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Abstract— Video communication is an important application
area for a multihop wireless network. This paper studies the
problem of finding the optimal encoding rates for a number of
video sessions in such network. The objective is to maximize the
video quality at the receivers and the optimization space takes
into consideration, the interaction among all the active video
sessions. A branch-and-bound solution procedure is proposed
to solve this nonconvex, non-polynomial programming problem.
Using analytical and simulation results, we show that this solution
procedure is an effective approach for addressing such complex
cross-layer optimization problem.

I. INTRODUCTION

Video communications over multihop wireless networks has
received a lot of attention in recent years. In wireless multihop
networks, nodes cooperate with each other in relaying packets
through the network. These networks can be deployed with
minimal infrastructure, making them especially suitable for
operating in special conditions. However, they are also prone
to frequent link failures and topology changes, which makes
it hard to support multimedia communications.

Multimedia communications, in particular video applica-
tions, are typically characterized by their sensitivity to delay
and bandwidth requirements. For video applications, packets
transmitted over a multihop wireless network need to meet a
pre-specified deadline in order to be successfully decoded at
the receiver. The decoded video quality is, therefore, affected
by two factors: distortion introduced by the compression at
the encoder, and distortion due to packet loss or delay, which
is dependent on the rate at which video is encoded.

A naive approach to computing the video rate for each
session, is to assign the bottleneck bandwidth of the path
on which the session will be transmitted. However, this is
not always optimal, because at maximum load, the delay on
the link increases indefinitely. In a bandwidth limited envi-
ronment, therefore, video applications are expected to achieve
maximum decoded video quality for some intermediate rate.
In general, optimizing individual network layer parameters
such as available bottleneck bandwidth does not necessarily
guarantee optimality. In this paper, therefore, we represent the
tradeoff between rate and the final video quality as a function
of multiple network layer metrics (e.g., bandwidth, delay).
We consider the impact of congestion (modeled using packet
delay distributions) in addition to link failures in computing
optimal rates for encoding each session. We also consider the

interaction of competing video sessions as they share the same
pool of network resources.

We consider the following problem: given a set of paths,
one for each source destination pair, what is the optimal rate
at which each should be encoded, such that the reconstructed
video quality at the receiver is maximized. We show that
the optimal rates for all the sessions are tightly coupled, i.e.,
changing the rate allocation of one session may degrade the
quality of the other sessions. The objective function minimizes
an application layer performance metric (i.e., average video
distortion) as a function of network layer performance metrics
(e.g., bandwidth, loss, and path correlation). Our formulation
shows that this is a non-polynomial programming problem,
with a complex objective function and constraints, where the
distortion of each session is shown to be a function of the rates
of all other sessions, and hence does not possess any special
structure such as convexity.

One possible approach to solve this problem is to apply
metaheuristics such as Genetic Algorithms (GA). Indeed, we
studied such an approach in our prior work [9] and showed
that GA could be effective in addressing such type of complex
optimization problems. But, as with any other metaheuristics,
GA is not able to offer a guaranteed performance bound,
which is important in understanding the performance limit of
the objective function. In this paper, we address this issue,
using the so-called branch-and-bound framework [10]. Specif-
ically, we show that, branch-and-bound framework, along with
reformulation-linearization technique (RLT) [11], can produce
ε-optimal solutions to our problem. The level of accuracy can
be tuned based on tolerance in computational complexity.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem of optimal rate control
for video transport. In Section III, we propose a branch-and-
bound and RLT-based solution procedure. Section IV presents
simulation results to illustrate the efficacy of the proposed
approach. Section V discusses related work and Section VI
concludes the paper.

II. PROBLEM FORMULATION

We model a wireless ad hoc network as a time-varying
directed graph G(N ,L), where N is the set of vertices,
representing nodes, and L is the set of wireless links in the
network. We assume that a link exists between node i and
node j if they are within transmission range of each other.
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Each link {i, j} ∈ L in the wireless network is characterized
by the capacity, or available bandwidth of link bij ; and the
mean packet loss probability pij , due to node or link failures.
In practice, these parameters can be measured by nodes and
distributed to the network [4] .

