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Abstract- In this paper, we investigate the important problem
of optimal path selection and rate allocation for concurrent video
sessions in a multihop wireless network. We present a novel
formulation of the problem, which optimizes the application
level performance such as video distortion, while seamlessly
incorporating the network layer parameters such as packet delay
and loss. For the formulated problem, we propose a branch-
and-bound framework, predicated on the powerful reformulation-
linearization technique, that can produce (1-e) optimal solutions.
We demonstrate through analytical and simulation results that
the proposed mechanism can fully utilize the network capacity
and improve the quality of reconstructed video. The proposed
approach provides an important methodology for addressing
non-convex, non-polynomial programming problems that arise
in wireless networks, especially those involving cross-layer design
and optimizations.

Index Terms- Nonlinear programming, optimization, cross-

layer design, ad hoc networks, video communications, path
selection, rate allocation.

I. INTRODUCTION

Recently, there has been considerable interest in supporting
video communications in wireless ad hoc networks [6], [8],
[ 11], [ 17]. The main technical challenges stem from the lack of
infrastructure support, node mobility, and unreliable wireless
communications. Among various mechanisms, path selection
is arguably one of the most important for supporting video
sessions. This is because the quality of a received video is
highly dependent on the quality of the path(s) in terms of
loss, delay, and delay variations. An efficient path selection
algorithm should choose high quality paths for a video session,
and would be especially appealing if it makes routing decisions
directly based on the application layer performance such as

video distortion.
For designing such a cross-layer strategy, this paper aims

to address the following important problems: (i) given a set of
available paths, which one(s) should be used, (ii) at what rate
should the video be encoded and transmitted, and (iii) how to
partition the rate among the chosen paths, each consisting of
a sequence of wireless links with diverse qualities in terms of
loss rate and available bandwidth such that the reconstructed
video quality is maximized. These three questions are tightly
coupled: the optimal rate is determined by the path selection
and traffic proportioning strategy, and vice versa. Furthermore,
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the optimal rate vectors for all the concurrent video sessions
are also closely dependent on each other: changing the rate
allocation of one session may degrade the optimality of the
rate vectors for other sessions. The interactions of competing
video sessions in resource sharing must be considered, and an
efficient strategy should take these factors into consideration
in a holistic manner.
We formulate the path selection and rate allocation problem,

which optimizes video application performance (i.e., distor-
tion) by seamlessly incorporating the network layer param-
eters. That is, we take a cross-layer approach by modeling
the application layer performance metric, video distortion,
as a function of network layer behavior (i.e., path selection
and traffic proportioning). For real-time applications, each
data packet is associated with a decoding deadline, before
which the packet must be successfully delivered in order to
contribute to the reconstructed video quality. The impact of
congestion (i.e., packet delay distribution) should be taken
into consideration, in addition to that of link failures. In
our formulation, interactions among competing video sessions
contribute to the delays on shared links, and the end-to-end
delay distribution is derived by applying the Chernoff bound
approximation [3]. Such a formulation provides a guideline on
choosing a set of optimal paths and rate vectors that provide
the best video quality.

This problem formulation is a non-polynomial programming
problem with a complex objective function and constraints.
It does not possess such nice property as convexity. Each
session's distortion is a function of the rates of all other
sessions. Since non-polynomial programming problems are
NP-hard in general, and our problem does not appear to
posses any simplifying special structure, it is likely also NP-
hard. Although this class of problems can be solved using
metaheuristic algorithms (e.g., Genetic Algorithms [1]) for
near-optimal solutions, we pursue to provide guarantees on
the optimality gap of such near-optimal solutions. The main
contribution of this paper is a specialized branch-and-bound-
based framework, predicated on the powerful Reformulation-
Linearization Technique (RLT), that can produce (1-e) optimal
solutions to the problem of optimal path selection and rate
allocation for concurrent video sessions. The proposed solution
procedure is computationally efficient and provides an elegant
trade-off between optimality and computation complexity.
The remainder of this paper is organized as follows. In

Section II, we formulate the problem of optimal path selection



and rate allocation for concurrent video sessions. We then pro-

pose a branch-and-bound and RLT-based solution procedure in
Section III. In Section IV, simulation results are presented to
demonstrate the efficacy of the proposed approach. We discuss
related work in Section V. Section VI concludes this paper.

