Xj . The communication cost is O(n) when
transmitting {Xj,i}i∈∆ to the client, and it takes O(n)
modular additions in Z∗

q for the client to compute
res =

∑
i∈∆ Xj,i. Thus, there is a clear performance

advantage for both data sources and client in the
storage and computation outsourcing setting scenario.

4.2 Inner Product Query
Based on the group-by sum query described above,
we present a publicly verifiable computation scheme
for the inner product query over data streams with two
different keys in this subsection. Specifically, any two
machines M1 and M2 outsource the data stream X1 =
{X1,1,X1,2, ...,X1,n} and X2 = {X2,1,X2,2, ...,X2,n} to
the server, respectively. A client requests the server to
compute the inner product function FIP on X1 and
X2, i.e.,

res = FIP(X1,X2) = X1 ⊗X2 =
n∑

i=1

X1,i · X2,i (3)

Fig.3 shows the concrete protocol.
The main idea behind this construction is as fol-

lows. Intuitively, res =
∑n

i=1 X1,i · X2,i is the sum of
X1,i · X2,i(i ∈ [1, n]). The server can generate a proof
σ
X2,i

1,i for data X1,i · X2,i , and then aggregates these
proofs into a whole one. Thus, the proof for the final
result res is:

π3 =
∏n

i=1 σ
X2,i

1,i

= (g
∑n

i=1 h1(M1,i)X2,i

1 g
∑n

i=1 h2(M1,i)X2,i

2 gres3 )sk1
(4)

However, the client is still unable to check the cor-
rectness of res without the knowledge of res1 =

KeyGen(1κ) :
1. for j = 1 to l do
2. choose a random number skj = sj ∈ Z∗

q as
the secret key

3. compute pkj = gsj

4. output (pkj , skj)
5. end for

TagGen(skj , i,Xj,i) :

1. compute σj,i = (g
h1(Mj ,i)
1 g

h2(Mj ,i)
2 g

Xj,i

3 )skj

2. output σj,i

Evaluate(FIP ,X1,X2) :
1. compute res = X1 ⊗X2 =

∑n
i=1 X1,i · X2,i

2. output res
GenProof(FIP , σ1, σ2,X1,X2):

1. compute π1 =
∏n

i=1 σ
h1(M1,i)
2,i and π2 =∏n

i=1 σ
h2(M1,i)
2,i

2. compute π3 =
∏n

i=1 σ
X2,i

1,i

3. compute res1 =
∑n

i=1 h1(M1, i)X2,i

4. compute res2 =
∑n

i=1 h2(M1, i)X2,i

5. set π = {res1, res2, π1, π2, π3}
6. output π

CheckProof(FIP , pk1, pk2, res, π) :
1. set S∆ = (S1,1, S1,2, S2,1, S2,2)
2. compute S1,1 =

∑n
i=1 h1(M1, i)h1(M2, i)

3. compute S1,2 =
∑n

i=1 h1(M1, i)h2(M2, i)
4. compute S2,1 =

∑n
i=1 h2(M1, i)h1(M2, i)

5. compute S2,2 =
∑n

i=1 h2(M1, i)h2(M2, i)

6. if (e(π1, g) = e(g
S1,1

1 g
S1,2

2 gres13 , pk2),
e(π2, g) = e(g

S2,1

1 g
S2,2

2 gres23 , pk2),
e(π3, g) = e(gres11 gres22 gres3 , pk1)) then

7. output 1
8. else
9. output 0

10. end if

Fig. 3. Publicly verifiable computation for inner product
query

∑n
i=1 h1(M1, i)X2,i and res2 =

∑n
i=1 h2(M2, i)X2,i.

Then, the server can send (res1, res2) to the client
along with their proofs (π1, π2) to guarantee their
authenticity. Note that the auxiliary information S∆

can be pre-computed to accelerate the verification
process, because S∆ is uncorrelated with X1 and X2.

