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Abstract—Multi-path transport is an important mechanism for
supporting video communications in multihop wireless networks.
In this paper, we investigate the joint problem of optimal path se-
lection and rate allocation for multiple video sessions in a wire-
less mesh network. We present a mathematical formulation to op-
timize the application level performance (i.e., video distortion) in
the context of path selection and rate allocation. For this complex
optimization problem, we propose a branch-and-bound based so-
lution procedure, embedded with the Reformulation-Linearization
Technique (RLT) that can produce �� �-optimal solutions for
any small . This result is significant as it not only provides the-
oretical understanding of this problem, but also offers a perfor-
mance benchmark for any future proposed distributed algorithm
and protocol for this problem. Simulation results are also provided
to demonstrate the efficacy of the solution procedure.

Index Terms—Cross-layer design, optimization, path selection,
rate allocation, video communications, wireless mesh network.

I. INTRODUCTION

R ECENTLY, there has been a growing interest in sup-
porting video communications in multihop wireless

networks. Under this setting, multi-path transport is considered
as one of the most important mechanisms. Indeed, there are
a number of significant advantages in the use of multi-path
for video communications, such as load balancing, potentially
higher video bit rate, and improved error resilience, among
others.

Multi-path routing, which exploits path diversity in a mesh
topology, has been an active research area over the years. Var-
ious algorithms have been proposed for problems such as com-
puting -shortest paths [8], node- or link-disjoint paths [15], or
braided multiple paths [13]. In multimedia applications, path di-
versity has been exploited to mitigate link failures and improve
the reliability of streaming video [1], [4], [16]. While algorithms
for finding a set of paths between a source and destination are
not difficult to develop, it remains a challenging task to select
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an optimal subset of paths to transport video and maximizes its
quality. Further, for video communications, it is also necessary
to compute the optimum video encoding rate before deciding
how to allocate this source rate among a given set of paths to
the destination.

This paper aims to address this problem by investigating the
following questions: i) at what rate should the video be encoded
at the source; and ii) how to split the video source rate among a
set of given paths so that the reconstructed video quality at the
receiver is maximized. Instead of considering only a single user
session in a network, we study multiple concurrent sessions in
a network that share the same network resource. Due to the in-
teractions among these competing sessions, the video encoding
rates for all the video sessions are dependent upon each other.
With this relationship, it is not hard to see that the joint problem
of path selection and rate allocation in a multi-session wireless
mesh network is mathematically challenging.

In this paper, we study this important problem. Our goal is
to develop some theoretical results (i.e., solution with provable
performance guarantee) instead of heuristics. We first formulate
the joint path selection and rate allocation problem into a mathe-
matical programming problem. We use application layer perfor-
mance metric (e.g., video distortion) as our objective function
and model it as a function of path selection and rate allocation.
For video applications, each packet from its source is also asso-
ciated with a decoding deadline. This decoding deadline sets a
maximum delay bound for a packet to be successfully delivered
to the receiver in order to contribute to the decoding process. In
our formulation, delays on each link due to interactions among
competing video sessions are considered, and the end-to-end
delay distribution is derived using the Chernoff bound approx-
imation [5]. We show that such modeling enables a tractable
cross-layer formulation.

Not surprisingly, our cross-layer formulation falls into a non-
convex optimization problem with complex objective function
and constraints. Such problems are NP-hard in general. Since
our problem does not appear to posses any special simplifying
structure, it is likely also NP-hard (although a formal proof is not
given in this paper). For such complex optimization problem,
metaheuristic algorithms (e.g., Genetic Algorithms [2], [11])
may be applied. But it is well known that such an approach
cannot offer any performance guarantee on the final solution.
That is, a heuristic or metaheuristic algorithm cannot offer any
theoretical guarantee on the gap between its solution and the
true optimal.

In this paper, we present a solution that offers theoretical
guarantees on its optimality. The main contribution of this
paper is a branch-and-bound-based solution procedure, em-
bedded with a novel Reformulation-Linearization Technique
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(RLT) [18], that can produce -optimal solution to the
joint path selection and rate allocation problem. This result is
significant as it not only provides theoretical understanding
on this problem, but also offers a performance benchmark for
any future proposed distributed algorithm and protocol for this
problem.

