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Abstract—Age of information (AoI) is a powerful new metric to
quantify the freshness of information and has gained increasing
popularity in IoT applications. Existing models on AoI remain
primitive and do not consider state-of-the-art transmission tech-
nologies such as 5G. They also fail to consider the impact of
dynamic channel conditions. In this paper, we present Kronos, a
5G-compliant AoI scheduling algorithm that can cope with highly
dynamic channel conditions. Kronos is capable of performing
RB allocation and selecting MCS for each source node based on
channel conditions, with the objective of minimizing long-term
AoI. To meet the stringent real-time requirement for 5G, we
propose a GPU-based implementation of Kronos on low-cost off-
the-shelf GPUs. Through simulations and experiments, we show
that Kronos can find near-optimal AoI scheduling solutions in
sub-millisecond time scale. To the best of our knowledge, this
is the first 5G-compliant real-time AoI scheduler that can cope
with dynamic channel conditions.

I. INTRODUCTION

With the proliferation of IoT and its deployment for massive
information gathering and sharing through edge/cloud com-
puting, users are no longer satisfied with merely obtaining the
information they desire, but rather, how fresh the information
is when it is consumed. To address this trend, the concept of
“Age of Information” (AoI) was conceived in [1], [2] and has
since gained its acceptance in the research community. AoI is
defined as the elapsed time for a sample (stored at a particular
location, e.g., edge or cloud) between current time (now) and
the time when the sample was first generated (collected) at
its source. AoI measures the freshness of the sample from the
time it was initially generated, which is of greater interest from
a consumer’s perspective than merely delay (or latency) of the
sample to transit through the network. In this sense, the new
AoI concept represents a new performance metric that has
the potential to transform traditional throughput/delay-based
networking research.

There has been active research on designing scheduling
algorithms to minimize AoI [3]. However, existing research on
AoI has been largely limited to information-theoretic explo-
ration. Most notably, few existing efforts have considered the
capability of state-of-the-art transmission technologies such as
cellular (e.g., 4G LTE [4] or 5G NR [5]) or Wi-Fi (e.g., [6])
in AoI modeling and analysis. A bulk of existing research has
been concerning extremely simple toy models (see, e.g., [7]–
[9]) which are hardly applicable to real-world IoT systems.
Further, there is hardly much research on AoI scheduling
that addresses the impact of time-varying channel conditions.
In [10], [11], the authors considered time-varying channels
that only employed extremely unrealistic models (e.g., binary
channel under which one can either transmit a sample or

nothing). In [12], Lu et al. assumed channel coherence time
could last an entire frame (consisting of a large number of
time slots). But in reality, channel condition can change rapidly
(e.g., for each TTI in 5G) and hardly holds constant over an
entire frame.

In this paper, we focus on the design of a 5G-compliant
AoI scheduler and address the impact of time-varying channel
conditions. Our BS at edge IoT network is designed to
conform to the state-of-the-art transmission technology in 5G
cellular standard [5], which is what major carriers (e.g., AT&T
[13], Verizon [14]) are supporting. Further, our scheduler is
designed to cope with highly dynamic channel conditions (e.g.,
time-selective fading and frequency-selective fading), which is
a major challenge in real-world environment. Finally, we will
ensure that our AoI scheduler strictly meet the stringent timing
requirement (i.e., sub-millisecond running time for computing
scheduling solution) as specified in 5G standard.

There are a number of technical challenges in this research.
First, as we shall see in Section III, the AoI scheduling
problem in our model entails the allocation of resource blocks
(RBs) and the selection of modulation and coding scheme
(MCS) for each source node in each TTI based on channel
conditions. This presents a much larger search space for an
optimal solution than any of those problems considered to date
in the AoI literature. Second, the stringent timing requirement
for real world 5G systems (i.e., sub-millisecond time scale)
sets a hard performance measure against any new design of
an AoI scheduler. As we shall see, it is extremely challenging
to find a near-optimal solution for a problem of such size and
complexity in such a time scale.

The main contributions of this paper are the following:
• This paper studies AoI with consideration of varying

channel conditions under 5G-based IoT network. Specif-
ically, we model uplink transmission resource as grids of
RBs that span both time and frequency domains with
different channel conditions. The scheduling problem
under our model entails RB allocation to each source
node and selection of MCS by each source node based
on channel condition on each RB, with the goal of
minimizing long-term average AoI.

• Since channel conditions for the future is unknown, we
pursue the design of an online scheduling algorithm.
For performance benchmark, it is necessary to develop
a lower bound for the objective function. We propose
a novel computational procedure to find an asymptotic
lower bound for the objective. Specifically, we first relax
the original AoI minimization problem to a data rate mini-



mization problem. Then we employ a gradient scheduling
algorithm to find an asymptotic lower bound for this
problem. The gradient scheduling minimizes an empirical
data rate for each TTI, which can be formulated as an
integer quadratic programming problem and be solved
by the CPLEX solver.

• For our AoI scheduling problem, we present Kronos, an
online algorithm that conforms to 5G transmission stan-
dard and can cope with varying channel conditions. The
essence of Kronos is to iteratively select a source node
for RB allocation until all RBs in a TTI are allocated.
We propose a novel metric that takes into consideration
of AoI outage and channel conditions for the source node.
By using this metric, we can identify the next source node
for RB allocation and determine its MCS.

• To ensure Kronos can meet the stringent timing re-
quirement in 5G, we propose to employ commercial
off-the-shelf GPUs for implementation. This approach
allows us to take advantage of the massive number
of GPU processing cores to compute and compare the
scheduling metric for all possible combinations of source
nodes and MCSs. For proof-of-concept, we successfully
implement Kronos on an Nvidia Quadro P6000 GPU
using the CUDA programming model. Through extensive
performance evaluation under various channel fading
models, we find that Kronos can achieve near-optimal
performance (when compared with our lower bound)
in sub-millisecond time scale, thus meeting 5G timing
requirement.

II. A 5G-BASED IOT ARCHITECTURE
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Figure 1: System Model: N nodes collect information and
update it to a BS.

