
AoI Scheduling with Maximum Thresholds
Chengzhang Li, Shaoran Li, Yongce Chen, Y. Thomas Hou, and Wenjing Lou

Virginia Tech, Blacksburg, VA, USA

Abstract—Age of Information (AoI) is an application layer
performance metric that quantifies the freshness of information.
This paper investigates scheduling problems at network edge
when each source node has an AoI requirement (which we
call Maximum AoI Threshold (MAT)). Specifically, we want to
determine whether or not a vector of MATs for the source nodes
is schedulable, and if so, find a feasible scheduler for it. For a
small network, we present an optimal procedure called Cyclic
Scheduler Detection (CSD) that can determine the schedulability
with absolute certainty. For a large network where CSD is not
applicable, we present a novel low-complexity procedure, called
Fictitious Polynomial Mapping (FPM), and prove that FPM can
find a feasible scheduler for any MAT vector when the load is
under ln 2. We use extensive numerical results to validate our
theoretical results and show that the performance of FPM is
significantly better than a state-of-the-art scheduling algorithm.

I. INTRODUCTION

Age of Information (AoI) is a new metric conceived by Kaul
et al. [1], [2] to measure the freshness of information. It has
since captured the attention of the research community and
is now under intensive investigation (see a survey on AoI in
[3] and an online bibliography in [4]). By definition [1], [2],
AoI measures the elapsed time between the present time and
the generation time of the information. AoI is fundamentally
different from traditional metrics such as delay or latency
that are used by the networking community as the latter only
considers the transit time for a packet through a network
component or the network. In other words, delay or latency
typically refers to the time required to move the information
from one point to another in the network. In contrast, AoI
includes delay or latency as its components and advances with
time if there are no new updates. From layered perspective,
AoI is an application layer metric while delay or latency is at
a lower layer (e.g., transport or link layer).

One of the most active lines of research on AoI is to
design schedulers to minimize AoI (e.g., weighted average
AoI) for all information sources at the network edge [5]–[28].
In [5]–[14], the authors considered a single-link network where
multiple sources share a common link and only one source can
use the link for transmission at one time instance. In [15]–
[20], the authors considered a multi-link network environment
where a subset of links can transmit simultaneously in a time
slot when they are not interfering with each other. In [21],
[22], the authors considered a cellular-based network where
the channel resource is organized as resource grids that can
be allocated to the source nodes. In [23]–[25], the authors
considered a multi-hop network.

Although a clever design of a scheduler to minimize AoI is
important, it does not address some important application areas

where there is a hard performance requirement on AoI metric.
Imagine some AoI-critical applications such as autonomous
vehicles and unmanned aerial vehicles, where the applications
require the AoI from some input to meet certain freshness
threshold. Although existing schedulers designed for AoI
minimization has some remote relevance to AoI thresholds, it
is easy to see that they are fundamentally different problems.
Simply put, existing schedulers designed for AoI minimization
cannot offer any guarantee on AoI thresholds. Further, by
scanning the literature, there is a serious lack of current
research in this area.

In this paper, we address this issue by studying AoI
scheduling under a Maximum AoI Threshold (MAT) for each
source node. Specifically, this paper addresses the following
problems: (i) For a vector of MAT requirement for the source
nodes, does there exist a feasible scheduler that can satisfy this
requirement vector? (ii) If a feasible scheduler exists, then find
such a scheduler. As we shall see, these two problems are
intertwined with each other and are very different from the
existing AoI minimization problems.

It is also instructive to see that these two problems are differ-
ent from traditional task scheduling problems with deadlines
[29]–[32]. In particular, Earliest Deadline First (EDF), the
most well-known scheduler, was shown to be very efficient in
the task scheduling problem [29], [30]. But we shall see that
it performs poorly for our AoI problem in this paper, due to
the fundamental difference between the definitions of AoI and
delay.

We summarize the main contributions of this paper as
follows:

• First, we prove that if there exists a feasible scheduler
w.r.t. an MAT vector d, then there must exist at least
one feasible cyclic scheduler. This result allows us to
narrow down the search space and to focus only on cyclic
schedulers. Based on this result, we present an optimal
solution called Cyclic Scheduler Detection (CSD) that can
determine whether there exists a feasible scheduler with
absolute certainty. The only limiting issue with CSD is its
high complexity. So it is only useful for a small network.

• For a large network where CSD is not applicable, we
pursue a fast (polynomial time complexity) procedure
to solve our problem. We first give a definition for the
so-called “MAT load” of a network, denoted as l(d),
and show that for any d, if l(d) > 1, then d is not
schedulable. Then we identify a special type of MAT
vector, called polynomial MAT vector, and present a
low-complexity procedure called Polynomial Scheduler

Base Station

Wireless Channel

Source Nodes

Figure 1: System model: N source nodes collect information
and forward it to a BS.

Construction (PSC) that can find a feasible scheduler for
any polynomial MAT vector d with l(d) ≤ 1.

• For a general (non-polynomial) MAT vector d, we pro-
pose to map it to a polynomial MAT vector d1 with
l(d1) ≤ 1 and subsequently construct a feasible scheduler
for d based on this mapping. To better facilitate a suc-
cessful mapping, we further generalize the definition of
polynomial MAT vector to “fictitious polynomial” vector
d̃, in which the elements are allowed to be fractions
instead of just integers. Based on this generalization,
we present a low-complexity procedure called Fictitious
Scheduler Construction (FSC), which can always find a
feasible scheduler for d if it can be mapped to a d̃ with
l(d̃) ≤ 1. With FSC in hand, the only remaining issue
to find a feasible scheduler for d is to find a mapping
between d and a fictitious polynomial d̃ with l(d̃) ≤ 1.
To address this, we design a low-complexity procedure
called Fictitious Polynomial Mapping (FPM), which is
proved to be able to find a such mapping if there exists
at least one such mapping.

• We prove that FPM is able to find a feasible scheduler
for any d with l(d) < ln 2 (≈ 69.3%). We also show
that the cycle length of a feasible scheduler found by
FPM is always no greater than the largest element in d.
Extensive numerical results are provided to validate the
theoretical results and show that the performance of FPM
is significantly better than a delay-optimized scheduler
such as EDF.

To the best of our knowledge, this is the first paper that
successfully addresses AoI scheduling problems subjected to
maximum thresholds. As such, the theories and algorithms de-
veloped in this paper lay the groundwork for future studies on
AoI scheduling problems subject to performance guarantees.

II. SYSTEM MODEL

Consider a network (see Fig. 1) consisting of N source
nodes and one base station (BS). Each source node collects
data (information sample) and forwards it to the BS through
a shared wireless channel. Assume time is slotted and each
source node takes a new sample at the beginning of each
time slot. Due to limited channel capacity, not every sample
collected at a source node can be sent to the BS. Upon a
transmission opportunity, only the freshest (latest) sample at
a source will be chosen for transmission. Similar to [8], [11],
[12], [14], we assume the transmission of a sample takes one
time slot. Therefore, at most one sample from a source node

can be chosen for transmission in each time slot. Depending
on the objective, a scheduler is needed to decide which sample
will be chosen and transmitted in each time slot. Denote
π(t) ∈ {0, 1, 2, · · · , N} as the scheduling decision for time
slot t (t = 0, 1, 2, · · ·). Then when π(t) = i and i ≥ 1, the
scheduler chooses source node i for transmission at t; when
π(t) = 0, none of the source nodes is chosen for transmission
at t.