Correctness. We prove the correctness of the ver-
ification algorithm according to the following three
steps.

i. If res1 is valid, then the equation e(π1, g) =

e(g
S1,1

1 g
S1,2

2 gres13 , pk2) holds.

e(π1, g)

= e(
∏n

i=1 σ
h1(M1,i)
2,i , g)

= e(
∏n

i=1(g
h1(M2,i)
1 g

h2(M2,i)
2 g

X2,i

3 )h1(M1,i), gsk2)

= e(g
S1,1

1 g
S1,2

2 gres13 , pk2)

(5)

ii. If res2 is valid, then the equation e(π2, g) =
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e(g
S2,1

1 g
S2,2

2 gres23 , pk2) holds.

e(π2, g)

= e(
∏n

i=1 σ
h2(M1,i)
2,i , g)

= e(
∏n

i=1(g
h1(M2,i)
1 g

h2(M2,i)
2 g

X2,i

3 )h2(M1,i), gsk2)

= e(g
S2,1

1 g
S2,2

2 gres23 , pk2)

(6)

iii. If res is valid, then the equation e(π3, g) =
e(gres11 gres22 gres3 , pk1) holds.

e(π3, g)

= e(
∏n

i=1 σ
X2,i

1,i , g)

= e(
∏n

i=1 g
h1(M1,i)X2,i

1 g
h2(M1,i)X2,i

2 g
X1,i·X1,i

3 , gsk1)
= e(gres11 gres22 gres3 , pk1)

(7)

Discussion. The storage size and computation over-
head of each data source are the same as in the
group-by sum case. To compute a proof π, the server
needs O(n) modular exponentiations in G1, O(n)
modular multiplications in G1, O(n) hash operations,
O(n) modular additions and multiplications in Z∗

q .
The proof includes two elements in Z∗

q and three
elements in G1. With the auxiliary information S∆,
the computation cost for the client to verify the proof
includes six parings, nine modular exponentiations
and six multiplications in G1.

As for the case without outsourcing, each machine
Mj needs to store O(n) elements in Z∗

q for Xj . We
assume that machines are not required to directly
communicate with each other. Thus, a client need first
receive X1 and X2 from M1 and M2 respectively, and
then compute X1 ⊗ X2 by himself/herself. The com-
munication cost is O(n), and the computation includes
O(n) modular additions and multiplications in Z∗

q . In
contrast, it only incurs constant communication and
computation overhead in the outsourcing case.

5 MATRIX PRODUCT QUERY EXTENSION

In this section, we extend the publicly verifiable inner
product evaluation scheme to support matrix product
query under the multi-key setting. Specifically, ma-
chine M1 (M2) generates a row vector −→ai (a column
vector

−→
bi ) with m entries at time i and outsources it

to the server. Let matrix A (B) denote the data stream
outsourced by machine M1 (respectively, M2) up to
the current time n, where

A =


−→a1−→a2
...
−→an

 , B = [
−→
b1
−→
b2 ...

−→
bn]. (8)

A client requests the server to compute the matrix
product FMP = A×B, i.e.,

A×B =


−→a1 ⊗

−→
b1

−→a1 ⊗
−→
b2 ... −→a1 ⊗

−→
bn

−→a2 ⊗
−→
b1

−→a2 ⊗
−→
b2 ... −→a2 ⊗

−→
bn

... ... ... ...
−→an ⊗

−→
b1

−→an ⊗
−→
b2 ... −→an ⊗

−→
bn

 (9)

In the above equation, −→ai ⊗
−→
bj denotes the inner

product of vectors −→ai and
−→
bj .

To provide a proof of the matrix product computa-
tion, a possible approach is to directly extend the inner
product verification algorithm. Let res[i][j] = −→ai ⊗

−→
bj

represent the (ith, jth) entry of the matrix A×B. The
server can first use the inner product algorithm to
generate a proof πi,j for res[i][j] and then send all
the proofs πi,j(1 ≤ i ≤ n, 1 ≤ j ≤ n) to the client.
However, this naive solution may be prohibitive as
the proof size is O(n2) with large n.

In the following, we present a verification algorithm
allowing the server to provide a fixed-size proof. The
server first generates proofs for each entry of the
matrix A × B and then combines these proofs to-
gether. Similar to the verification inner product query,
the verifiable matrix product computation scheme
includes the following phases.
KeyGen(1κ): Each machine Mi chooses a random

number ski = si ∈ Z∗
q as its secret key and computes

the corresponding public key pki = gski .
TagGen(sk1, i,

−→ai ): Machine M1 uses this algorithm
to generate tags for a vector −→ai = (ai,1, ai,2, ..., ai,m)
with m entries. Specifically, for k = 1 to m, machine
M1 computes