Consider a 5G cellular-based IoT network where a set N
of source nodes collect information and forward it to a base
station (BS) (see Fig. 1). At each source node, it produces
samples of information periodically (through measurement,
sensing, or information capture). Denote Ti as the sampling
period (in unit of time slots) for source node i. Due to the
heterogeneity of IoT applications, the sampling periods are
generally different among different source nodes. For source
node i, denote Li as the sample size (in bits), which is
the amount of information carried in the sample. Again, due

to heterogeneity of IoT devices, sample sizes are generally
different among different source nodes.

Once a sample is produced at a source node i, it is stored
in a local memory. To ensure the cellular BS can received the
latest sample, a source node always selects the freshest sample
(i.e., the most recently generated sample) for transmission.
Once a sample has started its transmission to the BS, it must
be transmitted in its entirety, regardless how many time slots
it may take. That is, any newly generated sample afterward
cannot preempt an ongoing transmission of an older sample.

Since the uplink transmission from IoT source nodes to the
BS follow 5G cellular technology [5], transmission resource is
organized as grids of resource blocks (RBs) that span both time
and frequency domains. In the time domain, time is equally
slotted into transmission time intervals (TTIs), while in the
frequency domain, bandwidth is equally slotted into a large
number of tiny slices, and each tiny slice over a TTI is called
an RB. That is, for each TTI, there is a large number of
RBs that can be allocated to the IoT source nodes for uplink
transmission.

Due to varying channel conditions in time (across different
TTIs, i.e., time-selective fading) and frequency (across dif-
ferent RBs, i.e., frequency-selective fading), channel feedback
from each source node is necessary for optimal scheduling of
transmission resources. Based on such feedback, scheduling
of RBs among the source nodes can be performed for each
TTI. In addition to channel variation over time and frequency,
new samples from different sources may be produced within
each TTI. So it is utmost necessary to perform scheduling for
each TTI, the smallest time resolution for 5G transmission.

Since the number of RBs within each TTI is limited, not
every sample from each source node will be transmitted to
the BS. Recall that to minimize AoI at the BS, the BS
always selects the freshest sample at a source for the next
transmission. As a result, only a fraction of samples generated
at each source node will be transmitted while the rest will be
eventually discarded at the source nodes.

At the BS, the collected information can be either processed
and stored locally (edge computing) and/or be forwarded to
a cloud, where the information can be further processed and
accessed broadly by users at any location. Since many time-
sensitive IoT applications need to access the latest sampled
information from each source, it is desirable to maintain the
freshest sample (from each source) at the edge BS. So it
is necessary to design a specialized scheduler to minimize
AoI for the maintained samples at the BS. Clearly, solving a
complex scheduling problem such as AoI minimization within
each TTI in real time is not a trivial problem. This is the focus
of this paper.

III. MODELING AND PROBLEM STATEMENT

A. AoI Notation

Recall that at each source node i, it produces a sample for
every Ti time slots (TTIs). Denote U s

i (t) as the generation
time of the most recently generated sample at source node i.



Clearly, U s
i (t) ≤ t. Then the AoI at source node i at time t,

denoted as As
i(t), is defined as:

As
i(t) = t− U s

i (t). (1)

Since sampling at source node i has a period Ti, function
As

i(t) exhibits a zigzag shape with slope 1 and period Ti.
AoI is location dependent. The sample maintained at the

BS may be older than the freshest sample stored at the source
node. Denote UB

i (t) is the generation (”birth”) time of the
most recently received sample from source node i at the BS.
Then the AoI at the BS for source i at time slot t, denoted as
AB

i (t), is defined as

AB
i (t) = t− UB

i (t). (2)

To analyze AB
i (t), it is necessary to make a connection

between AB
i (t) (AoI at edge BS) and As

i(t) (AoI at a source
node). From source node i, for the k-th transmitted sample,
denote its beginning transmission TTI as bi(k) and ending
transmission TTI as ei(k). By the definition of U s

i (t), the
generation time of this k-th sample is U s

i

(
bi(k)

)
. After the

last unit of data of this sample is completely sent to the BS
at TTI ei(k), at the next TTI (ei(k) + 1), UB

i (t) is updated
and we have UB

i (ei(k) + 1) = U s
i

(
bi(k)

)
. By the definitions

of AB
i (t) and As

i(t), it can be shown that AoI evolution at the
BS follows the following expression:

AB
i (t+ 1) =

{
As

i

(
bi(k)

)
+ ei(k)− bi(k) + 1, if t = ei(k),

AB
i (t) + 1, otherwise.

(3)
The long term average of AB

i (t) for source node i at the BS
is defined as:

ĀB
i = lim

T→∞

1

T

T∑
t=1

AB
i (t). (4)

Denote wi as the weight of source node i. Then the weighted
sum of long term average of AB

i (t) over all source node i ∈ N ,
denoted as ĀB, is:

ĀB =
∑
i∈N

wiĀ
B
i . (5)

In this paper, we want to minimize ĀB.

B. Uplink Transmission
As shown in Fig. 1, the set N of IoT source nodes (users)

share an uplink channel to transmit to the BS. Denote B as the
set of RBs in one TTI for uplink transmission. The scheduler
at the BS must allocate this set B of RBs to a subset of source
nodes within each TTI to minimize ĀB.

Denote xbi (t) as a binary variable indicating whether RB
b ∈ B is allocated to source node i at TTI t, i.e.,

xbi (t) =

{
1 if RB b is allocated to node i at TTI t,
0 otherwise.

Since each RB can only be allocated to at most one source
node [5], we have:∑

i∈N
xbi (t) ≤ 1 (b ∈ B). (6)

Besides RB allocation, for each TTI, the scheduler also
needs to choose a modulation and coding scheme (MCS)
for each source node [5]. The MCS of each source node
directly determines the modulation and coding rate – how
much information (in unit of bits) is modulated and coded
in each RB for this source node. The higher the MCS is, the
higher the modulation and coding rate is. On the other hand,
the maximum amount of information can be transmitted on
one RB also depends on the channel condition. If the channel
condition for this RB is poor and the source uses a high MCS,
information carried in the RB will not be successfully received
and decoded by the BS. Therefore, the achievable data rate
by an RB b ∈ B depends on both the MCS selected by the
scheduler as well as the channel condition for this RB.