At the BS, it maintains the most recent (freshest) sample
from each source that it has received. Once a new sample
from a source node is received, the BS updates the current
sample for this source node with this new one. For the sample
from source node i that is currently maintained by the BS,
denote Ui(t) as its generation time at its source node. Then
the AoI for source node i (as perceived by the BS), denoted
as Ai(t), can be defined as the elapsed time between now (t)
and the generation time of the sample from this source node
Ui(t), i.e.,

Ai(t) = t− Ui(t). (1)

Recall each source node generates a sample at each t =
0, 1, 2, · · · . If the sample from source node i is chosen for
transmission at t after it is generated (i.e. π(t) = i), then at
time (t+ 1), it will be received by the BS, i.e., Ui(t+ 1) = t
and

Ai(t+ 1) = t+ 1− Ui(t+ 1) = 1.

On the other hand, if the sample from source node i is not
chosen for transmission at t (i.e., π(t) 6= i), then at time (t+1),
its AoI at the BS will increase by one. Combining both cases,
we have:

Ai(t+ 1) =

{
1, if π(t) = i,

Ai(t) + 1, otherwise.
(2)

Initially, at time t = 0, we assume the system has just
been turned on and there is no sample yet at the BS. So
Ai(0) for each i is “undefined”. As time goes on, more and
more samples from different source nodes will be received at
the BS. Intuitively, an “undefined” AoI for a source node is
“worse” than a very large AoI at the BS, as an undefined AoI
does not offer any useful information, let alone to consider
its “freshness”. Therefore, whenever Ai(t) remains undefined
for source node i at the BS, our scheduler should consider a
transmission of a sample from this source ASAP.

III. PROBLEM STATEMENT

In this paper, we assume there is a Maximum AoI threshold
(MAT), denoted by di, that is associated with each source
node at the BS. di serves as an upper bound for Ai(t) and
our goal is to design a scheduler such that Ai(t) ≤ di for all
i = 1, 2, · · · , N .1 Note that at t = 0, Ai(t)’s are undefined
for all i. So it only makes sense that we design a scheduler
so that the above objective is achieved after some warm-up
period.

1In this paper we assume a hard threshold that must not be violated. The
case where the threshold is soft, e.g., with a probability of violation below a
threshold, will be explored in our future work.

Formally, we say a scheduler π is feasible if there exists a
warm-up period t0 such that for t > t0, we have Ai(t) ≤ di
for i = 1, 2, · · · , N . Note that for practical purpose, t0 should
not be too large. We will address this issue in Section IV-A.

Denote d = [d1 d2 · · · dN] as the vector of MATs for all
source nodes. We say d is schedulable if there exists at least
one feasible scheduler π. The problem that we want to address
is to determine whether or not a given d is schedulable. If d
is schedulable, we want to find at least one feasible scheduler
to achieve it.

The above problem is very different from the existing
research on minimizing AoI [5]–[28]. Specifically, most of
these works attempted to minimize the weighted-sum long-
term average AoI, Ā =

∑N
i=1 wiĀi, where Āi is a long-term

average AoI for source node i. Although Ā is minimized in
the final solution, there is no concern of whether AoI for a
source will exceed a threshold during the process. In other
words, existing research on AoI minimization is conducted
with no consideration of hard AoI requirement. But when such
a requirement on AoI is present, it becomes a totally different
problem, which we will address in this paper.

IV. SCHEDULABILITY CHECK WITH A CYCLIC
SCHEDULER

In this section, we present an error-free procedure, named
Cyclic Scheduler Detection (CSD), to determine the schedula-
bility of d. By “error-free”, we mean that by executing CSD,
we will be able to determine (with absolute certainty or no
error) whether or not d is schedulable. The only issue with
CSD is its high complexity (exponential w.r.t N), which will
serve as the motivation of our work in Sections V and VI.

A. Existence of A Feasible Cyclic Scheduler
A scheduler may exhibit either cyclic or non-cyclic behav-

ior. We say a scheduler is cyclic if its scheduling decision
exhibits a periodic pattern over a finite number of time slots,
i.e., πc(t) = πc(t+ c) for some constant c when t ≥ 0. Here
c is the cycle length of this cyclic scheduler. The following
lemma helps us narrow down the search space for a feasible
scheduler (w.r.t. d) to only cyclic scheduler.

Lemma 1 If an MAT vector d is schedulable, then there exists
at least one cyclic scheduler that is feasible w.r.t. d.

To prove Lemma 1, we define the state of AoI at the
BS at time t (denoted as s(t)) as a vector comprising of
current values of AoI for all source nodes, i.e., s(t) =
[A1(t) A2(t) · · · AN (t)]. For two different time t1 and
t2, if the current states and the scheduling decisions are
both identical, i.e., s(t1) = s(t2) and π(t1) = π(t2), then
s(t1 + 1) = s(t2 + 1).

We now consider the possible state space under a feasible
scheduler. After warm-up time t0, for each source node i, we
have 1 ≤ Ai(t) ≤ di (by definition of a feasible scheduler).
We define the state space of feasible schedulers as a set S as

S = {s(t) : | 1 ≤ Ai(t) ≤ di, i = 1, 2, · · · , N}. (3)

Clearly, there is a total of d1 · d2 · · · dN unique states in S.

Under a feasible cyclic scheduler πc, for any consecutive di
time slots, there must be at least one sample that is transmitted
from each source node i (or the MAT di will not be satisfied
and thus infeasible). Denote dmax as the largest MAT among
all source nodes, i.e., dmax = maxi=1,2,··· ,N{di}. Then by
time t = dmax, each source node should have been selected for
transmission for at least once. Recall Ui(t) is the generation
time of the sample maintained at the BS at t for source node
i. For any t > dmax, the sample at the BS from source node i
(with a generation time Ui(t)) must be chosen by the BS for
transmission at time Ui(t), i.e., πc

(
Ui(t)

)
= i. Further, during

the time interval (Ui(t), t), no other sample(s) from source
node i will be chosen for transmission (or the time stamp at
the BS will not be Ui(t)). That is, for any τ s.t. Ui(t) < τ < t,
πc(τ) 6= i.

Since πc is cyclic, we have πc(Ui(t) + c) = πc
(
Ui(t)

)
= i

and for Ui(t) + c < τ < t + c, we have πc(τ) 6= i. This
implies that the generation time of the sample maintained by
the BS at t+ c is Ui(t) + c, i.e., Ui(t+ c) = Ui(t) + c. Then
for any t > dmax, we have Ai(t + c) = t + c − Ui(t + c) =
t − Ui(t) = Ai(t) for each source node i. That is, under a
feasible cyclic scheduler, the evolution of state also exhibits a
cyclic behavior, with a cycle length equaling the length of the
scheduling cycle, i.e.,

s(t) = s(t+ c), for t > dmax. (4)

Based on the above analysis, we are now ready to prove
Lemma 1.