The remainder of this paper is organized as follows. In
Section II, we present problem formulation. In Section III, we
present a branch-and-bound and RLT-based solution procedure.
Implementation consideration is discussed in Section IV. In
Section V, we present simulation results to demonstrate the
efficacy of the solution procedure. We discuss related work in
Section VI and Section VII concludes this paper.

II. PROBLEM FORMULATION

We consider a wireless mesh network consisting of a set of
nodes. We assume connectivity exists between a pair of nodes
if each node falls within the transmission range of the other
node. We further assume that some scheduling mechanism is
in place or some physical layer mechanisms are employed such
that the nodes are not interfering with each other during trans-
mission. One example of this is in a multi-channel multi-radio
(MC-MR) environment, where once the channels are properly
assigned among the radios, the transmission among the nodes do
not interfere with its neighboring nodes. Another example is that
each node uses OFDM at physical/MAC layer. By properly as-
signing the frequency carrier at each node, we can eliminate in-
terference among the nodes. In this context, we can model such
wireless mesh network as a graph , where is the set
of wireless links. Further, the capacity on each wireless link can
also be computed. We also assume the mean packet loss proba-
bility on link (e.g., due to transmission errors) is .

Consider a set of video communication sessions in this net-
work. Each video session has a source node and a
destination node . For each session (i.e., a source–destination
pair) , there is a set of given paths, denoted by . The
total rate of a video stream, , originating at source node , is
bounded by , , while the lower and upper
bounds on are determined by the specific video encoder and
the video sequence used by source node . This rate is to
be split among the paths in . Note that if our final solution
assigns a rate of zero to a particular path in , then we can in-
terpret that this path is not selected. In this sense, rate allocation
also correlates with path selection. Denoting an element in the
rate vector be , , the following conditions must be
satisfied:

Table I summarizes notation used in this paper.

A. System Modeling

We derive link and path statistics in this section. These statis-
tics will be used to compute the application layer video distor-
tion in Section II-B.

1) Load on a Link: The traffic on a link is the aggregate
of traffic from different paths that traverse the link. To account
for the potential packet loss at upstream links, let denote

TABLE I
NOTATION

the upstream partial path for path up to (exclusive) link
. If link , we have . Then, the average

rate of the aggregate traffic on link is

In other words, the traffic rate on link is the sum of rates
of the video sessions that pass through this link, minus the loss
incurred in their upstream links before reaching link . The
utilization of link is .

2) Delay on a Link: To consider link delays due to conges-
tion, we model each link as a general queueing system,
with the input rate (defined in Section II-A1) and service
capacity . Let be the probability density function for
the queueing delay on link . We assume that all the mo-
ments of are finite, which is true for most queueing systems.

For constant bit rate (CBR) video traffic that exhibits short-
range dependent (SRD) characteristics,1 we could model the
queueing delay via an exponential distribution, i.e.,

where is the residual bandwidth on the link.
For variable bit rate (VBR) video that exhibits long-range de-
pendent (LRD) characteristics, we could model the link as a
fractional Brownian motion (fBm) queue, where has a heavy-

1Note that CBR does not necessarily imply a constant instantaneous rate. For
CBR video, the bit rate is constant at large time scales, but at medium or find-
grain time scales, an on-off pattern or back-to-back packet trains are often seen.
It is observed in a recent measurement study [10] that most CBR-coded videos
are not long-range dependent (LRD).
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tailed Weibull distribution [14]. In this paper, we will focus
on CBR video since it is used in most video communication
applications.

3) Path Delay: Recall that for each session , there is a
set of paths between the source node and the destination
node . Denote the delay on path and the weighted
end-to-end delay of all the paths for session , respectively. We
have

Since the delay on path consists of delays on all the links
along the path, we have that .

For end-to-end delay, we apply the Chernoff Bound [5] to
obtain a good approximation [7]. In the following, we illus-
trate such an approximation when link delays are exponentially
distributed.

First, the moment generating function of can be derived
as follows:

The moment generating function of is

Denote the decoding deadline as for session . We define
as

Since for , is a
strictly concave function with a unique maximum at . To
avoid the trivial case of an intolerable video quality, we assume
that for any usable path. We can thus determine

by solving

(1)

Since and
, we have that .