Based on [5], there are 29 levels of MCSs for transmission.
Denote M as the set of these available MCSs (i.e., M =
{1, 2, ...29}), where we assume m = 1 corresponds to the
lowest MCS and m = 29 corresponds to the highest MCS.
Denote qbi (t) as the maximum MCS that can be used for RB
b ∈ B with respect to source node i so that information carried
in RB can be successfully received by the BS. We have:

1 ≤ qbi (t) ≤ |M|.

In practice, qbi (t) is determined by the channel quality indicator
(CQI) report carried in the feedback from source node i at TTI
(t− 1). Denote cm as the modulation and coding rate for an
RB under MCS m and rb,mi (t) as the achievable data rate by
RB b w.r.t. source node i under MCS m. If m ≤ qbi (t), the
transmission is successful and the achievable data rate is cm.
Otherwise, i.e., m > qbi (t), the transmission is unsuccessful
the achievable data rate is 0. We have:

rb,mi (t) =

{
cm if m ≤ qbi (t),

0 otherwise.
(7)

Note that although each RB can only be allocated to at
most one source node within a TTI, a source node may be
allocated with multiple RBs. For a source node allocated with
multiple RBs, it must choose and use one MCS m ∈ M for
all its RBs [5]. Denote ymi (t) as a binary variable indicating
whether MCS m ∈ M is chosen to source node i at TTI t,
i.e.,

ymi (t) =

{
1 if MCS m is chosen for source i at TTI t,
0 otherwise,

and ∑
m∈M

ymi (t) ≤ 1 (i ∈ N ). (8)

Denote Ri(t) as the amount of information transmitted by
source node i at TTI t across all RBs allocated to it. We have

Ri(t) =
∑
b∈B

∑
m∈M

xbi (t)y
m
i (t)rb,mi (t) (i ∈ N ). (9)

Based on (7) and (8), there is a clear trade-off between the
choice of m and number of RBs allocated to source node i
that can contribute to Ri(t), due to the differences in channel



conditions on each RB allocated to the same source node. That
is, the higher the MCS m is chosen, the fewer number of RBs
can help contribute to Ri(t). In Fig. 2, we use an example
to show the trade-off. For a source node, suppose there are 4
RBs, and the channel conditions on the 4 RBs are respectively
2, 4, 3 and 4. If we choose MCS 4 for transmission, RB 2 and
4 can contribute to Ri(t) and the total data rate is 2× 4 = 8.
If we choose MCS 3 for transmission, RB 2, 3 and 4 can
contribute to Ri(t) and the total data rate is 3× 3 = 9. Here
when we want to maximize the data rate for the source node,
we should choose MCS 3. From the example we can see that
judicious choice of MCS is necessary to balance the achievable
bit rates from each RB and the number of RBs that can actually
contribute to achievable bit rates.

0
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RB1 RB2 RB3 RB4

Channel 
Condition

0
1
2
3
4

RB1 RB2 RB3 RB4

Data Rate

0
1
2
3
4

RB1 RB2 RB3 RB4

Data Rate

Choose MCS 4

Choose MCS 3

Total data rate: 2*4=8

Total data rate: 3*3=9

Figure 2: An example for MCS choosing

C. Problem Statement

In this paper, we want to design a scheduling algorithm to
minimize the long term average AoI at the BS, i.e., ĀB. The
scheduling algorithm needs to allocate |B| RBs to |N | source
nodes, and choose the MCS for each source node in each TTI.
That is, to determine the decision variables xbi (t) and ymi (t)
for each TTI so that ĀB is minimized.

There are a number of challenges associated with this
problem. First, the search space of the scheduling problem
is enormous. Within each TTI, the BS needs to allocate |B|
RBs (e.g., 100) among |N | source nodes (e.g., 100), and assign
each source node an optimal MCS (among 29 possible levels).
The solution space consists of |N ||B| · |M||N | possibilities.
None of the existing AoI research (see [3]) has studied
problems of such size and complexity. Second, this is an online
algorithm. A scheduler can only makes a scheduling decision
for the next TTI and does not have any knowledge of channel
conditions for future TTIs. Since we are minimizing a long
term average AoI, it is not possible for a schedule to make an
optimal decision without knowledge of the future. Therefore,
we can only design a near-optimal scheduler at best. Finally,
the timing requirement of our scheduling solution is critical.
Our scheduler must make its scheduling decision in each TTI,
which is typically in sub-millisecond time scale under 5G [5].
It is extremely challenging to find a near-optimal solution for
problem of such size and complexity in such a time scale.
To date, none of existing AoI research has considered such
timing requirement in the design of a scheduling solution (see
the webpage [3]).

IV. PERFORMANCE BOUND

Given that it is impossible to find an optimal online schedul-
ing algorithm, it is therefore important to develop a lower
bound for the objective ĀB. This lower bound (if tight) can
be used as a benchmark to measure the performance of a
scheduling algorithm that we will design later in Section V.

In this section, we develop a novel computational procedure
that can be used to find a tight lower bound for ĀB. Denote
Ri as the long term average data rate for source node i ∈ N ,
i.e.,

Ri = lim
T→∞

1

T

T∑
t=1

Ri(t). (10)

In Section IV-A, we develop a lower bound for ĀB under
all possible scheduling algorithms that offer the same Ri (for
all i ∈ N ), where we assume Ri’s are given a priori. In
Section IV-B, we remove this assumption (i.e., knowledge of
Ri’s) by offering a computational procedure and find a lower
bound for ĀB.

A. A Lower Bound Assuming Explicit Knowledge of Ri

When Ri’s are given, there may exist multiple different
scheduling algorithms. We consider the following question:
Under the given Ri’s, how do we find a scheduling algorithm
with the minimum ĀB?