Proof of Lemma 1 Our proof is based on construction. If d
is schedulable, then there exists a feasible scheduler π(t) with
a warm-up time t0. Since there is a total of d1 · d2 · · · dN
states that π(t) can visit after t0, there must exist a state that
π(t) visits at least twice over the time interval [t0 + 1, t0 +
d1 · d2 · · · dN + 1]. Suppose the two time instances that s(t)
visit this state are t1 and t2, with t1 < t2. Then we have
s(t1) = s(t2). We can take the scheduling decisions within
the time interval [t1, t2 − 1] as one cycle, and repeat it to
construct a feasible cyclic scheduler.

By Lemma 1, to determine the schedulability of d, we only
need to check the existence of a feasible cyclic scheduler w.r.t.
d. If there exists one (through any construction), then d is
schedulable; otherwise (i.e., there does not exist any feasible
cyclic scheduler), then d is unschedulable.

Before we determine the existence of a feasible cyclic
scheduler, we make a comment on the warm-up period t0 for
a feasible cyclic scheduler (if it exists). The following lemma
shows one possible value for the warm-up period.

Lemma 2 For any feasible cyclic scheduler, t0 = dmax can
be used as the warm-up period.

Proof To prove this lemma, it is sufficient to prove that for
any feasible cyclic scheduler, when t > dmax, Ai(t) ≤ di for
i = 1, 2, · · · , N .

Our proof is based on contradiction. Suppose under a
feasible cyclic scheduler with a cycle length c, at time

t1 > dmax, we have Ai(t1) > di. Then from (4), we have
Ai(t1 + nc) = Ai(t1) > di for all n ∈ N, which contradicts
to the feasibility assumption of the cyclic scheduler (i.e., for
any t > t0, Ai(t) ≤ di). This completes the proof.

Based on Lemmas 1 and 2, we will focus on the design
of a feasible cyclic scheduler w.r.t. d. From this point on,
we use “feasible scheduler” and “feasible cyclic scheduler”
interchangeably in this paper.

B. Detection of Feasible Cyclic Scheduler
In the last section, we showed that we can determine d’s

schedulability by determining the existence of a feasible cyclic
scheduler w.r.t. d. In this section, we show that we can reduce
the latter problem to checking the existence of a cycle in a
directed graph, which is a well-known problem with a known
solution [33], [34].

To see how this is possible, we construct a state transition
graph (STG) that consists of d1·d2 · · · dN nodes (the maximum
number of states for s(t)). Each node in this STG represents
a state in S. For each node in this STG, there are N possible
scheduling decisions. If a scheduling decision leads to a
feasible state (i.e., another node in this STG), we draw a
directed edge from the current node to the next node in the
STG. Clearly, there is a one-to-one mapping between a feasible
cyclic scheduler w.r.t. d and a cycle in STG. We have the
following lemma.

Lemma 3 The existence of a feasible cyclic scheduler w.r.t.
d is equivalent to the existence of a cycle in STG.

The proof of Lemma 3 follows directly from the above
discussion and is thus omitted here.

The following corollary follows from Lemma 3, which
shows us a way to construct a feasible cyclic scheduler (if
d is schedulable).

Corollary 3.1 A cycle in STG constitutes a feasible cyclic
scheduler w.r.t. d, with each edge in the cycle corresponding
to the scheduling decision for that state.

Now we outline the CSD procedure in Fig. 2. Based on
Lemma 3, CSD is an error-free procedure.

There are some well-known solutions to check the existence
of a cycle (and find one if there exists) in a directed graph,
such as topological sorting [33] and Depth-First-Search (DFS)
[34]. The time complexity of both algorithms is O(|V |+ |E|),
where |V | is the number of nodes and |E| is the number
of edges in the graph. In STG, |V | = d1 · d2 · · · dN and
|E| ≤ N · d1 · d2 · · · dN (since there are at most N edges
from each node). Therefore, the time complexity of CSD is
O(d1d2 · · · dN) + O(Nd1d2 · · · dN) = O(Nd1d2 · · · dN). In
practice, for N > 1, we have di ≥ 2 for each source node
i.2 Therefore, the time complexity O(Nd1d2 · · · dN) is no less
than O(N ·2N), which is exponential w.r.t. N . That is, although
CSD can determine d’s schedulability, its exponential time
complexity poses a serious problem when N is large.

2If di = 1, source node i must transmit a sample in every time slot to
achieve feasibility. This means other source nodes cannot transmit any samples
and thus feasibility cannot be achieved.

CSD: For an MAT vector d:
1: Construct STG based on d.
2: Detect whether there exists a cycle in STG. If there

exists, use it to construct a feasible cyclic scheduler.

Figure 2: CSD procedure

V. THE SPECIAL CASE OF POLYNOMIAL MAT VECTORS

Before we start out to design any scheduling algorithm,3 let
us first clarify the main objectives of our scheduling algorithm,
which we list as follows.

1) It should determine the schedulability of d.
2) If d is determined to be schedulable, the procedure

should be able to find a feasible scheduler w.r.t. d.
3) The procedure should have a low time complexity.
Clearly, the procedure proposed in Section IV, CSD, meets

the first two objectives but not the third one.
In our quest to find a procedure to achieve the above

three objectives, we find that it is extremely difficult to
have a procedure that meets all three objectives perfectly
(unconditionally). In this section, as a first step to achieve
our design objectives, we consider a special MAT vector,
called polynomial MAT vector. We show that for this special
MAT vector, we can design a procedure that meets all three
objectives. In Section VI, we will use this procedure as a basis
to design a procedure for the general (non-polynomial) MAT
vectors.

A. Polynomial MAT Vectors and MAT Load
We first give a definition of polynomial MAT vector.

Definition 1 An MAT vector d is polynomial if di = b · 2ni

for 1 ≤ i ≤ N , where b is a positive integer and ni is a
non-negative integer.

For example, d = [5 5 10 20 20 40] is a polynomial MAT
vector with b = 5, n1 = n2 = 0, n3 = 1, n4 = n5 = 2 and
n6 = 3. In Section V-B, we will design a procedure that can
find a feasible scheduler for a polynomial MAT vector d under
a very general condition. To do this, we need a definition to
tie traffic load and MAT.

First, we define the long-term average data rate for source
node i under scheduler π as

ri = lim
T→∞

1

T

T∑
t=1

[π(t) = i], (5)

where “[·]” is Iverson bracket, returning 1 if the statement
within is true and 0 otherwise [35]. The data rate ri is a direct
measure of the percentage of the time slots that are assigned
to source node i for transmission. Since each time slot can be
used for at most one such transmission, we have

N∑
i=1

ri ≤ 1. (6)

3We use the term algorithm and procedure interchangeably in this paper
when there is no confusion.