µi,k = (g
h1(M1,i,k)
1 g

h2(M1,i,k)
2 g

ai,k

3 )sk1 (10)

Finally, it sends −→ai along with a row vector −→µi =
(µi,1, µi,2, ..., µi,m) to the server.
TagGen(sk2, j,

−→
bj ): Machine M2 uses this algorithm

to generate tags for a vector
−→
bj = (b1,j , b2,j , ..., bm,j)

T

with m entries. Specifically, for k = 1 to m, machine
M2 computes

νj,k = (g
h1(M2,j,k)
1 g

h2(M2,j,k)
2 g

bk,j

3 )sk2 (11)

Finally, it sends
−→
bi along with a column vector −→νj =

(νj,1, νj,2, ..., νj,m)T to the server.
Evaluate(FMP , A,B): After receiving the matrix

product query, the server computes res = A×B and
returns the result res to the client.

After the receipt of res, the client chooses a random
number λ ∈ Z∗

q and sends it to the server.
GenProof(FMP ,

−→µ ,−→ν ,A,B): Upon receiving λ,
the server runs this algorithm to generate a proof π
for the computation result as follows.

Step 1.The server computes a proof π[i][j] for each
entry res[i][j] of A×B as follows.

π[i][j]1 =
∏m

k=1 ν
h1(M1,i,k)
k,j

π[i][j]2 =
∏m

k=1 ν
h2(M1,i,k)
k,j

π[i][j]3 =
∏m

k=1 µ
bk,j

i,k

res[i][j]1 =
∑m

k=1 h1(M1, i, k)bk,j
res[i][j]2 =

∑m
k=1 h2(M1, i, k)bk,j

(12)
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Step 2.The server combines proofs π[i][j](1 ≤ i ≤
n, 1 ≤ j ≤ n) together.



π1 =
∏n

i=1

∏n
j=1 π[i][j]

fλ(i,j)
1

π2 =
∏n

i=1

∏n
j=1 π[i][j]

fλ(i,j)
2

π3 =
∏n

i=1

∏n
j=1 π[i][j]

fλ(i,j)
3

res1 =
∑n

i=1

∑n
j=1 fλ(i, j)res[i][j]1

res2 =
∑n

i=1

∑n
j=1 fλ(i, j)res[i][j]2

(13)

In the end, the sever sends the proof π =
{π1, π2, π3, res1, res2} to the client.
CheckProof(FMP , pk1, pk2, res, π) : The clien-

t runs this algorithm to check the validity of the
computation result.

Step 1.The client first computes auxiliary informa-
tion for each entry res[i][j]. Note that the
auxiliary information can be pre-computed
to speed up the verification process, since it
is independent of matrices A and B.


S[i][j]1,1 =

∑m
k=1 h1(M1, i, k)h1(M2, j, k)

S[i][j]1,2 =
∑m

k=1 h1(M1, i, k)h2(M2, j, k)
S[i][j]2,1 =

∑m
k=1 h2(M1, i, k)h1(M2, j, k)

S[i][j]2,2 =
∑m

k=1 h2(M1, i, k)h2(M2, j, k)
(14)

S1,1 =
∑n

i=1

∑n
j=1 fλ(i, j)S[i][j]1,1

S1,2 =
∑n

i=1

∑n
j=1 fλ(i, j)S[i][j]1,2

S2,1 =
∑n

i=1

∑n
j=1 fλ(i, j)S[i][j]2,1

S2,2 =
∑n

i=1

∑n
j=1 fλ(i, j)S[i][j]2,2

(15)

Step 2.Let ω =
∑n

i=1

∑n
j=1 fλ(i, j)res[i][j]. If the

following three equations hold, the client ac-
cepts the computation result res. Otherwise,
the client rejects it.

 e(π1, g) = e(g
S1,1

1 g
S1,2

2 gres13 , pk2)

e(π2, g) = e(g
S2,1

1 g
S2,2

2 gres23 , pk2)
e(π3, g) = e(gres11 gres22 gω3 , pk1)

(16)

Correctness. We prove the correctness of the verifi-
cation algorithm in three steps.

i. If res1 is valid, then the equation e(π1, g) =

e(g
S1,1

1 g
S1,2

2 gres13 , pk2) holds.
e(π1, g)

= e(
n∏

i=1

n∏
j=1

π[i][j]
fλ(i,j)
1 , g)