Note that in (5), ĀB is a weighted sum of all ĀB
i ’s. A

lower bound of ĀB under the given Ri’s can be found by
the following relaxation. If we can find a lower bound for
each ĀB

i (for i ∈ N ) under the given Ri independent of the
other ĀB

j ’s or Rj’s (for j 6= i), then we can use the weight of
each ĀB

i to sum them up and this is clearly a lower bound of
ĀB.

We now show how to find a lower bound for ĀB
i under

a given Ri independent of other Rj (for j 6= i). For ease
of exposition, denote pi as the fraction (in percentage) of
successfully transmitted samples over all generated samples
in the long term. Clearly, pi ≤ 1. With pi, we can rewrite Ri

as:
Ri =

piLi

Ti
. (11)

Note that Ri is proportional to pi via a constant factor.
Therefore, minimizing ĀB

i under a given Ri is equivalent to
minimizing ĀB

i under a given pi.
Since we want to find a lower bound for ĀB

i under a given
pi, let us consider the following fictitious scenario. Instead of
updating AB

i (t) at the end of TTI ei(k), let’s make a fictitious
update at the end of TTI bi(k). Clearly, ĀB

i at the BS under
such a fictitious updating mechanism is a smaller than that
when the update is made at the end of TTI ei(k) (since the
update is performed earlier than it should be). Therefore, we
will use ĀB

i obtained under such a fictitious update mechanism
as a lower bound.

Ideally, to minimize this new lower bound of ĀB
i under a

given pi, we would like to have each of those samples that are
eventually transmitted be transmitted immediately after they



are generated. Clearly, such a hypothesized (ideal) scheduler
would offer a new lower bound for ĀB

i under a given pi.
Denote TU

i (k) as the k-th update interval between the k-th
and (k + 1)-th samples that are transmitted by source node i
to the BS, i.e.,

TU
i (k) = bi(k + 1)− bi(k). (12)

Then, under a hypothesized scheduler, TU
i (k) is an integral

number of the sampling period Ti. Clearly, such a hypothe-
sized scheduler is not unique and many (each with different
behavior of TU

i (k)’s) may offer the same pi. Among this group
of hypothesized schedulers, we want to identify a scheduler
that minimizes ĀB

i . The following lemma identifies such a
scheduler.

Lemma 1 Within the class of hypothesized schedulers that
provide a lower bound for ĀB

i for a given pi, define hi as:

hi = b 1

pi
c, (13)

where b·c is the floor function. Denote AUS as the almost-
uniform scheduler that performs updates with:

TU
i (k) =

{
hiTi with a percentage of (hi + 1− 1

pi
),

(hi + 1)Ti with a percentage of ( 1
pi
− hi).

Then AUS minimizes ĀB
i within the given class of hypothesized

schedulers and

ĀB
i =

Ti
2
f(pi) +

1

2
, (14)

where

f(pi) = 2b 1

pi
c+ 1− (b 1

pi
c2 + b 1

pi
c) · pi. (15)

This lemma says the hypothesized scheduler that employs
almost uniform (or exactly uniform in the case when 1/pi is
an integer) update interval minimizes ĀB

i . This result is very
intuitive. It can be shown (as in the proof sketch below) that
for any other scheduler with a larger variance in TU

i (k), we
can always find a scheduler with a smaller variance in TU

i (k)
that reduces ĀB

i .

A Sketch of Proof For any scheduler, if there are two update
intervals with length n1Ti and n2Ti such that n1 ≥ n2+2, then
we can construct a new hypothesized scheduler by changing
the intervals to (n1−1)Ti and (n2+1)Ti, and its ĀB

i is smaller
than the original one. By repeatedly doing so we can construct
a new hypothesized scheduler, a.k.a. AUS, where the length
difference between any two update intervals isn’t greater than
Ti. In other words, there exists an integer hi such that for all
k, TU

i (k) is either hiTi or (hi + 1)Ti.
Considering the fact that the sample rate is pi, we have

hi = b 1
pi
c. Denote a as the percentage of those intervals with

length nTi, then (1 − a) is the percentage of those intervals
with length (n + 1)Ti. During a long time interval T → ∞,
the sample rate is pi, and the occurrence rates (the number of
occurrences over the number of TTIs in long term) of those

two kinds of interval are respectively pia
Ti

and pi(1−a)
Ti

. We
have

lim
T→∞

T
pia

Ti
hiTi + T

pi(1− a)

Ti
(hi + 1)Ti = T.

That means

hia+ (hi + 1)(1− a) =
1

pi
. (16)

Then we have
a = hi + 1− 1

pi
. (17)

Then we can calculate ĀB
i under AUS:

ĀB
i =

ahiTi(1 + hiTi) + (1− a)(hi + 1)Ti(1 + (hi + 1)Ti)

2 · (ahiTi + (1− a)(hi + 1)Ti)

=
Ti
2

(2hi + 1− (h2
i + hi)pi) +

1

2

=
Ti
2
f(pi) +

1

2
.

Combining (5), (11) and (14), we have the following lower
bound for ĀB as a functions of Ri:

ĀB ≥
∑
i∈N

wi · (
Ti
2
f(
RiTi
Li

) +
1

2
). (18)

In the next subsection, we will remove the assumption of
prior knowledge of Ri.

B. Finding A Lower Bound of ĀB

Based on (18), a lower bound of ĀB can be found by
minimizing the RHS of (18), i.e.,

min
xb
i (t),ym

i (t)

∑
i∈N

wi(
Ti
2
f(
RiTi
Li

) +
1

2
)

s.t. Constraints (6), (7), (8), (9), (10).

(19)

For ease of exposition, we define

Ji(Ri) = wi(
Ti
2
f(
RiTi
Li

) +
1

2
). (20)

Then (19) becomes:

min
xb
i (t),ym

i (t)

∑
i∈N

Ji(Ri)

s.t. Constraints (6), (7), (8), (9), (10).
(21)

We will design an optimal scheduling algorithm to problem
(21). Then we can substitute the optimal result for Ri into
(19) and obtain the lower bound.