Eq. (6) gives an upper bound for the sum of rates. There is
also a lower bound associated with each ri. Specifically, to
meet di for each source node i, there should be at least one
transmission over consecutive di time slots. That is,

ri ≥
1

di
, i = 1, 2, · · · , N. (7)

Intuitively, 1/di represents the minimum guaranteed rate that
a feasible scheduler should provision to source node i. We
define MAT load for an MAT vector d as

l(d) =

N∑
i=1

1

di
, (8)

which represents the sum of minimum guaranteed rate that a
feasible scheduler should provide to all source nodes. Clearly,
by (6), any d with l(d) > 1 is unschedulable, which is quite
intuitive.

Naturally, we would like to use the MAT load as a metric in
our design of a feasible scheduler. In the next section, we show
that for l(d) = 1 (maximum possible load), we can design a
feasible scheduler when d is polynomial.

B. Scheduling for Polynomial d

A Motivating Example. Consider six source nodes A, B, C,
D, E, F and a polynomial MAT vector d = [3 6 6 6 12 12]
corresponding to these six sources. It can be easily verified
(based on our definitions in the last section) that d is polyno-
mial and l(d) = 1. We now show how to construct a feasible
scheduler by exploiting the polynomial property.

Since the least common multiple (LCM) of the elements in
d is 12, we set the cycle length to 12 time slots as follows:

(������������),

where each � inside the “()” represents a yet-to-be-determined
scheduling decision in that particular time slot.

Since l(d) is exactly 1, we must have ri = 1/di under a
feasible scheduler. Thus, for each source node i, the length
between two adjacent transmissions must be equal to di.
Therefore, we can iteratively assign time slots to source node
A, B, C, D, E, F , following the sequence dA ≤ dB ≤ dC ≤
dD ≤ dE ≤ dF . In the first iteration, we assign the first and
every dA = 3 time slots to source node A. The cycle becomes

(A��A��A��A��).

In the second iteration, we assign the second time slot and
every dB = 6 time slots following it to source node B. Since
dB is an integral multiple of dA, every dB time slots after the
second time slot is empty before this assignment. The cycle
now becomes

(AB�A��AB�A��).

Following the same token, we make the assignment for the
third, fourth, fifth and sixth iterations for source node C, D,
E, and F , respectively. The final cycle is

(ABCADEABCADF),

PSC: For a polynomial MAT vector d with l(d) ≤ 1:
1: Set the cycle length to dmax time slots.
2: Sort d such that d1 ≤ d2 ≤ · · · ≤ dN .
3: for i = 1, 2, · · · , N do
4: Choose the first empty (unassigned) time slot in the

cycle,
5: Assign this time slot and every di time slots following

it (within the cycle) to source node i.
6: end for

Figure 3: A pseudocode for PSC

and is a feasible scheduling cycle for d.
Based on the key ideas in the above motivating example, we

outline a scheduling algorithm for polynomial MAT vectors,
which we call Polynomial Scheduler Construction (PSC).
Fig. 3 shows the pseudocode of PSC.

For PSC, we have the following lemma.

Lemma 4 For any polynomial MAT vector d with l(d) ≤ 1,
PSC can always find a feasible scheduler w.r.t. d.

A proof (based on contradiction) can be easily constructed.
Due to space limitation, we omit it here. The significance of
Lemma 4 is that for a polynomial MAT vector d, PSC is
guaranteed to find a feasible scheduler for MAT load l(d) as
high as 1.

To see PSC’s time complexity, note that in each iteration,
PSC will visit no more than dmax time slots in the cycle. So the
time complexity for each iteration is O(dmax). Since there are
N iterations, the total time complexity of PSC is O(Ndmax).

In summary, PSC meets all three design objectives when d
is polynomial.

VI. SCHEDULING FOR GENERAL MAT VECTORS

In this section, we consider the general case when d
may not be polynomial. We present a novel algorithm called
Fictitious Polynomial Mapping (FPM), which can meet all
three objectives when l(d) < ln 2 (≈ 69.3%) regardless of
whether d is polynomial or not.

A. Basic Idea

The basic idea is to “map” a general (non-polynomial) MAT
vector d that is under consideration to a polynomial MAT
vector by “tightening” one or more elements in d. In other
words, we can always offer a source with a MAT that is
smaller than its requirement. If we can do this mapping and
the reference polynomial MAT vector has a load no greater
than 1, then we can apply Lemma 4 and use PSC to find a
feasible scheduler.
Example. For a general MAT vector d = [3 6 7 8 12 13],
we can map (tighten) it to the polynomial MAT vector d1 =
[3 6 6 6 12 12]. Since the polynomial MAT vector has a load
l(d1) = 1, we can construct a feasible scheduler w.r.t. d1 and
use the same scheduler to satisfy d.

Naturally, we ask the following question: Can we always
map a schedulable MAT vector d to some polynomial MAT
vector with a load no greater than 1? Unfortunately, the answer
is no and can be illustrated in the following example. Consider

four source nodes A, B, C, D and a non-polynomial MAT
vector d = [3 5 5 5]. For this d, the smallest MAT (3, for
source node A) can only be mapped to either 2 (tightening)
or 3 (no change). If it is tightened to 2, then the other MATs
will be tightened to 4 (based on Definition 1), and thus d
is mapped to the polynomial MAT vector d1 = [2 4 4 4],
with load l(d1) = 1.25 > 1, which is not helpful (we cannot
use Lemma 4). If it is mapped to 3 (unchanged), then the
other MATs will be tightened to 3, and thus d is mapped
to the polynomial MAT vector d2 = [3 3 3 3], with load
l(d2) = 1.33 > 1, which is again not helpful. However, as we
shall soon see, d is in fact schedulable, despite that it cannot
be mapped to a polynomial MAT vector with a load no greater
than 1.

To address the limitation of polynomial MAT vector, we
introduce a concept called “fictitious polynomial” as follows.

Definition 2 A vector d̃ = [d̃1 d̃2 · · · d̃N] is fictitious
polynomial if d̃i = b · 2ni for 1 ≤ i ≤ N , where b is a
positive integer and ni is an integer.

Note that the difference between Definition 2 and Defini-
tion 1 is only in ni (positive integer or any integer value).
But this difference is significant as d̃i now can be a fraction
instead of just being a positive integer as di. For example,
d̃ = [74

7
2 7 14 14] is not polynomial but is fictitious

polynomial with b = 7, n1 = −2, n2 = −1, n3 = 0, and
n4 = n5 = 1. Note that d̃1 and d̃2 here are fractions.

The next question is: What is the benefit of allowing ni to be
negative (or d̃i to be fractional) in this fictitious polynomial
definition? The answer is that it will give us much bigger
room for mapping. Let’s go back to the previous example d =
[3 5 5 5]. Under Definition 1, the smallest MAT in d can only
be mapped to 2 or 3, and both mapping will have an MAT load
greater than 1, which is not helpful. However, under fictitious
polynomial vector definition, we will have more options to
map the smallest MAT (i.e., 3) onto, say 5

2 (with b = 5)
and 7

4 (with b=7). Specifically, when 3 is mapped to 5
2 , the

MAT vector d is mapped to the fictitious polynomial vector
d̃ = [52 5 5 5], with a load l(d̃) = 1. In Section VI-B we will
present a low-complexity procedure to find a feasible scheduler
w.r.t. any MAT vector d that can be mapped to a fictitious
vector d̃ with l(d̃) ≤ 1. In particular, for d = [3 5 5 5] with
d̃ = [52 5 5 5], a feasible scheduler to d is (ABACD). The
readers can easily verify its feasibility.