Applying the Chernoff Bound, the distribution of can be
approximated as [7]

(2)

where .
4) End-to-End Loss Rate: Assuming that the packet loss pro-

cesses on the links are independent, the end-to-end loss proba-
bility for the path can be approximated as

B. Video Performance Characterization

In [19], Stuhlmuller et al. developed an empirical rate-dis-
tortion model for a hybrid motion compensated video encoder.
For a video sequence encoded at a target coding rate , the
average end-to-end distortion consists of the distortion at
the encoder , the distortion due to congestion ,
and the distortion due to packet loss . That is,

. Using the results for link and path statis-
tics in Section II-A, we have

(3)

where , , , and are constants for a specific video codec
and video sequence. Since this model takes into account the ef-
fects of intra coding and spatial loop filtering, it provides accu-
rate estimates for end-to-end distortion [19].

C. Problem Formulation

We are now ready to formulate the problem of optimal path
selection and rate allocation for multiple video sessions (OPT-
PSRA). Our objective is to minimize application layer video
distortion. Mathematically, problem OPT-PSRA can be stated
in (4)–(10), shown at the bottom of the next page.

The objective function (4) is the sum of the average distortion
of all the video sessions in the network. Alternative objective
functions, such as minimizing the maximum of among
all sessions, or minimizing a function in the form of
(e.g., a logarithmic utility function), can also be used. More de-
tails on this will be discussed in Section III-F.

The search space for problem OPT-PSRA consists of two sets
of continuous variables: i) the set of rates for all video sessions

; and ii) for a given session , the rate distribu-
tion among its paths . Equation (5) provides the relationship
between these two sets of variables. Equations (6) and (7) define
the feasible region for the optimization variables. Equation (8)
is the stability condition, which ensures that the links are stable
with finite delays. Equation (9) is derived from the definition of

given in Section II-A, while (10) is a reformulation of (1)
and is used to compute for each path.

Observe that the objective function (4) and the constraints (9)
and (10) are non-convex functions of and .
The rates of all the video sessions are closely coupled in (4).
Since such problems are NP-hard in general [9], and problem
OPT-PSRA does not appear to possess any special simplifying
structure, it is likely to be NP-hard, although a formal proof is
not given in this paper. In the following section, we present a
solution procedure based on branch-and-bound framework for
problem OPT-PSRA. Our proposed solution procedure can pro-
duce a solution within a normalized error of to the global op-
timum, where can be made arbitrarily small depending on the
desired accuracy.
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III. SOLUTION PROCEDURE

Our solution procedure is based on a branch-and-bound
framework, which embeds a novel relaxation technique called
the Reformulation-Linearization Technique (RLT). In this
section, we first reformulate the non-polynomial terms in
problem OPT-PSRA so as to convert the formulation into a
polynomial, nonlinear optimization problem. Then, we present
details of the RLT-relaxation of this polynomial problem and
the branch-and-bound solution procedure.

A. Reformulation

Due to the existence of non-polynomial terms in problem
OPT-PSRA, our first goal is to reformulate this problem as a
polynomial programming problem, which will greatly simplify
the objective function as well as the constraints.

In the objective function (4), there are three sets of non-poly-
nomial terms. In order to transform the first two non-polyno-
mial terms, we define new variables and

. Substituting and into
the objective function, we get two linear terms and

, respectively, and two sets of new polynomial constraints
and .

In order to transform the third non-polynomial term in (4)
which is a product of fractions, recall that denotes the
residual bandwidth on link , i.e.,

(11)

where . Note that is
a constant, since all the paths are given. Denote the
weighted packet overdue probability due to path , i.e.,

. Again, define a substitution
variable to convert the fractions in

to polynomial form, i.e.,

(12)

This product form motivates us to apply logarithms on both
sides of (12), which will lead to a linear constraint. This way, the
complexity in the objective function can be effectively shifted
into the constraints.

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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Fig. 1. Polyhedral outer approximation for � � ������ in � � � � � � �.