II. PROBLEM FORMULATION

We model a wireless ad hoc network as a directed graph
Q(JV, L), where AV is the set of vertices, representing mobile
nodes, and L is the set of wireless links in the network.
We focus on link-layer metrics, assuming that lower layer
dynamics can be translated into these link-layer metrics. For
instance, we characterize each wireless (directed) link {i, j}
by the following parameters: (i) cij: the capacity, or available
bandwidth of link {i, j}; and (ii) Pij: the mean packet loss
probability of link {i, j} due to transmission errors or link
failures. In practice, these parameters can be measured by the
nodes and distributed to the network [4], [15].

Consider a set of concurrent video sessions, denoted as

S, sustained in this network. Each video session or C S
has a source node z, and a destination node d,. For each
session (i.e., a source-destination pair) z,-d,, there is a set
of given paths, denoted by P. In practice, these paths can

be precomputed by proactive routing protocols [4] or, by
a reactive routing protocol [15]. The total rate of a video
stream, R,, originated at source node z¢, is bounded by
R, < R, < R, or C S, while the lower and upper bounds
of R, are determined by the specific video encoder and the
video sequence used by source node z. This rate R, is to be
allocated among all the paths in 'P.' Letting an element in
the rate vector be Rn, n C 'P, the following conditions must
be satisfied.

Rn = R¢, and Rn > 0, Vn CeP,V(7 CS. (1)

The main notation used in the paper is summarized in Table I.

A. Link and Path Statistics

We derive link and path statistics in this section. These
statistics will be used to compute the application layer video
distortion in Section II-B.

1) Load and delay on a link: Based on the analysis
provided in [12], the average rate of the aggregate traffic on

link {i,j} c Lis

(2)

Similarly, we could model the queueing delay on link { i, j} e

L via an exponential distribution, i.e., fij (y) = aij
e-ij for y > 0, where cij = (cij- Aij) is the residual
bandwidth on the link.

1A path in P, will be assigned a rate of zero if it is not selected. That is,
path selection is made when the rate vectors are determined.

TABLE I
NOTATION

2) Path delay.: Recall that for each session or C S, there is a

set of paths P, between the source node z, and the destination
node d,. Let T,n denote the delay on path P1n and T, the
weighted average end-to-end delay among all the paths for
session (7, then

Rn, nT'7 = E: R
.aT

nG'P,
(3)

Since the delay on path P1 consists of delays on all the links
along the path, we have that T71 = {ijjC,pn tij.

For the end-to-end delay, we can apply the Chernoff Bound
[3] to obtain a good approximation, which is known to
be accurate and computationally efficient [5]. Applying the
Chernoff Bound, the distribution of Tn can be approximated
as [12]:

Pr{Tgn > AC} - (exe{ F g(s )}) (4)

where 6,,,(s) = &.1M_

3) End-to-end loss rate: Assuming that the packet loss
processes on the links are independent, the end-to-end loss
probability for the path 1Pn CeP, can be approximated as

pn 1= (1 -pij), Vn CeP,1Va7 C S. (5)
{i Xj } G 7P

B. Video Distortion

In [20], Stuhlmuller et al. developed an empirical rate-
distortion model for a hybrid motion compensated video
encoder. For a video sequence encoded at a target coding
rate R¢, the average end-to-end distortion De consists of the
encoding distortion at the encoder (Denc), the distortion due to
congestion (Dcg), and the distortion due to packet loss (Dloss
That is, D DnC + Dcg + D'°ss

Symbols Definitions
{i,j} A wireless link from node i to node j.
Aij Average aggregate traffic on link {i, j}.
tij Delay on link {i,j}.
fij (y) Probability density function of ti.
S Set of video sessions.