Within this network, we assume there exists a set of video
sessions, denoted as F , with each session f ∈ F having a
source node Sf and a destination node Df . We also assume
that there is a given path connecting Sf and Df , denoted by
Lf . In practice, these paths can be precomputed by proactive
routing protocols, or discovered by a reactive routing protocol.
The rate of a video stream, Rf , is bounded as Rf ≤ Rf ≤
Rf ,∀f ∈ F , where, the lower and upper bounds of Rf are
determined by the specific video encoder and video sequence
used at the source node Sf .

TABLE I

NOTATION

Symbol Definition
G{N ,L} Representation of the wireless mobile network.
N Set of vertices.
L Set of edges.
{i, j} A wireless link from node i to node j.
bij Bandwidth of link {i, j}.
pij Packet loss probability of link {i, j}.
λij Average aggregate traffic on link {i, j}.
ρij Utilization of link {i, j}.
F Set of video sessions.
f A video session in F .
Sf Source node of session f .
Df Destination node of session f .
Lf Path connecting Sf to Df .
∆f Decoding deadline of session f .
Tf End-to-end delay on path Lf

pf End-to-end loss rate of Lf .
Rf Rate of video session f on path Lf .
R̄f The maximum rate of video session f .
Rf The minimum rate of video session f .
De

f End-to-end distortion of session f .
Denc

f Encoding distortion of session f .
Dcg

f Distortion caused by congestion of session f .
Dloss

f Distortion caused by packet losses of session f .

The rate control problem for video sessions can be described
as follows. Given a wireless ad hoc network G(N ,L), a set
of video sessions F with source-destination pairs {Sf ,Df},
f ∈ F , and a feasible path Lf between each source-destination
pair {Sf ,Df}, f ∈ F , find a feasible set of rate vectors, one
for each source destination pair, such that the total (or average)
distortion of the video sessions is minimized. This problem
OPT-ARC is formally stated as shown in (1)–(5) (shown in
the next page).

We now provide an interpretation for the problem for-
mulation. In the OPT-ARC problem, the objective function
D in (1) is the sum of the average distortion De

f of all
the concurrent video sessions. The relationship between the
average distortion De

f and the link statistics for the path Lf

is given by the rate-distortion model. A rate-distortion model
for video coding describes the distortion achieved by the
coder, as a function of the video rate. Using an empirical

rate-distortion model developed by Stuhlmuller et al, in [12],
an expression for De

f was derived in [9]. In [9], we showed
that the decoded video quality at the receiver is affected by
three factors; encoding distortion caused by the lossy video
coder, Denc

f , distortion caused by overdue video packets (i.e.,
packets experiencing delay greater than the decode-deadline
∆f , due to congestion in the network), Dcg

f , and the distortion
caused by lost video packets (i.e., due to link failure or
other transmission errors), Dloss

f . Here, D0, ω, R0, and κ
are constants for a specific video coder (with fixed encoding
parameters) and video sequence, which are estimated from
empirical rate-distortion curves by training and curve matching
[12]. Therefore,

De
f = Denc

f + Dcg
f + Dloss

f (6)

and,

De
f = D0 +

ω

Rf − R0︸ ︷︷ ︸
Denc

f

+κ(1 − pf )Pr(Tf > ∆f )︸ ︷︷ ︸
Dcg

f

+ κpf︸︷︷︸
Dloss

f

.

(7)
For a given set of paths, the end-to-end packet loss probabil-

ity pf and the end-to-end packet overdue probability Pr(Tf >
∆f ) for a session f ∈ F is determined by the corresponding
link parameters pij and bij , as well as the network topology,
(i.e., paths sharing common links). In [9], we showed how to
compute Pr(Tf > ∆f ) based on the Chernoff bound [3].

The set of inequalities in (2) provides the bounds for
feasible video rate for each session, which are determined
by the specific video sequence and the rate-distortion model.
The inequalities in (3) represent the stability condition which
ensures that the rate of the average aggregate traffic load on the
link is less than the link capacity. (5) provides an expression
to compute the parameter s∗f . This expression in derived in
[9] based on moment generating function for the end-to-end
delay, and Chernoff bound.