= e(
n∏

i=1

n∏
j=1

m∏
k=1

ν
h1(M1,i,k)fλ(i,j)
k,j , g)

= e(
n∏

i=1

n∏
j=1

(g
S[i][j]1,1
1 g

S[i][j]1,2
2 g

res[i][j]1
3 )fλ(i,j), pk2)

= e(g
S1,1

1 g
S1,2

2 gres13 , pk2)

ii. If res2 is valid, then the equation e(π2, g) =

e(g
S2,1

1 g
S2,2

2 gres23 , pk2) holds.

e(π2, g)

= e(
n∏

i=1

n∏
j=1

π[i][j]
fλ(i,j)
2 , g)

= e(
n∏

i=1

n∏
j=1

m∏
k=1

ν
h2(M1,i,k)fλ(i,j)
k,j , g)

= e(
n∏

i=1

n∏
j=1

(g
S[i][j]2,1
1 g

S[i][j]2,2
1 g

res[i][j]2
3 )fλ(i,j), pk2)

= e(g
S2,1

1 g
S2,1

2 gres23 , pk2)

iii. If res is valid, then the equation e(π3, g) =
e(gres11 gres22 gω3 , pk1) holds.

e(π3, g)

= e(
n∏

i=1

n∏
j=1

π[i][j]
fλ(i,j)
3 , g)

= e(
n∏

i=1

n∏
j=1

m∏
k=1

µ
bk,jfλ(i,j)
i,k , g)

= e(
n∏

i=1

n∏
j=1

(g
res[i][j]1
1 g

res[i][j]2
2 g

res[i][j]
3 )fλ(i,j), pk1)

= e(gres11 gres22 gω3 , pk1)
Discussion: The verification of matrix product is
an interactive protocol since the client needs to
send a challenge λ after receiving the result res.
The server then provides a proof for res based on
the challenge λ. Finally, the validity of res can be
inspected through equation (16). We stress that λ
cannot be transferred to the server before receiving
res. Otherwise, given λ, the server can easily forge
a result res

′
satisfying

∑n
i=1

∑n
j=1 fλ(i, j)res

′
[i][j] =∑n

i=1

∑n
j=1 fλ(i, j)res[i][j].

In the computation of inner product and matrix
product, we evaluate functions over the entire out-
sourced streams. It is worth noting that the function
can take any portion of the data streams as input.

Machine M1 needs O(mn) modular exponentiation-
s, multiplications in G1, and O(mn) hash operations
to generate tags for an n × m matrix A. Similar to
the construction for group-by sum query, these tags
are computed only once. The storage cost for the tags
includes O(mn) elements in G1 at the server side. The
auxiliary information πi,j(1 ≤ i ≤ n)(1 ≤ i ≤ n) for
the generation of a proof at the server side include
O(n2) elements in G1 and O(n2) elements in Z∗

q ,
which has the same storage complexity with the com-
putation result A×B. In other words, the proof gener-
ation does not introduce the extra storage overhead.
To compute a proof for A × B, the server performs
O(mn2) modular exponentiations, multiplications in
G1, O(mn2) modular additions, multiplications in Z∗

q ,
O(mn) hash and O(n2) PRF operations. The proof π
consists of three elements in G1 and two elements
in Z∗

q . Finally, the client performs six pairings, nine
modular exponentiations, six modular multiplications
in G1, O(n2) modular additions and multiplications in
Z∗
q to verify the proof. Without outsourcing, M1 (M2)

has to store its matrix locally. The communication cost
for transmitting a matrix includes O(mn) elements
in Z∗

q . Further more, the client compute A × B with
super-quadratic complexity.
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6 SECURITY ANALYSIS

In this section, we prove the security of the proposed
scheme in the random oracle model.

Theorem 6.1. Under the CDH assumption, the publicly
verifiable computation scheme for group-by sum query is
secure against an adaptive chosen-message attack in the
random oracle model.

Proof: The security definition of the publicly ver-
ifiable computation scheme for group-by sum query
is similar to definition 3.2, except that adversary A
forges a result res ̸=

∑
i∈∆ Xj,i and passes the verifi-

cation. Now, we show how to construct an adversary
B that uses A to solve the CDH problem. That is,
given a CDH tuple (g, gsj , g3), the adversary B is able
to compute g

sj
3 with non-negligible probability.