Path set of session a, from z, to d.
P9n: A path in the set PJ, from z, to d,.
A, Decoding deadline of session a.
Tn: End-to-end delay on path P1 C P,.
T, Average end-to-end delay for session a.
p:n End-to-end loss rate of pn C p,.
Rn: Rate of video session a on path pn C p,.
R,: Rate of video session a.
R,: The maximum rate of video session a.
R .: The minimum rate of video session a.
De: End-to-end distortion of session a.
D nc: Encoding distortion of session a.
Dcg Distortion caused by congestion of session a.
Dloss Distortion caused by packet losses of session a.

Aij = (I pi,,) - Rn.E E fl a

rnl(E,pn,z3a (ES n (EP, Lf 1, (T i



With our results on link and path statistics in Section II-A,
we have

De = Do +a ~R -RoDen+RD R0
+ i(1- p)Pr(T, > A,) + Kp,

Dcg Dloss

Do + ~O +
R -Ro

Rnn
K S R {P' + (1 p')Pr(Tn > Aif) }, (6)
nCPv

where Do, w, Ro, and i are constants for a specific video
codec and video sequence and can be obtained as discussed
in [12]. Since this model takes into account the effects of
INTRA coding and spatial loop filtering, it provides accurate
estimates for end-to-end distortion [20].

C. The Optimal Path Selection and Rate Allocation Problem

We are now ready to formulate the problem of optimal
path selection and rate allocation for concurrent video sessions
(OPT-PSRA), with the objective of minimizing application
layer video distortion. Mathematically, Problem OPT-PSRA
can be stated as in Eqs. (7)-(12).

In Problem OPT-PSRA, the objective function (7) is the sum
of the average distortion of all the concurrent video sessions.
The goal is to obtain the best possible rate vectors that would
minimize (7) over a given set of paths for each video session.
It should be noted that alternative objective functions, such
as max{D' } or an objective function in the form of a utility
function ff(De) (e.g., a logarithmic utility function), can
also be handled using the same solution procedure with minor
modifications.

Observe that the objective function (7) and the constraints
(11) and (12) are non-polynomial, non-convex functions of
both {R,}fcs and {Rn . The rates of all the video
sessions are closely coupled in (7). Since non-polynomial
problems are NP-hard in general, and Problem OPT-PSRA
does not appear to posses any simplifying special structure, it
is likely also NP-hard.

In the following section, we present a branch-and-bound
solution procedure for Problem OPT-PSRA, predicated on the
powerful RLT approach. Our proposed solution procedure can
produce a solution within a relative error of e to the global
optimum (e _ 0 if exact optimum is desired).

III. SOLUTION PROCEDURE

Our solution procedure is based on embedding a novel
relaxation technique called the Reformulation-Linearization
Technique (RLT) in a branch-and-bound framework. In this
section, we first reformulate the non-polynomial terms in
Problem OPT-PSRA, so as to convert it to a polynomial,
non-linear optimization problem. Then, we present details of
embedding the RLT-relaxation of this polynomial problem
into a branch-and-bound framework, and describe the solution
procedure that produces (1-e) optimal solutions.

A. Reformulation

Due to the existence of non-polynomial terms in Problem
OPT-PSRA, our first goal is to reformulate this problem into
a polynomial programming problem, which will simplify the
objective function as well as the constraints.

In the objective function (7), there are three sets of non-
polynomial terms. In order to transform the first two non-
polynomial terms, we define new variablesu= 1/(R -Ro)
and w, = (1/R,) Ei Rn * pn. Substituting u, and wi
into the objective function, we get two linear terms w u, and
i. w¢, respectively, and two sets of new polynomial constraints
u¢ (R -Ro) = l and w, R, = EinP a *p.