The goal of the OPT-ARC problem is to obtain the best
possible rates that would minimize (1) over a given set of
paths for each video session. Minimizing (1) achieves the best
utilization of network resources, while ensuring that the overall
video quality is maximized for all the video sessions. Note that
choosing a different objective function such as min max{De

f}
or an objective function in the form of a utility function∑

f f(De
f ), does not change the solution procedure, which

will be presented in the next section.
It is easy to observe that, the objective function (1) is a

non-polynomial, non-convex function of continuous variables,
{Rf}f∈F . Since non-polynomial problems are NP-hard in
general, we conjecture that OPT-ARC problem in its current
form, is likely to be NP-hard as well. In [9], we showed that
this class of complex optimization problems can be solved
using metaheuristic algorithms, such as Genetic Algorithms
[1]. However, a metaheuristic approach cannot offer theoretical
guarantees and in many cases, it is important to know the
optimality gap of the solution obtained by the specific algo-
rithm. In the following section, we present a branch-and-bound
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OPT-ARC

Minimize

D =
∑
f∈F

{
D0 +

ω

Rf − R0
+ κ

{
pf + (1 − pf )

{
e−s∗

f ∆f

s∗fδf (s∗f )
√

2π

∏
{i,j}∈Lf

bij −
∑

ϕ∈F
[∏

{m,n}∈L̄ij
ϕ

(1 − pmn)
]
Rϕ

bij −
∑

ϕ∈F
[∏

{m,n}∈L̄ij
ϕ

(1 − pmn)
]
Rϕ − s∗f








 (1)

subject to

Rf ≤ Rf ≤ Rf , ∀f ∈ F (2)

∑
f∈F


 ∏
{m,n}∈L̄ij

f

(1 − pmn)


 · Rf ≤ (1 − ε) · bij , ∀{i, j} ∈ Lf (3)

δ2
f =

∑
{i,j}∈Lf

1

(bij −
∑

ϕ∈F
[∏

{m,n}∈L̄ij
ϕ

(1 − pmn)
]
Rϕ − s∗f )2

, ∀f ∈ F (4)

∆f =
∑

{i,j}∈Lf

1

bij −
∑

ϕ∈F
[∏

{m,n}∈L̄ij
ϕ

(1 − pmn)
]
Rϕ − s∗f

, ∀f ∈ F . (5)

solution procedure for OPT-ARC problem. Our proposed
solution procedure can produce a solution within an error of
ε to the global optimum, where 0 < ε < 1 is an arbitrarily
small value reflecting the tolerance in approximation.

III. SOLUTION PROCEDURE

In this section, we first discuss the branch-and-bound
framework, and then, present details of embedding the RLT-
relaxation of the original problem into this branch-and-bound
framework.

A. Branch-and-Bound

Branch-and-bound is an iterative relaxation algorithm [10],
that seeks to produce an ε-optimal solution to a non-linear
programming (NLP) problem, by partitioning the original
solution space into sub-hyperrectangles. In branch-and-bound,
the original problem is first relaxed using a suitable relax-
ation technique to obtain an easier-to-solve, lower-bounding
problem. In our approach, we choose a novel relaxation
technique called the Reformulation-Linearization Technique
(RLT) [11] to obtain a linear programming (LP) relaxation
(see Section III-B). The optimal solution to this LP relaxation
provides a lower bound (LB) for the original problem. Since
such an LP relaxation usually yields an infeasible solution
to the original NLP problem, a local search algorithm is
employed to obtain a feasible solution to the original NLP
problem, using the infeasible lower bounding solution as a
starting point. The resulting feasible solution then provides an
upper bound (UB) for the original problem.