B simulates a publicly verifiable computation
scheme with group-by sum query for A as follows.

Setup: The adversary B sets machine Mj ’s public
key pkj = gsj , g1 = g · gα3 and g2 = (g · g3)β ,
where α and β are two random numbers in Z∗

q . The
system parameters and the public key are given to the
adversary A.

Query: The adversary A adaptively queries B for
tags on the discrete time and data of its choice.
Specifically, A sends a tuple (Mj ,Xj,1, 1) to B. The
algorithm B generates a tag σj,1 and sends it back
to A. A can continually make tag queries to B for the
tags on (Mj ,Xj,2, 2), (Mj ,Xj,3, 3),..., (Mj ,Xj,n, n) of its
choice. The only restriction is that A cannot make tag
queries for two different data values using the same
discrete time i. B answers A’s queries as follows:
B first initializes an empty list L to record the tuples

(Mj ,Xj,i, i, γj,i, σj,i). After receiving a tag query, the
adversary B processes the followings:

• If (Xj,i, i) has been queried before, B retrieves the
tuple Xj,i, i, γj,i, σj,i from the list L and returns
σj,i to A.

• If i has not been queried, B selects a random
number γj,i from Z∗

q and sets σj,i = pk
γj,i

j =
gsj ·γj,i . Then B adds (Xj,i, i, γj,i, σj,i) into the list
L and returns σj,i to A.

• Otherwise, i.e., i has been queried but (Xj,i, i) /∈
L, B rejects this query.

In addition, B returns h1(Mj , i) =
Xj,i+γj,i

1−α and
h2(Mj , i) =

Xj,i+αγj,i

(α−1)β to A for the hash queries. We
can observe that the tag σj,i = gsj ·γj,i on (Xj,i, i) is
valid under the public key pkj = gsj , this is because
of the following relationship.

e(g
h1(Mj ,i)
1 g

h2(Mj ,i)
2 g

Xj,i

3 , pkj)

= e(gh1(Mj ,i)g
αh1(Mj ,i)
3 (g · g3)βh2(Mj ,i)g

Xj,i

3 , pkj)
= e(gγj,i , gsj )
= e(gsj ·γj,i , g)

(17)

Request: B requests the adversary A to compute∑
i∈∆ Xj,i by sending a time set ∆.

Forge: A returns a computation result res together
with a proof π. Note that π is a valid proof that
passes algorithm CheckProof , but res ̸=

∑
i∈∆ Xj,i.

Thus, we have π = (gS1
1 gS2

2 gres3 )sj , where S1 =∑
i∈∆ h1(Mj , i) and S2 =

∑
i∈∆ h2(Mj , i). Let res

′
=∑

i∈∆ Xj,i be the real result, we can obtain

π = (gS1
1 gS2

2 gres3 )sj

= (g
∑

i∈∆ h1(Mj ,i)

1 g
∑

i∈∆ h2(Mj ,i)

2 gres3 )sj

= ((g · gα3 )
∑

i∈∆ h1(Mj ,i)(g · g3)β
∑

i∈∆ h2(Mj ,i)gres3 )sj

= (g
∑

i∈∆ h1(Mj ,i)+β
∑

i∈∆ h2(Mj ,i)

·gα
∑

i∈∆ h1(Mj ,i)+β
∑

i∈∆ h2(Mj ,i)+res

3 )sj

= (g
∑

i∈∆ γj,igres−res
′

3 )sj

= (gsj
∑

i∈∆ γj,ig
sj(res−res

′
)

3 )sj

Since res
′ ̸= res, B can compute g

sj
3 =

( π

gsjΣi∈∆γj,i
)(res−res

′
)−1

from the above equation. The
interactions of A with B are indistinguishable to A
from interactions with an honest challenger in the
experiment, as B chooses all parameters according to
our scheme. Therefore, our scheme is secure against
an adaptive chosen-message attack in the random
oracle model under the CDH assumption.

Theorem 6.2. Under the CDH assumption, the public
verifiable tag is unforgeable, i.e., no source can deny his/her
tags that have been outsourced to the server.