Taking logarithms on both sides of (12) and making the fol-
lowing substitutions:

for
for
for

for

for
for
for

(13)

we have
, where denotes

logarithm to the natural base .
Once the objective function is simplified, we now deal with

the new constraints of the form , as shown in (13).
We can linearize this logarithmic relationship over some suit-
able tightly bounded interval using a polyhedral outer approx-
imation that is comprised of a convex envelope in concert with
several tangential supports. For instance, if is bounded by

, these constraints can be written as follows:

(14)

where , for
. A four-point tangential approximation

can be obtained by letting , as illustrated in Fig. 1. The
corresponding convex envelope consists of a chord connecting
the two end points, which is used in combination with tangential
supports at four points including the two end points. As a result,
every logarithmic relationship specified in (13) translates to
five linear constraints constituting a polyhedral outer approx-
imation. Note that such polyhedral outer approximations will
be iteratively tightened during the branch-and-bound procedure
(see Section III-B).

Now we have successfully reformulated the objective func-
tion into a linear form, and introduced the corresponding

polynomial constraints to make the reformulation tight. To
make the problem polynomial, it remains to transform the
two constraints (9) and (10) to a polynomial form. From the
definition of , we have that and

. With the above reformulation, we can
now rewrite problem OPT-PSRA as the following polynomial
programming problem ( -PSRA).

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Polyhedral outer approximations for

(22)

(23)

(24)

Implied bounds for all other variables.
In problem -PSRA, as in the case of the original problem,

constraints (15) and (16) are stability constraints and constraints
(23) are bounds on video rates. Constraint (17) is a reformu-
lation of constraint (10) of the original OPT-PSRA problem.
Constraints (18)–(20) and (24) are derived from the definition
of the corresponding variables. Constraint (21) results from a
linearization of (12), and the constraints (22) are the polyhedral
outer approximations for the logarithms of the packet overdue
probabilities on the paths [see (12)–(14)].

Problem OPT-PSRA is now transformed into a polynomial
nonlinear programming problem (NLP) of order two. The
highly complex objective function (4) is greatly simplified (i.e.,
linearized) and the complexity is shifted into the constraints in
polynomial form.
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Although this problem is simpler than the original problem,
it is still a quadratic polynomial programming problem, which
is NP-hard in general [18]. In the remainder of this section, we
present our branch-and-bound and RLT-based solution proce-
dure to solve problem -PSRA.

B. Branch-and-Bound Framework

Branch-and-bound is an iterative relaxation algorithm [18],
which seeks to provide an -optimal solution to a nonlinear
programming problem by partitioning the original search space
into smaller sub-hyperrectangles [18], and thereby solving
the smaller sub-problems. Here denotes an arbitrarily small,
prescribed constant reflecting our desired accuracy for the final
optimal solution. In branch-and-bound, the original problem
is first relaxed using a suitable relaxation technique to obtain
an easier-to-solve, lower-bounding problem. In our approach,
we choose the Reformulation-Linearization Technique (RLT)
[17], [18] to obtain a linear programming (LP) relaxation
(see Section III-C). The optimal solution to this LP relaxation
provides a lower bound ( ) for the original problem. Since
such an solution is likely to be infeasible to the original
NLP problem, a local search algorithm (using the solution
as a starting point) is employed to obtain a feasible solution to
the original problem. This new feasible solution then provides
an upper bound ( ) for the original problem.

During each iteration, the original problem is partitioned
into sub-problems, each with a smaller search space. In par-
ticular, during each iteration, for a sub-problem in the branch-
and-bound tree, a branching process is carried out to obtain
two new sub-problems. The partitioning of the original solu-
tion space, i.e., the branching rule, will be explained further in
Section III-C. The sub-problems are inserted into a problem list

, which records the active sub-problems in the branch-and-
bound tree structure.

More specifically, in the beginning, the problem list is ini-
tialized with the original problem . At any given iteration, the
lower bound and upper bound for are computed as

(25)

The method proceeds by choosing the next problem to partition
from the problem list. In our approach, the problem with the
smallest is chosen. The corresponding problem is then
partitioned into two sub-problems and , which replace
problem in problem list . Every time a new sub-problem

is added to the list, and are computed, and the
and for the original problem are updated as in (25).