Problem (21) is a scheduling problem to minimize a
function of Ri. Similar problems have been studied in the
information theory community (see, e.g., [15], [16]), where
it has been shown that a gradient scheduling algorithm can
achieve the same optimal objective value asymptotically (when
the number of TTIs goes to infinity). Specifically, in a gradient
scheduling algorithm, we define an empirical data rate Re

i (t)
for each TTI t and it is updated as a moving average as
follows:

Re
i (t+ 1) = (1− β)Re

i (t) + βRi(t), (22)



where β is a small positive constant (e.g., 0.01) and Ri(t) is
the instant data rate at TTI t. It can be easily shown that under
the moving average updating algorithm in (22), when β → 0,

lim
t→∞

Re
i (t) = Ri (23)

That is, Re
i (t) asymptotically approaches Ri when t → ∞.

In practice, t does not need to be very large to achieve this
approximation. In our simulation results, we find that t = 500
is sufficient to achieve a good approximation.

Based on (23), (21) becomes

min
xb
i (t),ym

i (t)
lim
t→∞

∑
i∈N

Ji
(
Re

i (t)
)

s.t. Constraints (6), (7), (8), (9), (22).
(24)

The idea of the gradient scheduling algorithm is to
minimize

∑
i∈N Ji

(
Re

i (t + 1)
)

at every t. It can be
shown that by performing such minimization for every TTI,
lim
t→∞

∑
i∈N Ji

(
Re

i (t)
)

is also minimized when β → 0 [15],
[16].

We now show how to minimize
∑

i∈N Ji
(
Re

i (t+1)
)

at TTI
t. When β → 0, considering (22), we have∑

i∈N
Ji
(
Re

i (t+ 1)
)

=
∑
i∈N

Ji
(
(1− β)Re

i (t) + βRi(t)
)

=
∑
i∈N

Ji

(
Re

i (t) + β
(
Ri(t)−Re

i (t)
))

=
∑
i∈N

Ji
(
Re

i (t)
)

+
∑
i∈N

dJi(R)

dR

∣∣∣
R=Re

i (t)
β
(
Ri(t)−Re

i (t)
)
,

(25)
where the last equality follows from the definition of derivative
for Ji(·). Since Re

i (t) can be computed at TTI t, J(Re
i (t))

and dJi(R)
dR

∣∣∣
R=Re

i (t)
Re

i (t) can also be computed. Therefore, to

minimize
∑

i∈N Ji(R
e
i (t+1)) at TTI t, we only need to solve

the following problem.

min
xb
i (t),ym

i (t)

∑
i∈N

dJi(R)

dR

∣∣∣
R=Re

i (t)
Ri(t)

s.t. Constraints (6), (7), (8), (9), (27),

(26)

where the derivative of Ji(·) is computed as

dJi(R)

dR

∣∣∣
R=Re

i (t)
=
wiTi

2

df(RTi

Li
)

dR

∣∣∣
R=Re

i (t)

=
wiT

2
i

2Li

(
b Li

Re
i (t)Ti

c2 + b Li

Re
i (t)Ti

c
)
.

(27)

To ensure f(·) is continuously differentiable at every point,
we need to define how to perform derivative at certain points.
Recall f(·) is a piecewise linear function. When Li

Re
i (t)Ti

is
exactly an integer, the function f(RTi

Li
) is continuous but not

differentiable at R = Re
i (t) (i.e., the left derivative doesn’t

equal to the right derivative). For these points, we use the left
derivative as the derivative at R = Re

i (t), as shown in the
RHS of (27).

Since each term in the RHS of (27) is either a constant or a
known value at TTI t, let’s denote the RHS of (27) as Wi(t).
Using (9), the minimization problem (26) can be written as

min
xb
i (t),ym

i (t)

∑
i∈N

∑
b∈B

∑
m∈M

Wi(t)r
b,m
i (t)xbi (t)y

m
i (t)

s.t. Constraints (6), (7), (8).
(28)

The optimization problem (28) is an integer quadratic pro-
gramming (IQP) problem, which can be solved by commercial
optimizers such as the IBM CPLEX [17]. Solving the problem
in CPLEX is time-costing and will solely be used for offline
benchmark purpose.

Recall that after solving the optimization problem (28) for
sufficient number of TTIs (e.g., 500 TTIs in our simulations),
we let Ri = Re

i (t) and substitute Ri into (19) to get the lower
bound.

V. KRONOS: DESIGN AND IMPLEMENTATION OF A
REAL-TIME SCHEDULER

In this section, we develop a scheduling algorithm, code
named Kronos1, to achieve near-optimal performance for the
AoI scheduling problem in real time.

A. Basic Idea

The design of Kronos is based on the following key ideas.
1) For the objective function in (5), it is obvious that we

need to minimize ĀB
i from each source node i ∈ N . For

AB
i , its value at the BS is not reduced until a new sample

is received by the BS in its entirety. That is, a partially
transmitted sample will not reduce (update) AB

i at the
BS. Based on this observation, we should minimize the
number of partially (incomplete) transmission of sam-
ples at the end of each TTI. As an extreme, we can limit
the number of samples that are partially (incompletely)
transmitted at the end of a TTI to no more than one. This
can be done by devoting all the remaining RBs to one
sample, rather than spreading out to multiple samples.

2) Following the last idea, at the beginning of a new
(the next) TTI, we can inherit at most one partially
(incomplete) transmission of a sample from the previous
TTI. Recall that we cannot preempt a sample once it
starts transmission, even if there is a newly generated
sample from the same source node. Further, for our IoT
applications, a sample size is relatively small. So the
remaining portion of the partially transmitted sample is
not large (in most cases) and it makes sense to complete
its transmission before starting to transmit any other
samples.

3) After we complete transmission of the remaining (in-
complete) sample (carried from the last TTI), we need
to decide which sample to transmit next in the current
TTI. To do this, we need a metric to compare among the
samples from different source nodes and decide which
sub-set of samples that we will allocate the remaining

1Kronos is the god of time in Greek mythology.