The branch-and-bound procedure is based on the idea
of divide-and-conquer. That is, the original problem, P , is
partitioned into sub-problems, each having a smaller feasible
solution space, based on the solution provided by the LP

relaxation. This branching process is carried out recursively to
obtain two new sub-problems at each node of the branch-and-
bound tree. The partitioning of the original solution space, i.e.,
the branching rule, will be explained further in Section III-
B. The sub-problems are inserted into a problem list L,
which records the active nodes in the branch-and-bound tree
structure. More specifically, in the beginning, the problem list
L is initialized with the original problem P . At any given
point, the lower and upper bounds for P are computed as

{
LB = min{LBk : Problem k ∈ L}
UB = min{UBk : Problem k ∈ L}. (8)

The method proceeds by choosing the next problem to
partition from the problem list. In our approach, the problem
k having the worst (or smallest) LB is chosen. This problem
k is then partitioned into two sub-problems k1 and k2, which
replace problem k in L. Every time a problem k is added to
the list, LBk and UBk are computed, and the LB and UB
for the original problem P are updated. At any given iteration,
if LB ≥ (1 − ε) · UB, the procedure exits with an ε-optimal
solution. Otherwise, for any problem k in the problem list,
if LBk ≥ (1 − ε) · UB, no globally optimal solution that
improves beyond the ε-optimal can exist in the subspace of
the feasible region represented by this node. Therefore, this
node can be removed from the branch-and-bound tree. In this
manner, the branch-and-bound can fathom certain branches
of the branch-and-bound tree, without solving all the nodes
in the branch to completion. Depending on the effectiveness
of this pruning strategy, the branch-and-bound procedure can
provide a solution much faster than a general divide-and-
conquer approach.
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B. The Reformulation-Linearization Technique

RLT is a relaxation technique that can be used to produce
tight polyhedral outer approximations or linear programming
relaxations for an underlying nonlinear, nonconvex polynomial
programming problem [11]. In the RLT procedure, nonlinear
implied constraints are generated by taking the products of
bounding terms of the decision variables, up to a suitable order
and also, possibly products of other defining constraints of the
problem. The resulting problem is subsequently linearized by
variable substitutions, one for each nonlinear term appearing
in the problem, including both the objective function and
the constraints. In our approach, the key to obtaining an ε-
optimal solution is to embed RLT into the branch-and-bound
framework as discussed earlier, and to coordinate with it a
suitable partitioning strategy, so that the gap between the lower
and upper bounds thus generated converges iteratively to zero.

It is worth noting that, when incorporating RLT into the
branch-and-bound framework, the original bounding set Ω is
decomposed into two corresponding hyper-rectangles, based
on a so called branching variable. In RLT, the discrepancy
between an RLT variable and the corresponding nonlinear term
that the RLT variable represents is called the relaxation error.
In our solution procedure, the branching variable is chosen to
be the variable that yields the largest relaxation error. Such a
branching rule ensures that all the discrepancies will be driven
to zero from iteration to iteration.

In the following section, we reformulate the OPT-ARC
problem into a quadratic optimization problem. Then, we
replace all the non-linear terms as discussed above and add the
corresponding RLT constraints into the problem formulation.
We obtain the linear programming relaxation problem (�-
ARC).

C. Reformulation

Due to the existence of non-polynomial terms in Problem
OPT-ARC, our first goal is to reformulate this problem into a
polynomial programming problem, preferably quadratic, which
will simplify the objective function as well as the constraints.

We can transform the first set of non-polynomial terms in
the objective function (1) by defining new variables uf =
1/(Rf − R0). Substituting uf into the objective function,
we obtain linear terms ω · uf , and a set of new polynomial
constraints uf · (Rf −R0) = 1. We follow a similar procedure
in order to transform the second non-polynomial term in
the objective function. Recall that αij denotes the available
bandwidth on a link {i, j}. Defining new substitution variables
gf and vij , where vij = 1

αij−s∗
f

and gf = Pr(Tf > ∆f ), we
have,

gf =


 e−s∗

f∆f

s∗fδf

√
2π

∏
{i,j}∈Lf

αij · vij


 . (9)

This product form motivates us to apply logarithms on both
sides of (9), which will lead to a linear constraint. As a result,
the complexity on the objective function can be effectively

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y=
lo

g(
x)

x
0
 1 

Tangential Supports 

Chord connecting        
the two end points      

(0,0) 

Fig. 1. Polyhedral outer approximation for y = log(x) in 0 < x0 ≤ x ≤ 1.

moved into the constraints. We use similar approach to con-
vert all other non-polynomial terms in the constraints to a
polynomial form of order two.