At any given iteration, if , the procedure
exits with an -optimal solution. For any problem in
the problem list , if , we consider that
this sub-problem can no longer produce an improving solution
in the future branching process. Therefore, this node can be
removed from the branch-and-bound tree. In this manner, the
branch-and-bound can prune or fathom certain branches of the
tree, without the need to solving all the subproblems in the tree
to completion. Depending on the effectiveness of this pruning
strategy, the branch-and-bound procedure can provide a solu-
tion much faster than a general divide-and-conquer approach.

C. Relaxation With the Reformulation-Linearization Technique

RLT is a relaxation technique that can be used to produce tight
polyhedral outer approximations or linear programming relax-
ations for an underlying nonlinear, non-convex polynomial pro-
gramming problem. This relaxation will provide a tight lower
bound on a minimization problem [17], [18]. In our approach,
the key to obtaining an -optimal solution is to embed RLT
into the branch-and-bound framework as discussed earlier, and
to coordinate with it a suitable partitioning strategy that would
enable the gap between the lower and upper bounds thus gener-
ated to iteratively converge.

In the RLT procedure, nonlinear implied constraints are gen-
erated by taking the products of bounding terms of the decision
variables, up to a suitable order and also, possibly products of
other defining constraints of the problem. The resulting problem
is subsequently linearized by variable substitutions, one for each
nonlinear term appearing in the problem, including both the ob-
jective function and the constraints. This automatically creates
outer linearizations that approximate the closure of the convex
hull of the feasible region .

For instance, the second order term in (20) can
be viewed as a single term, for which we can introduce a
new variable , thereby substituting . Since

and are each bounded by and
, respectively, we generate the following

relational constraints, which are known as RLT bound-factor
product constraints.

(26)

where denotes a linearization step under the substitution
. From the above relationships and by substituting
, we obtain the following RLT constraints for :

(27)

We therefore replace the second-order term with the
linear term in (20) and introduce the above linear RLT
bound-factor constraints for into problem -PSRA formu-
lation. Similarly, we define new variables for all the remaining
nonlinear terms in problem -PSRA, including ,

, , , and ,
and make substitutions in the same manner.

It is worth noting that, when incorporating RLT into the
branch-and-bound framework, the original bounding set is
decomposed into two corresponding hyper-rectangles, based
on a so-called branching variable. In RLT, the discrepancy
between an RLT variable and the corresponding nonlinear term
that the RLT variable represents is called the relaxation error.
In our solution procedure, the branching variable is chosen to
be the variable that yields the largest relaxation error. Such a
branching rule ensures that all the discrepancies will be driven
to zero iteratively.
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After replacing all the nonlinear terms as above and adding
the corresponding RLT constraints into problem -PSRA
formulation, we obtain the following linear programming
( -PSRA), which can be efficiently solved in polynomial time.

Polyhedral outer approximations for

Bound-factor product RLT constraints for the terms

Implied bounds for all other variables.

D. Partitioning Strategies

The objective of the partitioning step is to find the branching
variable that will enable us to split the search space for
problem into two search sub-spaces and . For problem
OPT-PSRA, we need to consider two classes of optimization
variables for partitioning, i.e., the substitution variables (e.g.,

), and the logarithm substitution terms [e.g., in (13)].
In the case of branching decisions based on the substitution

variables such as , we first find the maximum

relaxation error between the substitution variable and the cor-
responding product term, say, . We then verify
whether the following condition is satisfied:

If this condition holds true, we partition the search space of
problem into two new sub-spaces and , by dividing
the range into two subregions
and . Otherwise, we partition by dividing

into and .
This partition variable selection policy can be further im-

proved by exploiting the physical interpretation of certain vari-
ables and weighing their significance. For example, based on the
discussion in Section II-A3, we observe that ’s are the most
important set of variables that directly affect the computation of
average distortion. Therefore, during the implementation of our
RLT-based branching algorithm, we assign highest priority to
these variables when selecting the partition variable. Note that
the choice of partition variable does not alter the final result but
it does play an important role in speeding up the convergence
time of the algorithm.

Regarding in (13), we first find the variable that gives the
greatest discrepancy between the logarithm value, say,
and the left-hand side of the corresponding substitution [e.g.,
(13)] among all such terms, and then either bisect the interval
of this variable (e.g., ) evenly, or divide this in-
terval at the point .