RBs. Clearly, this metric should consist of the weight
and the ”outage” (difference between AoI at the BS
and the source, i.e., AB

i (t) − As
i(t)) for each source

node i ∈ N . In our previous work [18], in the absence
of considering channel conditions, we use the metric
wi∆

2
i (t) for scheduling, where ∆i(t) is defined as

∆i(t) = AB
i (t)−As

i(t). (29)

It was shown in [18] that a scheduler based on this met-
ric can offer near-optimal performance (under simplified
channel conditions). Therefore, it would be wise to have
Kronos to inherit this basic trait before we add additional
features to cope with dynamic channel conditions.

4) To incorporate channel conditions into the scheduling
decision metric, we must consider the impact of MCS
setting on RBs. As shown in the example in Fig. 2,
the higher the MCS m is chosen, the fewer number of
RBs (with a higher rate) can be used for transmission.
Intuitively, we prefer to use as few RBs as possible
to transmit a sample. Therefore, the scheduling metric
should also include the number of RBs required to
transmit a sample, i.e., the more RBs required, the
lower the priority (or smaller the metric) associated with
a source node. We will elaborate the details of how
to incorporating channel conditions into the scheduling
metric in the next section.

5) With the scheduling metric (see next section), we can
compare samples and perform scheduling, i.e. RB al-
location. Clearly, RB allocation is an iterative process,
where in each iteration, we will consider how to allocate
a subset of RBs among the remaining unallocated RBs
to a sample in the remaining unscheduled samples.
Eventually (after a number of iterations), all RBs are
allocated and the algorithm terminates.

B. Algorithm Details: Incorporating Channel Condition in
Scheduling Metric

We devote this section to the discussion of how channel
conditions are incorporated into the scheduling metric, which
is the heart of our design.

Recall that the choice of MCS value m at a source node
will set the corresponding coding rate cm, which will in turn
determine two parameters:
• the set of RBs in the remaining un-allocated RBs that can

contribute at this bit rate cm. We denote the number in
this set as nmi (t).

• the number of RBs that is needed to transmit a sample
for source node i, which we denote as smi .

That is,
nmi (t) =

∑
un-allocated b

[qbi (t) ≥ m], (30)

where qbi (t) (see Section III) is the maximum MCS that can
be used for RB b and source node i for transmission (which
is determined by the channel condition on RB b), and “[·]”

is the notation for Iverson bracket, returning 1 if the inside
statement is true and 0 otherwise [19]. And we have

smi = d Li

cm
e, (31)

where “d·e” is the ceiling function.
Clearly, the scheduling metric for a sample is dependent on

m and is a function of nmi (t), and smi , in addition to wi∆
2(t)

(as discussed in the last section). As a start, denote V m
i (t)

as the scheduling metric under MCS m with the following
general form:

V m
i (t) = g(wi∆

2
i (t), nmi (t), smi ), (32)

where “g” is a function of wi∆
2(t), nmi (t) and smi .

For each sample from source node i ∈ N , we have the
pair (nmi (t), smi ) for each m ∈ M. If nmi (t) ≥ smi , it means
that this sample can possibly be transmitted in its entirety in
this TTI. Otherwise (i.e., nmi (t) < smi ), this sample can only
be partially transmitted even if we allocate all the remaining
RBs to it. Now we have a dilemma: shall we transmit a partial
sample (while holding back one or more other samples that can
otherwise be transmitted in their entirety) or shall we transmit
one or more complete samples first?

Since our goal is to minimize (5), based on the the
shortest-job-first principle in queuing theory [20], we should
first schedule one or more samples that can be fully
transmitted. Therefore, we purposely design the function
g(wi∆

2
i (t), nmi (t), smi ) > 0 when nmi (t) ≥ smi and

g(wi∆
2
i (t), nmi (t), smi ) < 0 when nmi (t) < smi . Under

such definition, the priority for a sample that can be fully
transmitted within this TTI is always higher than that for a
sample that can only be transmitted partially. After RBs have
been allocated to those samples that can be fully transmitted,
we move on to consider how to allocate the remaining RBs to
those samples that cannot be fully transmitted (i.e., samples
with V m

i (t) < 0). Recall that in each TTI we only schedule
at most one partially transmitted sample. So when V m

i (t) < 0
for all remaining source nodes i and MCS m, we will choose
one with the largest value of V m

i (t) < 0 for transmission.
Based on the above discussion, we now show how to design

function g(wi∆
2
i (t), nmi (t), smi ) as follows.

• When nmi (t) ≥ smi , sample i can be fully transmitted
with un-allocated RBs under MCS m in this TTI. In
this case, the fewer RBs required for transmission (i.e.,
smi ), the higher the priority it should have. Therefore, we
define function g as

g(wi∆
2
i (t), nmi (t), smi ) = wi∆

2
i (t) · 1

smi
. (33)

• When nmi (t) < smi , sample i cannot be fully trans-
mitted under MCS m. In this case, the greater the
fraction of the sample that can be transmitted (i.e.,
nmi (t)/smi ), the higher the priority it should have. Based
on this idea, the function g should be proportional to
the term nmi (t)/smi . On the other hand, as discussed
earlier, g(wi∆

2
i (t), nmi (t), smi ) should be negative when



nmi (t) < smi . To ensure this is the case, we can add a
negative offset constant and define function g as

g(wi∆
2
i (t), nmi (t), smi ) = wi∆

2
i (t) · n

m
i (t)

smi
− C, (34)

where C is a large (offset) constant that can ensure
g(nmi (t), smi ) < 0 for all i and m when nmi (t) < smi .
For example, we can set C =

∑
i∈N wi∆

2
i (t) or C =

maxi∈N wi∆
2
i (t).

Combining (32), (33) and (34), the scheduling metric V m
i (t)

is given as

V m
i (t) =


wi∆

2
i (t)

smi
, if nmi (t) ≥ smi ,

wi∆
2
i (t)nm

i (t)
smi

− C, otherwise.
(35)

In summary, within each TTI, Kronos first allocates RBs to
complete transmission of the incomplete sample from the last
TTI. Then Kronos selects samples (one at a time) iteratively
for RB allocation. In each iteration, Kronos finds nmi (t) by
(30) and computes V m

i (t) for all i ∈ N and m ∈M by (35).
Then Kronos chooses i∗ and m∗ with the largest V m∗

i∗ (t).
If V m∗

i∗ (t) > 0, Kronos allocated RBs for the entire sample
transmission with MCS m∗ and then moves on to the next
iteration; if V m∗

i∗ (t) < 0, Kronos allocated all remaining RBs
for the sample with MCS m∗ and terminates afterwards.