In order to transform the third non-polynomial term in
Eq. (7), i.e., the product of fractions, recall that aij denotes
the available bandwidth on a link {i, J}', i.e.,

ij = Ci E E,Sn * Rn
a(S n(P,

(13)

where 077 -p(1Pm). Note that 07n is a

constant, since the paths are given. Let gn denote the weighted
packet overdue probability on path Pn, i.e., gn RR .Pr(Tn >
A,). Again, define a substitution variable vij = ijs*n to
convert the fractions in Pr(Tn > A,) to polynomial form, i.e.,

g =Rn e-[S, 1T
(14)

This product form motivates us to apply logarithms on both
sides of Eq. (14), which will lead to a linear constraint.
This way, the complexity on the objective function can be
effectively moved into the constraints.
Once the objective function is simplified, we now deal with

the constraints of the form y = log(x). We can linearize
this logarithmic relationship over some proper tight bounds
using a polyhedral outer approximation comprised of a convex
envelope (a chord connecting the end points in concert with
several tangential supports). For instance, if x is bounded as
0 < xo < x < 1, these constraints can be written as follows.

{ > og(xo) x
y > log(.x) +( k- k)
y < log9(Xk) + X-Xk k = 1: ....: kmax:

(15)

whereXk = Xo+ (l- ) kk1
,

for k = I .kmax A
kmax-

four-point tangential approximation can be obtained by letting
kmax = 4. As a result, every logarithmic relationship translates
to five linear constraints.

With the above re-formulation, we can now rewrite Problem
OPT-PSRA as a polynomial programming problem (p-PSRA).
Problem OPT-PSRA is now transformed into a polynomial
non-linear programming problem (NLP) of order two. The
highly complex objective function (7) is greatly simplified (i.e.,
linearized) and the complexity is shifted into the constraints
in the polynomial form. In the remainder of this section,
we present our branch-and-bound and RLT-based solution
procedure to solve Problem OPT-PSRA.



OPT-PSRA
Minimize

D Z{Do + R R+ a{pa + (1 P { s*,d(s* 2w

u j WS ZkcPf [H{,m}Cpk ij (1-Plm)] R
k

{i,j}zvCi(G P,[{,}zk 1plm)] Rk-s
subject to

R= ERn, VR S

R<<R,< R, Va7 S

EE F~ ~(II (1pi)l * R'n < (I1- ) cij,
F7

62 I~~~~~~~~o7,nG {i}CPE V 2
{i}}7pJ (Cij E~oS cEkePQ,o Hfl{mlXmG i (

{i,j}C-p- ci

(9)

V{i,j} C P¢

.Pim)] Rk -S

ZkcThl,HMi,}Pk,i (1 pim)] Rk S

B. Branch-and-Bound

Branch-and-bound is an iterative relaxation algorithm [18]
that seeks to obtain a (1-e) optimal solution for a nonlinear
problem (NLP). Here e > 0 is a constant reflecting some

desired optimality tolerance. In branch-and-bound, the original
problem is first relaxed using a suitable relaxation technique
to obtain an easier-to-solve, lower-bounding problem. In our

approach, we choose a novel relaxation technique called the
Reformulation-Linearization Technique (RLT) [18], [19] to
obtain a linear programming (LP) relaxation (see Section III-

C). The optimal solution to this LP relaxation provides a

lower bound LB for the original problem. Since such an

LP relaxation usually yields an infeasible solution to the
original NLP problem, a local search algorithm, as explained
in Section III-D must be employed to obtain a feasible solution
to the original problem. The resulting feasible solution then
provides an upper bound UB for the original problem.

The branch-and-bound procedure is based on the idea
of divide-and-conquer. That is, the original problem, P, is
partitioned into sub-problems, each having a smaller feasible
solution space, based on the solution provided by the LP
relaxation. This branching process is carried out recursively to
obtain two new sub-problems at each node of the branch-and-
bound tree. The partitioning of the original solution space, i.e.,
the branching rule, will be explained further in Section III-

C. The sub-problems are inserted into a problem list L,
which records the active nodes in the branch-and-bound tree
structure.

More specifically, in the beginning, the problem list L is
initialized with the original problem P. At any given point,

(10)

, Vn e 'P,V eS (11)
2

-,nJ

-, Vn C 'P,(JV C S. (12)

the lower bound and upper bound for P are computed as

LB min{LBk Problem k e L} (16)
UB min{UBk Problem k explored thus far}.