Proof: The proof is similar to that for Theorem 6.1,
except that adversary A generates a valid tag σj,n+1 =

(gr11 gr22 g
Xj,n+1

3 )sj on data Xj,n+1 at time n + 1, where
r1 and r2 are the random values returned to A for
hash queries h1(Mj , n+1) and h2(Mj , n+1) in Query
phase. Given σj,n+1, adversary B is able to compute
g
sj
3 = (

σj,n+1

g(r1+r2)sj
)(αr1+βr2+Xj,n+1)

−1

, which contradicts
the CDH assumption. Therefore, no source can deny
his/her tags outsourced to the server.

Before proving the security of our publicly verifi-
able computation scheme with inner product query, we
give the following two lemmas.

Lemma 6.3. If π1 can pass the verification, then res1 is
valid.

Proof: Given a CDH tuple (g, gs, g3), B simulates
a publicly verifiable computation scheme with inner
product query for A as follows.

Setup: The adversary B sets machine M1’s public
key pk1 = gs, machine M2’s public key pk2 = gδs,
g1 = g · gα3 and g2 = (g · g3)β , where α, β and δ are
three random numbers in Z∗

q . The system parameters
and the public keys are given to the adversary A.

Query: The adversary A adaptively queries B for
tags on the discrete time and data of its choice.

For the query (M1,X1,1, 1),...,(M1,X1,n, n), B pro-
ceeds as follows:
B first initializes an empty list L1 to record the tu-

ples (M1,Xj,i, i, γ1,i, σj,i). After receiving a tag query,
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the adversary B processes the followings:

• If (M1,X1,i, i) has been queried before, B retrieves
the tuple γ1,i, σ1,i from the list L1 and returns σ1,i

to A.
• If i has not been queried, B selects a random

number γ1,i from Z∗
q and sets σ1,i = pk

γ1,i

1 =
gs·γ1,i . Then B adds (M1,X1,i, i, γ1,i, σ1,i) into the
list L1 and returns σ1,i to A.

• Otherwise, i.e., i has been queried but
(M1,X1,i, i) /∈ L1, B rejects this query.

In addition, B returns h1(M1, i) =
X1,i+γ1,i

1−α and
h2(M1, i) =

X1,i+αγ1,i

(α−1)β to A for the hash queries. We
can observe that the tag σ1,i = gs·γ1,i on (X1,i, i) is
valid under the public key pk1 = gs, this is because
of the following relationship.

e(g
h1(M1,i)
1 g

h2(M1,i)
2 g

X1,i

3 , pk1)

= e(gh1(M1,i)g
αh1(M1,i)
3 (g · g3)βh2(M1,i)g

X1,i

3 , pk1)
= e(gγ1,i , gs)
= e(gs·γ1,i , g)

(18)

For the query (M2,X2,1, 1),...,(M2,X2,n, n), B ini-
tializes an empty list L2 to record the tuples
(M2,X2,i, i, γ2,i, σ2,i). When receiving a tag query, the
adversary B processes as below:

• If (M2,X2,i, i) has been queried before, B retrieves
the tuple γ2,i, σ2,i from the list L2 and returns σ2,i

to A.
• If i has not been queried, B selects a ran-

dom number γ2,i from Z∗
q and computes σ2,i =

pk
γ2,i

2 = gs·δ·γ2,i . Then algorithm B adds
(M2,X2,i, i, γ2,i, σ2,i) into the list L2 and returns
γ2,i to A.

• Otherwise, i.e., i has been queried but
(M2,X2,i, i) /∈ L2, B rejects this query.

In addition, B returns h1(M2, i) =
X2,i+γ2,i

1−α and
h2(M2, i) =

X2,i+αγ2,i

(α−1)β to A for the hash queries.
Similarly, we can observe that the tag σ2,i = gs·δ·γ2,i

on (X2,i, i) is valid under the public key pk2 = gδs.
Request: B requests the adversary A to compute∑n

i=1 X1,i · X2,i.
Forge: A returns a computation result res together

with a proof π = res1, res2, π1, π2, π3.
Note that π1 is a valid proof that passes algorithm

CheckProof , but res1 is a forged one. That is,
π1 = (g

S1,2

2 g
S1,1+res1
1 )sγ

S1,1 =
∑n

i=1 h1(M1, i)h1(M2, i)
S1,2 =

∑n
i=1 h1(M1, i)h2(M2, i)

res1 ̸=
∑n

i=1 h1(M1, i)X2,i

(19)