We now discuss the complexity of Kronos. To allocate RBs
to complete transmission of the incomplete sample from the
last TTI, the time complexity is O(|B||M|). After that, if
Kronos is implemented sequentially, then in each iteration,
Kronos needs to compute |N ||M| different V m

i (t)’s, which
has a time complexity O(|N ||M||B|). After that, Kronos
selects i∗ and m∗ with the largest V m∗

i∗ (t), which has a
time complexity O(|N ||M|). Then Kronos allocates RBs to
the selected source node i∗, which has a time complexity
O(|B|). Therefore, the time complexity for each iteration is
O(|N ||M||B|) + O(|N ||M|) + O(|B|) = O(|N ||M||B|).
Since there are at most |N | iterations in each TTI, the time
complexity for scheduling new samples is O(|N |2|M||B|).
Thus, the total time complexity in each TTI is O(|B||M|) +
O(|N |2|M||B|) = O(|N |2|M||B|).

In one of our simulations in Section VI, we find that when
|N | = 100, |B| = 100 and |M| = 29, the average running
time for sequential Kronos is about ∼10 ms, which can’t meet
the 5G timing requirement (sub-millisecond time scale). In
the next section, we will incorporate parallel computation into
Kronos implementation to speed up its timing performance.

C. Algorithm Speedup: A GPU-based Implementation

We observe that in each iteration of Kronos, the computation
of V m

i (t)’s for each i and m is independent from each
other. This hints that we could compute them in parallel
rather than in sequence. A low-cost, off-the-shelf solution
to compute V m

i (t)’s in parallel is to employ GPU. Today’s
commercial GPUs typically consist of a large number (1000s)
of processing cores and are highly optimized for massive
parallel computation. However, unlike a CPU core, each GPU

core processor has very limited computational capability and
is designed to handle very simple computations (and thus has
low cost). To best utilize a GPU’s capability, it is utmost
important to ensure that each sub-problem handled by a GPU
core processing is of extremely low complexity and requires
very few iterations to find a solution. To calculate V m

i (t)’s for
all i’s and m’s in an iteration, we can decompose this problem
into |N ||M| independent sub-problems, each of which is to
calculate V m

i (t) under a specific value of i and m. Recall
that computational complexity of this sub-problem is O(|B|),
which can be done quickly by GPU cores.

In our implementation, we employ an off-the-shelf Nvidia
Quadro P6000 GPU and the CUDA programming platform.
This GPU consists of 30 streaming multi-processors (SMs),
with each SM consisting of 128 small processing cores (CUDA
cores). These cores are capable of performing concurrent
computation tasks involving arithmetic and logic operations.
Under CUDA, the sub-tasks to compute V m

i (t)’s are handled
by a grid of thread blocks, each with a certain number of
threads. We limit each SM to handle at most one thread block
to avoid sequential execution of thread blocks on the same SM.
Specifically, with |M| = 29 (under 5G standard [5]), we use
29 SMs and assign each SM to a specific value m, each with
|N | sub-tasks. Then within each SM, |N | sub-tasks are being
solved in parallel threads. Since we are not able to synchronize
different thread blocks among the SMs within the GPU under
CUDA, we rely on the CPU to perform synchronization after
all V m

i (t)’s have been computed.
After computing V m

i (t)’s, we need to choose i∗ and m∗

corresponding to the largest V m∗

i∗ (t). We can use parallel
reduction [21] to reduce the complexity. For example, when
|N ||M| is a power of 2, we can construct an elimination
tournament, where only a half of V m

i (t)’s survive after each
round. After log2(|N ||M|) rounds, the champion (with the
largest V m

i (t) among all |N ||M| V m
i (t)’s) will be found.

This parallel reduction procedure significantly reduces the time
complexity (compared with sequentially search) from |N ||M|
to log2(|N ||M|). When |N ||M| is not a power of 2, we can
add fictitious elements in the beginning to increase the number
of elements to a power of 2 and then use parallel reduction to
find the champion.

With GPU implementation, in each iteration, the com-
putation complexity of V m

i (t)’s is O(|B|). The complexity
of choosing the largest V m

i (t) (with parallel reduction) is
O
(

log(|N ||M|)
)
. The computation complexity of RB allocat-

ing remains O(|B|). Therefore, the time complexity of each
iteration is O(|B|) + O

(
log(|N ||M|)

)
. Recall there are at

most |N | iterations and the complexity of completing the
unfinished sample from the last TTI is O(|B||M|). Then the
total computation complexity in each TTI is O(|B||N |) +
O
(

log(|N ||M|)
)
×|N |+O(|B||M|) = O

(
|B|·(|N |+|M|)

)
+

O
(
|N | · (log |N | + log |M|)

)
. In one of our simulations in

Section VI, we find that when |N | = 100, |B| = 100 and
|M| = 29, the average running time for Kronos implemented
with GPU is about ∼0.4 ms, which decreases one order of
magnitude compared with implementation without GPU.



Table I: Simulation Parameters
Type wi Li (bits) Ti (TTIs) Expected power (MCS)

1 8 5400 2 26
2 2 7200 5 28
3 10 6800 3 24
4 6 6200 6 23
5 5 7600 1 20
6 2 8200 11 22
7 9 6000 4 25
8 1 7100 5 18
9 4 9600 6 24

10 3 8400 3 21

VI. PERFORMANCE EVALUATION

The objective of this section is twofold. First, we will
evaluate Kronos in terms of its ability to achieve our objective
function. The primary benchmark for this purpose is the lower
bound that we developed in Section IV. Second, we will
examine the timing performance of Kronos and see if it can
meet the real time requirement under 5G.