B. Scheduling for Fictitious Polynomial d̃

There are two results in this section. The first result is stated
in the following theorem.

Theorem 1 For any MAT vector d that can be mapped to
a fictitious polynomial vector d̃ with l(d̃) ≤ 1, there exist a
feasible scheduler w.r.t. d.

A proof of Theorem 1 is based on constructing one such
feasible scheduler, which must also be of low-complexity
procedure. In this section, we present one such scheduler,

(⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕)
𝒅 = [3 5 9 11 19 21], 𝑐 = 18, 𝑁1 = 8,𝑁2 = 4,𝑁4 = 𝑁5 = 2,𝑁6 = 𝑁7 = 1

(⎕⎕⎕⎕⎕⎕⎕⎕⎕)
𝒅 = [3 5 9 11], 𝑐 = 9, 𝑁1 = 4,𝑁2 = 2,𝑁4 = 𝑁5 = 1

(⎕⎕⎕⎕⎕)
𝒅 = [3 5], 𝑐 = 5, 𝑁1 = 2,𝑁2 = 1

(⎕⎕⎕)
𝒅 = [3], 𝑐 = 3, 𝑁1 = 1

(⎕⎕⎕)
𝒅 = [], 𝑐 = 3

Initialization

After Recursion 1

After Recursion 2

After Recursion 3

After Recursion 4

Figure 4: Recursion in the example.

called Fictitious Scheduler Construction (FSC). FSC is the
second main result of this section.

FSC is best explained with an example.
Example. Consider six source nodes A, B, C, D, E, F
with d = [3 5 9 11 19 21]. During the initialization phase, we
map d to a fictitious polynomial vector d̃ = [94

9
2 9 9 18 18]

with b = 9 and l(d̃) = 1 (we will show how to find this d̃ in
Section VI-C). Now, we focus on showing how to construct a
feasible scheduler w.r.t. d based on d̃.

In Section V-B, we used LCM for di’s as cycle length
where di’s are all integers. But d̃i’s in d̃ can be fractions
and it’s necessary to generalize the definition of LCM. We
define fictitious common multiple (FCM) for d̃i’s in d̃ as the
smallest integer m such that m/d̃i is a positive integer for all
1 ≤ i ≤ N .

Since the FCM of d̃i’s in d̃ is 18, we set the cycle length
c = 18. Denote Ni as the number of time slots scheduled
for source node i in a cycle c. As we did in Section V-B,
we reserve a long-term average data rate ri = 1/d̃i for each
source node i. It’s easy to see

∑N
i=1 ri ≤ 1 when l(d̃) ≤ 1.

Then we allocate Ni = c · ri = c/d̃i for each node i, and we
have NA = 8, NB = 4, NC = ND = 2, and NE = NF = 1.

We propose a recursive procedure to construct a feasible
scheduler for d, as shown in Figure 4. The original problem
(after Initialization) is reduced to a smaller problem after each
recursion and degenerates into a trivial problem after the last
recursion. We will show how this recursive procedure works.

After initialization (as we discussed above), we have d =
[3 5 9 11 19 21], d̃ = [94

9
2 9 9 18 18], l(d̃) = 1, c = 18 and

NA = 8, NB = 4, NC = ND = 2, NE = NF = 1.
At the beginning of Recursion 1, NE = NF = 1, which

means we need to assign one time slot to each source node
E and F in a cycle. Since this one time slot assignment can
be made anywhere in the cycle, we can defer this assignment
later. For now, we can remove nodes E and F from d and d̃,
and assign 16 time slots to other source node A, B, C, D in

the cycle with c = 18 time slots (and later use any remaining
two time slots to assign to nodes E and F). Since c = 18,
NA = 8, NB = 4, NC = 2, and ND = 2 are all even, it is
sufficient to construct a feasible scheduler with c ← c/2 and
NA ← NA/2, NB ← NB/2, NC ← NC/2, ND ← ND/2.
Then we can combine the two identical cycles together and
form a full cycle with length 18.

Therefore, after Recursion 1, we have d = [3 5 9 11], d̃ =
[94

9
2 9 9], l(d̃) = 8

9 < 1, and c = 9, NA = 4, NB = 2,
NC = ND = 1.

At the beginning of Recursion 2, we have NC = ND = 1.
Again, we will first remove nodes C and D from d and d̃, and
then assign 6 time slots to source node A (with NA = 4) and
B (with NB = 2) in the cycle with length c = 9. Since NA and
NB are both even, we would like to divide the current cycle
into two identical but smaller cycles. But since the current
cycle length c = 9 is odd, we need to do some extra work
here. Now we construct a feasible scheduler with c ← c+1

2
(which is 5) and NA ← NA/2, NB ← NB/2. Then we can
combine the two identical cycles together and form a full cycle
with length 10, and remove one empty time slot to get a length
9. Note that removing an empty time slot won’t increase the
AoI for any source node. With this cycle length reduction, we
update each element in d̃ with a factor c+1

c , which is 10/9.
Therefore, after Recursion 2, we have d = [3 5], d̃ = [52 5],

l(d̃) = 3
5 < 1, and c = 5, NA = 2, NB = 1.

Following the same idea in the previous recursive steps,
the problem is reduced to a trivial problem after Recursion
4: to construct an empty cycle with c = 3. After con-
structing it, we go back step-by-step in the recursion and
construct the following feasible scheduler w.r.t. the original d:
(ABCADABEAABCADABFA). The readers can easily
verify its feasibility.

Based on the key recursive ideas in the above example (i.e.,
remove some nodes that require only 1 time slot and cut down
cycle length in half in each step), we give a pseudocode for
FSC in Fig. 5. With FSC in hand, the proof of Theorem 1 can
now be easily constructed (by following the above example
and the pseudocode in Figure 5). We omit it here due to space
limitation.

C. Mapping d to d̃

In this last section, we will show how to map d into d̃ with
l(d̃) ≤ 1. Recall this is a necessary step in the initialization
phase of FSC in the last section.

Note that there are infinite d̃’s that d can be mapped into,
and we only need to check whether one of them satisfies
l(d̃) ≤ 1. We introduce the following lemma to narrow down
the search space of d̃.

Lemma 5 To check whether d can be mapped to a d̃ with
l(d̃) ≤ 1, it’s sufficient to check those d̃’s with di = d̃i for at
least one i.

Proof We prove this lemma by the construction of d̃0 =
[d̃01 d̃02 · · · d̃0N] which satisfies di = d̃0i for at least one
i. Specifically, if d can be mapped to d̃ with l(d̃) ≤ 1,

FSC: Find a feasible scheduler w.r.t. d that can be mapped
to d̃ with l(d̃) ≤ 1.

Initialization:
Set cycle length c to the FCM of d̃i’s in d̃;
Set Ni ← c/d̃i for i = 1, 2, · · · , N .