E. A Local Search Algorithm

As discussed in Section III-B, in the branch-and-bound pro-
cedure, the solution to the relaxation problem is likely infeasible
to the original problem. This problem can be resolved by finding
a feasible solution to the original problem via a local search al-
gorithm that starts from the infeasible solution.

For problem OPT-PSRA, we adopt a local search strategy that
computes a feasible solution from the solution
to the relaxation problem . Specifically, since
the rates of the video sessions obtained from the solution to the
relaxation problem are always feasible to the original problem
(i.e., the stability constraints are always satisfied and the rates
are always within the lower and upper bounds), we let .
From , we can compute the values of from (11), the values
of from (1), and the values of from (20). After ob-
taining and , we can compute from (18), and
from (19). Therefore, a feasible solution to the original problem
OPT-PSRA, , can be obtained from the solu-
tion to the relaxed problem.

Fig. 2 shows the complete solution procedure to our path se-
lection and rate allocation problem.

F. Extension to Other Objective Functions

In problem OPT-PSRA, the objective is to minimize the sum
of the average distortions of all the video sessions in the net-
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Fig. 2. Proposed solution procedure for problem OPT-PSRA.

work [see (4)]. We now show how the solution procedure can
be extended to solve problems with other objective functions.

As discussed in Section II-C, we could use the following ob-
jective function in the problem formulation: minimize the max-
imum of among all sessions . For this objective func-
tion, we can make a simple transformation by defining a new
variable as . The transformed problem min-
imizes , with additional constraint for all .
Then, our branch-and-bound/RLT-based solution procedure can
be applied to this transformed problem to obtain -optimal
solution.

As another example, the objective function could be to min-
imize . In this case, we can first make a trans-
formation by defining new variables , for all

. The transformed problem minimizes , with
additional constraints , for all . Then,
the polyhedral outer approximations could be applied to these
logarithmic constraints (see Section III-A) and the branch-and-
bound/RLT-based solution procedure can be applied to solve the
transformed problem.

As a final example, in some cases, it may be necessary to
guarantee the performance of each video session (e.g., a distor-
tion no larger than a predefined threshold), rather than achieving
the best performance that the network can offer. For this objec-
tive function, we can add an additional constraint for each video
session, in the form of , where is the predefined dis-
tortion threshold for session .

IV. IMPLEMENTATION CONSIDERATIONS

The focus of this paper is on developing theoretical solution
to a complex cross-layer optimization problem for video com-
munications. In this regard, the solution proposed in this paper
is centralized in nature. Nevertheless, we briefly discuss issues
related to implementation.

For a small to moderate sized network involving long-lived
video traffic, a centralized implementation based on the pro-
posed solution may be feasible. Here, a centralized network
server can be employed to maintain and update the network
topology information, the global link state information and ac-
tive video session information. This centralized network server
is somewhat similar to the so-called Bandwidth Broker (BB)
entity under the Internet DiffServ paradigm [6], [21]. In addi-
tion to computing -optimal solution, this centralized net-
work server can also be used to perform admission control and
other important functions on the control plane. For the purpose
of computing -optimal solution, three types of informa-
tion need to be maintained and updated, namely i) links statis-
tics; ii) the available path set for each session; and iii) video
specific parameters. Under this approach, link statistics can be
measured by each node, while the available path sets at source
node for each video session can be computed by the network
server. With this information, the network server implements
the proposed solution procedure and obtains the set of optimal
paths and rate allocations for each video session. The network
server then conveys this information to the source node of each
video session. Source routing can be implemented on each path
at a source node to ensure that the set of paths used strictly con-
form to the optimal solution. Network dynamics such as new
session arrival, existing session departure, or major change in
the link statistics would prompt the network server to recompute
a new -optimal solution. Consequently, this approach is
effective only if the time scale for such network dynamics is
much larger than the execution of the algorithm at the central-
ized server.

In the case when the time scale for network dynamics is small
or too fast for the centralized server approach to be effective,
the solution obtained in this paper is still significant, as it of-
fers a theoretical performance benchmark for any proposed dis-
tributed algorithm and protocol for this problem.

V. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
capability of the solution procedure. In each simulation, a wire-
less mesh network is generated by placing a number of nodes at
random locations in a rectangular region. A wireless link exists
if a node is within the transmission range of a node’s radio. For
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TABLE II
IMPACT OF VARYING THE NUMBER OF PATHS PER SESSION

FOR A 50-NODE NETWORK (CASE 1)

TABLE III
IMPACT OF VARYING THE NUMBER OF PATHS PER SESSION

FOR A 50-NODE NETWORK (CASE 2)

each source–destination pair, a set of given paths are pre-com-
puted using the -shortest path routing algorithm [8].

In the simulations, each video session has a rate between
20 Kb/s and 200 Kb/s. We use an H.263+ codec and the first
200 frames from the “Foreman” trace in the quarter common
intermediate format (QCIF). The video is encoded at 12.5
frames/s and an intra rate of 1/9. The rate-distortion parameters
are obtained from [19]. Failure probabilities of the wireless
links are chosen from a uniform distribution between [1%, 5%];
the bandwidth of a link is chosen from a uniform distribution
between [50, 400] Kb/s. The proposed solution procedure is
implemented in C, and the LINDO API 3.0 is used in solving
the LP relaxation problem -PSRA. For every sub-problem in
the branch-and-bound tree, the local search algorithm presented
in Section III-E is used to obtain a feasible solution from the
LP relaxation solution.

A. Impact of Paths Per Session

We first investigate how the average distortion is affected by
the number of paths per session, henceforth denoted by . In
reality, different sessions may choose different number of paths
for rate allocation. However, for simplicity, we use the same
number of paths for all video sessions in this paper. A 50-node
network is used in this simulation with three video sessions, and
we compute the average distortion values by varying from
1 to 5. A decoding deadline of 0.2 s is chosen along with an
value of 0.1. The results are presented in Table II.

One would expect that the average distortion is a non-in-
creasing function of , as more paths will increase the op-
timization search space. This is true. However there is a price to
pay for a large number of . The larger the number of paths
for each video session, the larger the size of the optimization
problem, which results in an increased computation time (see
Table II). In particular, in this table, where the number of paths
is increased from two to three, the computation time is increased
from 4.81 s to 9.12 s, but with only a marginal reduction in av-
erage distortion. Increasing to five results in an even larger
increase (exponential) in computation time (as compared with

or ), but without a significant reduction in

Fig. 3. A 30-node network for Cases I–III of Table IV.

Fig. 4. A 50-node network for Cases IV–VIII of Table IV.

average distortion. As another instance, Table III presents the
results for the same 50-node network but with a set of three dif-
ferent video sessions. Again, we can draw similar observation
regarding the number of .

Therefore, a wise choice of is important in controlling
computation time. In the rest of the simulation results, we use
three paths for each video session.

B. Performance of the Solution Procedure

We next examine the performance of the proposed solution
procedure for different problem instances, which are presented
in Table IV. In the table, Cases I–III are for a 30-node network
(Fig. 3) with one, two and three video sessions respectively.
Cases III–VIII are for a 50-node network (Fig. 4), with one to
five sessions, respectively. Based on the discussion from the last
section, three paths have been used for each video session in
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TABLE IV
PERFORMANCE OF OUR SOLUTION PROCEDURE FOR DIFFERENT PROBLEM INSTANCES

Fig. 5. Convergence of the solution for a 30-node network with two video ses-
sions. (Case II).

all cases. The decoding deadline is chosen to be 0.1 s for all
the cases. The fourth column of Table IV presents the total dis-
tortion values found via the corresponding for the original
problem in the solution procedure (i.e., the obtained for the
first problem of the branch-and-bound tree), and the fifth column
of Table IV presents total distortion values for the -op-
timal solutions.

In order to study the iterative convergence performance of
the proposed solution procedure, we plot the evolution of the
upper bound and the lower bound for a few cases from
Table IV. Fig. 5 presents the results for the 30-node network
with two video sessions. For this particular instance, where

, the optimality gap converges to a value of 6.74 with an
upper bound value of at the 22nd iteration. Re-
call that at each iteration, the lower and upper bounds for the
original problem are chosen according to (25). We observe that
even though the initial gap between the lower and upper bounds
is high, the gap closes within over the iterations. Similar ob-
servations can be made for all the other cases in Figs. 6–9.