Let res
′

1 =
∑n

i=1 h1(M1, i)X2,i be the real result, we
can obtain

π = (g
S1,1

1 g
S1,2

2 gres3 )δs

= (gS1,1+βS1,2g
αS1,1+βS1,2+res
3 )δs

= (g
∑n

i=1

r2,i(r1,i+x1,i)

1−α g
res−

∑n
i=1

x2,i(r1,i+x1,i)

1−α

3 )δs

= (g
∑n

i=1

r2,i(r1,i+x1,i)

1−α g
res−

∑n
i=1 h1(M1,i)x1,i

3 )δs

= gδs
∑n

i=1 r2,ih1(M1,i)g
(res−res

′
)δs

3

Since res
′ ̸= res, B can compute gs3 =

( π1

gδs
∑n

i=1
r2,ih1(M1,i) )

(δ(res−res
′
))−1

from the above equa-
tion. Obviously, this conflicts the CDH assumption.
Similarly, if π2 is valid, then the result res2 is correct.

Lemma 6.4. If res1, res2 are valid and π3 can pass the
verification, then res is valid.

Proof: The proof of this lemma directly follows
the previous proofs. In the forge phase, the adversary
A outputs a valid tuple (res, π) but with res ̸=∑n

i=1 X1,i · X2,i. Thus, we have π = (gres11 gres22 gres3 )s.
Let res

′
=

∑n
i=1 X1,i · X2,i, then we have

π = (gres11 gres22 gres3 )s

= (gres1gα·res13 gβ·res2gβ·res23 gres3 )s

= gs(res1+β·res2)g
s(α·res1+β·res2+res)
3

= gs(res1+β·res2)g
s(res−res

′
)

3

Since res
′ ̸= res, B can compute gs3 =

( π
gs(res1+β·res2) )

(res−res
′
)−1

from the above equation.

Theorem 6.5. Under the CDH assumption, the publicly
verifiable computation scheme for inner product query is
secure against an adaptive chosen-message attack in the
random oracle model.

Proof: The desired security property can be
proved directly from lemma 6.3 and lemma 6.4.

Theorem 6.6. Under the assumption that f is a PRF and
CDH problem is hard, the publicly verifiable computation
scheme for matrix product query is secure against an
adaptive chosen-message attack in the random oracle model.

Proof: In our construction of matrix product com-
putation verification, the server first follows the com-
putation of inner product verification to generate
proofs for each entry of the matrix A × B and then
combines these proofs together. Thus, we directly
follows the proof of Theorem 5.4. The main difference
is that we need to ensure that each entry of the
computation result res should be true.

We assume that ki,j ∈ Z∗
q (1 ≤ i ≤ n, 1 ≤ j ≤ n)

is generated via a truly random function f
′

instead
of PRF f . By applying the same simulation shown
in lemma 5.3 and lemma 5.4, we obtain that res1,
res2 and ω =

∑n
i=1

∑n
j=1 ki,j · res[i][j] are valid if the

proof π passes the verification. Consider the following
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Fig. 4. Comparison of the verification costs between with pre-computation and without pre-computation

multivariate polynomial in finite field Z∗
q :

P (res) = k1,1 · res[1][1] + ...+ kn,n · res[n][n]− ω (20)

Note that adversary A forging res correctly is e-
quivalent to finding res such that P (res, ω) = 0.
However, due to Lemma 1 in [35], for any (non-zero)
multivariate polynomial P in Z∗

q of degree d (in our
case d = 1) and randomly chosen res[1][1], ..., res[n][n]
with unknown coefficients k1,1, ..., k1,n, the probability
that P (res) = 0 is d

q = 1
q . Thus, the probability that

adversary A forges a valid result res is negligible.

7 EVALUATION

This section evaluates the practical performance of
our scheme. We conduct the computation at client-
side by using JPBC library [36] in Eclipse 4.2 on a Win-
dows 7 machine with 2.30 GHz Intel Core I7-3615QM.
The cloud-side computation overhead is evaluated
on an IBM System x3550 M4 machine. We choose
type-A (symmetric) pairings with 80-bit security in
our simulation, which results in the element in G1

and Z∗
q to be 512-bit and 160-bit, respectively. Note

that our scheme can also be implemented under the
asymmetric pairings.