Once the objective function and constraints are simplified,
we consider the constraints of the form y = log(x). We can
linearize this logarithmic relationship over some proper tight
bounds using a polyhedral outer approximation comprised of
a convex envelope in concert with several tangential supports.
A four-point tangential approximation can be obtained as illus-
trated in Figure 1. The corresponding convex envelope consists
of a chord connecting the two end points, which is used
in combination with four tangential supports at four points
including the two end points. As a result, every logarithmic re-
lationship obtained from (9) translates to five linear constraints
constituting a polyhedral outer approximation. Note that such
polyhedral outer approximations will be iteratively tightened
during the branch-and-bound procedure (see Section III-A).

Problem OPT-ARC is now transformed into a polynomial
NLP problem of the second order. The objective function (1)
is linearized and the complexity is shifted into the constraints
in the quadratic form.

IV. NUMERICAL RESULTS

In this section, we present the simulation results for the
optimal rate control problem for video transport. In each
simulation setting, a wireless ad hoc network is generated
by placing a number of nodes at random locations in a
rectangular region. As discussed before, we assume that we
are given a set of pre-selected paths, each path connecting a
source-destination pair. In the simulations, each video session
has a rate bounded by 20 Kb/s and 200 Kb/s. We used an
H.263+ codec and the 400-frame “Foreman” trace in the
quarter common intermediate format (QCIF). The video was
encoded with an intra rate of 1/15 and a frame rate of 30
fps. The rate-distortion parameters are obtained from [12].
Failure probabilities of the wireless links are chosen from a
uniform distribution between [1%, 5%]; the bandwidth of a
link is chosen from a uniform distribution between [50 Kb/s,
400 Kb/s]. The proposed solution procedure is implemented
in C, and the LINDO API 3.0 is used for solving the LP
relaxation Problem �-ARC. At every node in the branch-and-
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TABLE II

PERFORMANCE OF THE PROPOSED SOLUTION PROCEDURE.

Case Initial ε-optimal ε
Feasible Solution. solution

I 131.69 119.90 0.05
II 129.26 117.09 0.05
III 137.14 128.34 0.05

(a) Case I

(b) Case II (c) Case III

Fig. 2. Path topology.

bound tree, the local search algorithm discussed in Section III-
A is used to obtain a feasible solution from the solution to the
LP relaxation.

A. Performance on Different Instances of Problem OPT-ARC

We first examine the performance of the proposed solution
procedure with different instances of Problem OPT-ARC,
which are presented in Table II. In each case, the same 50-
node network sustains two source destination pairs, and the
number of shared links are increased from one to three as
shown in Figure 2. The decoding deadline is 0.2 s for all the
cases in Table II.

The second column of Table II presents the total distortion
values found by solving the corresponding UB for the root
node in the branch-and-bound tree and is termed as “Initial
Feasible Solution”. The third column of Table II presents the
ε-optimal solution found by the algorithm, and the last column
shows the value of ε used in the termination of the branch-and-
bound tree. As we can see, the corresponding values between
these two columns are very close to each other. This clearly
demonstrates that the polyhedral outer approximation and the
RLT-based LP relaxations used in the solution procedure are
well designed and tight.