The method proceeds by choosing the next problem to par-

tition from the problem list. In our approach, the problem k
having the worst (or smallest) LB is chosen. This problem
k is then partitioned into two sub-problems k1 and k2, which
replace Problem k in L. Every time a problem k is added to the
list, LBk and UBk are computed, and the LB and UB for the
original problem P are updated as in Eq. (16). At any given
iteration, if LB > (1 -e) UB, the procedure exits with a (1-e)
optimal solution. Otherwise, for any problem k in the problem
list, if LBk > (1 -e) UB, no globally optimal solution that
improves beyond the e-tolerance can exist in the subspace of
the feasible region represented by this node. Therefore, this
node can be removed from the branch-and-bound tree. In this
manner, the branch-and-bound can prune or fathom certain
branches of the branch-and-bound tree, without solving all the
nodes in the branch to completion.

C. The Reformulation-Linearization Technique
RLT is a relaxation technique that can be used to produce

tight polyhedral outer approximations or linear programming
relaxations for an underlying nonlinear, nonconvex polynomial
programming problem, which, in essence, can provide a tight
lower bound on a minimization problem [18], [19]. In our

approach, the key to obtaining a (1-e) optimal solution is to
embed RLT into the branch-and-bound framework as discussed
earlier, and the proposed method is known to converge to a

global optimum.
In the RLT procedure, nonlinear implied constraints are

generated by taking the products of bounding terms of the

(7)

(8)



decision variables, up to a suitable order and also, possibly
products of other defining constraints of the problem. The
resulting problem is subsequently linearized by variable substi-
tutions, one for each nonlinear term appearing in the problem,
including both the objective function and the constraints.

For instance, the second order term u, R, in Problem
p-PSRA can be viewed as a single term, for which we can
introduce a new variable ,up, thereby substituting ,u, = u,
R,. Since u, and R, are each bounded by (u,) L < U, <
(U )u and (RU)L R, < (R,)U, respectively, we generate
the following relational constraints, which are known as RLT
bound-factor product constraints.

{ {[u (uO)L] [Ra - (Ru)LI}L > 0
{[u (uO)L1 [(Ru)u -RU]}L > 0
{[(u)U u,7] [R,7 - (RU7)LI}L > 0
{[(07u U-V] [(R7)u - R,7]L > °:

where { }'L denotes a linearization step under the substitution
,u u' R,. From the above relationships and by substituting
,u u R,, we can generate linear RLT constraints for ,u.
We therefore replace the second-order term u, R, with the
linear term ,up, wherever it appears in p-PSRA, and introduce
the above linear bound-factor RLT constraints for ,u¢ into
the Problem p-PSRA formulation. Similarly, we define new
variables for all the remaining nonlinear terms in Problem p-
PSRA, and make substitutions in the same manner.

It is worth noting that, when incorporating RLT into the
branch-and-bound framework, the original bounding set Q is
decomposed into two corresponding hyper-rectangles, based
on a so called branching variable. In RLT, the discrepancy
between an RLT variable and the corresponding nonlinear
term that the RLT variable represents is called the relaxation
error, and we choose a branching variable that yields the
largest relaxation error. Such a branching rule ensures that
all the discrepancies will be driven to zero from iteration to
iteration. After replacing all non-linear terms as above and
adding the corresponding RLT constraints into the Problemp-
PSRA formulation, we obtain a linear programming relaxation
problem (f-PSRA), for which many efficient (polynomial-
time) solution techniques and tools are available.