C. Impact of Decoding Deadline

In Fig. 10, we plot the average distortion versus decoding
deadline for the same 50-node network with two and three
video sessions, respectively, each with three paths per session.
For each point, we use the same decoding deadline value
for all sessions. We observe that the average distortion is a
non-increasing function of decoding deadline. For small de-
coding deadline values, most of the video packets are overdue,

Fig. 6. Convergence of the solution for a 30-node network with three video
sessions. (Case III).

Fig. 7. Convergence of the solution for a 50-node network with one video ses-
sions. (Case IV).

resulting in high distortion. As decoding deadline increases, the
average distortion quickly decreases because more and more
packets are now received in time, contributing to an improved
video quality. As the decoding deadline further increases, fewer
and fewer packets are overdue and the reduction in distortion
becomes negligible.

VI. RELATED WORK

For video communications, several path selection schemes
have been developed for various network settings (e.g., [1],
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Fig. 8. Convergence of the solution for a 50-node network with two video ses-
sions. (Case V).

Fig. 9. Convergence of the solution for a 50-node network with three video
sessions. (Case VI).

Fig. 10. Average distortion versus decoding deadline for a 50-node network.

[4], [11], [12], [20]). In [1], Apostolopoulos et al. showed
that multiple description (MD) video streaming provides an
effective means of exploiting the path diversity provided by

a Content Delivery Network (CDN) infrastructure. They pro-
posed three heuristic schemes for selecting a pair of MD video
servers in a CDN framework, and showed that the combination
of MD coding and path diversity offers better error-resilience
for streaming media. In a more recent work [20], Wei et al.
proposed a model to estimate the concurrent packet drop
probability of a node-disjoint path pair, and used this metric to
compare different path pairs for video streaming in a wireless
ad hoc network. In their problem formulation, paths are selected
by identifying a pair of node-disjoint paths that minimizes the
concurrent packet drop probability over all possible path pairs.
Since this problem formulation is NP-hard, they proposed a
heuristic solution to find each path in the pair based on its
likelihood of minimizing the combined packet drop probability.

In [4], Begen et al. studied the problem of selecting a pair
of paths that maximizes the average video quality (minimize
the end-to-end distortion) for MD video streaming in service
overlay networks. They proposed to use brute-force exhaustive
search to find an optimal path pair over all possible combina-
tions. They also proposed a heuristic-based solution for the op-
timal multi-path selection problem in [3]. Apart from heuristics,
the model for MD video in [3] and [4] did not take into account
the impact of latency in computing the end-to-end video dis-
tortion. Such latency consideration is important for real-time
video, although it will increase problem complexity in the for-
mulation, as we have seen in this paper.

In [11], Mao et al. studied optimal routing for point-to-point
MD video communications in a wireless ad hoc network. The
focus there was on cross-layer optimal routing and the problem
was solved using a metaheuristic algorithm instead of rigorous
optimization solution as in this paper. The problem of optimal
routing for multiple video sessions was studied in [12], where
again a metaheuristic algorithm was used.

Finally, Setton et al. presented a multi-path congestion-based
traffic partitioning scheme in [16] for optimizing received
video quality in bandwidth-limited wireless ad hoc networks.
By focusing on only a single video session and thereby ig-
noring the interaction among multiple sessions, the authors
were successful in formulating the flow assignment problem as
a convex optimization problem. However, in the presence of
multiple concurrent sessions, modeling the interaction among
these sessions increases the problem complexity considerably,
as in the case of our OPT-PSRA problem.

VII. CONCLUSION

In this paper, we investigated the joint problem of path
selection and rate allocation for concurrent video sessions in
a wireless mesh network. We formulated this problem as a
non-convex optimization problem and developed a solution
procedure based on branch-and-bound framework and reformu-
lation-linearization technique. This solution approach is shown
to produce provably -optimal solutions. This result is
significant as it not only provides theoretical understanding
on this cross-layer optimization problem, but also offers a
performance benchmark for any future proposed distributed al-
gorithm and protocol for this problem. We also used simulation
results to demonstrate the efficacy of the solution procedure for
various network instances.
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