Recursion:
1: Separate d̃ into two vectors d̃1 and d̃2, such that: (i) all
d̃i with Ni ≥ 2 are the elements of d̃1; (ii) all d̃i with
Ni = 1 are the elements in d̃2.
Also, separate d into d1 and d2 accordingly.

2: if integer c is even and dim(d1) > 0 then
3: Call Recursion to construct a feasible cycle for d1,

with d̃1, c← c/2, Ni ← Ni/2.
4: Combine two identical cycles together and form one

full cycle.
5: else if integer c is odd and dim(d1) > 0 then
6: Call Recursion to construct a feasible cycle for d1,

with d̃1 ← c+1
c d̃1, c← c+1

2 , Ni ← Ni/2.
7: Combine two identical cycles together and form one

full cycle, and remove one empty time slot in the cycle.
8: else
9: Construct an empty cycle with length c.

10: end if
11: Arbitrarily assign one empty time slot in the cycle to

each source node in d2.

Figure 5: A pseudocode for FSC.

then we construct d̃0 as d̃0 = mini{di/d̃i} · d̃. Clearly, d̃0

is a fictitious polynomial vector that d can be mapped into,
l(d̃0) ≤ l(d̃) ≤ 1, and there exists at least one i such that
di = d̃0i. This completes the proof.

Based on Lemma 5, to map d into d̃ with l(d̃) ≤ 1, it’s
sufficient to test N fictitious polynomial vectors with d̃i =
di, where i ∈ {1, 2, · · · , N}. More specifically, for each i ∈
{1, 2, · · · , N}, we compute the N elements in d̃ by

d̃j = di · 2blog2(
dj
di

)c
, for each j ∈ {1, 2, · · · , N}. (9)

Eq. (9) guarantees that d̃j ≤ dj for each j, d̃ is fictitious
polynomial, and d̃i = di. If for one i we have l(d̃) ≤ 1, we
can use FSC to construct a feasible scheduler. If for all i’s
we have l(d̃) > 1, then d cannot be mapped to any d̃ with
l(d̃) ≤ 1.

Now we can finalize the FPM procedure to find a feasible
scheduler for non-polynomial d, as shown in Fig. 6.

The following corollary directly follows from Lemma 5.

Corollary 5.1 If d can be mapped to any d̃ with l(d̃) ≤ 1,
FPM can always find a feasible scheduler w.r.t. d.

The following lemma shows the cycle length of the feasible
scheduler found by FPM is at most dmax, which is both
interesting and significant for practical implementation.

Lemma 6 The cycle length of the feasible scheduler found by
FPM is no greater than dmax.

FPM: For an MAT vector d:
1: for i = 1, 2, · · · , N do
2: Compute d̃j for each 1 ≤ j ≤ N by (9). Compute
l(d̃) =

∑N
j=1 1/d̃j .

3: if l(d̃) ≤ 1 then
4: Call FSC to construct a feasible scheduler w.r.t. d

and break.
5: end if
6: end for

Figure 6: A Pseudocode of FPM.

Proof Suppose at iteration i, d̃i = di, l(d̃) ≤ 1 and FPM calls
FSC to construct a feasible scheduler. For the largest element
in d̃, denoted by d̃max, we have d̃max = di · 2blog2(

dmax
di

)c

is a positive integer. By definition, d̃max is the FCM of the
elements in d̃ (as d̃max is an integer here). So we have the
cycle length c = d̃max ≤ dmax.

We now analyze the time complexity of FPM. FPM com-
putes at most N different l(d̃)’s. Since the complexity of
computing one l(d̃) is O(N), the complexity for computing
all l(d̃)’s is O(N2). If there exists a d̃ such that l(d̃) ≤ 1,
then FPM will call FSC (at most once). By Lemma 6, we have
c ≤ dmax in FSC. Since after each recursion c is reduced to
d c2e, there are a total of O(log c) recursions. The complexity
of each recursion4 is O(c) (since the cycle length is always no
greater than c). Therefore, the time complexity of FSC (called
by FPM) is O(c log c) = O(dmax · log dmax). So the total time
complexity of FPM is O(N2) +O(dmax · log dmax).

VII. MAT LOAD VS. SCHEDULABILITY

In the last section, by introducing the notation of mapping
from physical d to fictitious d̃, we showed that we can
construct a feasible scheduler w.r.t. d as long as l(d̃) ≤ 1.
However, since di ≥ d̃i, we have l(d) ≤ l(d̃). Even though
l(d̃) may be close to 1, it is still not clear how large l(d) can
be. A natural question becomes: What is the maximum load
l(d) while still guaranteeing to find a feasible scheduler? We
answer this question in this section.

By the mapping in (9), it is easy to see di < 2 · d̃i and
l(d̃) < 2·l(d). So for all d with l(d) ≤ 0.5, we are guaranteed
to find a feasible scheduler based on Theorem 1. The following
proposition shows that we can in fact do better than this.

Proposition 1 For any d with l(d) < ln 2, FPM can always
construct a feasible scheduler w.r.t. d.

Proof Assume d is a vector that FPM cannot find a feasible
scheduler for. To prove Proposition 1, it’s sufficient to prove
l(d) > ln 2.

Since FPM cannot find a d̃ with l(d̃) ≤ 1 that d can be
mapped to, we have

N∑
j=1

1

di · 2blog2(
dj
di

)c
> 1, for each i ∈ {1, 2, · · · , N}. (10)

4Here we assume N ≤ dmax, because any d with N > dmax is clearly
unschedulable (with l(d) > 1).

Based on (10), by using the same method in the proof of
Lemma 5, we can prove that for any x > 0,

N∑
j=1

1

x · 2blog2(
dj
x)c

> 1. (11)

Denote t = 1/x. We have for any t > 0,

N∑
j=1

t · 2−blog2(djt)c > 1. (12)

Denote g(t) = 1
ln 2·t . We have

∫ 1

0.5
g(t)dt = 1. Denote

uj =
1

dj
· 2blog2(dj)c. (13)

We have uj ∈ (0.5, 1] for each j.
Considering (12), we have∫ 1

0.5

g(t)

N∑
j=1

t · 2−blog2(djt)cdt > 1

=⇒ 1

ln 2

N∑
j=1

∫ 1

0.5

2−blog2(djt)cdt > 1

=⇒ 1

ln 2

N∑
j=1

(∫ uj

0.5

2−blog2(dj)c+1dt

+

∫ 1

uj

2−blog2(dj)cdt
)
> 1

=⇒ 1

ln 2

N∑
j=1

uj · 2−blog2(dj)c > 1

=⇒ 1

ln 2

N∑
j=1

1

dj
> 1

=⇒ l(d) > ln 2.

(14)

This completes the proof.

Proposition 1 tells us ln 2 is a valid guarantee for FPM.
We will then show it is also the best guarantee that FPM can
offer. Consider a special group of MAT vectors, denoted by
dn, which is defined as dn = [n n+ 1 n+ 2 · · · 2n− 1 2n].
It can be shown that for any n ∈ N+, dn cannot be mapped
to any d̃ with l(d̃) ≤ 1, thus FPM cannot find a feasible
scheduler for dn. Considering limn→∞ l(dn) = ln 2, we can
say ln 2 is indeed the best guarantee that FPM can offer.