A. Network Setting

We assume there are 10 different types of IoT source nodes.
The weight, sample size, and sampling period for each type
of nodes are given in Table I. We consider 100 source nodes
(10 from each type), i.e., |N | = 100. For ease of presentation,
we normalize the weight of each source node w.r.t.

∑
i∈N wi.

We assume the uplink transmission consists of 100 RBs, i.e.,
|B| = 100.

Although any setting of channel condition for each source
node can be used, for ease of reproducibility, we pre-assign
an expected channel condition (in terms of the corresponding
MCS of the expected power) for each type of source nodes, as
shown in Table I. Note that the pre-assigned channel condition
is statistical and in each TTI the channel is randomly generated
(i.e., time-varying channel).

For each MCS m, we get the corresponding modulation and
coding rate cm from [5] (Table 5.1.3.1-1).

In each network setting, we run simulations for Kronos
over 500 TTIs and then calculate the average AoI ĀB. For
initialization, As

i(0) for each i is set to a random number. For
comparison, we simulate Kronos algorithm with and without
GPU implementation. Our GPU implementation is done on a
Dell Precision Tower 7910 with an Intel Xeon E5-2687W v4
CPU (3.0 GHz) and an Nvidia Quadro P6000 GPU. All the
programmings are done in Microsoft Visual Studio 2017. We
use CUDA 10.0 to program Kronos in our GPU.

B. Results

Varying Channel Propagation. We first evaluate Kronos
under channels with different LOS signal strength. We assume
Rician fading channel with no frequency nor time correlation.

Fig. 3 shows the evolution of ĀB under Kronos across
500 TTIs for different Rician factor K. In terms of objective
value, there is no difference in Kronos implementation with
and without GPU. Also shown in each sub-figure is the lower
bound by the gradient scheduling algorithm (with β = 0.01).
Clearly, we see Kronos can achieve near-optimal performance.
In particular, when Rician factor K = 0 (i.e., Rayleigh fading),
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Figure 3: ĀB under different Rician factors.
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Figure 4: Running time under different Rician factors.

2 and 10, the objectives of Kronos are 20.8%, 15.0% and 7.7%
within their respective lower bounds.

Fig. 4 shows the running time for Kronos in each TTI with
and without GPU implementation. As a benchmark, we also
show the 5G timing requirement for numerology 0 (1 ms) in
each sub-figure. We can see under all K, the running time of
Kronos falls below 1 ms when it is implemented with GPU.
When it is implemented only with CPU, it is about ∼10 ms.
In particular, when K = 0, 2 and 10, the average running
times of Kronos (with GPU implementation) are 402 µs, 396
µs and 384 µs respectively.
Varying Frequency Correlation. We now evaluate Kronos
under channels with different frequency correlation. We as-
sume Rayleigh fading channels with no time correlation, and
the coherence bandwidth is Bc, i.e., the channel conditions on
adjacent Bc RBs are identical for each source node.

Fig. 5 shows evolution of ĀB under Kronos across 500 TTIs
for different coherence bandwidth Bc. Also shown in each sub-
figure is the lower bound by the gradient scheduling algorithm.
Clearly, we see Kronos can achieve near-optimal performance.
In particular, when Bc = 1 (i.e, no frequency correlation),
4 and 10, the objectives of Kronos are respectively 20.8%,
17.7% and 15.8% within their respective lower bounds.

Fig. 6 shows the running time for Kronos in each TTI
with and without GPU implementation. We can see under
all Bc, the running time of Kronos falls below 1 ms when
it is implemented with GPU. When it is implemented only
with CPU, it is about ∼10 ms. In particular, when Bc = 1,
4 and 10, the average running times of Kronos (with GPU
implementation) are respectively 402 µs, 392 µs and 377 µs.
Varying Time Correlation. Finally, we evaluate Kronos
under channels with different time correlation. We assume
Rayleigh fading channels with no frequency correlation, and
the coherence bandwidth is Tc, i.e., the channel conditions on
adjacent Tc TTIs are identical for each source node.

Fig. 7 shows evolution of ĀB under Kronos across 500 TTIs
for different coherence bandwidth Tc. Also shown in each sub-
figure is the lower bound by the gradient scheduling algorithm.
Clearly, we see Kronos can achieve near-optimal performance.
In particular, when Tc = 1 (i.e, no time correlation), 2 and 5,
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Figure 5: ĀB under different coherence bandwidth.
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Figure 6: Running time under different coherence bandwidth.
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Figure 7: ĀB under different coherence time.
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Figure 8: Running time under different coherence time.

the objectives of Kronos are respectively 20.8%, 20.6% and
21.0% within their respective lower bounds.

Fig. 8 shows the running time for Kronos in each TTI
with and without GPU implementation. We can see under
all Tc, the running time of Kronos falls below 1 ms when
it is implemented with GPU. When it is implemented only
with CPU, it is about ∼10 ms. In particular, when Tc = 1,
2 and 5, the average running times of Kronos (with GPU
implementation) are respectively 402 µs, 402 µs and 408 µs.

We also tested the performance of Kronos under many
other different settings, including varying |N |, |B|, Li’s and
Ti’s. Under all settings we tested, Kronos can achieve near
optimal AoI performance, and the running time (with GPU
implementation) is below 1 ms. Due to paper length limitation
we don’t show the results.

VII. CONCLUSIONS

This paper presents the first successful design of a 5G-
compliant real-time AoI scheduler, Kronos, which can cope
with dynamic channel conditions. Kronos is capable of per-
forming RB allocation and MCS selection for each source
node based on channel conditions within each TTI. To cope
with the enormous search space for optimal solution and the
unknown nature of channel conditions, we developed a novel

computation procedure to find an asymptotic lower bound
for the objective as a performance benchmark. We further
developed a novel metric that can be used by Kronos to select
the next source node to allocate RBs and determine MCS
in each iteration. To meet the stringent timing requirement
in 5G, we proposed to implement Kronos on a low cost
GPU platform by exploiting its massive parallel computing
capability. Through extensive simulations and experiments,
we show that Kronos can find a near-optimal AoI scheduling
solution in sub-millisecond time scale.
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