7.1 Storage

In our scheme, data sources store their public/private
keys and system parameters locally while outsourcing
all the data along with the corresponding tags to a
third-party server. The size of a public and private
key pair (pkj ∈ G1, skj ∈ Z∗

q ) is 84 bytes. The size of
system parameters {G, g, g1, g2, h1(), h2()} is constant,
regardless of data streams’ size. The public keys of
data sources dominates the client’s storage. Assuming
that there are 100 data sources in the system, the
total storage on the client side is 6400 bytes. Thus,
we observe that the storage overhead on data owners
and clients are much smaller than the outsourced data
streams.

7.2 Communication

We do not take the communication cost of query and
the computation result into account, since they also
occurs in the scenario without outsourcing. On receiv-
ing a computation query from the client, the cloud
evaluates the corresponding function and generates a
proof to ensure the validity of the computation result.
The proof π ∈ G1 for the group-by sum query is 64
bytes. For both inner product and matrix queries, the
proofs π = {res1, res2, π1, π2, π3} ∈ Z∗

q
2 × G3

1 are 232
bytes. Thus, the communication cost is constant in our
scheme, regardless of the input size of the evaluated
function.

7.3 Computation

Data source side. Generating a tag for a data value
needs three exponentiation operations in G1, two
modular multiplications in G1 and two hashes, which
takes about 2.25 ms.

Client side. Figs 4.a and 4.b show the verification
cost for group-by sum and inner product queries,
respectively. Note that the auxiliary information S∆

in the verification can be pre-computed, because they
are only determined by S∆, i.e., independent of the
outsourced data. Thus, with the aid of such pre-
computation, the verification cost is constant, regard-
less of the input size n.

For simplicity, we consider the product of two
n × n matrices, and the verification cost is shown in
Fig 4.c. Similarly, a client can also pre-compute the
auxiliary information (S1,1, S1,2, S2,1, S2,2), since these
values are determined only by the indexes (i, j) and
a PRF. The client needs six pairing operations, six
exponentiation operations in G1 and O(n2) modular
addition and multiplication operations in Z∗

q to verify
the validity of the result res.

Note that our construction significantly reduces
the storage and computation burdens on the data
sources and the clients due to our outsourcing model.
Otherwise, machines M1 and M2 have to store the
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TABLE 1
Computation Cost for Proof Generation (seconds)

Query The number of involved data
1000 2000 3000

Group-by 0.016 0.033 0.049
Inner product 0.774 1.562 2.317

O(n2) entries of the matrices, and then send matrices
A and B to the client, respectively. In addition, the
client requires the super-quadratic amount of work to
compute the matrix product.

Cloud side. To evaluate the performance of the
cloud in our scheme, we measure its computation cost
to generate proofs for client requests including group-
by sum query and inner product query, where the
number of n increases from 1000 to 3000. The results
are given in TABLE 1. The cost for generating a proof
for group-by sum query is extremely lightweight. This
is because it only involves inexpensive multiplication
operations in Z∗

q . On the other hand, exponentia-
tion operations dominate the proof generation cost
for the inner product query. Table 1 shows that it
takes about 2.317 seconds even with a large number
n = 3000. For simplicity, with matrix product query,
we consider the multiplication of two n× n matrices.
The values π[i][j]1, π[i][j]2, π[i][j]3, res[i][j]1, res[i][j]2
computed once and used later for the same query, can
be amortized over all future executions. Computing
{π1, π2, π3, res1, res2} needs roughly 8.52 and 214.56
seconds for n = 100 and n = 500, respectively.
Therefore, the overall performance at the cloud side
is totally acceptable if we consider a more powerful
cloud in practice.

8 CONCLUSION
In this paper, we introduce a novel homomorphic
verifiable tag technique, and design an efficient and
publicly verifiable inner product computation scheme
on the dynamic outsourced data streams under multi-
ple keys. We also extend the inner product scheme to
support matrix product. Compared with the existing
works under the single-key setting, our scheme aims
at the more challenging multi-key scenario, i.e., it
allows multiple data sources with different secret keys
to upload their endless data streams and delegate the
corresponding computations to a third party server,
while the traceability can still be provided on demand.
Furthermore, any keyless client is able to publicly ver-
ify the validity of the returned computation result.
Security analysis shows that our scheme is provable
secure under the CDH assumption in the random
oracle model. Experimental results demonstrate that
our protocol is practically efficient in terms of both
communication and computation cost.
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