B. Impact of Link Capacity

In the rest of this section, we present a study on the impact
of link capacity on the performance of the proposed rate-
allocation scheme. For this experiment, we use a 50-node
network with two video sessions and the path topology as
shown in Figure 2(a) i.e., the sessions share a common link.
Figure 3 plots the optimal rates allocated to each session as
computed by the algorithm, by varying the link capacity of
the shared link. More specifically, we vary the link capacity
of the common link from 100 Kb/s to 500 Kb/s on the x-
axis, and then plot the corresponding rate allocated to each
session on the y-axis. Figure 4 plots the average distortion
found by the proposed algorithm for the same values of the
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Fig. 4. Average distortion under varying shared link capacity.

shared link capacity as in Figure 3. Two observations can be
made here. First, when the capacity of the shared link is very
high (500 Kb/s), the video rates allocated to each session are
far apart. However, as the shared link capacity is reduced, the
rates come closer and finally for a link capacity of 100 Kb/s,
the rates allocated to each session are almost identical. Second,
the average distortion is low and relatively constant for high
capacities of the shared link, and as the link capacity reduces,
the average distortion increases rapidly.

These observations can be explained as follows. As long as
atleast one session is not bottlenecked by the shared link, the
video rates for each session could be different. This is evident
in Figure 2(a) when the link capacity of the bottleneck link is
between 500 Kb/s and about 250 Kb/s. Here, the bottleneck
link of one or both sessions could be different from the shared
link and also, the bottleneck link of one session is higher than
that of the other session. Also, between 400 Kb/s and 500
Kb/s, the bottleneck capacity of session 1 reaches its maximum
value, and so it remains constant in this range. However,
around 200 Kb/s, the optimal video rates clearly converge to
a value of around 80 Kb/s for each session, indicating that the
shared link is now the bottleneck link for both sessions.

In order to explain the second observation, recall that the
end-to-end distortion De

f consists of three components: De
f =

Denc
f + Dcg

f + Dloss
f . Since the path loss probabilities remain
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the same, Dloss
f does not change. Each of the remaining two

terms will dominate for different ranges of the link capacity.
For large link capacity, Denc

f is the dominating component
since the congestion in the network is negligible. Recall that
Denc

f is given by D0 + ω
Rf−R0

. Based on this expression, we
can see that beyond a certain threshold, any increase in rate Rf

reduces Denc
f only marginally. Therefore, in the case of large

link capacity, the algorithm intelligently computes ε-optimal
rates for each video session that fall beyond this threshold,
so as to keep the average distortion minimum and relatively
constant. For smaller values of link capacity, Dcg

f takes over,
as the network suffers from severe congestion, increasing the
the average distortion rapidly.

V. RELATED WORK

The idea of rate control for streaming video applications
has been studied extensively in both wired and wireless
domains [7], [14]. These efforts predominantly associate rate
control with the transport layer. A lot of work has been done
on applying equation based TCP-friendly rate control to video
streaming in the wireless domain. Prior research (e.g., [2])
also showed the necessity of differentiating packet loss with
congestion in wireless networks. However, they are usually
based on optimizing network layer parameters, and do not
explicitly consider any application layer behavior (refer [7]
for a survey on video delivery over wireless networks). Cross-
layer design in wireless networks has also received much
attention in the context of elastic data as well as video applica-
tions [5], [6], [8], [13]. Typically, such designs consider jointly
optimizing two or more of the following: power control, MAC,
routing, scheduling and source coding, in order to make use
of the network resources efficiently. Theoretical optimization
formulations tend to benefit from some of the commonly used
assumptions that the objective function is strictly concave, non
decreasing and continuously differentiable [8]. However, in
this paper, we show that when modeling the user perceived
video quality as a function of network parameters like delay,
congestion, etc., the objective function is considerably more
complex and does not follow the assumptions discussed earlier.
It is also worth noting that this class of prior efforts focus on a
single video session while our work considers the interaction
among multiple sessions.

VI. CONCLUSIONS

In this paper, we studied the problem of optimal rate
control for video transport in multihop wireless networks. We
presented an optimization problem that captured the tradeoff
between the encoded video rate and the final quality of the
reconstructed video at the receiver in terms of network layer
parameters, in the presence of competing video sessions. The
objective function minimized the collective distortion of all
video sessions, in a solution space of bounded rates for each
session. The solution procedure based on branch-and-bound
framework and RLT was shown to be effective in generating
ε-optimal solutions for the problem. We believe that this

solution procedure can be tuned effectively in order to study
the performance limits for this class of optimization problems.
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