D. The Local Search Algorithm
As discussed in Section III-B, in the branch-and-bound

procedure, the solution to the relaxation problem is usually
infeasible to the original problem. This problem can be re-
solved by finding a feasible solution to the original problem
via a local search algorithm that starts from the infeasible
solution. Let R and R' be vectors having components R,
and R', respectively. For Problem OPT-PSRA, we adopt
the following local search strategy that computes a feasible
solution (R, u, v, ao, , s) from the solution to the relaxation
problem (R, u, v, az, 0, s). Specifically, since the rates of the
video sessions obtained from the solution to the relaxation
problem are always feasible to the original problem (i.e.,
the stability constraints are always satisfied and the rates are
always within the lower and upper bounds), we have that
R = R. Using the value of R we can compute a feasible

TABLE II
PERFORMANCE OF THE PROPOSED ALGORITHM FOR VARIOUS INSTANCES

OF PROBLEM OPT-PSRA

Size
30
30
30
50
50
50
50
50
50
50

Sessions
2
3
4
4
6
8
10
3
4
5

Paths/Sess.
1
1
1
1
1
1
1
2
2
2

c

0.05
0.05
0.05
0.05
0.1
0.1
0.1
0.1
0.1
0.1

Init. Solution
106.64
181.85
249.09
255.59
419.44
537.65
665.39
200.45
295.01
369.19

(1 e) optimal
106.64
179.26
240.66
252.13
366.41
500.33
640.10
190.67
282.60
301.53

(17) solution to the original problem OPT-PSRA, (R, u, v, a, 6, s),
based on the relationships explained earlier in Section III-A.

IV. SIMULATION STUDIES
In this section, we present simulation results for Problem

OPT-PSRA. In each simulation, a wireless ad hoc network is
generated by placing a number of nodes at random locations in
a rectangular region. A wireless link exists if a node is within
the radio range of a transmitting node. As discussed, a set
of preselected paths are precomputed using a k-disjoint path
routing algorithm for each source-destination pair, which are
randomly chosen from the set of nodes JV. In the simulations,
each video session has a rate bounded by 20 Kb/s and 200
Kb/s. We used an H.263+ codec and the first 200 frame of the
"Foreman" trace in the quarter common intermediate format
(QCIF). The video was encoded at 12.5 frames per second
and an intra rate of 1/9. The rate-distortion parameters are
obtained from [20]. Failure probabilities of the wireless links
are chosen from a uniform distribution between [1%, 5%];
the bandwidth of a link is chosen from a uniform distribution
between [50 Kb/s, 400 Kb/s]. The proposed solution procedure
is implemented in C, and the LINDO API 3.0 is used for
solving the LP relaxation Problem £-PSRA.

A. Performance on Different Instances ofProblem OPT-PSRA
We first examine the performance of the proposed solution

procedure with different instances of Problem OPT-PSRA,
which are presented in Table II. In each of these case studies,
we examine the performance of the proposed solution proce-
dure in the presence of multiple shared links and bottlenecks.
For example, the last three cases in Table II are for the
same 50-node network, with three, four, and five sessions,
respectively, and two paths for each session. In these case
studies, the proposed algorithm performs both rate allocation
and path selection (i.e., proportional routing). The decoding
deadline is 0.2 s for all the cases in Table II.
The fifth column of Table II presents the total distortion

values found by solving the corresponding UB for Problem 1
(i.e., the first node in the tree) in the RLT-based branch-and-
bound algorithm; the sixth column presents the (1-e) optimal
solution found by the algorithm. We find that the correspond-
ing values between these two columns are very close to each
other. This clearly demonstrates that the polyhedral outer



approximation and the RLT-based LP relaxations used in the
solution procedure are well designed and tight.

B. Comparison with Network-centric Scheme
In the remainder of this section, we compare the per-

formance of the proposed approach with a network-centric
rate allocation scheme. Specifically, a max-min rate allocation
scheme (called Max-Min throughout this paper) is imple-
mented, which is widely regarded as a fair rate allocation
policy [2]. In Max-Min, fairness is achieved by maximizing the
minimum rate allocation in the network without exceeding its
upper bound and the capacity of each link. Note that the max-
min rate allocation is based on the fluid flow model and does
not explicitly consider queueing delay at the links. Therefore,
we need to compute the max-min fair rate allocations for a
prescribed link utilization factor, which specifies the maximum
percentage of capacity that can be used on a given link. Using
this scheme, we find the rate allocation for each video session
and then compute the total distortion using Eq. (7).