VIII. NUMERICAL RESULTS

In this section, we show some numerical results for FPM
and compare it to CSD (in Section IV) and EDF. Here the
EDF scheduler is given as

πEDF(t) = arg min
i

(
di −Ai(t)

)
, (15)

which selects the source with the earliest deadline for trans-
mission at each t. We organize our numerical results separately
for small N and large N . Under a small N , CSD can be used

Table I: Performance of EDF, FPM and CSD on different d’s.

d l(d) FPM CSD EDF
[3 12 13 13] 0.571 3c = 8 3c = 117 7
[5 8 10 12 13] 0.585 3c = 8 3c = 429 3c = 131
[3 7 8] 0.601 3c = 8 3c = 48 3c = 6
[2 13 14] 0.648 3c = 8 3c = 13 7
[4 6 7 8] 0.685 3c = 8 3c = 96 3c = 18
[3 7 9 11 13] 0.755 3c = 12 3c = 130 7
[2 3 10000] 0.833 7 7 7
[3 5 7 10 12] 0.860 3c = 10 3c = 59 7
[3 5 8 9 10 13] 0.946 7 7 7
[3 6 6 7 13 14] 0.958 3c = 12 3c = 12 7
[4 6 7 8 9 12 12] 0.962 7 3c = 24 7

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

FPM

CSD

EDF

Figure 7: Success rates for FPM, CSD, and EDF under
different l(d) when N = 5.

to find a feasible solution; while under a large N , CSD is not
useful due to its exponential time complexity.
Small N . We consider small networks where we are
able to execute CSD even with exponential time complexity.
In Table I, we present the results of FPM, CSD, and EDF
for various d. In the table, if a feasible scheduler is found
by the underlying algorithm, we mark it by 3and show its
cycle length c. Otherwise (i.e., a feasible scheduler cannot
be found by the underlying algorithm), we mark it by 7.
Not surprisingly, we see that CSD has the best performance.
However, FPM’s performance is quite close: It only fails to
find a feasible scheduler when d = [4 6 7 8 10 12]. On
the other hand, EDF has the worst performance. Further, for
any l(d) < ln 2, FPM can find a feasible scheduler, which
confirms the result in Proposition 1. Also, the cycle length of
the feasible schedulers found by FPM is always no greater
than dmax, which confirms the result in Lemma 6.

What are missing in Table I are the feasible schedulers
that are found by FPM. To conserve space, we present the
schedulers for two entries of d’s in the table as follows:
(i) For d = [3 5 7 10 12], the scheduler found by FPM
is (ABACDABACE); (ii) For d = [3 6 6 7 13 14], the
scheduler found by FPM is (ABCADEABCADF). The
readers can easily verify their feasibility.

In Fig. 7, we show the performance of FPM, CSD, and
EDF when N = 5. We assume di ∈ {2, 3, · · · , 20}
for each source node i = 1, 2, · · · , 5, and randomly gen-
erate 100 different d’s for each load interval l(d) ∈
(0.3, 0.35], (0.35, 0.4], · · · , (0.95, 1]. For each d, we run FPM,
CSD and EDF and calculate the rate (percentage) of success
for finding a feasible scheduler. In Fig. 7, we see that the
performance of FPM is close to CSD (the optimal algorithm).
In particular, when l(d) < ln 2, the success rate of FPM is
100%, which confirms the result in Proposition 1. Again, EDF
has the worst performance.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

FPM

EDF

Figure 8: Success rate for FPM and EDF under different l(d)
when N = 100.

Large N . When N becomes sufficiently large, we will not be
able to execute CSD due to its exponential time complexity. In
this regime, we will only show results for FPM and EDF. Fig. 8
shows the performance of FPM and EDF when N = 100. We
assume di ∈ {10, 20, 30, · · · , 800} for each source node i =
1, 2, · · · , 100, and we randomly generate 100 different d’s for
each load interval l(d) ∈ (0.3, 0.35], (0.35, 0.4], · · · , (0.95, 1].
For each d, we run FPM and EDF5 and calculate the rate
(percentage) of success for finding a feasible scheduler. In
Fig. 8, we see that the performance of FPM is far better than
EDF. Also, when l(d) < ln 2, the success rate of FPM is
100%, which confirms the result in Proposition 1.

IX. CONCLUSIONS

This paper studied AoI scheduling subject to performance
guarantee. Specifically, we investigated the following two
intertwined problems for AoI scheduling at network edge: (i)
For a given MAT vector d, determine whether it is schedulable;
and (ii) If d is schedulable, find a feasible scheduler. To
narrow down the search space, we first proved that if d is
schedulable, then there must exist a feasible cyclic scheduler
w.r.t. d. Based on this result, we proposed an error-free
procedure CSD, which can be used to solve the two problems
when the network size is small. For a large network, we
introduced a load concept based on a given MAT vector and
presented a low complexity procedure PSC that can find a
feasible scheduler for any polynomial d with l(d) ≤ 1. For
general (non-polynomial) d’s, we presented FPM that can find
a feasible scheduler for any d that can be mapped to a fictitious
polynomial vector d̃ with l(d̃) ≤ 1. We proved that FPM can
find a feasible scheduler for any d with l(d) < ln 2, and
the cycle length of the scheduler is no great than dmax (the
largest element in d). We used numerical results to validate
our theoretical results. We also found that the performance of
FPM is significantly better than EDF.

ACKNOWLEDGMENT

This research was supported in part by ONR MURI grant
N00014-19-1-2621.

5For EDF, we simulate the first 100,000 time slots. If d is satisfied in this
interval, we consider EDF as feasible.

REFERENCES

[1] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing Age
of Information in Vehicular Networks,” in Proc. of IEEE SECON,
pp. 350–358, Salt Lake City, UT, USA, June 27–30, 2011.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-Time Status: How Often
Should One Update?” in Proc. of IEEE INFOCOM, pp. 2731–2735,
Orlando, FL, USA, Mar. 25–30, 2012.

[3] A. Kosta, N. Pappas, and V. Angelakis, “Age of Information: A New
Concept, Metric, and Tool,” Foundations and Trends in Networking,
vol. 12, issue 3, pp. 162–259, Nov. 2017, Now Publishers, Inc, ISBN-
13: 978-1680833607.

[4] Y. Sun, “A Collection of Recent Papers on the Age of Information,”
available at http://www.auburn.edu/\%7eyzs0078

[5] Y. Kuo, “Minimum Age TDMA Scheduling,” in Proc. of IEEE INFO-
COM, pp. 2296–2304, Paris, France, Apr. 29 – May 2, 2019.