In Figure 1, we plot the average distortions found by
the proposed algorithm and Max-Min for various decoding
deadlines. The network consists of 50 nodes with 5 concurrent
video sessions. There are two paths available for each session.
To be fair in comparison, the Max-Min scheme is executed for
various link utilization factors, ranging from 30% to 80%. We
find that the average distortion quickly decreases when the
delay constraint is relaxed, but more importantly, the branch-
and-bound/RLT approach outperforms the Max-Min approach
by a significant margin: there is a big gap between the branch-
and-bound/RLT curve and the lower bounding envelope of the
Max-Min curves. For example, when the decoding deadline
is 0.2 s, the average distortion achieved by our approach is
60.31, which translates to a Peak-Signal-Noise-Ratio (PSNR)
of 30.33 dB (computed as 10 log 10(255 * 255/De)); the
average distortion achieved by Max-Min when p=50% is
107.61, which translates to a PSNR of 27.81 dB (the best
among all the Max-Min curves). There is a 78.4% reduction in
distortion and a 2.52 dB improvement in average PSNR. Note
that such an improvement is significant in terms of perceived
video quality, since usually a half dB difference in PSNR is
noticeable.
We now simulate the actual video streaming in this 50-

node network for the A. = 0.2 s case, using the "foreman"
video trace. In the simulations, the source nodes transmit
packetized video traffic along the paths according to the rate
vectors computed, while the destination nodes reconstruct
video frames from received packets and compute their PSNR
values. For Session Two, under the branch-and-bound/RLT
scheme, the average PSNR is 32.27 dB, while under Max-Min
for link utilization of 30%, 50%, 70%, and 80%, the PSNRs
are 28.73 dB, 30.20 dB, 29.62 dB, and 26.88 dB respectively.
The proposed approach achieves a 2.07 dB gain in average
PSNR over Max-Min with p=50%, which is the best among
all the Max-Min schemes. In Figure 2, we present Frame 160
obtained by various schemes. Again, we find that although the
frame delivered by Max-Min with p=50% is the best among all
the Max-Min frames, it is still inferior to the frame obtained
by our algorithm.

° 0 X / / Max-Min (p=M0%)
400 t/\ / / Max-Min (p=70%)

0 M~~~~DcdigDadMine(s=0)

200%8= < / ~Max-Min (p=30%)

100

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Decoding Deadline (s)

Fig. 1. Average distortion versus decoding deadline for a 50-node network
with five sessions and two paths per session.

V. RELATED WORK

The optimal traffic proportioning problem, i.e., given a set
of calls, how to partition them to the set of given paths such
that the overall throughput is maximized, has been studied
extensively in the context of telephone networks (see [16]
and references therein). Recently, a localized approach to the
proportional routing problem is proposed in [14]. In addition,
the problem of utility maximization with multi-path routing
has been studied in the context of flow/congestion control for
elastic data in a few recent works [9], [10]. In such problems,
each session is associated with a concave, univariate utility
function of its total rate.

These prior efforts motivate us to pursue this important
problem, particularly when video quality is the optimization
objective. The problem we study in this paper differs from
those analyzed by prior works in that we need information
on link metrics and on all the active video sessions. The for-
mulation is considerably more complex in that we model the
end-to-end delay distributions, which is required for real-time
traffic with tight decoding deadlines. A session's distortion is
affected by other sessions in the network, making it impossible
to break the original problem into simpler subproblems or
to derive an easier-to-solve dual problem. As a result, prior
approaches (developed for elastic data traffic based on flow
models) could not be applied to our problem.

VI. CONCLUSIONS

In this paper, we investigated the problem of path se-
lection and rate allocation for concurrent video sessions
in an ad hoc network. We formulated the problem as a
nonconvex programming problem and developed an efficient
solution procedure based on the branch-and-band framework
and the Reformulation-Linearization Technique. This solution
approach is shown to produce (1-e) optimal solutions, and
provide guarantees on the optimality gap.
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