[6] I. Kadota and E. Modiano, “Minimizing the Age of Information
in Wireless Networks with Stochastic Arrivals,” in Proc. of ACM
Mobihoc, pp. 221–230, Catania, Italy, July 2–5, 2019

[7] A.M. Bedewy, Y. Sun, S. Kompella, and N.B. Shroff, ”Age-optimal
Sampling and Transmission Scheduling in Multi-Source Systems,” in
Proc. of ACM Mobihoc, pp. 121–130, Catania, Italy, July 2–5, 2019

[8] I. Kadota, A. Sinha, and E. Modiano, “Optimizing Age of Information
in Wireless Networks with Throughput Constraints,” in Proc. of IEEE
INFOCOM, pp. 1844–1852, Honolulu, HI, USA, Apr. 16–18, 2018

[9] Q. He, D. Yuan, and A. Ephremides, “Optimal Link Scheduling for
Age Minimization in Wireless Systems,” IEEE Trans. on Information
Theory, vol. 64, issue 7, pp. 5381–5394, July, 2018.

[10] J. Zhong, R.D. Yates, and E. Soljanin, “Two Freshness Metrics for
Local Cache Refresh,” in Proc. of IEEE ISIT, pp. 1924–1928, Vail,
CO, USA, June 17–22, 2018.

[11] R.D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-Optimal Con-
strained Cache Updating,” in Proc. of IEEE ISIT, pp. 141–145, Archen,
Germany, June 25–30, 2017.

[12] Y. Sun, E. Uysal-Biyikoglu, R.D. Yates, C.E. Koksal, and N.B. Shroff,
“Update or Wait: How to Keep Your Data Fresh,” IEEE Trans. on
Information Theory, vol. 63, issue 11, pp. 7492–7508, Nov. 2017.

[13] Y. Hsu, E. Modiano, and L. Duan, “Age of Information: Design and
Analysis of Optimal Scheduling Algorithms,” in Proc. of IEEE ISIT,
pp. 561–565, Archen, Germany, June 25–30, 2017.

[14] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing
the Age of Information in Broadcast Wireless Networks,” in Proc. of
Allerton Conference, pp. 844–851, Monticello, IL, USA, Sept. 27–30,
2016.

[15] R. Talak, S. Karaman, and E. Modiano, “Optimizing Age of Informa-
tion in Wireless Networks with Perfect Channel State Information,” in
Proc. of WiOpt, pp. 1–8, Shanghai, China, May 7–11, 2018.

[16] R. Talak, S. Karaman, and E. Modiano, “Optimizing Information Fresh-
ness in Wireless Networks under General Interference Constraints,” in
Proc. of ACM MobiHoc, pp. 61–70, Los Angeles, CA, USA, June 26–
29, 2018.

[17] R. Talak, S. Karaman, and E. Modiano, “Distributed Scheduling Algo-
rithms for Optimizing Information Freshness in Wireless Networks,” in
Proc. of IEEE International Workshop on Signal Processing Advances
in Wireless Communications, pp. 1–5, Kalamata, Greece, June 25–28,
2018.

[18] N. Lu, B. Ji, and B. Li, “Age-based Scheduling: Improving Data
Freshness for Wireless Real-Time Traffic,” in Proc. of ACM MobiHoc,
pp. 191–200, Los Angeles, CA, USA, June 26–29, 2018.

[19] C. Joo and A. Eryilmaz, “Wireless Scheduling for Information Fresh-
ness and Synchrony: Drift-based Design and Heavy-Traffic Analysis,”
in Proc. of WiOpt, pp. 1–8, Paris, France, May 15–19, 2017.

[20] A.M. Bedewy, Y. Sun, and N.B. Shroff, “Optimizing Data Freshness,
Throughput, and Delay in Multi-Server Information-Update Systems,”
in Proc. of IEEE ISIT, pp. 2569–2573, Barcelona, Spain, July 10–15,
2016.

[21] C. Li, Y. Huang, Y. Chen, B. Jalaian, Y.T. Hou, and W. Lou, “Kronos:
A 5G Scheduler for AoI Minimization under Dynamic Channel Con-
ditions,” in Proc. of IEEE ICDCS, pp. 1466–1472, Dallas, TX, USA,
July 7–9, 2019.

[22] C. Li, S. Li, and Y.T. Hou, “A General Model for Minimizing Age of
Information at Network Edge,” in Proc. of IEEE INFOCOM, pp. 118–
126, Paris, France, Apr. 29 – May 2, 2019.

[23] A.M. Bedewy, Y. Sun, and N.B. Shroff, “Age-Optimal Information
Updates in Multihop Networks,” in Proc. of IEEE ISIT, pp. 576–580,
Archen, Germany, June 25–30, 2017.

[24] R. Talak, S. Karaman, and E. Modiano, “Minimizing Age-of-
Information in Multi-Hop Wireless Networks,” in Proc. of Allerton
Conference, pp. 486–493, Monticello, IL, USA, Oct. 3–6, 2017.

[25] Q. Liu, H. Zeng and M. Chen, “Minimizing Age-of-Information with
Throughput Requirements in Multi-Path Network Communication,” in
Proc. of ACM Mobihoc, pp. 41–50, Catania, Italy, July 2–5, 2019.

[26] V. Tripathi, R. Talak, and E. Modiano, “Age Optimal Information
Gathering and Dissemination on Graphs,” in Proc. of IEEE INFOCOM,
pp. 2422–2430, Paris, France, Apr. 29 – May 2, 2019.

[27] B. Yin, S. Zhang, Y. Cheng, L.X. Cai, Z. Jiang, S. Zhou, and Z. Niu,
“Only Those Requested Count: Proactive Scheduling Policies for Min-
imizing Effective Age-of-Information,” in Proc. of IEEE INFOCOM,
pp. 109–117, Paris, France, Apr. 29 – May 2, 2019.

[28] E. Altman, R. El-Azouzi, D.S. Menasche, and Y. Xu, ”Forever Young:
Aging Control For Hybrid Networks,” in Proc. of ACM Mobihoc,
pp. 91–100, Catania, Italy, July 2–5, 2019.

[29] J. Liebeherr, D.E. Wrege, and D. Ferrari, ”Exact Admission Control
for Networks with a Bounded Delay Service,” IEEE/ACM Transactions
on Networking, vol. 4, issue 6, pp. 885–901, Dec. 1996.

[30] L. Georgiadis, R. Guérin, and A. Parekh, “Optimal Multiplexing on a
Single Link: Delay and Buffer Requirements,” IEEE Transactions on
Information Theory, vol. 43, issue 5, pp. 1518–1535, Sep. 1997.

[31] M. Andrews, “Probabilistic End-to-End Delay Bounds for Earliest
Deadline First Scheduling,” in Proc. IEEE INFOCOM, vol. 2, pp. 603–
612, Tel Aviv, Israel, Mar. 26–30, 2000.

[32] H. Hoang, M. Jonsson, U. Hagstrom, and A. Kallerdahl, “Switched
Real-Time Ethernet with Earliest Deadline First Scheduling – Protocols
and Traffic Handling,” in Proc. IEEE IPDPS, Ft. Lauderdale, FL, USA,
Apr. 15–19, 2001.

[33] A.B. Kahn, “Topological Sorting of Large Networks,” Communications
of the ACM, vol. 5, issue 11, pp. 558–561, Nov. 1962.

[34] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM
Journal on Computing, vol. 1, issue 2, pp. 146–160, 1972.

[35] R.L. Garham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science, Chapter 2, Addison-Wesley, 1989.

